Sorbonne Université
Master de Sciences & Technologies
Modèles d’équations aux dérivées partielles pour l’écologie
Gael Raoul
Description du cours :
Cours donné à l’X, horaire du cours sur la page du master « Mathématiques pour les sciences du Vivant ».
https://sites.google.com/view/m2-msv/informations-générales
Résumé du cours :
Les équations aux dérivées partielles sont souvent utilisées en biologie pour modéliser des systèmes structurés spatialement : propagation de forêt, dynamique d'une inflammation, polarisation d'une cellule... Ces modèles peuvent par exemple permettre de simuler de façon précise le comportement d'un organe. Dans d’autres cas, en particulier lorsque l'on s'intéresse à des systèmes biologiques moins bien compris, les équations aux dérivées partielles peuvent offrir une description qualitative de phénomènes complexes.
Dans ce cours, nous allons nous concentrer sur deux problématiques écologiques, via l’étude de travaux récents. Dans un premier temps nous nous intéresserons aux phénomènes de propagation qui sont décrits par des équations paraboliques non-linéaires. Nous verrons alors qu'une bonne compréhension d'équations linéaires (elliptiques ou paraboliques) permet d'étudier le comportement de modèles non-linéaires. Dans la deuxième partie du cours nous étudierons les dynamiques de mouvements collectifs décris par des équations cinétiques. Pour comprendre la dynamique de ce second type d'équations aux dérivées partielles nous identifierons une échelle de temps rapide (qui sera locale en espace) et une échelle lente (qui gouvernera la dynamique spatiale du système).
Nous pourrons ainsi décrire les solutions grâce à des modèles macroscopiques.
Les deux problématiques écologiques discutées dans ce cours nous permettront de comprendre la diversité des questions qui peuvent se poser autour de modèles d'équations aux dérivées partielles en biologie: modélisation, liens avec d'autres modèles (en particulier avec des modèles stochastiques), simulations numériques. Nous pourrons aussi discuter des rôles possibles de l'analyse mathématique dans l'étude d'une problématique biologique. Les méthodes mathématiques abordées (modèles linéaires/non-linéaires, dynamiques lentes/rapides) interviennent dans de nombreux problèmes mathématiques issus de la biologie.De plus, ces méthodes ont des liens avec des arguments utilisés en probabilités et lors de l'étude de systèmes dynamiques.