Ground state (in-)stability and long-time behavior in
multi-dimensional Schrodinger equations

Christof Sparber

Department of Mathematics, Statistics and Computer Science

University of lllinois at Chicago

Sorbonne U., May 2024

Christof Sparber (UIC) Ground state (in-)stability Sorbonne 1/32



Overview

@ Introduction
@ Solitary waves
@ Possible long-time behavior

e The cubic-quintic NLS
@ Global well-posedness
@ Cubic-quintic solitary waves
@ Cubic-quintic scattering

0 Ground state (in-)stability
@ Action minimizers
@ Orbital (in)-stability

e Energy minimizers
@ Existence and stability of energy minimizers
@ Nonequivalence and instability

Christof Sparber (UIC) Ground state (in-)stability Sorbonne 2/32



Introduction

Basic setting

A canonical model in the description of dispersive, weakly nonlinear
waves is the nonlinear Schrédinger equation. In its most basic form:

10w = —Au + Nu|Ptu, Ujp—o = Uo- (NLS)

Hereuw : R x R? - C,ford=1,2,3and p > 1, while A = £+1
distinguished between the defocusing and focusing case.

This model appears in, e.g., nonlinear fiber optics, or Bose-Einstein
condensation. By scaling invariance, if u(t¢, x) is a solution then so is

ug(t,x) = RQ/(pfl)u(KQt, ﬂx), k> 0.

This scaling leaves the H*-norm invariant for critical s, = ¢ — -2,
2 p—1
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Introduction

Basic conservation laws

@ Mass: M(u) = ||u(t, ‘)H%z(Rd) = M (up)
@ Momentum:
P(u)=Im [ a(t,z)Vu(t,z)dr = P(up)
Rd

@ Energy:

1
E(u) = S||Vult, )} 2ga) + —— lut, )7 = E(uo)
9 (R%)

p+1

The natural energy-space for solutions is the Sobolev space

H'(R?) < LP(RY), for p < 7255
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Introduction Solitary waves

Solitary waves

In the focusing case A\ = —1, the competition between dispersion and
nonlinearity allows for the existence of standing waves:

Definition (Standing wave)
A standing wave of (NLS) is a solution u = !¢, (), with w € R and

_A¢w + w¢w - ‘¢w‘p_1¢w = 07 ¢w € Hl(Rd) \ {0}
By Noether’s theorem:
conservation laws < symmetries of the NLS.

Using the Galilei-invariance, one obtains moving solitary waves:

u(t, ) = o — pot — o)’ @HHPOT=IROl*t/2) g n e R,
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Introduction Possible long-time behavior

Finite time blow-up

In the focusing case A\ = —1, we also face the possibility of finite-time
blow-up', i.e. the existence of a T = T (ug) < oo, such that

li Mgz = +o0.
L [[Vu(t, )| 2 = +o0

In particular, for d = 2 and p = 3 (the mass-critical case in 2D), finite
time blow-up is possible, as soon as

M(uwo) = M(Q),
where Q € H] ;(R?) the unique positive standing wave solution
—1AQ+wQ - Q*=0, withw=1,
called 2D nonlinear ground state?.
1Zakharov-Shabat 72

2Weinstein '83, Merle-Raphael *04...
Christof Sparber (UIC) Ground state (in-)stability Sorbonne 6/32




Introduction Possible long-time behavior

Scattering

Q is known to yield the best constant in the sharp Gagliardo-Nirenberg
inequality3, i.e.

lullza < ConllullZllVul7z,  Con = Q22

On the other hand, for d = 2, p = 3 and M (up) < M(Q), the solution u
to (NLS) is known to behave asymptotically linear*, i.e. Jus. € H'(R?)
s.t.

Jim u(t, ) = € Fus g =0.
Q: What is the dynamics in situations where blow-up is prohibited, but
standing waves are still present?

SWeinstein ’83
“Dodson '15
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The cubic-quintic NLS

Basic properties of cubic-quintic NLS

To avoid finite time blow-up, we shall regularize the (NLS) by
considering a combination of competing focusing and defocusing
nonlinearities,

10+ Au = —|ulP " u 4 [u|Tu, g > p.

We thereby lose the scaling invariance of solutions!
For simplicity, we will mainly look at the case of the cubic-quintic NLS
in dimensions d < 3, i.e.

i+ Au = —|ul?u + |ul*u, Ujp—o = Uo- (cgNLS)

This equation models, e.g., dense Bose-Einstein condensates with
combined two- and three-particle interactions.
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The cubic-quintic NLS Global well-posedness

Global well-posedness

Proposition (Global well-posedness)

Letd < 3. For any ug € H(R?), (cqNLS) has a unique global solution
u € C(R; HY(R?)). The solution obeys the conservation laws of mass,
momentum, and energy, i.e.

1 1 1
E(u) = Z[Vult, )72 gay = = lult, )| agay + =lult, | ga)-
5 R T 7 ®y T (RY)

and if, in addition, ug € ¥ := H'(R?) N F(HY(R?)), thenu € C(R;X).

v

Energy-conservation, combined with HuHL4 Rd) HUHLQ(Rd)HuHiG(Rd),
shows that the focusing part cannot obstruct global existence®.

5The problem is energy critical in d = 3, cf. Zhang 06
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The cubic-quintic NLS Global well-posedness

Numerically, one observes a oscillatory behavior within the solution .

Figure: The time-evolution for a radial solutions v = u(t, |z|) in d = 3.
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The cubic-quintic NLS Cubic-quintic solitary waves

Basic properties of solitary waves

We look for standing wave solutions to the cubic-quintic model:

- A¢w + w¢w - ’¢w’2¢w + ’¢w’4¢w = 07 (bw € Hl(Rd) \ {0} (SNLS)

Lemma (A priori estimates for solitary waves)

Any ¢, € H'(R?) solution to (SNLS), satisfies the Pohozaev identities:

/|V¢>w|2dm+/ |¢>w|6dx+w/ ]qﬁw]de:/ |po|* dez,
R4 R4 R4 R4

12 [ WouPao+§ [ Jouldoswd [ Jofar=4 [ Jofiar
R4 6 Rd Rd Rd
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The cubic-quintic NLS Cubic-quintic solitary waves

@ Afirst consequence of these identities is that if ¢, # 0, then
O<w< 1%7

the admissible frequency range.
@ A second consequence is that in d = 2:

[bwlle > [1Qllz2,

where Q) is the cubic ground state solution. Thus, the mass M (¢,,)
is strictly bigger than in the cubic case. In 3D, one even knows®
that M (¢,,) — 400, as w — 0.

éKillip et al. '17
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The cubic-quintic NLS Cubic-quintic solitary waves
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Figure: Ground state solutions Q,,—¢.1 to the cubic NLS in blue and the
cubic-quintic NLS in red: on the left for d = 2 and on the right for d = 3.
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The cubic-quintic NLS Cubic-quintic scattering

The strict lower bound M (¢,,) > M(Q) holds more generally (e.g. the
cubic-quartic case’) and changes the 2D scattering threshold in
comparison to the cubic case.

Theorem (Carles - S. '21)

Ind =2, if My <||Q3-, then the solution u € C(R;X) to (cqNLS)

satisfies )
717A . _
lle™ 2% u(t, -) ungt_?ooO.

The proof is based pseudo-conformal conservation law

d t2 2t
& (310t - Sl + S ) = ~Salge.

where J(t) = x + itV.

7 A ’
rora-S. '23
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The cubic-quintic NLS ~ Cubic-quintic scattering
Rigidity results for L2-critical NLS® allow us to infer
J(t)u € L=(Ry; L*(R?)),
and general Gagliardo—Nirenberg inequalities, for 2 < r < o, yield

0
ol S IO ey (G190l )« 0=1-2 @

This implies u € L4(R; L"(R?)) for all admissible Strichartz pairs (q,r),
i.e. the solution is purely dispersive.

For energy-subcritical ¢ > p power-law nonlinearities the assumption
ug € ¥ can be relaxed® to ug € H'(R?). In general, however, the
situation seems to be rather subtle, since there are examples of
nonlinearities, which yield ¢,, with arbitrarily small H'-norm1°,

8Banica '04
°Cheng 20°
°Carles-S. '23
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Ground state (in-)stability

(In-)stability of standing waves

Q: What about the long-time behavior of perturbations of standing
waves?

Definition (Orbital stability)
Foralle > 0,3 > 0 s.t. if

[uo — Gull g1 (rey < 6,

then the solution to (cqNLS) satisfies

6
Suplnf H —ezgzb(—yH <e
teR 0K, ey

For this stability statement it is necessary to take into account the
symmetries of the (sNLS), i.e. phase-conjugation and spatial shifts.
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Ground state (in-)stability
In d = 1, standing waves to the cubic-quintic NLS solve

—0 + wow — |60 + [dul' 0w =0, ¢ € H'(RY)\ {0}
The solution to this ODE can be computed explicitly for w € (0, 2):

Proposition (Ohta ’95)
The unique (up to translation and change of sign) positive solution
which decays as |x| — oo is given by:

w(x) =2 v .
Pl J1+,/llgwcosh(2x\/%)

Moreover, this solution is orbitally stable.

The proof uses ODE arguments which do not carry over to higher
dimensions d > 2.
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Ground state (in-)stability Action minimizers

Existence of action minimizers

A first approach to the existence of standing waves is based on
action-minimizers. For given w € (0, ), denote the action of
¢ € H'(R?) by

Sw(9) = E(9) +wM(¢),

and note that standing waves are critical points, i.e., S, (¢,,) = 0.
Definition

Forw € (0, ), a solution ¢,, to (sNLS) is called an action-minimizing
ground state, if it minimizes S,,(¢) among all solutions 0 # ¢ € H'(R%).

Existence of such action minimizers has been proved using various
variational techniques’’.

""Cazenave-Lions *81, Byeon and Jeanjean 20, ...
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Ground state (in-)stability Action minimizers

By combining results by Berestycki et al. ’83, Serrin-Tang ’00, and
Jang ’10, one finds:

Proposition (Existence and uniqueness of action ground states)

Letw € (0,2). Then 3 a unique real-valued solution ¢, € C*(R%), s.t.:
Q@ ¢, >0o0nR%L
Q ¢, is radially symmetric and non-increasing.
© Derivatives of ¢,, up to order two decay exponentially as |z| — .
© For every solution ¢ to (SNLS): 0 < S, (¢s) < Sw(®).

@ Every action-minimizer is of the form

(z) = "¢, (x — o).
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Ground state (in-)stability Orbital (in)-stability

A first approach to (in-)stability

Let M(¢w) = ||$u|7- be the ground state mass. By studying the
Hessian of S(¢) at ¢ = ¢,,, one finds'?:

Q If ZM(4.) > 0, then e™“t¢, () is orbitally stable.

Q If 2 M(4.) <0, then e™tg,(z) is unstable.
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Figure: A numerical plot of M (¢,,) ford =2 and d = 3.

2Weinstein ’85, Grillakis-Shatah-Strauss ‘87
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Ground state (in-)stability Orbital (in)-stability

A partial stability result

In d = 2, we expect all ground states to be orbitally stable.
Unfortunately, we can only prove that w — M(¢,,) is increasing

asymptotically near w = 0 and near w = -%.

Theorem (Carles-S. "20)

Letd = 2. There exist0 < wo < wy < 15 S.t. forw € (0,wp) U (w1, 15),
¢ Is orbitally stable.

Similarly, for d = 3, Killip et al. ’17 have shown that w — M(¢,,) is
decreasing near w = 0 and increasing near w = 13—6 Hence ¢, is
unstable for w € (0,&,) and stable for w € (@1, ).

It is conjectured, that @y = &1 = w, € (0, 5).
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Ground state (in-)stability Orbital (in)-stability

Asymptotic analysis
To prove the first part, we turn the singular limit w — 0 into a regular
one, by rescaling: 1, (x) = ﬁqbw (%) . Then (sNLS) becomes

—Atpy, + 1y — wi +w¢3 = 0.

Invoking uniqueness of @ = Q-1 and the implicit function theorem,
we have

Yo(r) = Q(x) —w (L7'Q°) (z) + O (w?), as w — 0.

In particular, as w — 0, one finds:

M(60) = M(a) = M(@) + Q% gy + O,
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Energy minimizers Existence and stability of energy minimizers

The concentration-compactness approach

A second approach, pioneered by Lions & Berestycki ‘84, considers
the set of constrained energy minimizers: For a fixed mass p > 0,
denote

T(p) = {ue H'R?), M(u)=p}.
Definition (Energy minimizers)
Assuming that the minimization problem
E(u) = inf{E(v) ; v € T(p)} (EM)

has a solution, we denote by £(p) the set of all (constrained)
energy-minimizing ground states.

Note: energy-minimizer are not necessarily unique, i.e., £(p) # {¢}-
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Energy minimizers Existence and stability of energy minimizers
If o € E(p), then there exists a Lagrange multiplier ;o = —w such that
E'(p) = uM'(p) & E'(¢) +wM'(p) =0,

and thus, ¢ solves the stationary Schrédinger equation (sNLS) for
some (unknown) w = —pu € (0, ).

Definition
We call the set £(p) orbitally stable, if for all £ > 0, there exists § > 0
such that, if ug € H'(R?) satisfies

inf ||lug — 1 <0,
it o = el

then the solution to (cqNLS) with uj,—y = u, satisfies

sup inf [fu(t,) — ¢l < e
teR »€E(p)
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Energy minimizers Existence and stability of energy minimizers

Orbital stability of energy minimizers

Using the conservation laws of energy and mass, implies that energy
minimizers are automatically stable (as a set)' .

Theorem (Carles-S. '20)
@ Letd = 2. Then, forany p > ||Q|%.,

Enin(p) :=inf E(v) <0,

P

implying that the set £(p) # () and orbitally stable.

Q@ Ifd=3,3p1 > posuchthatforp> pi: Enin(p) <0, E(p) # 0 and
energy minimizers are &(p)-orbitally stable.

The minimal mass pg in 3D, is related to a Sobolev-minimizer, which,
unlike in 2D, cannot be described via a stationary solution Q4.
8Cazenave-Lions '82
Killip-Visan '17
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Energy minimizers Nonequivalence and instability

Equivalence of ground states?

We already know that for given p > 0, all energy minimizers ¢ = ¢(p)
satisfy

—Ap +wp — [pl*e + |¢|' =0,
for some w € (0, ), the Lagrange multiplier associated to p.

Using re-arrangement inequalities, one can show that ¢ is real-valued
and radially decreasing.

Hence, one might think that the two notions of action-ground states
and energy-ground states are equivalent. However:

Theorem (Carles-Klein-S. ’23)
Ind = 3, not all action ground states are energy minimizers.
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Energy minimizers Nonequivalence and instability

Recall the rescaling ¢, (z) = ﬁqﬁw (%) and the fact that
Yy =Q+ Oy1(w), asw — 0.

In d = 3, Pohozaev identities imply that the energy satisfies
B($w) = Vol Ql22zs) + Ow).

Thus 3w* > 0 such that £(¢,,) > 0 for all w € (0,w*). Since’

1 Vw o
ﬁM(Q) + THQHH(RS) w—_>6+oo,

this shows that there exists 3D action ground states with positive
energy and arbitrarily large mass. However, we know that for mass
p = p1, all energy minimizers ¢ satisfy Fin(p) < 0.

M(¢w) =

®Killip et al. '17
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Energy minimizers Nonequivalence and instability

Two problems:
@ A-priori nothing guarantees that an element of £(p) minimizes the
action.
© A more subtle problem: consider a least action ground state ¢,
and let p = M (¢.,). It is not obvious, and not necessarily true, that
¢ € E(p). In particular, the map

Ap—w Ci(O,f%)

may not be one-to-one (even ran A is unclear at this point).

Indeed: Equivalence of the two notions is only known for NLS with a
single power law nonlinearity |u[P~'u and p < 1 + %. The proof is
based on a scaling argument which requires homogeneity of the
nonlinearity'®.

16 C ’
azenave ‘03
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Energy minimizers Nonequivalence and instability

Recently, Jeanjean-Lu ’21 have shown for a large class of
nonlinearities (including the cubic-quintic case), that every energy
minimizer ¢ is a least action ground states ¢,, for w = w(p) > 0.

They also prove that if w is obtained as the Lagrange multiplier
associated to the mass constrained M (u) = p, then any least action
solution of (sNLS) at this value of w is a constrained energy minimizer
with the same mass p.

Conjecture (Cubic-quintic stability in 2D)

In view of our numerics (20), we conjecture that in d = 2 there is full
equivalence between energy- and action-ground states, and that all of
them are orbitally stable?.

4Lewin & Rotar-Nodari 20, Carles-Klein-S.21
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Energy minimizers Nonequivalence and instability

Numerical results

In d = 3 however, there are potentially unstable action-ground states
which are not energy minimizers.

0.8 .

06 S

0.4
65 70 75 80

M

Figure: E(¢,,) as a function of M (¢,,) for cubic-quintic ground states d = 3.
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Energy minimizers Nonequivalence and instability

The numerical simulations we did for unstable 3D ground states under
radial perturbations, yield:

Conjecture (Cubic-quintic (in-)stability in 3D)

Forw < wy, i.e. on the unstable branch, consider

ug(z) = ¢u(@) + x(|2]), with [[x|[g1 < 1.

Q If M(uy) < M(¢y,), the solution u(t,-) scatters.
Q If M(ug) > M(¢y,), the solution u(t, -) N e“to,(z), where ¢, is
some stable ground state with mass M (¢,,) < M (¢,)2.

4Carles-Klein-S.21

Q: What is the selection principle for ¢,,?
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Energy minimizers Nonequivalence and instability

Thank you for your attention!

Christof Sparber (UIC) Ground state (in-)stability Sorbonne 32/32



	Introduction
	Solitary waves
	Possible long-time behavior

	The cubic-quintic NLS
	Global well-posedness
	Cubic-quintic solitary waves
	Cubic-quintic scattering

	Ground state (in-)stability
	Action minimizers
	Orbital (in)-stability

	Energy minimizers
	Existence and stability of energy minimizers
	Nonequivalence and instability


