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Introduction

Basic setting

A canonical model in the description of dispersive, weakly nonlinear
waves is the nonlinear Schrödinger equation. In its most basic form:

i∂tu = −∆u+ λ|u|p−1u, u|t=0 = u0. (NLS)

Here u : R× Rd → C, for d = 1, 2, 3 and p > 1, while λ = ±1
distinguished between the defocusing and focusing case.

This model appears in, e.g., nonlinear fiber optics, or Bose-Einstein
condensation. By scaling invariance, if u(t, x) is a solution then so is

uκ(t, x) = κ2/(p−1)u
(
κ2t, κx

)
, κ > 0.

This scaling leaves the Ḣs-norm invariant for critical sc = d
2 −

2
p−1 ,
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Introduction

Basic conservation laws

Mass: M(u) = ‖u(t, ·)‖2
L2(Rd)

= M(u0)

Momentum:

P (u) = Im

∫
Rd
ū(t, x)∇u(t, x)dx = P (u0)

Energy:

E(u) =
1

2
‖∇u(t, ·)‖2L2(Rd) +

λ

p+ 1
‖u(t, ·)‖p+1

Lp+1 = E(u0)

The natural energy-space for solutions is the Sobolev space

H1(Rd) ↪→ Lp(Rd), for p 6 2d
(d−2)+

.
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Introduction Solitary waves

Solitary waves

In the focusing case λ = −1, the competition between dispersion and
nonlinearity allows for the existence of standing waves:

Definition (Standing wave)

A standing wave of (NLS) is a solution u = eiωtφω(x), with ω ∈ R and

−∆φω + ωφω − |φω|p−1φω = 0, φω ∈ H1(Rd) \ {0}.

By Noether’s theorem:

conservation laws⇔ symmetries of the NLS.

Using the Galilei-invariance, one obtains moving solitary waves:

u(t, x) = φω(x− p0t− x0)ei(ωt+p0·x−|p0|
2t/2), x0, p0 ∈ Rd.
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Introduction Possible long-time behavior

Finite time blow-up

In the focusing case λ = −1, we also face the possibility of finite-time
blow-up1, i.e. the existence of a T = T (u0) <∞, such that

lim
t→T
‖∇u(t, ·)‖L2 = +∞.

In particular, for d = 2 and p = 3 (the mass-critical case in 2D), finite
time blow-up is possible, as soon as

M(u0) >M(Q),

where Q ∈ H1
rad(R2) the unique positive standing wave solution

−1
2∆Q+ ωQ−Q3 = 0, with ω = 1,

called 2D nonlinear ground state2.
1Zakharov-Shabat ’72
2Weinstein ’83, Merle-Raphael ’04...
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Introduction Possible long-time behavior

Scattering

Q is known to yield the best constant in the sharp Gagliardo-Nirenberg
inequality3, i.e.

‖u‖4L4 6 CGN‖u‖2L2‖∇u‖2L2 , CGN = ‖Q‖−2
L2 .

On the other hand, for d = 2, p = 3 and M(u0) < M(Q), the solution u
to (NLS) is known to behave asymptotically linear4, i.e. ∃u± ∈ H1(R2)
s.t.

lim
t→±∞

‖u(t, ·)− ei
t
2

∆u±‖H1 = 0.

Q: What is the dynamics in situations where blow-up is prohibited, but
standing waves are still present?

3Weinstein ’83
4Dodson ’15
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The cubic-quintic NLS

Basic properties of cubic-quintic NLS

To avoid finite time blow-up, we shall regularize the (NLS) by
considering a combination of competing focusing and defocusing
nonlinearities,

i∂tu+ ∆u = −|u|p−1u+ |u|q−1u, q > p.

We thereby lose the scaling invariance of solutions!
For simplicity, we will mainly look at the case of the cubic-quintic NLS
in dimensions d 6 3, i.e.

i∂tu+ ∆u = −|u|2u+ |u|4u, u|t=0 = u0. (cqNLS)

This equation models, e.g., dense Bose-Einstein condensates with
combined two- and three-particle interactions.
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The cubic-quintic NLS Global well-posedness

Global well-posedness

Proposition (Global well-posedness)

Let d 6 3. For any u0 ∈ H1(Rd), (cqNLS) has a unique global solution
u ∈ C(R;H1(Rd)). The solution obeys the conservation laws of mass,
momentum, and energy, i.e.

E(u) =
1

2
‖∇u(t, ·)‖2L2(Rd) −

1

4
‖u(t, ·)‖4L4(Rd) +

1

6
‖u(t, ·)‖6L6(Rd).

and if, in addition, u0 ∈ Σ := H1(Rd) ∩ F(H1(Rd)), then u ∈ C(R; Σ).

Energy-conservation, combined with ‖u‖4
L4(Rd)

6 ‖u‖L2(Rd)‖u‖3L6(Rd)
,

shows that the focusing part cannot obstruct global existence5.

5The problem is energy critical in d = 3, cf. Zhang ’06
Christof Sparber (UIC) Ground state (in-)stability Sorbonne 9 / 32



The cubic-quintic NLS Global well-posedness

Numerically, one observes a oscillatory behavior within the solution u.

Figure: The time-evolution for a radial solutions u = u(t, |x|) in d = 3.
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The cubic-quintic NLS Cubic-quintic solitary waves

Basic properties of solitary waves

We look for standing wave solutions to the cubic-quintic model:

−∆φω + ωφω − |φω|2φω + |φω|4φω = 0, φω ∈ H1(Rd) \ {0}. (sNLS)

Lemma (A priori estimates for solitary waves)

Any φω ∈ H1(Rd) solution to (sNLS), satisfies the Pohozaev identities:∫
Rd
|∇φω|2 dx+

∫
Rd
|φω|6 dx+ ω

∫
Rd
|φω|2 dx =

∫
Rd
|φω|4 dx,

d−2
2

∫
Rd
|∇φω|2 dx+

d

6

∫
Rd
|φω|6 dx+ ωd

∫
Rd
|φω|2 dx = d

4

∫
Rd
|φω|4 dx.
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The cubic-quintic NLS Cubic-quintic solitary waves

1 A first consequence of these identities is that if φω 6≡ 0, then

0 < ω < 3
16 ,

the admissible frequency range.
2 A second consequence is that in d = 2:

‖φω‖L2 > ‖Q‖L2 ,

where Q is the cubic ground state solution. Thus, the mass M(φω)
is strictly bigger than in the cubic case. In 3D, one even knows6

that M(φω)→ +∞, as ω → 0.

6Killip et al. ’17
Christof Sparber (UIC) Ground state (in-)stability Sorbonne 12 / 32



The cubic-quintic NLS Cubic-quintic solitary waves

Figure: Ground state solutions Qω=0.1 to the cubic NLS in blue and the
cubic-quintic NLS in red: on the left for d = 2 and on the right for d = 3.
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The cubic-quintic NLS Cubic-quintic scattering

The strict lower bound M(φω) > M(Q) holds more generally (e.g. the
cubic-quartic case7) and changes the 2D scattering threshold in
comparison to the cubic case.

Theorem (Carles - S. ’21)

In d = 2, if M0 6 ‖Q‖2L2 , then the solution u ∈ C(R; Σ) to (cqNLS)
satisfies

‖e−i
t
2

∆u(t, ·)− u±‖Σ −→
t→±∞

0.

The proof is based pseudo-conformal conservation law

d

dt

(
1

2
‖J(t)u‖2L2 −

t2

2
‖u‖4L4 +

t2

3
‖u‖6L6

)
= −2t

3
‖u‖6L6 . (1)

where J(t) = x+ it∇.

7Arora-S. ’23
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The cubic-quintic NLS Cubic-quintic scattering

Rigidity results for L2-critical NLS8 allow us to infer

J(t)u ∈ L∞(Rt;L2(R2)),

and general Gagliardo–Nirenberg inequalities, for 2 6 r <∞, yield

‖u(t)‖Lr(R2) . ‖u(t)‖1−θ
L2(R2)

(
1

t
‖J(t)u‖L2

)θ
, θ = 1− 2

r
. (2)

This implies u ∈ Lq(R;Lr(R2)) for all admissible Strichartz pairs (q, r),
i.e. the solution is purely dispersive.
For energy-subcritical q > p power-law nonlinearities the assumption
u0 ∈ Σ can be relaxed9 to u0 ∈ H1(R2). In general, however, the
situation seems to be rather subtle, since there are examples of
nonlinearities, which yield φω with arbitrarily small H1-norm10.

8Banica ’04
9Cheng 20’

10Carles-S. ’23
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Ground state (in-)stability

(In-)stability of standing waves

Q: What about the long-time behavior of perturbations of standing
waves?

Definition (Orbital stability)
For all ε > 0, ∃ δ > 0 s.t. if

‖u0 − φω‖H1(Rd) 6 δ,

then the solution to (cqNLS) satisfies

sup
t∈R

inf
θ∈R
y∈Rd

∥∥∥u(t, ·)− eiθφω(· − y)
∥∥∥
H1(Rd)

6 ε.

For this stability statement it is necessary to take into account the
symmetries of the (sNLS), i.e. phase-conjugation and spatial shifts.
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Ground state (in-)stability

In d = 1, standing waves to the cubic-quintic NLS solve

−φ′′ω + ωφω − |φω|2φω + |φω|4φω = 0, φω ∈ H1(Rd) \ {0}.

The solution to this ODE can be computed explicitly for ω ∈ (0, 3
16):

Proposition (Ohta ’95)
The unique (up to translation and change of sign) positive solution
which decays as |x| → ∞ is given by:

φω(x) = 2

√√√√ ω

1 +
√

1− 16ω
3 cosh

(
2x
√

2ω
) .

Moreover, this solution is orbitally stable.

The proof uses ODE arguments which do not carry over to higher
dimensions d > 2.
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Ground state (in-)stability Action minimizers

Existence of action minimizers

A first approach to the existence of standing waves is based on
action-minimizers. For given ω ∈ (0, 3

16), denote the action of
φ ∈ H1(Rd) by

Sω(φ) = E(φ) + ωM(φ),

and note that standing waves are critical points, i.e., S′ω(φω) = 0.

Definition

For ω ∈ (0, 3
16), a solution φω to (sNLS) is called an action-minimizing

ground state, if it minimizes Sω(φ) among all solutions 0 6= φ ∈ H1(Rd).

Existence of such action minimizers has been proved using various
variational techniques11.

11Cazenave-Lions ’81, Byeon and Jeanjean ’20, ...
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Ground state (in-)stability Action minimizers

By combining results by Berestycki et al. ’83, Serrin-Tang ’00, and
Jang ’10, one finds:

Proposition (Existence and uniqueness of action ground states)

Let ω ∈ (0, 3
16). Then ∃ a unique real-valued solution φω ∈ C2(Rd), s.t.:

1 φω > 0 on Rd.
2 φω is radially symmetric and non-increasing.
3 Derivatives of φω up to order two decay exponentially as |x| → ∞.
4 For every solution φ to (sNLS): 0 < Sω(φω) 6 Sω(φ).
5 Every action-minimizer is of the form

φ(x) = eiθφω(x− x0).
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Ground state (in-)stability Orbital (in)-stability

A first approach to (in-)stability

Let M(φω) = ‖φω‖2L2 be the ground state mass. By studying the
Hessian of S(φ) at φ = φω, one finds12:

1 If ∂
∂ωM(φω) > 0, then eiωtφω(x) is orbitally stable.

2 If ∂
∂ωM(φω) < 0, then eiωtφω(x) is unstable.
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Figure: A numerical plot of M(φω) for d = 2 and d = 3.

12Weinstein ’85, Grillakis-Shatah-Strauss ’87
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Ground state (in-)stability Orbital (in)-stability

A partial stability result

In d = 2, we expect all ground states to be orbitally stable.
Unfortunately, we can only prove that ω 7→M(φω) is increasing
asymptotically near ω = 0 and near ω = 3

16 .

Theorem (Carles-S. ’20)

Let d = 2. There exist 0 < ω0 6 ω1 <
3
16 s.t. for ω ∈ (0, ω0) ∪ (ω1,

3
16),

φω is orbitally stable.

Similarly, for d = 3, Killip et al. ’17 have shown that ω 7→M(φω) is
decreasing near ω = 0 and increasing near ω = 3

16 . Hence φω is
unstable for ω ∈ (0, ω̃0) and stable for ω ∈ (ω̃1,

3
16).

It is conjectured, that ω̃0 = ω̃1 = ω∗ ∈ (0, 3
16).
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Ground state (in-)stability Orbital (in)-stability

Asymptotic analysis

To prove the first part, we turn the singular limit ω → 0 into a regular
one, by rescaling: ψω(x) = 1√

ω
φω

(
x√
ω

)
. Then (sNLS) becomes

−∆ψω + ψω − ψ3
ω + ωψ5

ω = 0.

Invoking uniqueness of Q = Qω=1 and the implicit function theorem,
we have

ψω(x) = Q(x)− ω
(
L−1Q5

)
(x) +OH1(ω2), as ω → 0.

In particular, as ω → 0, one finds:

M(φω) ≡M(ψω) = M(Q) +
2ω

3
‖Q‖6L6(Rd) +O(ω2).
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Energy minimizers Existence and stability of energy minimizers

The concentration-compactness approach

A second approach, pioneered by Lions & Berestycki ’84, considers
the set of constrained energy minimizers: For a fixed mass ρ > 0,
denote

Γ(ρ) =
{
u ∈ H1(Rd), M(u) = ρ

}
.

Definition (Energy minimizers)
Assuming that the minimization problem

E(u) = inf{E(v) ; v ∈ Γ(ρ)} (EM)

has a solution, we denote by E(ρ) the set of all (constrained)
energy-minimizing ground states.

Note: energy-minimizer are not necessarily unique, i.e., E(ρ) 6= {ϕ}.
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Energy minimizers Existence and stability of energy minimizers

If ϕ ∈ E(ρ), then there exists a Lagrange multiplier µ = −ω such that

E′(ϕ) = µM ′(ϕ) ⇔ E′(ϕ) + ωM ′(ϕ) = 0,

and thus, ϕ solves the stationary Schrödinger equation (sNLS) for
some (unknown) ω = −µ ∈ (0, 3

16).

Definition
We call the set E(ρ) orbitally stable, if for all ε > 0, there exists δ > 0
such that, if u0 ∈ H1(R2) satisfies

inf
ϕ∈E(ρ)

‖u0 − ϕ‖H1 6 δ,

then the solution to (cqNLS) with u|t=0 = u0 satisfies

sup
t∈R

inf
ϕ∈E(ρ)

‖u(t, ·)− ϕ‖H1 6 ε.
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Energy minimizers Existence and stability of energy minimizers

Orbital stability of energy minimizers

Using the conservation laws of energy and mass, implies that energy
minimizers are automatically stable (as a set)13.

Theorem (Carles-S. ’20)
1 Let d = 2. Then, for any ρ > ‖Q‖2L2 ,

Emin(ρ) := inf
Γρ
E(v) < 0,

implying that the set E(ρ) 6= ∅ and orbitally stable.
2 If d = 3, ∃ ρ1 > ρ0 such that for ρ > ρ1: Emin(ρ) < 0, E(ρ) 6= ∅ and

energy minimizers are E(ρ)-orbitally stable.

The minimal mass ρ0 in 3D, is related to a Sobolev-minimizer, which,
unlike in 2D, cannot be described via a stationary solution Q14.

13Cazenave-Lions ’82
14Killip-Visan ’17
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Energy minimizers Nonequivalence and instability

Equivalence of ground states?

We already know that for given ρ > 0, all energy minimizers ϕ ≡ ϕ(ρ)
satisfy

−∆ϕ+ ωϕ− |ϕ|2ϕ+ |ϕ|4ϕ = 0,

for some ω ∈ (0, 3
16), the Lagrange multiplier associated to ρ.

Using re-arrangement inequalities, one can show that ϕ is real-valued
and radially decreasing.

Hence, one might think that the two notions of action-ground states
and energy-ground states are equivalent. However:

Theorem (Carles-Klein-S. ’23)
In d = 3, not all action ground states are energy minimizers.
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Energy minimizers Nonequivalence and instability

Recall the rescaling ψω(x) = 1√
ω
φω

(
x√
ω

)
, and the fact that

ψω = Q+OH1(ω), as ω → 0.

In d = 3, Pohozaev identities imply that the energy satisfies

E(φω) =
√
ω‖Q‖2L2(R3) +O(ω).

Thus ∃ω∗ > 0 such that E(φω) > 0 for all ω ∈ (0, ω∗). Since15

M(φω) =
1√
ω
M(Q) +

√
ω

2
‖Q‖2L6(R3) −→ω→0

+∞,

this shows that there exists 3D action ground states with positive
energy and arbitrarily large mass. However, we know that for mass
ρ > ρ1, all energy minimizers ϕ satisfy Emin(ρ) < 0.

15Killip et al. ’17
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Energy minimizers Nonequivalence and instability

Two problems:
1 A-priori nothing guarantees that an element of E(ρ) minimizes the

action.
2 A more subtle problem: consider a least action ground state φω,

and let ρ = M(φω). It is not obvious, and not necessarily true, that
φω ∈ E(ρ). In particular, the map

Λ : ρ 7→ ω ⊂ (0, 3
16)

may not be one-to-one (even ran Λ is unclear at this point).

Indeed: Equivalence of the two notions is only known for NLS with a
single power law nonlinearity |u|p−1u and p < 1 + 4

d . The proof is
based on a scaling argument which requires homogeneity of the
nonlinearity16.

16Cazenave ’03
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Energy minimizers Nonequivalence and instability

Recently, Jeanjean-Lu ’21 have shown for a large class of
nonlinearities (including the cubic-quintic case), that every energy
minimizer ϕ is a least action ground states φω for ω = ω(ϕ) > 0.

They also prove that if ω is obtained as the Lagrange multiplier
associated to the mass constrained M(u) = ρ, then any least action
solution of (sNLS) at this value of ω is a constrained energy minimizer
with the same mass ρ.

Conjecture (Cubic-quintic stability in 2D)
In view of our numerics (20), we conjecture that in d = 2 there is full
equivalence between energy- and action-ground states, and that all of
them are orbitally stablea.

aLewin & Rotar-Nodari ’20, Carles-Klein-S.’21
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Energy minimizers Nonequivalence and instability

Numerical results

In d = 3 however, there are potentially unstable action-ground states
which are not energy minimizers.
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Figure: E(φω) as a function of M(φω) for cubic-quintic ground states d = 3.
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Energy minimizers Nonequivalence and instability

The numerical simulations we did for unstable 3D ground states under
radial perturbations, yield:

Conjecture (Cubic-quintic (in-)stability in 3D)
For ω < ω∗, i.e. on the unstable branch, consider

u0(x) = φω(x) + χ(|x|), with ‖χ‖H1 � 1.

1 If M(u0) < M(φω), the solution u(t, ·) scatters.
2 If M(u0) > M(φω), the solution u(t, ·) ∼

t→∞
eiωtφω(x), where φω is

some stable ground state with mass M(φω) < M(φω)a.

aCarles-Klein-S.’21

Q: What is the selection principle for φω?
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Energy minimizers Nonequivalence and instability

Thank you for your attention!
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