Modèles réduits non-linéaires basés sur le transport optimal pour le calcul de structures électroniques

Geneviève Dusson

CNRS & Université Franche-Comté

joint work with Maxime Dalery (UFC), Virginie Ehrlacher (Ecole des Ponts), Gero Friesecke (TUM), Alexei Lozinski (UFC), Etienne Polack (Ecole des Ponts)

LJLL, 26 avril 2023

Context : Molecular simulations

Electronic structure calculations

- Modelling of the electrons
- A large number of models : Schrödinger, Hartree–Fock, Density Functional Theory
- Costly but high accuracy

Context : Electronic structure calculations

Water molecule :

M = 3 nuclei
 classical particles described by

(2 hydrogen and 1 oxygen)

• N = 10 electrons

 $\rightarrow~$ quantum particles quantum

positions and velocities

 \rightarrow quantum particles described by a wavefunction

Born–Oppenheimer approximation :

Proton-to-Electron mass ratio $\frac{m_p}{m_e} \approx 1838.$

Wavefunction $\Psi_{\mathbf{R}}(r_1, r_2, \dots, r_N)$:

- ► $|\Psi_{\mathbf{R}}|^2$ probability density
- ► Pauli principle : $\Psi_{\mathbf{R}}(\ldots, r_i, \ldots, r_j, \ldots) = -\Psi_{\mathbf{R}}(\ldots, r_j, \ldots, r_i, \ldots)$

Focus in this presentation on the ground state problem

The ground state problem : Schrödinger equation

Born–Oppenheimer approximation : molecular system described by

• *M* (classical) nuclei with positions $\mathbf{R} \in \mathbb{R}^{3M}$

Energy minimization

▶ *N* electrons described by a wave-function (or orbitals in DFT) $\Psi_{\mathbf{R}} : \mathbb{R}^{3N} \to \mathbb{C}$

$$\inf_{\substack{\Psi \in L^2_{as}(\mathbb{R}^{3N}) \\ \|\Psi\|_{L^2} = 1}} \langle \Psi_{\mathsf{R}}, \mathcal{H}_{\mathsf{R}} \Psi_{\mathsf{R}} \rangle,$$

where $H_{\rm R}$ is the Hamiltonian of the problem, parametrized by the positions of the nuclei, typically

$$H_{\mathbf{R}} = -\frac{1}{2} \sum_{i=1}^{N} \Delta_{r_i} + \sum_{i=1}^{N} V_{\mathbf{R}}^{ne}(r_i) + \sum_{1 \le i < j \le N} \frac{1}{|r_i - r_j|}, \quad V_{\mathbf{R}}^{ne}(r_i) = \sum_{k=1}^{M} \frac{1}{|R_k - r_i|}$$

Eigenvalue problem
$$H_{\mathbf{R}} \Psi_{\mathbf{R}} = E_{\mathbf{R}} \Psi_{\mathbf{R}}.$$

Aim

A problem parametrized by the nuclei positions.

Goal : approximate

 $\mathcal{M}:=\left\{\Psi_{\textbf{R}} \text{ for } \textbf{R}\in\mathcal{R}\right\}, \quad \mathcal{R} \text{ being the set of configurations}$

Used for different purposes :

- Ab initio molecular dynamics
- Geometry optimization
- Building databases to construct interatomic potentials

Questions :

- Understand the structure of this manifold
- How to efficiently approximate the elements on this manifold ?
- More precisely, efficiently approximate all solutions (for varying positions) from the computation of only a few solutions

We will work on a toy problem but keep in mind that we want to deal with high-dimensional problems.

Toy problem

One-dimensional, one electron

Energy minimization :

$$\min_{\substack{\Psi \in H^1(\mathbb{R}) \\ \|\Psi\|_{L^2(\mathbb{R})} = 1}} \frac{1}{2} \int_{\mathbb{R}} |\Psi'|^2 - \sum_{m=1}^M z_m \Psi(R_m)^2$$

Eigenvalue problem :

$$\begin{pmatrix} -\frac{1}{2}\Psi_{\mathsf{R}}'' + \left(-\sum_{m=1}^{M} z_m \delta_{R_m}\right)\Psi_{\mathsf{R}} &= E_{\mathsf{R}}\Psi_{\mathsf{R}} \\ \|\Psi_{\mathsf{R}}\|_{L^2(\mathbb{R})} &= 1. \end{cases}$$

- Dirac potential
- ► Similar regularity as in the 3D case with Coulomb
- Analytic solutions

$$\Psi_{\mathbf{R}} = \sum_{m=1}^{M} \pi_m^{\mathbf{R}} e^{-\zeta_{\mathbf{R}}|x-R_m|},$$

For some positive weights $\pi^{\mathbf{R}} = \left(\pi_m^{\mathbf{R}}\right)_{m=1}^{M} \in (\mathbf{R}_+)^M$ and $\zeta_{\mathbf{R}} > 0.$

Plots of a few solutions

Aim : efficiently approximate all solutions (for varying positions) from the computation of only **a few** solutions

Outline

Linear reduced-order modelling

Optimal transport : a few properties

Practical strategy and numerical results for a 1D toy problem

An example in 2D : Approximating the pair-density

Linear reduced basis method

Problem : Parametrized PDE with parameters $\mathbf{R} \in \mathcal{R}$'s.

Needs to be solved for many parameters R.

Offline part : Select accurate solutions for a few wisely chosen parameters $R_1,R_2,\ldots,R_{\mathcal{K}}\in\mathcal{R}$

- \blacktriangleright Generate a training set of snapshots for parameters $\textbf{R} \in \mathcal{R}_{\mathrm{train}}$
- Select "good" snapshots with a greedy algorithm
 - ▶ Select one parameter $\mathbf{R}_1 \in \mathcal{R}$
 - ► at each iteration $K \ge 2$, select the snapshot that is worse approximated in the basis of the previously selected snapshots $\Psi_{\mathbf{R}_1}, \ldots, \Psi_{\mathbf{R}_{K-1}}$

Online part : compute solutions for **many** parameters $\mathbf{R} \in \mathcal{R}$ in the reduced space spanned by selected snapshots, i.e. in the basis spanned by the solutions $\Psi_{\mathbf{R}_1}, \ldots, \Psi_{\mathbf{R}_{\mathcal{K}}}$.

Barrault, Maday, Nguyen, Patera : An empirical interpolation method : application to efficient reduced-basis discretization of partial differential equations. C. R.(2004)

Hesthaven, Rozza, Stamm : Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer (2016)

Many successful examples

Used for many industrial problems now

- Continuum mechanics
- ► Thermal equations

- Neutronics
- Non self-adjoint eigenvalue problem
- Parametrization in each cell of the nuclear core

Key point : The solutions should be well approximated by linear combinations of a few solutions.

Hesthaven, Rozza, Stamm : Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer (2016)

Taumhas, D., Ehrlacher, Lelièvre, Madiot : Reduced basis method for non-symmetric eigenvalue problems : application to the

multigroup neutron diffusion equations. arXiv :2307.05978.

An interesting notion : the Kolmogorov *n*-width

Definition for a Hilbert space \mathbb{H} : $\mathcal{M} := \{ \Psi_{\mathbf{R}}, \quad \mathbf{R} \in \mathcal{R} \}$

$$\varepsilon_n(\mathcal{M},\mathbb{H}) := \inf_{\substack{V_n \subset \mathbb{H} \\ \dim V_n = n}} \sup_{\mathbf{R} \in \mathcal{R}} \| \Psi_{\mathbf{R}} - \mathcal{P}_{V_n} \Psi_{\mathbf{R}} \|.$$

Characterizes if the reduced basis method has a chance to work

► The faster the decay, the better!

Typical example where it works : elliptic equation

$$A_{\mathbf{R}}\Psi_{\mathbf{R}}=f,$$

with affine representation of $A_{\mathbf{R}}$:

$$A_{f R} = \sum_{q=1}^Q heta_q({f R}) A_q, \quad ext{for some } heta_q \in {\Bbb R}, \, A_q ext{ continuous operators}$$

Exponential decay of the Kolmogorov *n*-width :

$$\varepsilon_n(\mathcal{M},\mathbb{H}) \leq C \exp(-cn^{1/Q}).$$

Ohlberger, Rave : Reduced Basis Methods : Success, Limitations and Future Challenges (2015)

Cohen, DeVore : Approximation of high-dimensional parametric PDEs Acta Numerica (2015)

Less successful examples : Transport problems

Simple example : one-dimensional transport equation, $y \in [0, 1]$,

$$\begin{cases} \partial_t \Psi_y(t,x) + y \partial_x \Psi_y(t,x) = 0, \quad x \in \mathbb{R}, t \in \mathbb{R}_+ \\ \Psi_y(0,x) = \mathbf{1}_{[-1,0]} \end{cases}$$

At t = 1, the solutions are $\Psi_y(t = 1, x) = \mathbf{1}_{[y-1,y]}$

Ohlberger, Rave : Reduced Basis Methods : Success, Limitations and Future Challenges (2015) Cohen, DeVore : Approximation of high-dimensional parametric PDEs Acta Numerica (2015)

What about electronic structure?

Similar behavior as the transport problem

Kolmogorov *n*-width for the 1D toy problem For the problem with one nucleus, $\mathcal{M} = \{\Psi_R, R \in [-\bar{R}, \bar{R}]\}$, there exist positive constant $c_{\bar{R}}, C_{\bar{R}}$ such that

$$c_{\bar{R}}n^{-\frac{3}{2}} \leqslant \varepsilon_n(\mathcal{M}, L^2(\mathbb{R})) \leqslant C_{\bar{R}}n^{-\frac{3}{2}}.$$

For the problem with two nuclei, $\mathcal{M} = \{\Psi_{(R_1,R_2)}, R_1, R_2 \in [-\bar{R}, \bar{R}]^2\}$, there exists a positive constant $c_{\bar{R}}$ such that

$$c_{\bar{R}}n^{-\frac{3}{2}} \leq \varepsilon_n(\mathcal{M}, L^2(\mathbb{R})).$$

Dalery, Dusson, Ehrlacher, Lozinski : Nonlinear reduced basis using mixture Wasserstein barycenters : application to an eigenvalue problem inspired from quantum chemistry, arxiv :2307.15423

Alternative : Finding a good nonlinear transformation

Nonlinear space defined with n parameters

- Neural networks
 - Lee and Carlberg. Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders
- Nonlinear encoding-decoding map
 - Cohen, Farhat, Maday, Somacal : Nonlinear compressive reduced basis approximation for PDE's. Comptes Rendus Mécanique. 351, 1–18 (2023).
 - Lee and Carlberg. Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders
- Optimal transport-based transformations
 - Ehrlacher, Lombardi, Mula, Vialard : Nonlinear model reduction on metric spaces. Application to one-dimensional conservative PDEs in Wasserstein spaces. Esaim Math. Model (2020).
 - Iollo, Taddei : Mapping of coherent structures in parameterized flows by learning optimal transportation with Gaussian models. J. Comput. Phys. 471, 111671 (2022).

Key points :

- How many solutions to approximate accurately the solution for a new parameter ?
- Computational cost of a new solution

Replacing the Hilbert space by a metric space

Recall the definition for a Hilbert space \mathbb{H} : $\mathcal{M}:=\{\Psi_{\textbf{R}}, \quad \textbf{R}\in\mathcal{R}\}$

$$\varepsilon_n(\mathcal{M},\mathbb{H}) := \inf_{\substack{V_n \subset \mathbb{H} \\ \dim V_n = n}} \sup_{\mathbf{R} \in \mathcal{R}} \| \Psi_{\mathbf{R}} - \mathcal{P}_{V_n} \Psi_{\mathbf{R}} \|.$$

We need to

- replace the norm by a distance
- find an alternative for the projection
- Inear combination replaced by barycenter

Given a metric space \mathbb{M} , with distance d, for convex parameters $\mathbf{t} = (t_1, \ldots, t_n)$, i.e. positive with $\sum_{i=1}^n t_i = 1$, and elements $\Psi_{\mathbf{R}_1}, \ldots, \Psi_{\mathbf{R}_n} \in \mathbb{M}$

$$\mathsf{bar}(\boldsymbol{t}; \Psi_{\mathsf{R}_1}, \dots, \Psi_{\mathsf{R}_n})) := \operatorname{argmin}_{u \in \mathbb{M}} \quad \sum_{i=1}^n t_i d(u, \Psi_{\mathsf{R}_i})^2.$$

n

Nonlinear Kolmogorov n-width

$$\varepsilon_n(\mathcal{M},\mathbb{M}) := \inf_{\Psi_{\mathsf{R}_1},\ldots,\Psi_{\mathsf{R}_n} \in \mathbb{M}} \sup_{\mathsf{R} \in \mathcal{R}} \inf_{t} d\left(\Psi_{\mathsf{R}},\mathsf{bar}(t;\Psi_{\mathsf{R}_1},\ldots,\Psi_{\mathsf{R}_n})\right)\right)$$

Motivation behind using optimal transport

Use of **optimal transport** : at minima deals with the translations Barycenter between two Slater functions : a translated Slater function

Simple one-nucleus problem : $\forall n > 1, \varepsilon_n (\mathcal{M}, (\mathcal{P}_2(\mathbb{R}), W_2)) = 0.$

Outline

Linear reduced-order modelling

Optimal transport : a few properties

Practical strategy and numerical results for a 1D toy problem

An example in 2D : Approximating the pair-density

Optimal transport in a nutshell

Originally introduced by Monge : moving a pile of sand efficiently to cover a sinkhole

y = T(x)

Wasserstein distance : for $u, v \in \mathcal{P}_2(\Omega)^2$ as $W_2(u, v)^2 := \inf_{\pi \in \Pi(u, v)} \int_{\Omega^2} (x - y)^2 d\pi(x, y),$

 $\Pi(u, v)$: set of probability measures over Ω^2 with marginals u and v.

Delon, Desolneux : A Wasserstein-Type Distance in the Space of Gaussian Mixture Models. SIAM J. Imaging Sci. (2020).

Wasserstein barycenters

• *n* probability measures u_1, \ldots, u_n

▶ *n* positive weights t_1, \ldots, t_n summing to 1

Barycenter is a solution to the problem

$$\inf_{u\in\mathcal{P}_2(\Omega)}\sum_{i=1}^n t_i W_2(u,u_i)^2.$$

Alternative formulation : multimarginal optimal transport problem

$$\inf_{\gamma\in\Pi(u_1,\ldots,u_n)}\int_{\Omega^n}\frac{1}{2}\sum_{i,j=1}^nt_it_j(x_i-x_j)^2\,d\gamma(x_1,\ldots,x_n),$$

where $\Pi(u_1, \ldots, u_n)$ denotes the set of probability measures on Ω^n having u_1, \ldots, u_n as marginals.

Then bar
$$(t; u_1, \ldots, u_n) = P_t \# \gamma$$
, with $P_t(x_1, \ldots, x_n) = \sum_{i=1}^n t_i x_i$.

Agueh, Carlier : Barycenters in the Wasserstein Space. SIAM J. Math. Anal. (2011).

Gangbo, Swiech : Optimal maps for the multidimensional Monge-Kantorovich problem. Commun. Pure Appl. Math. (1998)

A few examples : One-dimensional case

Cumulative distribution function (cdf) of an element $u \in \mathcal{P}_2(\mathbb{R})$ is $\operatorname{cdf}_u : x \in \mathbb{R} \longmapsto \int_{-\infty}^x d[u],$

Inverse cumulative distribution function (icdf) : generalized inverse of the cdf

$$\operatorname{icdf}_u : s \in [0,1] \longmapsto \operatorname{cdf}_u^{-1} := \inf\{x \in \mathbb{R}, \operatorname{cdf}_u(x) > s\}.$$

Then, for any $(u, v) \in \mathcal{P}_2(\mathbb{R})^2$, there holds

$$W_2(u,v) = \|\operatorname{icdf}_u - \operatorname{icdf}_v\|_{L^2([0,1])},$$

and for any set of barycentric weights $\boldsymbol{t} := (t_1, \ldots, t_n)$ and $\boldsymbol{u} := (u_1, \ldots, u_n)$,

the icdf of the barycenter $\operatorname{Bar}_{W_2}^t(\boldsymbol{u})$ satisfies $\operatorname{icdf}_{\operatorname{Bar}_{W_2}^t}(\boldsymbol{u}) = \sum_{i=1}^n t_i \operatorname{icdf}_{u_i}.$

Illustration

$$\operatorname{icdf}_{\operatorname{Bar}_{W_2}^t}(u) = \lambda \operatorname{icdf}_{u_1} + (1 - \lambda) \operatorname{icdf}_{u_2}.$$

A few examples : Location-scatter transforms

$$\mathcal{A} := \left\{ T \# a, \quad T : x \in \mathbb{R}^d \mapsto Ax + b, \ A \in \mathcal{S}_d, \ b \in \mathbb{R}^d \right\}.$$

All measures generated with translation and dilations of a single measure

Wasserstein distance : Let $a_0, a_1 \in \mathcal{A}$ havings means m_0, m_1 and covariance matrices Σ_0, Σ_1 , such that the transport map

$$Tx = Ax + (m_0 - m_1), \text{ with } A = \Sigma_0^{-1/2} \left(\Sigma_0^{1/2} \Sigma_1 \Sigma_0^{1/2} \right)^{-1/2} \Sigma_0^{-1/2},$$

is such that $T \# a_0 = a_1$. Then

$$W_2^2(a_0, a_1) = \|m_0 - m_1\|^2 + \operatorname{Tr}\left(\Sigma_0 + \Sigma_1 - 2(\Sigma_0^{1/2}\Sigma_1\Sigma_0^{1/2})^{1/2}\right),$$

Wasserstein barycenter : Let $a_1, \ldots, a_n \in A$ having mean m_j and covariance matrices Σ_j . For weights $\mathbf{t} := (t_1, \ldots, t_n)$, the barycenter is the atom $\operatorname{bar} a_t = T_t \# a$ with $T_t = S_X + m$, where S is the only positive definite matrix satisfying

$$S = \sum_{j=1}^{n} t_j (S^{1/2} \Sigma_j S^{1/2})^{1/2}, \text{ and } m = \sum_{j=1}^{n} t_j m_j.$$

Center is the mean of centers, small equation to solve for the covariance. Alvarez-Esteban, del Barrio, Cuesta-Albertos, Matran : A fixed-point approach to barycenters in Wasserstein space. (2016).

Illustration

Barycenter between three Slater distributions

Kolmogorov n-width for the Wasserstein distance

Solution manifold : $\mathcal{M} = \{ \Psi_{\mathbf{R}}, \mathbf{R} \in [-\bar{R}, \bar{R}]^M \}$

Since $W_2(u, v) = \|\operatorname{icdf}_u - \operatorname{icdf}_v\|_{L^2(0,1)}$, we consider

 $\varepsilon_n(\mathcal{M}, W_2) := \varepsilon_n(\mathrm{icdf}(\mathcal{M}), L^2(0, 1))$

Simple one-nucleus problem : $\forall n > 1, \varepsilon_n(\mathcal{M}, W_2) = 0$

Case of two nuclei in $[-\bar{R}, \bar{R}]^2$: There exists a constant $C_{\bar{R}} > 0$ such that for all $n \ge 1$,

 $\varepsilon_n(\mathcal{M}, W_2) \leq C_{\bar{R}} n^{-5/2}.$

To compare with the linear Kolmogorov width :

$$c_{\bar{R}}n^{-3/2} \leqslant \varepsilon_n(\mathcal{M}, L^2(\mathbb{R}))$$

Dalery, Dusson, Ehrlacher, Lozinski : Nonlinear reduced basis using mixture Wasserstein barycenters : application to an eigenvalue problem inspired from quantum chemistry, arxiv :2307.15423

Wasserstein barycenter between two solutions

Constrained convex optimization problem

$$\begin{array}{l} \min_{\substack{w:=(w_{jk})_{1\leq j\leq Ngrid,}\in\Pi(\Lambda_{0},\Lambda_{1})\\1\leq k\leq Ngrid}} \sum_{j=1}^{Ngrid}\sum_{k=1}^{Ngrid}w_{jk}\|x_{j}-x_{k}\|^{2},\\ \text{with}\quad \Pi(\Lambda_{0},\Lambda_{1}):=\left\{w:=(w_{jk})_{\substack{1\leq j\leq Ngrid,\\1\leq k\leq Ngrid}}\in\mathbb{R}^{Ngrid\times Ngrid}_{+},\quad\forall 1\leq j\leq Ngrid,\;\sum_{k=1}^{\kappa}w_{jk}=\lambda_{0}^{j},\\ \forall 1\leq k\leq Ngrid,\;\sum_{j=1}^{J}w_{jk}=\lambda_{1}^{k}\right\}. \end{array}$$

Limitations :

- ► High computational cost
- Smoothing of the barycenter
- Bad scaling with the dimension
- Multi-marginal problem

A modified distance

 $\mathcal{A} \subset \mathcal{P}(\mathbb{R})$: dictionary of atoms (Slater functions, gaussians, etc.)

Definition : for all mixtures $\mu_0 = \sum_{j=1}^J \lambda_0^j a_0^j \in \mathcal{M}(\mathcal{A})$ and $\mu_1 = \sum_{k=1}^K \lambda_1^k a_1^k \in \mathcal{M}(\mathcal{A})$, we define

$$\begin{split} mW_{2}(\mu_{0},\mu_{1})^{2} &:= \min_{\substack{w:=(w_{jk})_{\substack{1 \leq j \leq J, \\ 1 \leq k \leq K}} \in \Pi(\Lambda_{0},\Lambda_{1})} \sum_{j=1}^{J} \sum_{k=1}^{K} w_{jk} W_{2}^{2}(a_{0}^{j},a_{1}^{k}), \\ \text{with} \quad \Pi(\Lambda_{0},\Lambda_{1}) &:= \left\{ w := (w_{jk})_{1 \leq j \leq J, 1 \leq k \leq K} \in \mathbb{R}^{J \times K}_{+}, \\ \forall 1 \leq j \leq J, \sum_{k=1}^{K} w_{jk} = \lambda_{0}^{j}, \quad \forall 1 \leq k \leq K, \sum_{j=1}^{J} w_{jk} = \lambda_{1}^{k} \right\}. \end{split}$$

Aim : Exploit the compact form of the solution as a mixture of Slater functions

Delon, Desolneux : A Wasserstein-Type Distance in the Space of Gaussian Mixture Models. SIAM J. Imaging Sci. (2020). Dusson, Ehrlacher, Nouaime : A Wasserstein-type metric for generic mixture models, including location-scatter and group invariant measures (2023)

Illustration of the modification of the transport plan

- Transport map replaced by affine lines
- Number of components cannot exceed J + K 1

Delon, Desolneux : A Wasserstein-Type Distance in the Space of Gaussian Mixture Models. SIAM J. Imaging Sci. (2020).

Mixture barycenter between two solutions

• Probability measures
$$(u_1, \ldots, u_n)$$

• Positive weights
$$\mathbf{t} = (t_1, \ldots, t_n)$$
.

Unique solution to the problem

$$\inf_{u\in\mathcal{M}(\mathcal{A})}\sum_{i=1}^{n}t_{i}mW_{2}^{2}(u,u_{i})^{2}.$$

Interesting features :

- Way better approximation compared to W₂ barycenter
- Computational cost independent of the dimension

Formula for the barycenter :

$$\operatorname{Bar}_{\operatorname{MW}_{2}}^{\boldsymbol{t}}\left(u_{1},\ldots,u_{n}\right)=\sum_{\boldsymbol{k}\in\boldsymbol{\mathsf{K}}} w_{\boldsymbol{k}}^{*}\operatorname{Bar}_{W_{2}}^{\boldsymbol{t}}\left(u_{1}^{k^{1}},\ldots,u_{N}^{k^{n}}\right),$$

A few properties

Valid for a large number of probability distributions

Mathematically :

- ▶ needs a geodesic space for the atoms (space with distance + geodesic)
- ► identifiability

Computationally : barycenters need to be easily computable (best if explicit !) Examples :

- ► Elliptic distributions (Slater, gaussians, Wigner semicircle)
- Location-scatter (dilations+translations)
- Group-invariant distributions (invariance put into the distance between the atom distributions)

Dusson, Ehrlacher, Nouaime : A Wasserstein-type metric for generic mixture models, including location-scatter and group invariant measures (2023)

Back to Kolmogorov n-width

Definition of nonlinear Kolmogorov *n*-width : The Kolmogorov *n*-width of the set $\mathcal{M} \subset \mathbb{M}$ is defined by

$$\varepsilon_n(\mathcal{M},\mathbb{M}) = \inf_{\boldsymbol{m}\in\mathbb{M}^n} \sup_{\mathbf{R}\in\mathcal{R}} \inf_{\boldsymbol{t}\in\Omega(\boldsymbol{m})} mW_2(u_{\mathbf{R}},\operatorname{Bar}^{\boldsymbol{t}}(\boldsymbol{m})).$$

Theorem : (Dalery, D., Ehrlacher, Lozinski) for a system with two nuclei with identical charges, for n > 1,

$$\varepsilon_n(\mathcal{M}, mW_2) = 0.$$

Exact representation of all solutions in this case

Dalery, Dusson, Ehrlacher, Lozinski : Nonlinear reduced basis using mixture Wasserstein barycenters : application to an eigenvalue problem inspired from quantum chemistry (2023)

Outline

Linear reduced-order modelling

Optimal transport : a few properties

Practical strategy and numerical results for a 1D toy problem

An example in 2D : Approximating the pair-density

Practical strategy

Nonlinear version

Offline part : Select accurate solutions for a few **wisely chosen** parameters $R_1, R_2, \ldots, R_K \in \mathcal{R}$

- \blacktriangleright Generate a training set of snapshots for parameters $\textbf{R} \in \mathcal{R}_{\mathrm{train}}$
- Select "good" snapshots with a greedy algorithm
 - ▶ Select two parameters $\mathbf{R}_1, \mathbf{R}_2 \in \mathcal{R}$ that are as far as possible
 - ► at each iteration $K \ge 3$, select the snapshot that is worse approximated as a barycenter in the set of the previously selected snapshots $\Psi_{\mathbf{R}_1}, \ldots, \Psi_{\mathbf{R}_{K-1}}$

Online part : compute solutions for **many** parameters $\mathbf{R} \in \mathcal{R}$ as a barycenter of selected snapshots, i.e. in the set of the solutions $\Psi_{\mathbf{R}_1}, \ldots, \Psi_{\mathbf{R}_K}$.

Details on the greedy algorithm

Input: Training set $\mathcal{M}_{\text{train}}$, number of elements to select QSelect m^1 and m^2 solutions to $\operatorname{argmax}_{(m^1,m^2)\in\mathcal{M}_{\text{train}}} MW_2(m^1,m^2)$. $\mathcal{B} := \{m^1,m^2\}$ for $q = 3, \ldots, Q$ do

Select

$$m^k \in \operatorname{argmax}_{m \in \mathcal{M}_{\operatorname{train}}} \min_{t \in \Omega_{q-1}} mW_2(m, \operatorname{Bar}^t_{MW2}(m^1, \dots, m^{q-1}))^2,$$
 (1)

where

$$\Omega_{q-1} = \left\{ \boldsymbol{t} \in \mathbb{R}^{q-1}, \ \sum_{i=1}^{q-1} \frac{t_i}{\zeta^i} > 0 \right\}.$$

 $\mathcal{B} = \mathcal{B} \cup \{m^q\}$

end for

Output : Reduced basis $\mathcal{B} \subset \mathcal{M}_{tr}$

Details on the greedy algorithm - 2

$$\begin{aligned} \text{Mixtures : } & m = \sum_{k=1}^{K} \pi_k m_k \text{ and for } i \in \{1, \dots, n\}, \ m^i = \sum_{k^i = 1}^{K^i} \pi_{k^i}^i m_{k^i}^i \\ & \text{Solve : } \min_{t \in \Omega_q} m W_2(m, \text{Bar}_{MW2}^t(m^1, \dots, m^q))^2, \\ & \min_{t \in \Omega_q} \min_{w \in \Pi(\pi, w^*)} \sum_{\mathbf{k} \in \mathbf{K}} \sum_{k=1}^{K} w_{\mathbf{k}, k} W_2(m_k, \text{Bar}_{W_2}^t(m_{k^1}^1, \dots, m_{k^n}^n))^2, \end{aligned}$$

with

$$W_2(m_k, \operatorname{Bar}^{\boldsymbol{t}}_{W_2}(m_{k^1}^1, \dots, m_{k^n}^n))^2 = \left(r_k - \sum_{i=1}^n \lambda_i r_{k^i}^i\right)^2 + 2\left(\frac{1}{\zeta_k} - \sum_{i=1}^n \frac{t_i}{\zeta_{k^i}^i}\right)^2$$
$$= \boldsymbol{t}^{\mathsf{T}} A_{\mathbf{k}} \boldsymbol{t} + b_{\mathbf{k},k}^{\mathsf{T}} \boldsymbol{t} + c_k,$$

So

$$\min_{w\in\Pi(\pi,w^*)}\min_{t\in\Omega_k} \boldsymbol{t}^{\mathsf{T}}A\boldsymbol{t} + b_w^{\mathsf{T}}\boldsymbol{t} + c = \min_{w\in\Pi(\pi,w^*)} -\frac{1}{4}b_w^{\mathsf{T}}A^{-1}b_w + c,$$

Non convex optimization problem to solve

Online algorithm : energy minimization

Given $\Psi_{\mathbf{R}_1}, \dots, \Psi_{\mathbf{R}_n}$, solve

$$\inf_{t} E(\mathsf{bar}(t; \Psi_{\mathsf{R}_1}, \dots, \Psi_{\mathsf{R}_n}))$$

- ► Nonlinear problem, but in low dimension
- Using quasi-Newton method starting from different initial guesses

Numerical results : greedy algorithm

Charges : (0.8, 1.1).

291 solutions in the training set.

Error decrease with respect to number of selected snapshots

Numerical results : greedy algorithm

First eight selected solutions

Numerical results : greedy algorithm

Projection example

Numerical results : online energy minimization

Energy error

Numerical results

Comparison between projection and energy minimization

First extrapolation example

Using a basis with 3 functions

First extrapolation example

Using a basis with 5 functions

Outline

Linear reduced-order modelling

Optimal transport : a few properties

Practical strategy and numerical results for a 1D toy problem

An example in 2D : Approximating the pair-density

Approximating the pair density

Defined as

$$\rho_2^{\Psi}(x,y) = \binom{N}{2} \int_{(\mathbb{R}^d)^{N-2}} |\Psi(x,y,x_3,\cdots,x_N)|^2 dx_3 \cdots dx_N.$$

 Propose practical approximations of the pair density in order to efficiently compute

$$V_{ee}[\Psi] = \int_{\mathbb{R}^{2d}} \frac{\rho_2^{\Psi}(x,y)}{|x-y|} dx \, dy.$$

Two particles systems

Finite element code for 1D particles developed with Xue Quan and Huajie Chen (in Julia).

Approximation using Local Density Approximation

Relative error computed with respect to the Coulomb energy

$$V_{ee}[\Psi] = \int_{\mathbb{R}^2} \frac{\rho_2^{\Psi}(x, y)}{|x - y|} dx \, dy.$$

For LDA : ρ_2 such that

$$V_{ee}[\rho] = rac{1}{2} \int rac{
ho_2^{\Psi}(x,y)}{|x-y|} dx \, dy - c_x \int
ho(x)^{4/3} dx.$$

Chen, Friesecke : Pair Densities in Density Functional Theory. Multiscale Model. Simul. (2015).

Learning the pair density

Main ideas :

- Construct a database of densities and pair densities
- Select most representative pair densities using a greedy algorithm
- For a new density,
 - 1. fit the density as a barycenter of selected densities
 - 2. approximate the pair density as a barycenter of corresponding pair densities

Simple example using a W_2 Wasserstein barycenter :

Using mixture distance : fitting the pair density

Computational cost limits the use of Wasserstein barycenters

 Pair densities can be fitted using a few gaussian mixtures - sparse representation for efficiently computing barycenters

Conclusion and perspectives

Nonlinear reduced model based on mixture Wasserstein barycenters

Key points :

- Computation of barycenters independent of the underlying dimension
- Problem size depends on number of functions in the mixtures Limitations :
 - Needs to consider probability distributions
 - Multi-marginal problem hard in general, but hope with new algorithms

 $\label{eq:Friesecke} Friesecke, \ Penka: The \ GenCol \ algorithm \ for \ high-dimensional \ optimal \ transport: general \ formulation \ and \ application \ to$

barycenters and Wasserstein splines, http ://arxiv.org/abs/2209.09081, (2022).

Extensions :

- ► Consider orthogonal projectors problems using Quantum OT
- ► Accelerate online calculations via learning of the parameter map
- ► 3D simulations, error bounds

Thank you!