Modèles réduits non-linéaires basés sur le transport optimal pour le calcul de structures électroniques

Geneviève Dusson
CNRS \& Université Franche-Comté

joint work with Maxime Dalery (UFC), Virginie Ehrlacher (Ecole des Ponts), Gero Friesecke
(TUM), Alexei Lozinski (UFC), Etienne Polack (Ecole des Ponts)
LJLL, 26 avril 2023

Context : Molecular simulations

Electronic structure calculations

- Modelling of the electrons
- A large number of models: Schrödinger, Hartree-Fock, Density Functional Theory
- Costly but high accuracy

Context : Electronic structure calculations

 Water molecule :

- $M=3$ nuclei
classical particles described by
(2 hydrogen and 1 oxygen)
- $N=10$ electrons
positions and velocities
\rightarrow quantum particles described by a wavefunction

Born-Oppenheimer approximation :
Proton-to-Electron mass ratio $\frac{m_{p}}{m_{e}} \approx 1838$.

Wavefunction $\Psi_{\mathbf{R}}\left(r_{1}, r_{2}, \ldots, r_{N}\right)$:

- $\left|\Psi_{R}\right|^{2}$ probability density
- Pauli principle : $\Psi_{\mathbf{R}}\left(\ldots, r_{i}, \ldots, r_{j}, \ldots\right)=-\Psi_{\mathbf{R}}\left(\ldots, r_{j}, \ldots, r_{i}, \ldots\right)$

Focus in this presentation on the ground state problem

The ground state problem : Schrödinger equation

Born-Oppenheimer approximation : molecular system described by

- M (classical) nuclei with positions $\mathbf{R} \in \mathbb{R}^{3 M}$
- N electrons described by a wave-function (or orbitals in DFT) $\Psi_{\mathbf{R}}: \mathbb{R}^{3 N} \rightarrow \mathbb{C}$

Energy minimization

$$
\inf _{\substack{\Psi \in L_{s}^{2}\left(\mathbb{R}^{3 N}\right) \\\|\Psi\|_{L^{2}}=1}}\left\langle\Psi_{\mathbf{R}}, H_{\mathbf{R}} \Psi_{\mathbf{R}}\right\rangle,
$$

where H_{R} is the Hamiltonian of the problem, parametrized by the positions of the nuclei, typically
$H_{\mathbf{R}}=-\frac{1}{2} \sum_{i=1}^{N} \Delta_{r_{i}}+\sum_{i=1}^{N} V_{\mathbf{R}}^{n e}\left(r_{i}\right)+\sum_{1 \leq i<j \leq N} \frac{1}{\left|r_{i}-r_{j}\right|}, \quad V_{\mathbf{R}}^{n e}\left(r_{i}\right)=\sum_{k=1}^{M} \frac{1}{\left|R_{k}-r_{i}\right|}$

Eigenvalue problem $\quad H_{\mathbf{R}} \Psi_{\mathbf{R}}=E_{\mathbf{R}} \Psi_{\mathbf{R}}$.

Aim

A problem parametrized by the nuclei positions.
Goal : approximate

$$
\mathcal{M}:=\left\{\Psi_{\mathbf{R}} \text { for } \mathbf{R} \in \mathcal{R}\right\}, \quad \mathcal{R} \text { being the set of configurations }
$$

Used for different purposes :

- Ab initio molecular dynamics
- Geometry optimization
- Building databases to construct interatomic potentials

Questions:

- Understand the structure of this manifold
- How to efficiently approximate the elements on this manifold?
- More precisely, efficiently approximate all solutions (for varying positions) from the computation of only a few solutions

We will work on a toy problem but keep in mind that we want to deal with high-dimensional problems.

Toy problem

One-dimensional, one electron
Energy minimization :

$$
\min _{\substack{\Psi \in H^{1}(\mathbb{R}) \\\|\Psi\|_{L^{2}(\mathbb{R})}=1}} \frac{1}{2} \int_{\mathbb{R}}\left|\Psi^{\prime}\right|^{2}-\sum_{m=1}^{M} z_{m} \Psi\left(R_{m}\right)^{2}
$$

Eigenvalue problem :

$$
\left\{\begin{aligned}
-\frac{1}{2} \Psi_{\mathbf{R}}^{\prime \prime}+\left(-\sum_{m=1}^{M} z_{m} \delta_{R_{m}}\right) \Psi_{\mathbf{R}} & =E_{\mathbf{R}} \Psi_{\mathbf{R}} \\
\left\|\Psi_{\mathbf{R}}\right\|_{L^{2}(\mathbb{R})} & =1
\end{aligned}\right.
$$

- Dirac potential
- Similar regularity as in the 3D case with Coulomb
- Analytic solutions

$$
\Psi_{\mathbf{R}}=\sum_{m=1}^{M} \pi_{m}^{\mathbf{R}} e^{-\zeta_{\mathbf{R}}\left|x-R_{m}\right|}
$$

for some positive weights $\pi^{\mathbf{R}}=\left(\pi_{m}^{\mathbf{R}}\right)_{m=1}^{M} \in\left(\mathbf{R}_{+}\right)^{M}$ and $\zeta_{\mathbf{R}}>0$.

Plots of a few solutions

Aim : efficiently approximate all solutions (for varying positions) from the computation of only a few solutions

Outline

Linear reduced-order modelling

Optimal transport : a few properties

Practical strategy and numerical results for a 1D toy problem

An example in 2D: Approximating the pair-density

Linear reduced basis method

Problem : Parametrized PDE with parameters $\mathbf{R} \in \mathcal{R}$'s.

Needs to be solved for many parameters R.
Offline part : Select accurate solutions for a few wisely chosen parameters $\mathbf{R}_{1}, \mathbf{R}_{2}, \ldots, \mathbf{R}_{K} \in \mathcal{R}$

- Generate a training set of snapshots for parameters $\mathbf{R} \in \mathcal{R}_{\text {train }}$
- Select "good" snapshots with a greedy algorithm
- Select one parameter $\mathbf{R}_{1} \in \mathcal{R}$
- at each iteration $K \geq 2$, select the snapshot that is worse approximated in the basis of the previously selected snapshots $\Psi_{\mathbf{R}_{1}}, \ldots, \Psi_{\mathbf{R}_{\kappa-1}}$

Online part: compute solutions for many parameters $\mathbf{R} \in \mathcal{R}$ in the reduced space spanned by selected snapshots, i.e. in the basis spanned by the solutions $\Psi_{\mathbf{R}_{1}}, \ldots, \Psi_{\mathbf{R}_{K}}$.

Barrault, Maday, Nguyen, Patera : An empirical interpolation method : application to efficient reduced-basis discretization of partial differential equations. C. R.(2004)

Hesthaven, Rozza, Stamm : Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer (2016)

Many successful examples

Used for many industrial problems now

- Continuum mechanics
- Thermal equations

- Neutronics
- Non self-adjoint eigenvalue problem
- Parametrization in each cell of the nuclear core

Key point : The solutions should be well approximated by linear combinations of a few solutions.

Hesthaven, Rozza, Stamm : Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer (2016)
Taumhas, D., Ehrlacher, Lelièvre, Madiot : Reduced basis method for non-symmetric eigenvalue problems : application to the multigroup neutron diffusion equations. arXiv :2307.05978.

An interesting notion : the Kolmogorov n-width

Definition for a Hilbert space $\mathbb{H}: \mathcal{M}:=\left\{\Psi_{\mathbf{R}}, \quad \mathbf{R} \in \mathcal{R}\right\}$

$$
\varepsilon_{n}(\mathcal{M}, \mathbb{H}):=\inf _{\substack{V_{n} \subset \mathbb{H} \\ \operatorname{dim} V_{n}=n}} \sup _{\mathbf{R} \in \mathcal{R}}\left\|\Psi_{\mathbf{R}}-\mathrm{P}_{V_{n}} \Psi_{\mathbf{R}}\right\| .
$$

- Characterizes if the reduced basis method has a chance to work
- The faster the decay, the better!

Typical example where it works : elliptic equation

$$
A_{\mathbf{R}} \Psi_{\mathbf{R}}=f
$$

with affine representation of $A_{\mathbf{R}}$:

$$
A_{\mathbf{R}}=\sum_{q=1}^{Q} \theta_{q}(\mathbf{R}) A_{q}, \quad \text { for some } \theta_{q} \in \mathbb{R}, A_{q} \text { continuous operators }
$$

Exponential decay of the Kolmogorov n-width :

$$
\varepsilon_{n}(\mathcal{M}, \mathbb{H}) \leq C \exp \left(-c n^{1 / Q}\right) .
$$

Ohlberger, Rave : Reduced Basis Methods : Success, Limitations and Future Challenges (2015)
Cohen, DeVore : Approximation of high-dimensional parametric PDEs Acta Numerica (2015)

Less successful examples: Transport problems

Simple example : one-dimensional transport equation, $y \in[0,1]$,

$$
\left\{\begin{array}{l}
\partial_{t} \Psi_{y}(t, x)+y \partial_{x} \Psi_{y}(t, x)=0, \quad x \in \mathbb{R}, t \in \mathbb{R}_{+} \\
\Psi_{y}(0, x)=\mathbf{1}_{[-1,0]}
\end{array}\right.
$$

At $t=1$, the solutions are $\Psi_{y}(t=1, x)=\mathbf{1}_{[y-1, y]}$

Kolmogorov n-width for $\mathcal{M}:=\left\{\mathbf{1}_{[y-1, y]}, \quad y \in[0,1]\right\}:$

$$
\varepsilon_{n}\left(\mathcal{M}, L^{2}(\Omega)\right) \geq c n^{-1 / 2}
$$

Ohlberger, Rave : Reduced Basis Methods : Success, Limitations and Future Challenges (2015)
Cohen, DeVore : Approximation of high-dimensional parametric PDEs Acta Numerica (2015)

What about electronic structure?

Similar behavior as the transport problem

Kolmogorov n-width for the 1D toy problem
For the problem with one nucleus, $\mathcal{M}=\left\{\Psi_{R}, R \in[-\bar{R}, \bar{R}]\right\}$, there exist positive constant $c_{\bar{R}}, C_{\bar{R}}$ such that

$$
c_{\bar{R}} n^{-\frac{3}{2}} \leqslant \varepsilon_{n}\left(\mathcal{M}, L^{2}(\mathbb{R})\right) \leqslant C_{\bar{R}} n^{-\frac{3}{2}} .
$$

For the problem with two nuclei, $\mathcal{M}=\left\{\Psi_{\left(R_{1}, R_{2}\right)}, R_{1}, R_{2} \in[-\bar{R}, \bar{R}]^{2}\right\}$, there exists a positive constant $c_{\bar{R}}$ such that

$$
c_{\bar{R}} n^{-\frac{3}{2}} \leqslant \varepsilon_{n}\left(\mathcal{M}, L^{2}(\mathbb{R})\right)
$$

Dalery, Dusson, Ehrlacher, Lozinski : Nonlinear reduced basis using mixture Wasserstein barycenters : application to an eigenvalue problem inspired from quantum chemistry, arxiv : 2307.15423

Alternative : Finding a good nonlinear transformation

Nonlinear space defined with n parameters

- Neural networks
- Lee and Carlberg. Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders
- Nonlinear encoding-decoding map
- Cohen, Farhat, Maday, Somacal : Nonlinear compressive reduced basis approximation for PDE's. Comptes Rendus Mécanique. 351, 1-18 (2023).
- Lee and Carlberg. Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders
- Optimal transport-based transformations
- Ehrlacher, Lombardi, Mula, Vialard : Nonlinear model reduction on metric spaces. Application to one-dimensional conservative PDEs in Wasserstein spaces. Esaim Math. Model (2020).
- lollo, Taddei : Mapping of coherent structures in parameterized flows by learning optimal transportation with Gaussian models. J. Comput. Phys. 471, 111671 (2022).

Key points :

- How many solutions to approximate accurately the solution for a new parameter?
- Computational cost of a new solution

Replacing the Hilbert space by a metric space

Recall the definition for a Hilbert space $\mathbb{H}: \mathcal{M}:=\left\{\Psi_{\mathbf{R}}, \quad \mathbf{R} \in \mathcal{R}\right\}$

$$
\varepsilon_{n}(\mathcal{M}, \mathbb{H}):=\inf _{\substack{V_{n} \subset \mathbb{H} \\ \operatorname{dim} V_{n}=n}} \sup _{\mathbf{R} \in \mathcal{R}}\left\|\Psi_{\mathbf{R}}-\mathrm{P}_{V_{n}} \Psi_{\mathbf{R}}\right\| .
$$

We need to

- replace the norm by a distance
- find an alternative for the projection
- linear combination replaced by barycenter

Given a metric space \mathbb{M}, with distance d, for convex parameters $\boldsymbol{t}=\left(t_{1}, \ldots, t_{n}\right)$, i.e. positive with $\sum_{i=1}^{n} t_{i}=1$, and elements $\Psi_{\mathbf{R}_{1}}, \ldots, \Psi_{\mathbf{R}_{n}} \in \mathbb{M}$

$$
\left.\operatorname{bar}\left(\boldsymbol{t} ; \Psi_{\mathbf{R}_{1}}, \ldots, \Psi_{\mathbf{R}_{n}}\right)\right):=\operatorname{argmin}_{u \in \mathbb{M}} \quad \sum_{i=1}^{n} t_{i} d\left(u, \Psi_{\mathbf{R}_{i}}\right)^{2}
$$

Nonlinear Kolmogorov n-width

$$
\left.\varepsilon_{n}(\mathcal{M}, \mathbb{M}):=\inf _{\Psi_{\mathbf{R}_{1}}, \ldots, \Psi_{\mathbf{R}_{n}} \in \mathbb{M}} \sup _{\mathbf{R} \in \mathcal{R}} \inf _{\boldsymbol{t}} d\left(\Psi_{\mathbf{R}}, \operatorname{bar}\left(\boldsymbol{t} ; \Psi_{\mathbf{R}_{1}}, \ldots, \Psi_{\mathbf{R}_{n}}\right)\right)\right)
$$

Motivation behind using optimal transport

Use of optimal transport : at minima deals with the translations Barycenter between two Slater functions : a translated Slater function

$$
K<\triangleleft \ggg>+ \pm
$$

Simple one-nucleus problem : $\forall n>1, \varepsilon_{n}\left(\mathcal{M},\left(\mathcal{P}_{2}(\mathbb{R}), W_{2}\right)\right)=0$.

Outline

Linear reduced-order modelling

Optimal transport : a few properties

Practical strategy and numerical results for a 1D toy problem

An example in 2D : Approximating the pair-density

Optimal transport in a nutshell

Originally introduced by Monge : moving a pile of sand efficiently to cover a sinkhole

Wasserstein distance : for $u, v \in \mathcal{P}_{2}(\Omega)^{2}$ as

$$
W_{2}(u, v)^{2}:=\inf _{\pi \in \Pi(u, v)} \int_{\Omega^{2}}(x-y)^{2} d \pi(x, y),
$$

$\Pi(u, v)$: set of probability measures over Ω^{2} with marginals u and v.

Wasserstein barycenters

- n probability measures u_{1}, \ldots, u_{n}
- n positive weights t_{1}, \ldots, t_{n} summing to 1

Barycenter is a solution to the problem

$$
\inf _{u \in \mathcal{P}_{2}(\Omega)} \sum_{i=1}^{n} t_{i} W_{2}\left(u, u_{i}\right)^{2}
$$

Alternative formulation : multimarginal optimal transport problem

$$
\inf _{\gamma \in \Pi\left(u_{1}, \ldots, u_{n}\right)} \int_{\Omega^{n}} \frac{1}{2} \sum_{i, j=1}^{n} t_{i} t_{j}\left(x_{i}-x_{j}\right)^{2} d \gamma\left(x_{1}, \ldots, x_{n}\right)
$$

where $\Pi\left(u_{1}, \ldots, u_{n}\right)$ denotes the set of probability measures on Ω^{n} having u_{1}, \ldots, u_{n} as marginals.

Then $\operatorname{bar}\left(\boldsymbol{t} ; u_{1}, \ldots, u_{n}\right)=P_{\boldsymbol{t}} \# \gamma, \quad$ with $P_{\boldsymbol{t}}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} t_{i} x_{i}$. Agueh, Carlier: Barycenters in the Wasserstein Space. SIAM J. Math. Anal. (2011).

Gangbo, Swiech: Optimal maps for the multidimensional Monge-Kantorovich problem. Commun. Pure Appl. Math. (1998)

A few examples: One-dimensional case

Cumulative distribution function (cdf) of an element $u \in \mathcal{P}_{2}(\mathbb{R})$ is

$$
\operatorname{cdf}_{u}: x \in \mathbb{R} \longmapsto \int_{-\infty}^{x} \mathrm{~d}[u]
$$

Inverse cumulative distribution function (icdf) : generalized inverse of the cdf

$$
\operatorname{icdf}_{u}: s \in[0,1] \longmapsto \operatorname{cdf}_{u}^{-1}:=\inf \left\{x \in \mathbb{R}, \operatorname{cdf}_{u}(x)>s\right\}
$$

Then, for any $(u, v) \in \mathcal{P}_{2}(\mathbb{R})^{2}$, there holds

$$
W_{2}(u, v)=\left\|\operatorname{icdf}_{u}-\operatorname{icdf}_{v}\right\|_{L^{2}([0,1])}
$$

and for any set of barycentric weights $\boldsymbol{t}:=\left(t_{1}, \ldots, t_{n}\right)$ and $\boldsymbol{u}:=\left(u_{1}, \ldots, u_{n}\right)$,
the icdf of the barycenter $\operatorname{Bar}_{W_{2}}^{t}(\boldsymbol{u})$ satisfies

$$
\operatorname{icdf}_{\operatorname{Bar}_{W_{2}}^{t}(\boldsymbol{u})}=\sum_{i=1}^{n} t_{i} \operatorname{icdf}_{u_{i}} .
$$

Illustration

$\operatorname{icdf}_{\operatorname{Bar}_{W_{2}}^{t}(\boldsymbol{u})}=\lambda \operatorname{icdf}_{u_{1}}+(1-\lambda) \operatorname{icdf}_{\boldsymbol{u}_{2}}$.

A few examples: Location-scatter transforms

$$
\mathcal{A}:=\left\{T \# a, \quad T: x \in \mathbb{R}^{d} \mapsto A x+b, A \in \mathcal{S}_{d}, b \in \mathbb{R}^{d}\right\} .
$$

All measures generated with translation and dilations of a single measure Wasserstein distance : Let $a_{0}, a_{1} \in \mathcal{A}$ havings means m_{0}, m_{1} and covariance matrices Σ_{0}, Σ_{1}, such that the transport map

$$
T_{x}=A x+\left(m_{0}-m_{1}\right), \quad \text { with } A=\Sigma_{0}^{-1 / 2}\left(\Sigma_{0}^{1 / 2} \Sigma_{1} \Sigma_{0}^{1 / 2}\right)^{1 / 2} \Sigma_{0}^{-1 / 2},
$$

is such that $T \# a_{0}=a_{1}$. Then

$$
W_{2}^{2}\left(a_{0}, a_{1}\right)=\left\|m_{0}-m_{1}\right\|^{2}+\operatorname{Tr}\left(\Sigma_{0}+\Sigma_{1}-2\left(\Sigma_{0}^{1 / 2} \Sigma_{1} \Sigma_{0}^{1 / 2}\right)^{1 / 2}\right),
$$

Wasserstein barycenter: Let $a_{1}, \ldots, a_{n} \in \mathcal{A}$ having mean m_{j} and covariance matrices Σ_{j}. For weights $\boldsymbol{t}:=\left(t_{1}, \ldots, t_{n}\right)$, the barycenter is the atom bara ${ }_{t}=T_{t} \#$ a with $T_{t}=S x+m$, where S is the only positive definite matrix satisfying

$$
S=\sum_{j=1}^{n} t_{j}\left(S^{1 / 2} \Sigma_{j} S^{1 / 2}\right)^{1 / 2}, \quad \text { and } \quad m=\sum_{j=1}^{n} t_{j} m_{j} .
$$

Center is the mean of centers, small equation to solve for the covariance.

Illustration

Barycenter between three Slater distributions

Kolmogorov n-width for the Wasserstein distance

Solution manifold: $\mathcal{M}=\left\{\Psi_{\mathbf{R}}, \mathbf{R} \in[-\bar{R}, \bar{R}]^{M}\right\}$
Since $W_{2}(u, v)=\left\|\operatorname{icdf}_{u}-\operatorname{icdf}_{v}\right\|_{L^{2}(0,1)}$, we consider

$$
\varepsilon_{n}\left(\mathcal{M}, W_{2}\right):=\varepsilon_{n}\left(\operatorname{icdf}(\mathcal{M}), L^{2}(0,1)\right)
$$

Simple one-nucleus problem : $\forall n>1, \varepsilon_{n}\left(\mathcal{M}, W_{2}\right)=0$
Case of two nuclei in $[-\bar{R}, \bar{R}]^{2}$: There exists a constant $C_{\bar{R}}>0$ such that for all $n \geq 1$,

$$
\varepsilon_{n}\left(\mathcal{M}, W_{2}\right) \leq C_{\bar{R}} n^{-5 / 2} .
$$

To compare with the linear Kolmogorov width :

$$
c_{\bar{R}} n^{-3 / 2} \leqslant \varepsilon_{n}\left(\mathcal{M}, L^{2}(\mathbb{R})\right)
$$

Wasserstein barycenter between two solutions

Constrained convex optimization problem
Ngrid Ngrid

$$
w:=\left(w_{j k}\right)_{\substack{1 \leq j \leq N g r i d, 1 \leq k \leq N \text { Ngrid }}}^{\min \left(\Lambda_{0}, \Lambda_{1}\right)} \sum_{j=1} \sum_{k=1} w_{j k}\left\|x_{j}-x_{k}\right\|^{2}
$$

with $\quad \Pi\left(\Lambda_{0}, \Lambda_{1}\right):=\left\{\begin{array}{c}1 \leq k \leq \text { Ngrid } \\ w:=\left(w_{j k}\right)_{\substack{1 \leq j \leq \text { Ngrid, } \\ 1 \leq k \leq \text { Ngrid }}} \in \mathbb{R}_{+}^{\text {Ngrid } \times \text { Ngrid }}, \quad \forall 1 \leq j \leq \text { Ngrid, },\end{array} \sum_{k=1}^{K} w_{j k}=\lambda_{0}^{j}\right.$,

$$
\left.\forall 1 \leq k \leq \text { Ngrid, } \sum_{i=1}^{J} w_{j k}=\lambda_{1}^{k}\right\}
$$

Limitations:

- High computational cost
- Smoothing of the barycenter
- Bad scaling with the dimension
- Multi-marginal problem

$$
\text { K< }<\triangle \triangle \gg \rightarrow+\square
$$

A modified distance

$\mathcal{A} \subset \mathcal{P}(\mathbb{R})$: dictionary of atoms (Slater functions, gaussians, etc.)
Definition : for all mixtures $\mu_{0}=\sum_{j=1}^{J} \lambda_{0}^{j} a_{0}^{j} \in \mathcal{M}(\mathcal{A})$ and $\mu_{1}=$ $\sum_{k=1}^{K} \lambda_{1}^{k} a_{1}^{k} \in \mathcal{M}(\mathcal{A})$, we define

$$
\begin{aligned}
& m W_{2}\left(\mu_{0}, \mu_{1}\right)^{2}:=\min _{w:=\left(w_{j k}\right)} \min _{1 \leq \leq \leq J \leq \Pi}^{1 \leq k \leq K}<1\left(\Lambda_{0}, \Lambda_{1}\right) \sum_{j=1}^{J} \sum_{k=1}^{K} w_{j k} W_{2}^{2}\left(a_{0}^{j}, a_{1}^{k}\right), \\
& \text { with } \Pi\left(\Lambda_{0}, \Lambda_{1}\right):=\left\{w:=\left(w_{j k}\right)_{1 \leq i \leq, 1 \leq k \leq K} \in \mathbb{R}_{+}^{J \times K},\right. \\
& \left.\forall 1 \leq j \leq J, \sum_{k=1}^{K} w_{j k}=\lambda_{0}^{j}, \quad \forall 1 \leq k \leq K, \sum_{j=1}^{J} w_{j k}=\lambda_{1}^{k}\right\} .
\end{aligned}
$$

Aim : Exploit the compact form of the solution as a mixture of Slater functions

Illustration of the modification of the transport plan

- Transport map replaced by affine lines
- Number of components cannot exceed J $+K-1$

Delon, Desolneux : A Wasserstein-Type Distance in the Space of Gaussian Mixture Models. SIAM J. Imaging Sci. (2020).

Mixture barycenter between two solutions

- Probability measures $\left(u_{1}, \ldots, u_{n}\right)$
- Positive weights $\boldsymbol{t}=\left(t_{1}, \ldots, t_{n}\right)$.

Unique solution to the problem

$$
\inf _{u \in \mathcal{M}(\mathcal{A})} \sum_{i=1}^{n} t_{i} m W_{2}^{2}\left(u, u_{i}\right)^{2} .
$$

$K<\triangleleft \Delta \gg \rightarrow++$

Interesting features :

- Way better approximation compared to W_{2} barycenter
- Computational cost independent of the dimension

Formula for the barycenter :

$$
\operatorname{Bar}_{\mathrm{MW}}^{2} 10, ~\left(u_{1}, \ldots, u_{n}\right)=\sum_{\mathbf{k} \in \mathbf{K}} w_{\mathbf{k}}^{*} \operatorname{Bar}_{W_{2}}^{\boldsymbol{t}}\left(u_{1}^{k^{1}}, \ldots, u_{N}^{k^{n}}\right)
$$

A few properties

Valid for a large number of probability distributions

Mathematically :

- needs a geodesic space for the atoms (space with distance + geodesic)
- identifiability

Computationally : barycenters need to be easily computable (best if explicit !) Examples:

- Elliptic distributions (Slater, gaussians, Wigner semicircle)
- Location-scatter (dilations+translations)
- Group-invariant distributions (invariance put into the distance between the atom distributions)

Back to Kolmogorov n-width

Definition of nonlinear Kolmogorov n-width :

The Kolmogorov n-width of the set $\mathcal{M} \subset \mathbb{M}$ is defined by

$$
\varepsilon_{n}(\mathcal{M}, \mathbb{M})=\inf _{\boldsymbol{m} \in \mathbb{M}^{n}} \sup _{\mathbf{R} \in \mathcal{R}} \inf _{\boldsymbol{t} \in \Omega(\boldsymbol{m})} m W_{2}\left(u_{\mathbf{R}}, \operatorname{Bar}^{\boldsymbol{t}}(\boldsymbol{m})\right)
$$

Theorem : (Dalery, D., Ehrlacher, Lozinski) for a system with two nuclei with identical charges, for $n>1$,

$$
\varepsilon_{n}\left(\mathcal{M}, m W_{2}\right)=0
$$

- Exact representation of all solutions in this case

Outline

Linear reduced-order modelling

Optimal transport : a few properties

Practical strategy and numerical results for a 1D toy problem

An example in 2D: Approximating the pair-density

Practical strategy

Nonlinear version

Offline part : Select accurate solutions for a few wisely chosen parameters $\mathbf{R}_{1}, \mathbf{R}_{2}, \ldots, \mathbf{R}_{K} \in \mathcal{R}$

- Generate a training set of snapshots for parameters $\mathbf{R} \in \mathcal{R}_{\text {train }}$
- Select "good" snapshots with a greedy algorithm
- Select two parameters $\mathbf{R}_{1}, \mathbf{R}_{2} \in \mathcal{R}$ that are as far as possible
- at each iteration $K \geq 3$, select the snapshot that is worse approximated as a barycenter in the set of the previously selected snapshots $\Psi_{\mathbf{R}_{1}}, \ldots, \Psi_{\mathbf{R}_{K-1}}$

Online part : compute solutions for many parameters $\mathbf{R} \in \mathcal{R}$ as a barycenter of selected snapshots, i.e. in the set of the solutions $\Psi_{\mathbf{R}_{1}}, \ldots, \Psi_{\mathbf{R}_{K}}$.

Details on the greedy algorithm

Input : Training set $\mathcal{M}_{\text {train }}$, number of elements to select Q Select m^{1} and m^{2} solutions to $\operatorname{argmax}_{\left(m^{1}, m^{2}\right) \in \mathcal{M}_{\text {train }}} M W_{2}\left(m^{1}, m^{2}\right)$. $\mathcal{B}:=\left\{m^{1}, m^{2}\right\}$
for $q=3, \ldots, Q$ do
Select

$$
\begin{equation*}
m^{k} \in \operatorname{argmax}_{m \in \mathcal{M}_{\text {train }}} \min _{t \in \Omega_{q-1}} m W_{2}\left(m, \operatorname{Bar}_{M W 2}^{t}\left(m^{1}, \ldots, m^{q-1}\right)\right)^{2} \tag{1}
\end{equation*}
$$

where

$$
\Omega_{q-1}=\left\{t \in \mathbb{R}^{q-1}, \sum_{i=1}^{q-1} \frac{t_{i}}{\zeta^{i}}>0\right\} .
$$

$\mathcal{B}=\mathcal{B} \cup\left\{m^{q}\right\}$
end for
Output : Reduced basis $\mathcal{B} \subset \mathcal{M}_{\text {tr }}$

Details on the greedy algorithm - 2

Mixtures : $m=\sum_{k=1}^{K} \pi_{k} m_{k}$ and for $i \in\{1, \ldots, n\}, m^{i}=\sum_{k^{i}=1}^{K^{i}} \pi_{k^{i}}^{i} m_{k^{i}}^{i}$
Solve : $\min _{t \in \Omega_{q}} m W_{2}\left(m, \operatorname{Bar}_{M W_{2}}^{t}\left(m^{1}, \ldots, m^{q}\right)\right)^{2}$,

$$
\min _{t \in \Omega_{q}} \min _{w \in\left(\pi, w^{*}\right)} \sum_{k \in K} \sum_{k=1}^{K} w_{k, k} W_{2}\left(m_{k}, \operatorname{Bar}_{W_{2}}^{t}\left(m_{k^{1}}^{1}, \ldots, m_{k^{n}}^{n}\right)\right)^{2},
$$

with

$$
\begin{aligned}
W_{2}\left(m_{k}, \operatorname{Bar}_{W_{2}}^{t}\left(m_{k^{1}}^{1}, \ldots, m_{k^{n}}^{n}\right)\right)^{2} & =\left(r_{k}-\sum_{i=1}^{n} \lambda_{i} r_{k^{i}}^{i}\right)^{2}+2\left(\frac{1}{\zeta_{k}}-\sum_{i=1}^{n} \frac{t_{i}}{\zeta_{k^{i}}^{i}}\right)^{2} \\
& =\boldsymbol{t}^{\top} A_{\mathbf{k}} \boldsymbol{t}+b_{\mathbf{k}, k}^{\top} \boldsymbol{t}+c_{k}
\end{aligned}
$$

So

$$
\min _{w \in \Pi\left(\pi, w^{*}\right)} \min _{\boldsymbol{t} \in \Omega_{k}} \boldsymbol{t}^{\top} A \boldsymbol{t}+b_{w}^{\top} \boldsymbol{t}+c=\min _{w \in \Pi\left(\pi, w^{*}\right)}-\frac{1}{4} b_{w}^{\top} A^{-1} b_{w}+c,
$$

Non convex optimization problem to solve

Online algorithm : energy minimization

Given $\Psi_{\mathbf{R}_{1}}, \ldots, \Psi_{\mathbf{R}_{n}}$, solve

$$
\inf _{\boldsymbol{t}} E\left(\operatorname{bar}\left(\boldsymbol{t} ; \Psi_{\mathbf{R}_{1}}, \ldots, \Psi_{\mathbf{R}_{n}}\right)\right)
$$

- Nonlinear problem, but in low dimension
- Using quasi-Newton method starting from different initial guesses

Numerical results : greedy algorithm

Charges: $(0.8,1.1)$.
291 solutions in the training set.
Error decrease with respect to number of selected snapshots

Numerical results : greedy algorithm

First eight selected solutions

Numerical results : greedy algorithm

Projection example

Numerical results : online energy minimization

Energy error

Numerical results

Comparison between projection and energy minimization

First extrapolation example

Using a basis with 3 functions

First extrapolation example

Using a basis with 5 functions

Outline

Linear reduced-order modelling

Optimal transport : a few properties

Practical strategy and numerical results for a 1D toy problem

An example in 2D: Approximating the pair-density

Approximating the pair density

Defined as

$$
\rho_{2}^{\psi}(x, y)=\binom{N}{2} \int_{\left(\mathbb{R}^{d}\right)^{N-2}}\left|\Psi\left(x, y, x_{3}, \cdots, x_{N}\right)\right|^{2} d x_{3} \cdots d x_{N} .
$$

- Propose practical approximations of the pair density in order to efficiently compute

$$
V_{e e}[\Psi]=\int_{\mathbb{R}^{2 d}} \frac{\rho_{2}^{\psi}(x, y)}{|x-y|} d x d y
$$

Two particles systems

(a) $a=0.5$

(b) $a=1.5$

Finite element code for 1D particles developed with Xue Quan and Huajie Chen (in Julia).

Approximation using Local Density Approximation

Relative error computed with respect to the Coulomb energy

$$
V_{e e}[\Psi]=\int_{\mathbb{R}^{2}} \frac{\rho_{2}^{\psi}(x, y)}{|x-y|} d x d y
$$

For LDA : ρ_{2} such that

$$
V_{e e}[\rho]=\frac{1}{2} \int \frac{\rho_{2}^{\psi}(x, y)}{|x-y|} d x d y-c_{x} \int \rho(x)^{4 / 3} d x
$$

Chen, Friesecke : Pair Densities in Density Functional Theory. Multiscale Model. Simul. (2015).

Learning the pair density

Main ideas:

- Construct a database of densities and pair densities
- Select most representative pair densities using a greedy algorithm
- For a new density,

1. fit the density as a barycenter of selected densities
2. approximate the pair density as a barycenter of corresponding pair densities

Simple example using a W_{2} Wasserstein barycenter :

$$
E r r=1 \cdot 2 \cdot 10^{-3}
$$

(i) $a=1$.
(j) $a=1.5$

(k) $a=2$

Err $=6.6 .10^{-3}$
(I) $a=2.5$
(m) $a=3$

Using mixture distance : fitting the pair density

Computational cost limits the use of Wasserstein barycenters

- Pair densities can be fitted using a few gaussian mixtures - sparse representation for efficiently computing barycenters

(n) $a=1$.

$$
E r r=1 \cdot 2 \cdot 10^{-3}
$$

$E r r=4.8 \cdot 10^{-2}$
(o) $a=1.5$

$$
E r r=8 \cdot 1 \cdot 10^{-3}
$$

$$
E r r=5.0 .10^{-2}
$$

(p) $a=2$

$$
E r r=6.6 .10^{-3}
$$

$E r r=4.4 .10^{-2}$
(q) $a=2.5$

(r) $a=3$

Conclusion and perspectives

Nonlinear reduced model based on mixture Wasserstein barycenters

Key points :

- Computation of barycenters independent of the underlying dimension
- Problem size depends on number of functions in the mixtures

Limitations:

- Needs to consider probability distributions
- Multi-marginal problem hard in general, but hope with new algorithms

Friesecke, Penka : The GenCol algorithm for high-dimensional optimal transport : general formulation and application to barycenters and Wasserstein splines, http ://arxiv.org/abs/2209.09081, (2022).
Extensions:

- Consider orthogonal projectors problems using Quantum OT
- Accelerate online calculations via learning of the parameter map
- 3D simulations, error bounds

Thank you!

