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Context : Molecular simulations

Electronic structure calculations
▶ Modelling of the electrons
▶ A large number of models : Schrödinger, Hartree–Fock, Density

Functional Theory
▶ Costly but high accuracy

2 / 49



Context : Electronic structure calculations
Water molecule : O

HH

▶ M = 3 nuclei → quantum particles quantum
classical particles described by
(2 hydrogen and 1 oxygen) positions and velocities

▶ N = 10 electrons → quantum particles described by a
wavefunction

Born–Oppenheimer approximation :
Proton-to-Electron mass ratio mp

me
≈ 1838.

Wavefunction ΨR(r1, r2, . . . , rN) :
▶ |ΨR|2 probability density
▶ Pauli principle : ΨR(. . . , ri , . . . , rj , . . .) = −ΨR(. . . , rj , . . . , ri , . . .)

Focus in this presentation on the ground state problem
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The ground state problem : Schrödinger equation

Born–Oppenheimer approximation : molecular system described by
▶ M (classical) nuclei with positions R ∈ R3M

▶ N electrons described by a wave-function (or orbitals in DFT)
ΨR : R3N → C

Energy minimization inf
Ψ∈L2

as(R3N)
∥Ψ∥L2 =1

⟨ΨR, HRΨR⟩,

where HR is the Hamiltonian of the problem, parametrized by the positions
of the nuclei, typically

HR = −1
2

N∑
i=1

∆ri +
N∑

i=1
V ne

R (ri)+
∑

1≤i<j≤N

1
|ri − rj |

, V ne
R (ri) =

M∑
k=1

1
|Rk − ri |

Eigenvalue problem HRΨR = ERΨR.
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Aim
A problem parametrized by the nuclei positions.
Goal : approximate

M := {ΨR for R ∈ R} , R being the set of configurations

Used for different purposes :
▶ Ab initio molecular dynamics
▶ Geometry optimization
▶ Building databases to construct interatomic potentials

Questions :
▶ Understand the structure of this manifold
▶ How to efficiently approximate the elements on this manifold ?
▶ More precisely, efficiently approximate all solutions (for varying

positions) from the computation of only a few solutions

We will work on a toy problem but keep in mind that we want to deal with
high-dimensional problems.
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Toy problem
One-dimensional, one electron

Energy minimization :
min

Ψ∈H1(R)
∥Ψ∥L2(R)=1

1
2

∫
R

|Ψ′|2 −
M∑

m=1
zmΨ(Rm)2

Eigenvalue problem : −1
2Ψ′′

R +
(

−
M∑

m=1
zmδRm

)
ΨR = ERΨR

∥ΨR∥L2(R) = 1.

▶ Dirac potential
▶ Similar regularity as in the 3D case with Coulomb
▶ Analytic solutions

ΨR =
M∑

m=1
πR

me−ζR|x−Rm|,

for some positive weights πR =
(
πR

m

)M

m=1
∈ (R+)M and ζR > 0.
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Plots of a few solutions
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Aim : efficiently approximate all solutions (for varying positions) from the
computation of only a few solutions
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Outline

Linear reduced-order modelling

Optimal transport : a few properties

Practical strategy and numerical results for a 1D toy problem

An example in 2D : Approximating the pair-density
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Linear reduced basis method
Problem : Parametrized PDE with parameters R ∈ R’s.

Needs to be solved for many parameters R.

Offline part : Select accurate solutions for a few wisely chosen parameters
R1, R2, . . . , RK ∈ R

▶ Generate a training set of snapshots for parameters R ∈ Rtrain
▶ Select "good" snapshots with a greedy algorithm

▶ Select one parameter R1 ∈ R
▶ at each iteration K ≥ 2, select the snapshot that is worse approximated

in the basis of the previously selected snapshots ΨR1 , . . . , ΨRK−1

Online part : compute solutions for many parameters R ∈ R in the redu-
ced space spanned by selected snapshots, i.e. in the basis spanned by the
solutions ΨR1 , . . . , ΨRK .

Barrault, Maday, Nguyen, Patera : An empirical interpolation method : application to efficient reduced-basis discretization of
partial differential equations. C. R.(2004)

Hesthaven, Rozza, Stamm : Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer (2016)
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Many successful examples
Used for many industrial problems now
▶ Continuum mechanics
▶ Thermal equations
▶ . . .

▶ Neutronics
▶ Non self-adjoint eigenvalue

problem
▶ Parametrization in each cell

of the nuclear core

Key point : The solutions should be well approximated by linear combi-
nations of a few solutions.

Hesthaven, Rozza, Stamm : Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer (2016)

Taumhas, D., Ehrlacher, Lelièvre, Madiot : Reduced basis method for non-symmetric eigenvalue problems : application to the

multigroup neutron diffusion equations. arXiv :2307.05978.
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An interesting notion : the Kolmogorov n-width
Definition for a Hilbert space H : M := {ΨR, R ∈ R}

εn(M,H) := inf
Vn⊂H

dim Vn=n

sup
R∈R

∥ΨR − PVnΨR∥.

▶ Characterizes if the reduced basis method has a chance to work
▶ The faster the decay, the better !

Typical example where it works : elliptic equation

ARΨR = f ,

with affine representation of AR :

AR =
Q∑

q=1
θq(R)Aq, for some θq ∈ R, Aq continuous operators

Exponential decay of the Kolmogorov n-width :

εn(M,H) ≤ C exp(−cn1/Q).
Ohlberger, Rave : Reduced Basis Methods : Success, Limitations and Future Challenges (2015)

Cohen, DeVore : Approximation of high-dimensional parametric PDEs Acta Numerica (2015)
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Less successful examples : Transport problems
Simple example : one-dimensional transport equation, y ∈ [0, 1],{

∂tΨy (t, x) + y∂xΨy (t, x) = 0, x ∈ R, t ∈ R+
Ψy (0, x) = 1[−1,0]

At t = 1, the solutions are Ψy (t = 1, x) = 1[y−1,y ]
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y=0.5
y=0.75
y=1.0

Kolmogorov n-width for M := {1[y−1,y ], y ∈ [0, 1]} :

εn(M, L2(Ω)) ≥ cn−1/2

Ohlberger, Rave : Reduced Basis Methods : Success, Limitations and Future Challenges (2015)

Cohen, DeVore : Approximation of high-dimensional parametric PDEs Acta Numerica (2015)
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What about electronic structure ?
Similar behavior as the transport problem

5.0 2.5 0.0 2.5 5.0
0.00

0.25

0.50

0.75

1.00

Kolmogorov n-width for the 1D toy problem
For the problem with one nucleus, M = {ΨR , R ∈ [−R̄, R̄]},
there exist positive constant cR̄ , CR̄ such that

cR̄n− 3
2 ⩽ εn(M, L2(R)) ⩽ CR̄n− 3

2 .

For the problem with two nuclei, M = {Ψ(R1,R2), R1, R2 ∈ [−R̄, R̄]2},
there exists a positive constant cR̄ such that

cR̄n− 3
2 ⩽ εn(M, L2(R)).

Dalery, Dusson, Ehrlacher, Lozinski : Nonlinear reduced basis using mixture Wasserstein barycenters : application to an eigenvalue

problem inspired from quantum chemistry, arxiv :2307.15423
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Alternative : Finding a good nonlinear transformation
Nonlinear space defined with n parameters
▶ Neural networks

- Lee and Carlberg. Model reduction of dynamical systems on nonlinear manifolds
using deep convolutional autoencoders

▶ Nonlinear encoding-decoding map
- Cohen, Farhat, Maday, Somacal : Nonlinear compressive reduced basis approximation

for PDE’s. Comptes Rendus Mécanique. 351, 1–18 (2023).
- Lee and Carlberg. Model reduction of dynamical systems on nonlinear manifolds

using deep convolutional autoencoders
▶ Optimal transport-based transformations

- Ehrlacher, Lombardi, Mula, Vialard : Nonlinear model reduction on metric spaces.
Application to one-dimensional conservative PDEs in Wasserstein spaces. Esaim
Math. Model (2020).

- Iollo, Taddei : Mapping of coherent structures in parameterized flows by learning
optimal transportation with Gaussian models. J. Comput. Phys. 471, 111671 (2022).

Key points :
▶ How many solutions to approximate accurately the solution for a new

parameter ?
▶ Computational cost of a new solution
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Replacing the Hilbert space by a metric space
Recall the definition for a Hilbert space H : M := {ΨR, R ∈ R}

εn(M,H) := inf
Vn⊂H

dim Vn=n

sup
R∈R

∥ΨR − PVnΨR∥.

We need to
▶ replace the norm by a distance
▶ find an alternative for the projection
▶ linear combination replaced by barycenter

Given a metric space M, with distance d , for convex parameters
t = (t1, . . . , tn), i.e. positive with

∑n
i=1 ti = 1, and elements

ΨR1 , . . . , ΨRn ∈ M

bar(t; ΨR1 , . . . , ΨRn)) := argminu∈M

n∑
i=1

tid(u, ΨRi )2.

Nonlinear Kolmogorov n-width

εn(M,M) := inf
ΨR1 ,...,ΨRn ∈M

sup
R∈R

inf
t

d (ΨR, bar(t; ΨR1 , . . . , ΨRn)))
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Motivation behind using optimal transport

Use of optimal transport : at minima deals with the translations
Barycenter between two Slater functions : a translated Slater function

Simple one-nucleus problem : ∀n > 1, εn (M, (P2(R), W2)) = 0.
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An example in 2D : Approximating the pair-density
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Optimal transport in a nutshell
Originally introduced by Monge : moving a pile of sand efficiently to cover a
sinkhole

Wasserstein distance : for u, v ∈ P2(Ω)2 as
W2(u, v)2 := inf

π∈Π(u,v)

∫
Ω2

(x − y)2 dπ(x , y),

Π(u, v) : set of probability measures over Ω2 with marginals u and v .

Delon, Desolneux : A Wasserstein-Type Distance in the Space of Gaussian Mixture Models. SIAM J. Imaging Sci. (2020).
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Wasserstein barycenters
▶ n probability measures u1, . . . , un
▶ n positive weights t1, . . . , tn summing to 1

Barycenter is a solution to the problem

inf
u∈P2(Ω)

n∑
i=1

tiW2(u, ui)2.

Alternative formulation : multimarginal optimal transport problem

inf
γ∈Π(u1,...,un)

∫
Ωn

1
2

n∑
i ,j=1

ti tj(xi − xj)2 dγ(x1, . . . , xn),

where Π(u1, . . . , un) denotes the set of probability measures on Ωn having
u1, . . . , un as marginals.

Then bar(t; u1, . . . , un) = Pt#γ, with Pt(x1, . . . , xn) =
n∑

i=1
tixi .

Agueh, Carlier : Barycenters in the Wasserstein Space. SIAM J. Math. Anal. (2011).

Gangbo, Swiech : Optimal maps for the multidimensional Monge–Kantorovich problem. Commun. Pure Appl. Math. (1998)
19 / 49



A few examples : One-dimensional case
Cumulative distribution function (cdf) of an element u ∈ P2(R) is

cdfu : x ∈ R 7−→
∫ x

−∞
d[u],

Inverse cumulative distribution function (icdf) : generalized inverse of
the cdf

icdfu : s ∈ [0, 1] 7−→ cdf−1
u := inf{x ∈ R, cdfu(x) > s}.

Then, for any (u, v) ∈ P2(R)2, there holds

W2(u, v) = ∥icdfu − icdfv ∥L2([0,1]),

and for any set of barycentric weights t := (t1, . . . , tn) and
u := (u1, . . . , un),

the icdf of the barycenter Bart
W2(u) satisfies

icdfBart
W2

(u) =
n∑

i=1
ti icdfui .
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Illustration

icdfBart
W2

(u) = λ icdfu1 + (1 − λ) icdfu2 .
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A few examples : Location-scatter transforms
A :=

{
T#a, T : x ∈ Rd 7→ Ax + b, A ∈ Sd , b ∈ Rd

}
.

All measures generated with translation and dilations of a single measure
Wasserstein distance : Let a0, a1 ∈ A havings means m0, m1 and
covariance matrices Σ0, Σ1, such that the transport map

Tx = Ax + (m0 − m1), with A = Σ−1/2
0

(
Σ1/2

0 Σ1Σ1/2
0

)1/2
Σ−1/2

0 ,

is such that T#a0 = a1. Then

W 2
2 (a0, a1) = ∥m0 − m1∥2 + Tr

(
Σ0 + Σ1 − 2(Σ1/2

0 Σ1Σ1/2
0 )1/2

)
,

Wasserstein barycenter : Let a1, . . . , an ∈ A having mean mj and
covariance matrices Σj . For weights t := (t1, . . . , tn), the barycenter is the
atom barat = Tt#a with Tt = Sx + m, where S is the only positive
definite matrix satisfying

S =
n∑

j=1
tj(S1/2ΣjS1/2)1/2, and m =

n∑
j=1

tjmj .

Center is the mean of centers, small equation to solve for the covariance.
Alvarez-Esteban, del Barrio, Cuesta-Albertos, Matran : A fixed-point approach to barycenters in Wasserstein space. (2016).
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Illustration

Barycenter between three Slater distributions
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Kolmogorov n-width for the Wasserstein distance

Solution manifold : M = {ΨR, R ∈ [−R̄, R̄]M}

Since W2(u, v) = ∥icdfu − icdfv ∥L2(0,1), we consider

εn(M, W2) := εn(icdf(M), L2(0, 1))

Simple one-nucleus problem : ∀n > 1, εn(M, W2) = 0

Case of two nuclei in [−R̄, R̄]2 : There exists a constant CR̄ > 0 such
that for all n ≥ 1,

εn(M, W2) ≤ CR̄n−5/2.

To compare with the linear Kolmogorov width :

cR̄n−3/2 ⩽ εn(M, L2(R))

Dalery, Dusson, Ehrlacher, Lozinski : Nonlinear reduced basis using mixture Wasserstein barycenters : application to an eigenvalue

problem inspired from quantum chemistry, arxiv :2307.15423
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Wasserstein barycenter between two solutions
Constrained convex optimization problem

min
w :=(wjk)1≤j≤Ngrid ,

1≤k≤Ngrid
∈Π(Λ0,Λ1)

Ngrid∑
j=1

Ngrid∑
k=1

wjk∥xj − xk∥2,

with Π(Λ0, Λ1) :=

{
w := (wjk)1≤j≤Ngrid,

1≤k≤Ngrid
∈ RNgrid×Ngrid

+ , ∀1 ≤ j ≤ Ngrid ,

K∑
k=1

wjk = λj
0,

∀1 ≤ k ≤ Ngrid ,

J∑
j=1

wjk = λk
1

}
.

Limitations :
▶ High computational cost
▶ Smoothing of the

barycenter
▶ Bad scaling with the

dimension
▶ Multi-marginal problem
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A modified distance
A ⊂ P(R) : dictionary of atoms (Slater functions, gaussians, etc.)

Definition : for all mixtures µ0 =
∑J

j=1 λj
0aj

0 ∈ M(A) and µ1 =∑K
k=1 λk

1ak
1 ∈ M(A), we define

mW2(µ0, µ1)2 := min
w :=(wjk)1≤j≤J,

1≤k≤K
∈Π(Λ0,Λ1)

J∑
j=1

K∑
k=1

wjkW 2
2 (aj

0, ak
1 ),

with Π(Λ0, Λ1) :=

{
w := (wjk)1≤j≤J,1≤k≤K ∈ RJ×K

+ ,

∀1 ≤ j ≤ J ,

K∑
k=1

wjk = λj
0, ∀1 ≤ k ≤ K ,

J∑
j=1

wjk = λk
1

}
.

Aim : Exploit the compact form of the solution as a mixture of Slater functions

Delon, Desolneux : A Wasserstein-Type Distance in the Space of Gaussian Mixture Models. SIAM J. Imaging Sci. (2020).
Dusson, Ehrlacher, Nouaime : A Wasserstein-type metric for generic mixture models, including location-scatter and group
invariant measures (2023) 26 / 49



Illustration of the modification of the transport plan

▶ Transport map replaced by affine lines
▶ Number of components cannot exceed J + K − 1

Delon, Desolneux : A Wasserstein-Type Distance in the Space of Gaussian Mixture Models. SIAM J. Imaging Sci. (2020).
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Mixture barycenter between two solutions
▶ Probability measures (u1, . . . , un)
▶ Positive weights t = (t1, . . . , tn).

Unique solution to the problem

inf
u∈M(A)

n∑
i=1

timW 2
2 (u, ui)2.

Interesting features :
▶ Way better approximation

compared to W2
barycenter

▶ Computational cost
independent of the
dimension

Formula for the barycenter :

Bart
MW2 (u1, . . . , un) =

∑
k∈K

w∗
k Bart

W2

(
uk1

1 , . . . , ukn
N

)
,
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A few properties
Valid for a large number of probability distributions
Mathematically :
▶ needs a geodesic space for the atoms (space with distance + geodesic)
▶ identifiability

Computationally : barycenters need to be easily computable (best if explicit !)
Examples :
▶ Elliptic distributions (Slater, gaussians, Wigner semicircle)
▶ Location-scatter (dilations+translations)
▶ Group-invariant distributions (invariance put into the distance between

the atom distributions)

Dusson, Ehrlacher, Nouaime : A Wasserstein-type metric for generic mixture models, including location-scatter and group
invariant measures (2023)
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Back to Kolmogorov n-width

Definition of nonlinear Kolmogorov n-width :
The Kolmogorov n-width of the set M ⊂ M is defined by

εn(M,M) = inf
m∈Mn

sup
R∈R

inf
t∈Ω(m)

mW2(uR, Bart(m)).

Theorem : (Dalery, D., Ehrlacher, Lozinski) for a system with two
nuclei with identical charges, for n > 1,

εn(M, mW2) = 0.

▶ Exact representation of all solutions in this case

Dalery, Dusson, Ehrlacher, Lozinski : Nonlinear reduced basis using mixture Wasserstein barycenters : application to an eigenvalue

problem inspired from quantum chemistry (2023)

30 / 49



Outline

Linear reduced-order modelling

Optimal transport : a few properties

Practical strategy and numerical results for a 1D toy problem

An example in 2D : Approximating the pair-density

31 / 49



Practical strategy

Nonlinear version

Offline part : Select accurate solutions for a few wisely chosen parameters
R1, R2, . . . , RK ∈ R

▶ Generate a training set of snapshots for parameters R ∈ Rtrain
▶ Select "good" snapshots with a greedy algorithm

▶ Select two parameters R1, R2 ∈ R that are as far as possible
▶ at each iteration K ≥ 3, select the snapshot that is worse approximated

as a barycenter in the set of the previously selected snapshots
ΨR1 , . . . , ΨRK−1

Online part : compute solutions for many parameters R ∈ R as a bary-
center of selected snapshots, i.e. in the set of the solutions ΨR1 , . . . , ΨRK .
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Details on the greedy algorithm

Input : Training set Mtrain, number of elements to select Q
Select m1 and m2 solutions to argmax(m1,m2)∈MtrainMW2(m1, m2).
B := {m1, m2}
for q = 3, . . . , Q do

Select

mk ∈ argmaxm∈Mtrain min
t∈Ωq−1

mW2(m, Bart
MW 2(m1, . . . , mq−1))2, (1) eq:greedy_eq

where

Ωq−1 =

t ∈ Rq−1,
q−1∑
i=1

ti
ζ i > 0

 .

B = B ∪ {mq}
end for
Output : Reduced basis B ⊂ Mtr
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Details on the greedy algorithm - 2

Mixtures : m =
K∑

k=1
πkmk and for i ∈ {1, . . . , n}, mi =

K i∑
k i =1

πi
k i mi

k i

Solve : min
t∈Ωq

mW2(m, Bart
MW 2(m1, . . . , mq))2,

min
t∈Ωq

min
w∈Π(π,w∗)

∑
k∈K

K∑
k=1

wk,kW2(mk , Bart
W2(m

1
k1 , . . . , mn

kn))2,

with

W2(mk , Bart
W2(m

1
k1 , . . . , mn

kn))2 =
(

rk −
n∑

i=1
λi r i

k i

)2

+ 2
(

1
ζk

−
n∑

i=1

ti
ζ i

k i

)2

= t⊺Akt + b⊺
k,kt + ck ,

So

min
w∈Π(π,w∗)

min
t∈Ωk

t⊺At + b⊺
w t + c = min

w∈Π(π,w∗)
−1

4b⊺
w A−1bw + c,

Non convex optimization problem to solve
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Online algorithm : energy minimization
Given ΨR1 , . . . , ΨRn , solve

inf
t

E (bar(t; ΨR1 , . . . , ΨRn))

▶ Nonlinear problem, but in low dimension
▶ Using quasi-Newton method starting from different initial guesses
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Numerical results : greedy algorithm
Charges : (0.8, 1.1).
291 solutions in the training set.
Error decrease with respect to number of selected snapshots
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Numerical results : greedy algorithm

First eight selected solutions
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Numerical results : greedy algorithm

Projection example
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Numerical results : online energy minimization

Energy error
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Numerical results

Comparison between projection and energy minimization
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First extrapolation example

Using a basis with 3 functions

5.0 2.5 0.0 2.5 5.0
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exact solution, energy = -0.6050000658135313
energy minimizer, energy = -0.5812880627684448
energy minimizer, energy = -0.5463070022613314
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First extrapolation example

Using a basis with 5 functions
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exact solution, energy = -0.6050000658135313
energy minimizer, energy = -0.6020935090109966
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Approximating the pair density

Defined as

ρΨ
2 (x , y) =

(
N
2

)∫
(Rd )N−2

|Ψ(x , y , x3, · · · , xN)|2dx3 · · · dxN .

▶ Propose practical approximations of the pair density in order to
efficiently compute

Vee[Ψ] =
∫
R2d

ρΨ
2 (x , y)
|x − y |

dx dy .
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Two particles systems

5.0 2.5 0.0 2.5 5.0

1.25

1.00

0.75

0.50

5.0 2.5 0.0 2.5 5.0
0.0

0.1

0.2

0.3

0.4

0.5

5.0 2.5 0.0 2.5 5.05.0

2.5

0.0

2.5

5.0

0.02

0.04

0.06

0.08

(a) a = 0.5

5.0 2.5 0.0 2.5 5.0
1.2

1.0

0.8

0.6

5.0 2.5 0.0 2.5 5.0
0.0

0.1

0.2

0.3

0.4

5.0 2.5 0.0 2.5 5.05.0

2.5

0.0

2.5

5.0

0.02

0.04

0.06

0.08

(b) a = 1.5

5.0 2.5 0.0 2.5 5.0

1.1

1.0

0.9

0.8

0.7

0.6

5.0 2.5 0.0 2.5 5.0
0.0

0.1

0.2

0.3

0.4

5.0 2.5 0.0 2.5 5.05.0

2.5

0.0

2.5

5.0

0.02

0.04

0.06

0.08

0.10

(c) a = 2.5

Finite element code for 1D particles developed with Xue Quan and Huajie Chen (in Julia).
45 / 49



Approximation using Local Density Approximation
Relative error computed with respect to the Coulomb energy

Vee[Ψ] =
∫
R2

ρΨ
2 (x , y)
|x − y |

dx dy .

For LDA : ρ2 such that

Vee[ρ] = 1
2

∫
ρΨ

2 (x , y)
|x − y |

dx dy − cx

∫
ρ(x)4/3dx .
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(f) a = 2
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Chen, Friesecke : Pair Densities in Density Functional Theory. Multiscale Model. Simul. (2015).
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Learning the pair density
Main ideas :
▶ Construct a database of densities and pair densities
▶ Select most representative pair densities using a greedy algorithm
▶ For a new density,

1. fit the density as a barycenter of selected densities
2. approximate the pair density as a barycenter of corresponding pair

densities
Simple example using a W2 Wasserstein barycenter :
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Using mixture distance : fitting the pair density
Computational cost limits the use of Wasserstein barycenters
▶ Pair densities can be fitted using a few gaussian mixtures - sparse

representation for efficiently computing barycenters
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Conclusion and perspectives
Nonlinear reduced model based on mixture Wasserstein barycenters

Key points :
▶ Computation of barycenters independent of the underlying dimension
▶ Problem size depends on number of functions in the mixtures

Limitations :
▶ Needs to consider probability distributions
▶ Multi-marginal problem hard in general, but hope with new algorithms

Friesecke, Penka : The GenCol algorithm for high-dimensional optimal transport : general formulation and application to

barycenters and Wasserstein splines, http ://arxiv.org/abs/2209.09081, (2022).

Extensions :
▶ Consider orthogonal projectors problems using Quantum OT
▶ Accelerate online calculations via learning of the parameter map
▶ 3D simulations, error bounds

Thank you !
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