Modeles réduits non-linéaires
basés sur le transport optimal
pour le calcul de structures électroniques

Geneviéve Dusson
CNRS & Université Franche-Comté

joint work with Maxime Dalery (UFC), Virginie Ehrlacher (Ecole des Ponts), Gero Friesecke
(TUM), Alexei Lozinski (UFC), Etienne Polack (Ecole des Ponts)

LJLL, 26 avril 2023

1/49



Context : Molecular simulations

Wave- Density Tight- ’ Coarse- .
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Electronic structure calculations
» Modelling of the electrons

» A large number of models : Schrédinger, Hartree—Fock, Density
Functional Theory

» Costly but high accuracy
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Context : Electronic structure calculations

Water molecule : B @
» M = 3 nuclei — quantum particles guantum
classical particles described by
(2 hydrogen and 1 oxygen) positions and velocities
» N = 10 electrons — quantum particles described by a
wavefunction

Born—Oppenheimer approximation :

. m
Proton-to-Electron mass ratio —2 ~ 1838.
Mme

Wavefunction Vg(ri, ra, ..., ry) :
» |Wg|? probability density
» Pauli principle : Vg(...,rj,...,r5,...) = =VR(...,r5,...,ri,...)

Focus in this presentation on the ground state problem
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The ground state problem : Schrodinger equation

Born—-Oppenheimer approximation : molecular system described by
» M (classical) nuclei with positions R € R3M

» N electrons described by a wave-function (or orbitals in DFT)

\UR : R3N — C
‘ Energy minimization ‘ inf  (Wg, HRVR),
vel2 (R3Y)
W]l 2=1

where Hg is the Hamiltonian of the problem, parametrized by the positions
of the nuclei, typically

:—7ZA“+Z (ri)+ Z m, r’)_Z‘Rk—f:‘

1<i<j<N

Eigenvalue problem ‘ HrVR = ERVR.
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Aim
A problem parametrized by the nuclei positions.
Goal : approximate

M :={Vgfor RER}, R being the set of configurations

Used for different purposes :
» Ab initio molecular dynamics
» Geometry optimization
» Building databases to construct interatomic potentials

Questions :
» Understand the structure of this manifold
» How to efficiently approximate the elements on this manifold ?
» More precisely, efficiently approximate all solutions (for varying
positions) from the computation of only a few solutions

We will work on a toy problem but keep in mind that we want to deal with

high-dimensional problems.
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Toy problem

One-dimensional, one electron

Energy minimization : 1 M
min 7/ W2 =S 2,W(Ry)?
2 R m=1

VeH(R)
”WHLZ(R):]-
Eigenvalue problem :
1 M
—§ ﬁ%— (- Z Zm(SRm> \UR = ERWR
m=1
[VR||12(r) =1

» Dirac potential
» Similar regularity as in the 3D case with Coulomb
» Analytic solutions

M
o = 3 el
m=1

M
for some positive weights 7R = (7‘(5,) € (R:)™ and (g > 0.

m=1
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Plots of a few solutions
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Aim : efficiently approximate all solutions (for varying positions) from the
computation of only a few solutions
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Outline

Linear reduced-order modelling
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Linear reduced basis method

Problem : Parametrized PDE with parameters R € R's.

Needs to be solved for many parameters R.

Offline part : Select accurate solutions for a few wisely chosen parameters
Ri,Ry,...,RK ER

» Generate a training set of snapshots for parameters R € Ry ain
» Select "good" snapshots with a greedy algorithm
P Select one parameter R; € R
P at each iteration K > 2, select the snapshot that is worse approximated
in the basis of the previously selected snapshots Wg,,..., VR, _,

Online part : compute solutions for many parameters R € R in the redu-
ced space spanned by selected snapshots, i.e. in the basis spanned by the

solutions WR,,..., VR,.

Barrault, Maday, Nguyen, Patera : An empirical interpolation method : application to efficient reduced-basis discretization of
partial differential equations. C. R.(2004)

Hesthaven, Rozza, Stamm : Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer (2016)
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Many successful examples

Used for many industrial problems now
» Continuum mechanics
» Thermal equations
>

» Neutronics

» Non self-adjoint eigenvalue
problem

» Parametrization in each cell
of the nuclear core

Key point : The solutions should be well approximated by linear combi-
nations of a few solutions.
Hesthaven, Rozza, Stamm : Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer (2016)
Taumhas, D., Ehrlacher, Lelidvre, Madiot : Reduced basis method for non-symmetric eigenvalue problems : application to the

multigroup neutron diffusion equations. arXiv :2307.05978.
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An interesting notion : the Kolmogorov n-width

Definition for a Hilbert space H : M := {WVg, ReR}
n(M,H) := inf Vg — Py VRl
en(M, H) Jnfy sup [Wg — Py, VR
dim V,=n
» Characterizes if the reduced basis method has a chance to work

» The faster the decay, the better!
Typical example where it works : elliptic equation

ARVR = f,

with affine representation of AR :
Q
AR = Z 04(R)Ag, for some 6, € R, A, continuous operators
g=1

Exponential decay of the Kolmogorov n-width :

1
en(M,H) < C exp(—cn*/ ).
Ohlberger, Rave : Reduced Basis Methods : Success, Limitations and Future Challenges (2015)

Cohen, DeVore : Approximation of high-dimensional parametric PDEs Acta Numerica (2015)
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Less successful examples : Transport problems

Simple example : one-dimensional transport equation, y € [0, 1],

OV, (t,x) +yoV,(t,x) =0, xeR,teRy
WV, (0,x) =111 g

At t =1, the solutions are W, (t = 1,x) = 1,

1.00
— y=00
— y=0.25
— y=05

0.75 — y=0.75
—— y=10

0.50

0.25

0.00

-2 -1 0 1 2

Kolmogorov n-width for M :={1j,_;,}, y €[0,1]}:
en(M, [2(Q)) > cn~ /2

Ohlberger, Rave : Reduced Basis Methods : Success, Limitations and Future Challenges (2015)

Cohen, DeVore : Approximation of high-dimensional parametric PDEs Acta Numerica (2015)

12/49



What about electronic structure ?
Similar behavior as the transport problem

1.00

025 \
> \¥
0.00} =

-5.0 25 0.0 25 5.0

Kolmogorov n-width for the 1D toy problem L
For the problem with one nucleus, M = {Vg, R € [-R, R]},
there exist positive constant cp, Cz such that

can 2 < en(M, [2(R)) < Can™ 2.

For the problem with two nuclei, M = {V (g, r,),R1,R2 € [-R, R]?},
there exists a positive constant cz such that

3
Cpn 2

2
< ep(M, L(R)).
Dalery, Dusson, Ehrlacher, Lozinski : Nonlinear reduced basis using mixture Wasserstein barycenters : application to an eigenvalue

problem inspired from quantum chemistry, arxiv :2307.15423 1349



Alternative : Finding a good nonlinear transformation

Nonlinear space defined with n parameters

» Neural networks
- Lee and Carlberg. Model reduction of dynamical systems on nonlinear manifolds

using deep convolutional autoencoders

» Nonlinear encoding-decoding map
- Cohen, Farhat, Maday, Somacal : Nonlinear compressive reduced basis approximation
for PDE’s. Comptes Rendus Mécanique. 351, 1-18 (2023).
- Lee and Carlberg. Model reduction of dynamical systems on nonlinear manifolds
using deep convolutional autoencoders
» Optimal transport-based transformations

- Ehrlacher, Lombardi, Mula, Vialard : Nonlinear model reduction on metric spaces.
Application to one-dimensional conservative PDEs in Wasserstein spaces. Esaim

Math. Model (2020).
- lollo, Taddei : Mapping of coherent structures in parameterized flows by learning

optimal transportation with Gaussian models. J. Comput. Phys. 471, 111671 (2022).

Key points :
» How many solutions to approximate accurately the solution for a new
parameter ?

» Computational cost of a new solution
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Replacing the Hilbert space by a metric space

Recall the definition for a Hilbert space H : M := {Wgr, R e R}

en(M,H) = inf Sup [WR — Py, Wrll.
dim V,=n

We need to

» replace the norm by a distance

» find an alternative for the projection

P linear combination replaced by barycenter
Given a metric space M, with distance d, for convex parameters
t = (t1,...,ty), i.e. positive with > ; t; = 1, and elements
\URl,...,\URn eM

bar(t; WR,,..., VR,)) := argmin, oy Z tid(u, Vg,)?.
i=1
Nonlinear Kolmogorov n-width
en(M,M) := inf sup ir:fd(\UR,bar(t; VR,,..-,VR,)))

VR, VR, EM ReR
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Motivation behind using optimal transport

Use of optimal transport : at minima deals with the translations
Barycenter between two Slater functions : a translated Slater function

1.00
0.75
0.50

0.25

0.00

-6 -3 0 3 6
(=)be(+)

Simple one-nucleus problem : Vn > 1,2, (M, (P2(R), W,)) = 0.
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Outline

Optimal transport : a few properties
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Optimal transport in a nutshell

Originally introduced by Monge : moving a pile of sand efficiently to cover a

X

sinkhole /\Jk\

Wasserstein distance : for u, v € P»(Q)? as

W2(u7 V)2 = 7r6|i_|n(.lFJ V) Q2(X - y)2 dﬂ-(X7y)7

M(u, v) : set of probability measures over Q2 with marginals u and v.

OT matrix GO

Delon, Desolneux : A Wasserstein-Type Distance in the Space of Gaussian Mixture Models. SIAM J. Imaging Sci. (2020).
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Wasserstein barycenters

» n probability measures vy, ..., u,
P n positive weights ti, ..., t, summing to 1
Barycenter is a solution to the problem

inf tiWa(u, u;)
uePr(Q2 Z ! !

Alternative formulation : multimarginal optimal transport problem

inf / Z titi(x; — )2 dy(x1, . .-, xn),
Y 5 ij=1

~y€N(u1,..

where M(uy, ..., up) denotes the set of probability measures on Q" having
ui,...,u, as marginals.

Then bar(t; uy,...,up) = Py,  with Pe(x1,...,xn) = Z tix;.

Agueh, Carlier : Barycenters in the Wasserstein Space. SIAM J. Math. Anal. (2011).

Gangbo, Swiech : Optimal maps for the multidimensional Monge—Kantorovich problem. Commun. Pure Appl. Math. (1998)
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A few examples : One-dimensional case

Cumulative distribution function (cdf) of an element u € P»>(R) is
cdf, : x e R+— / d[u],

J =00

Inverse cumulative distribution function (icdf) : generalized inverse of
the cdf
icdf, : s € [0,1] — cdf, ! := inf{x € R, cdf,(x) > s}.

Then, for any (u, v) € P2(R)?, there holds
WQ(U, V) = ||1Cdfu — iCdeHLz([O,I])v

and for any set of barycentric weights t := (t1,..., t,) and
u:=(u1,...,un),

the icdf of the barycenter Barly, (u) satisfies
n
iCdearf/VZ(u) = ; t,’iCdful..
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Hlustration
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Density cdf icdf

10
S

iCdear{/VZ(u) =A iCdful + (1 — )\) iCdfuZ.
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A few examples : Location-scatter transforms
{T#a T:xcRY Ax+ b, Ac Sy, beRd}

All measures generated with translation and dilations of a single measure
Wasserstein distance : Let ap, a1 € A havings means mg, m; and

covariance matrices X g, 21, such that the transport map 12
Tx = Ax + (mg — m1), with A=X, 1/2 (21/22 21/2) 251/27

is such that T#ap = a;. Then
W2(ao, a1) = | mo — ma||? + Tr (o + 51 — 253/ *51 5/ ?)H2)

Wasserstein barycenter : Let ay,...,a, € A having mean m; and
covariance matrices ¥;. For weights t := (t1,...,t,), the barycenter is the
atom bara; = T;#a W|th Tt = Sx + m, where S is the only positive
definite matrix satisfying
n n
S=>"4(SM?5; M2 and m=>" tm.

j=1 j=1

Center is the mean of centers, small equation to solve for the covariance.

Alvarez-Esteban, del Barrio, Cuesta-Albertos, Matran : A fixed-point approach to barycenters in Wasserstein space. (2016). 2249



Hlustration

Barycenter between three Slater distributions
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Kolmogorov n-width for the Wasserstein distance
Solution manifold : M = {Wg,R € [-R, R]M}
Since Wa(u, v) = [[icdf, — icdfy || 2(0,1), we consider
en(M, Wa) := ep(icdf(M), L2(0,1))
Simple one-nucleus problem : Vn > 1,¢,(M, W,) =0

Case of two nuclei in [—R, R]? : There exists a constant Cg > 0 such
that for all n > 1,
en(M, Wy) < C,—?n_5/2.

To compare with the linear Kolmogorov width :

cpn ™% < en(M, 2(R))

Dalery, Dusson, Ehrlacher, Lozinski : Nonlinear reduced basis using mixture Wasserstein barycenters : application to an eigenvalue
problem inspired from quantum chemistry, arxiv :2307.15423
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Wasserstein barycenter between two solutions
Constrained convex optimization problem
Ngrid Ngrid

min willg — il
=(wik)1<j< Ngrid, EM(NosA1) _]z;. kz:l i

1<k<Ngrid p

Wlth |_|(/\o,/\1) == {W = (VVJk)1<_/<Ngrld S RNgndXNgnd V]- <J < Ngnd Z ijk - )\07

<k<
1<k< Ngrid —1

J
V1 < k < Ngrid, ijk:,\é}.

i—1
0.3

Limitations :
» High computational cost

» Smoothing of the
barycenter

» Bad scaling with the
dimension

0.1

0.0

» Multi-marginal problem

(=Jeel(+) 540



A modified distance

A C P(R) : dictionary of atoms (Slater functions, gaussians, etc.)

Definition : for all mixtures pg = ZJ-J:l )\{)a{) € M(A) and 3 =
S K Akak € M(A), we define

J K
2, : 2.4 .k
mWa(po, p11)* 1= min > > wi W5 (ap, ar),
=(wj) 1<j< g, EM(Ao,A1) —
Jj=1 k=1
1<k<K
with n(/\o,/\l) = w = (Vij)lSjSJJSkSK € RiXK,

K J
VI<j<J, Y wi=X, VISKSK, > wi=A\

k=1 j=1

Aim : Exploit the compact form of the solution as a mixture of Slater functions

Delon, Desolneux : A Wasserstein-Type Distance in the Space of Gaussian Mixture Models. SIAM J. Imaging Sci. (2020).
Dusson, Ehrlacher, Nouaime : A Wasserstein-type metric for generic mixture models, including location-scatter and group

invariant measures (2023) 26 /49



lllustration of the modification of the transport plan

OT matrix GO GMMTO

20

40 40
60 60
80 80

» Transport map replaced by affine lines
» Number of components cannot exceed J + K — 1

Delon, Desolneux : A Wasserstein-Type Distance in the Space of Gaussian Mixture Models. SIAM J. Imaging Sci. (2020).
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Mixture barycenter between two solutions

» Probability measures (u1, ..., u,)
» Positive weights t = (t1,...,t,).
Unique solution to the problem

n
inf ti W2 7,'2.
ue'/&(A); mW (u, i)

Interesting features :

» Way better approximation
compared to W,
barycenter

» Computational cost
independent of the

[3 dimension

Formula for the barycenter :

t _ * t k1 k"
Barypy, (U1, ..., un) = Z w, Bary, (ul ,...,uN>,
keK
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A few properties
Valid for a large number of probability distributions

Mathematically :
> needs a geodesic space for the atoms (space with distance + geodesic)

» identifiability
Computationally : barycenters need to be easily computable (best if explicit!)

Examples :
» Elliptic distributions (Slater, gaussians, Wigner semicircle)
» Location-scatter (dilations+translations)
» Group-invariant distributions (invariance put into the distance between

the atom distributions)

=4 P e

(,j ) )} { ® J C‘/ =

p % 7 < i 72 4 \ )

\A}?.;; A\ ,/H (\ /"] = = /\,N)
- ) I

( =4 i ®) ~)

N = (x =4 =7 (/\’/?

() t=0 (b) t=0.25 () t=05 (d) t=0.75 () t=1

Dusson, Ehrlacher, Nouaime : A Wasserstein-type metric for generic mixture models, including location-scatter and group

invariant measures (2023) 29 /49



Back to Kolmogorov n-width
Definition of nonlinear Kolmogorov n-width :
The Kolmogorov n-width of the set M C M is defined by

en(M,M) = migl&ln sup tei{r;(fm)mWZ(uR,Bart(m)).

Theorem : (Dalery, D., Ehrlacher, Lozinski) for a system with two
nuclei with identical charges, for n > 1,

en(M, mWs) = 0.
» Exact representation of all solutions in this case
Dalery, Dusson, Ehrlacher, Lozinski : Nonlinear reduced basis using mixture Wasserstein barycenters : application to an eigenvalue

problem inspired from quantum chemistry (2023)
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Outline

Practical strategy and numerical results for a 1D toy problem
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Practical strategy

Nonlinear version

Offline part : Select accurate solutions for a few wisely chosen parameters
Ri,Ry,...,RK ER

» Generate a training set of snapshots for parameters R € Ry ain
» Select "good" snapshots with a greedy algorithm

P Select two parameters R;, R, € R that are as far as possible
P at each iteration K > 3, select the snapshot that is worse approximated
as a barycenter in the set of the previously selected snapshots

YRy, VR,
Online part : compute solutions for many parameters R € R as a bary-
center of selected snapshots, i.e. in the set of the solutions Wg,,..., Vg,.
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Details on the greedy algorithm

Input : Training set Mj;ain, number of elements to select @
Select m' and m? solutions to argmax(ml m2)e Myrain MWs(mt, m?).
B:={m!, m?}

forg=3,...,Q do

Select
m* € argmax e g, tgzin 1 mWa(m, Bart,.(m', ..., m971))2, (1)
o

where

q—1 £
Qq1=qteRTT Y = >05.

=6

B=BU{m}

end for

Output : Reduced basis B C My,
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Details on the greedy algorithm - 2

K Ki
Mixtures : m = Zﬂkmk and forie{l,...,n}, m'= Z i M
k=1 ki=1
Solve : tnggl)n mWas(m, Barky(m?, ... m9))2,
q

K
. . t 1 2
trrenﬂr:7 WGIEITE‘::W*) kEEK 321 Wi,k Wa(my, Bary, (ma, ..., mga))?,

with
oo\ 1 &)
Wg(mk,Barf/Vz(m,{h ey mZn))z = (rk — Z)\,’I’/(;) + 2 < — Z Il>
i—1 Ck i=1 Cki
= tTAt + bl;r,kt + Ck,
So

1
i in tTAt + bTt +c = in —=bTA b, +c
WGl[I]’g‘:rr}W*) {Telgl + v + WGI[ITE-::W*) 4" wt 6

Non convex optimization problem to solve
34 /49



Online algorithm : energy minimization

Given WR,,...,WR,, solve
ir}f E(bar(t; WR,,...,VR,))

» Nonlinear problem, but in low dimension
» Using quasi-Newton method starting from different initial guesses
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Numerical results : greedy algorithm

Charges : (0.8,1.1).
291 solutions in the training set.
Error decrease with respect to number of selected snapshots

100 _
-@- worst case error
-@- mean error
10—1 |
1072}
_3 N
1075 5 10 15
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Numerical results : greedy algorithm

First eight selected solutions

—— 1-th selected
—— 2-th selected
0.6 [| —— 3-th selected
—— 4-th selected
—— 5-th selected
—— 6-th selected
—— 7-th selected

0.4 8-th selected

02

0.0
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Numerical results : greedy algorithm

Projection example

exact solution

projection with 2 functions
projection with 4 functions
projection with 6 functions

0.4}

38/49



Numerical results : online energy minimization

Energy error

10°

107!

1072

10-3

1074

o
o

max error
mean error

N

10
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Numerical results

Comparison between projection and energy minimization

0.5}

0.4

0.3}

0.2}

0.1t

0.0t

—— exact solution
—— energy minimizer
—— projection with 3 functions
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First extrapolation example

Using a basis with 3 functions

0.5

0.4+

0.3}

0.2}

0.1t

0.0t

—— exact solution, energy = -0.6050000658135313
—— energy minimizer, energy = -0.5812880627684448
—— energy minimizer, energy = -0.5463070022613314

50 -25 0.0

2.5

5.0
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First extrapolation example

Using a basis with 5 functions

0.5

0.4+

0.3}

0.2}

0.1t

0.0t

—— exact solution, energy = -0.6050000658135313
—— energy minimizer, energy = -0.6020935090109966

50 -25
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Outline

An example in 2D : Approximating the pair-density
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Approximating the pair density

Defined as

N
p‘éu(x,y) = <2> /(Rd)Nz (W(x,y, X3, 7XN)|2dX3"'dXN'

» Propose practical approximations of the pair density in order to
efficiently compute

\\s
Vepu] = [ 22559 gy

R2 X —y|
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Two particles systems

-0.50 06
-0.6 o7
-075 s
-08 -
-1.00 -0.9
-1.0 -1.0
-125
-11
-12
04
05 04
04 03
03
03
02 02
02
01
01 01
0.0 0.0 0.0

-5.0 -5.0 5.0 -5.0 5.0

-5.0; 0 -5.0, 0

-5

0

Finite element code for 1D particles developed with Xue Quan and Huajie Chen (in Julia).

=50 -25 00 25 5.

) a=05 (b) a=15 (c) a=25

=50 -25 00 25 5.

00 25 5.
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Approximation using Local Density Approximation

Relative error computed with respect to the Coulomb energy

Ve[ V] = dedy
= B [x —y| '

For LDA : p; such that

1 [ p3(x,y)
Vee = A T -

=50 =25 00 25 50 =50 =25 00 25 50 =50 =25 00 25 50 30 50=25 0.0 25 50

=50 =25 00 25 50 5.0 -25 0.0 2.5 50 =50 =25 00 25

Err =0.29 Err =0.22 Err =0.14 Err = 0.09
(d) a=1. (e) a=15 (fa=2 (8) a=25

50 5.0 =25 0.0 25 50

Chen, Friesecke : Pair Densities in Density Functional Theory. Multiscale Model. Simul. (2015).

=50 -25 00 25 50

=50 -25 00 25

Err = 0.07
(h) a=3

50
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Learning the pair density

Main ideas :
» Construct a database of densities and pair densities
P Select most representative pair densities using a greedy algorithm
» For a new density,
1. fit the density as a barycenter of selected densities
2. approximate the pair density as a barycenter of corresponding pair
densities
Simple example using a W/, Wasserstein barycenter :

5 50 s 50
25 25 . 2 29
0 00 00 0 od
25 29 25 23 29
5050225 00 25 50 50507225 0.0 25 50 505025 00 25 50 5050225 00 25 50 5050225 0.0 25 50
50 5 s 5 50
25 29 25 25 29
0 0 00 0 od
23 29 25 23 29
-50 5050 =25 0.0 25 50 5050 =25 00 25 50 3050 =25 00 25 50 5050 -25 0.0 25 50
Err =1.2.1073 Err =8.1.1073 Err = 6.6.10~3
(i) a=1. (j)a=15 (k) a=2 () a=25 (m)a=3
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Using mixture distance : fitting the pair density

Computational cost limits the use of Wasserstein barycenters

» Pair densities can be fitted using a few gaussian mixtures - sparse
representation for efficiently computing barycenters

5.0

25

25

5.0

5.0

25

25|

5.0l

5.0

25

—25)

5.0

=50 =25 00 25 50

=50 =25 00 25 50

=50 -25 00 25 50

(n) a=1.

“30=50=25 00 25 50

50

29

00

23

50507225 0.0 25 50
Err =1.2.1073

“30=50=25 00 25 50

Err = 4.8.10~2

(0) a=15

=50 =25 00 25 50

=50 =25 00 25 50

Err =8.1.1073

=50 =25 00 25 50

Err = 5.0.10~2

(p) a=2

305025 00 25 50

“50——50 =25 00 25 50

Err = 6.6.1073

305025 00 25 50

Err = 4.4.102

(q) a=25

=50 =25 00 25 50

=50 =25 00 25 50

50 -25 00 25 50



Conclusion and perspectives

Nonlinear reduced model based on mixture Wasserstein barycenters

Key points :
» Computation of barycenters independent of the underlying dimension
» Problem size depends on number of functions in the mixtures
Limitations :
» Needs to consider probability distributions
» Multi-marginal problem hard in general, but hope with new algorithms
Friesecke, Penka : The GenCol algorithm for high-dimensional optimal transport : general formulation and application to
barycenters and Wasserstein splines, http ://arxiv.org/abs/2209.09081, (2022).
Extensions :
» Consider orthogonal projectors problems using Quantum OT
» Accelerate online calculations via learning of the parameter map
» 3D simulations, error bounds

Thank you'!
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