Laboratmre
'\//\,\ UNIVERSITE
MONT BLANC
de Mathemathues

Perfectly matched layers methods for mixed hyperbolic-dispersive

equations

Maria Kazakova
Laboratoire de Mathématiques, Université Savoie Mont Blanc
collaboration with Christophe Besse, Sergey Gavrilyuk, Pascal Noble

15 Mars 2024

Séminaire du laboratoire
LJLL, Paris



Water Waves

Water waves models

Free-surface incompressible Euler
t>0,7 € (R3b(T) < z<nt7)

1
ut+u~Vu:—;Vp+g
V'U:O, g:(ov()?*g)

+ kinematic and dynamic boundary conditions

_ _ n(tx)
. - "\~/
9
b(x)
y x

Assumption: constant horizontal velocity over vertical
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Water Waves

Water waves models

Offshore Nearshore

Breaker

p = H?/L? (shallowness), Zone

Surf Swash
Zone Zone
Bore

A

e = a/H (nonlinearity)
isspersive < Shalow water. >
oh
o + V- () =0, (Mass Eq)
h h?
%—:+V~ (hv@v—i—gzl'—i—pNH) =0, (Momentum Eq).
model | NSWE O(p) O(ep)  SGN O(p?)
Pressure pne =0 o PNH = h2h/3
€ no assump _§ no assump.
n
Type hyperbolic 2 dispersive
[:8 Lannes, 2013
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Water Waves

Water waves models
Hyperbolic vs Dispersif

Saint-Venant (NSWE) Serre-Green-Naghdi (SGN)
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Water Waves

Water waves models

Hyperbolic dispersive models

The most expensive step for non-hydrostatic models: elliptic problem

Recent advance on first-order hyperbolic equations with dispersive
properties

Favrie-Gavrilyuk, 2017 (SGN), Gavrilyuk et al. 2022 (BBM)
I Favrie-Gavrilyuk model is rigorously justified in B3 Duchéne,2019

Escalante et al. (artificial compressibility)2019

Richard (compressible and quasi-incompressible)2021
Justificaton est en developpement (K. Msheik, V. Duchéne, A. Duran)
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Boundaries

Boundary conditions

Problems are initially posed on infinite domain x € R

“A

<Y
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Boundaries

Boundary conditions

Problems are initially posed on infinite domain ‘X eR ‘% ‘ x €N ‘
Restriction of the observation area

“A
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Boundaries

Boundary conditions

Hyperbolic system - Riemann-invariant form (if exist)
Dispersive system - 7
“A
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Boundaries

Boundary conditions

Dispersive system - linear case: non-reflecting TBC, DTBC, PML
Nonlinear case (Coastal engineering, SGN) relaxation zones, sponge layers

“A

Maria Kazakova Perfectly matched layers methods for mixed hyperbolic-dispersive equations



Boundaries

Boundary condition

First strategy: Discrete Transparent BC for dispersive models

Derivation of transparent (continuous and discrete) conditions

[ Continuous TBCs | Discrete TBCs
Laplace transform Z—transform
£(w) w(z) = Z{(w),}(z) = ngownz_”, |z2| >R >0
Solve ODE Solve difference equation
Separation of A Separation of roots

Select finite energy solution (decreasing)

Identify Dirichlet and Neumann data at x;, x,

Inverse transform
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ater Waves Boundaries PML KdV Hyperbolic KdV abcd Conclusions

Boundary condition

First strategy: Discrete Transparent BC for dispersive models

Dispersive systems, linear case:
Shrédinger (Ehrhardt, 2001)
KdV, BBM (Besse et al., 2016)
SGN (MK&Noble, 2020)

== MK, P.Noble (2020)

1 t

olts) = £[1+ 02— [ Ta(s/VADh(E ~ 5.1)ds
VI Jo

hgﬁﬂ FO,J+1(U1L,J7h6L,J+17h1J E 50 J+1 h?Jk'

PMLs are much simpler, is the PML method for dispersive waves useful?
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PML

Boundary condition
Second strategy: Cartesian PML

i

Cartesian classical Perfectly Matched Layers (PML) E28 Bérenger (1994)
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PML

Boundary condition
Second strategy: Cartesian PML

i

Cartesian classical Perfectly Matched Layers (PML) E28 Bérenger (1994)
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PML

Boundary condition
Second strategy: Cartesian PML

Cartesian classical Perfectly Matched Layers (PML) E28 Bérenger (1994)

Jnx,
Time domain — frequency domain
PML change of variables /
x € R, i:x(l—f—a_(x)) / i Rexq
w /

in the layer o(z) linear functions, power functions or unbounded functions
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PML

Boundary condition
Second strategy: Cartesian PML

Cartesian classical Perfectly Matched Layers (PML) E28 Bérenger (1994)

Jnx,
Time domain — frequency domain
PML change of variables /
x € R, i:x(l—f—a_(x)) / i Rexq
w /

in the layer o(z) linear functions, power functions or unbounded functions

00 (1+%2) 7,
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PML

Well-posedness and stability

Following E2 Bécache et al., 2003(o(z) = const) we can analyse stability
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PML

Well-posedness and stability

Following E2 Bécache et al., 2003(o(z) = const) we can analyse stability
The initial equation admits plane wave solution of the form

w=Ue®k*x)  ,eCkeR
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PML

Well-posedness and stability

Following E2 Bécache et al., 2003(o(z) = const) we can analyse stability
The initial equation admits plane wave solution of the form

w=Ue®k*x)  ,eCkeR

if and only if w and k are related via dispersion relation

F(w, k) = 0, with solutions w; (k) which are called modes.
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PML

Well-posedness and stability

Following E2 Bécache et al., 2003(o(z) = const) we can analyse stability
The initial equation admits plane wave solution of the form

w=Ue®k*x)  ,eCkeR

if and only if w and k are related via dispersion relation

F(w, k) = 0, with solutions w; (k) which are called modes.
For the PML equation we define perturbed dispersion relation

Spmi(w, k,0) =0, with modes @;(k, o)

§(w, k) = Fpmi(w, k,0)  with k—>k/(1+%)
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PML

Well-posedness and stability

Following E2 Bécache et al., 2003(o(z) = const) we can analyse stability
The initial equation admits plane wave solution of the form

w=Ue®k*x)  ,eCkeR

if and only if w and k are related via dispersion relation

F(w, k) = 0, with solutions w; (k) which are called modes.
For the PML equation we define perturbed dispersion relation

Spmi(w, k,0) =0, with modes @;(k, o)

§(w, k) = Fpmi(w, k,0)  with k—>k/(1+%)

We search for solutions with an exponential behaviour and the PML
equation is stable if and only if 3(@;) < 0 for all ¢ > 0.
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PML

Stability condition and inverse waves

We introduce notions of the phase velocity v,, and the group velocity v,
(general case k € R3):
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PML

Stability condition and inverse waves

We introduce notions of the phase velocity v,, and the group velocity v,
(general case k € R3):

- Wj(k) k -
(k) = P valk) = Vi k)

Vw;(k) solution of §(w,k) = 0.
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PML

Stability condition and inverse waves

We introduce notions of the phase velocity v,, and the group velocity v,
(general case k € R3):

- wj(k) k -
vp(k) = K] mv vy (k) = Viw;(k),

Vw;(k) solution of §(w,k) = 0.

Necessary stability conditions Bécache(2003)

If Vk € R3,  (vp(k) - €j)(vy(k)-e;) >0,
the problem with classical Cartesian PML applied in e; direction is stable.

Maria Kazakova Perfectly matched layers methods for mixed hyperbolic-dispersive equations



PML

Stability condition and inverse waves

We introduce notions of the phase velocity v,, and the group velocity v,
(general case k € R3):

- wj(k) k -
vp(k) = K] mv vy (k) = Viw;(k),

Vw;(k) solution of §(w,k) = 0.

Necessary stability conditions Bécache(2003)

If Vk € R3,  (vp(k) - €j)(vy(k)-e;) >0,
the problem with classical Cartesian PML applied in e; direction is stable.

k)’ V, YAV
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PML

Stability condition and inverse waves

We introduce notions of the phase velocity v,, and the group velocity v,
(general case k € R3):

- (.dj(k) k -
vp(k) = K] mv vy (k) = Viw;(k),

Vw;(k) solution of §(w,k) = 0.

Necessary stability conditions Bécache(2003)

If Vk € R3,  (vp(k) - €j)(vy(k)-e;) >0,
the problem with classical Cartesian PML applied in e; direction is stable.

If there are backward propagating waves in the PML direction
the PML system is unstable.
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PML

Stability condition and inverse waves

We introduce notions of the phase velocity v,, and the group velocity v,
(general case k € R3):

_ wji(k) k _
vy(k) = KK’ vy(k) = Viw; (k),

Vw;(k) solution of §(w,k) =

Necessary stability conditions Bécache(2003)

If Vk € R3,  (vp(k) - €j)(vy(k)-e;) >0,
the problem with classical Cartesian PML applied in e; direction is stable.

Necessary stability conditions in the 1D case v, (k)v,(k) > 0
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Cartesian PML: Typical exemple KdV

KdV equation

Ut +UUy + EUzze =0, Vr eR, Vt>O0.
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Cartesian PML: Typical exemple KdV

linear KdV equation

U+ U Uy + EUgge =0 Ve eR, VE>0 (T'D)
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Cartesian PML: Typical exemple KdV

In Frequency domain (after Fourier transform)

—iwt + Uy + ellgee =0 VYV €R
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Cartesian PML: Typical exemple KdV

Artificial truncation by PML: z € Q, Vt >0

—iw(1 + Zyu+ Udyu + €0, ((1 + 2y, <(1 + E)‘lf’M)» =0
w w w
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Cartesian PML: Typical exemple KdV

—iw+ LY+ Udyu + €8, ((1 + )15, ((1 + Z—")*&;u))) —0
w w w

+ auxiliary variables u; and us:

1o 1o
Oru= (14 —)uy, Jyus = (14+ —)ug,
w w

Back to time domain

Owu+ ou+ Udyu + e0zus = 0,
(TD)pmr
O (u1 — Opu) +oug =0, O (ug — Oyur) + oug = 0.

By applying the initial value theorem, one finds

U1|t:0= 8xu|t:0, U2|t:0= 3mu|t:0~
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The linear KdV equation

U + Uty + €Uprr =0, VY eR, Vi>DO0.

Proposition

o If U =0, equations (T'D)pyyy, are always unstable.
o If eU < 0, equations (T'D)pys . are stable if and only if k2 > 16%'.

o If U > 0, equations (T'D)py;y, are stable if and only if k* < %

Proof. The dispersion relation of (T'D)parr.: Following Bécache2003
dispersion relation for KdV with k — k/(1 + 2)
(wHio)? = kU(w +io)? — ek3w?.

If k=0, w = —io and the condition &(w) < 0 is satisfied.
Ifk#£0 w?(w —wo(k)) =0, wo(k) = kU — e k3.
Two roots are bifurcating from 0 and one root bifurcates from w = wy (k).
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The linear KdV equation

From straigforward computations, a necessary condition is

(U — ek?®)(U = 3¢k®) > 0
Here vy (k) = U — 3ek? and v,(k) = U — ek?.
v (R)up(k) > 0.
So we recover the classical condition in the PML framework.

We have proved that S(w) < 0 for o > 0 small enough, under conditions
on k claimed in the proposition.

We show then that for any ¢ > 0, there are no real solutions, which
means that $(w) # 0.

We conclude that these conditions are sufficient to guarantee stability,
using continuity of the roots of a complex polynomial with respect to its
coefficients. This end the proof.
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The linear KdV equation

Discretization

We consider a centered space FD with a Crank Nicolson in time scheme:
x; = jox, j € Z,t, =ndt, n €N

n n n
— " oY — vl
1 2,j+1 2,j—1
AR - —,

ot 20x 20x

2 n Vi T U no Wi Uiy n
5t ((Ul’j T aee ) T\ M T Ty ) o =0

2 B P S O et U WY (O S B P Lol =0
5t .9 20 % 20z 23T

u i
H n ¥} ¥} — n_ _ ,n
with vp - = 5 for k=0,1,2 and ug ; = uj.

—
u.]

vt
+ovl +U-LE
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The linear KdV equation

Numerical simulation

Case: eU >0

Initial condition ug(z) = exp (=40 (z + 3)?),u1 = uf), and uy = uf.
The domain is [—8, 8] x [0,200], dz = 0.05, 0t = Jz.

o(z) = 2 (max(O, %5)4 + max(%”, 0)4)

e = Udz?/4 (stable case) e = Udz?/2 (unstable case)

200

180

- § NiE WL

e e \ ‘l |'\““‘|“ l‘!‘|ll“\‘\ :‘:n -
[ Wl {. ‘“"lh m“““““““ ]

: i N ¥
| I."t‘."'»'.""“\\\‘.'.\\\”“‘\\ W
i RN
16 \

e

Represention of the function v (¢, z) = log(1 + 1000|u(t, z)|).
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The linear KdV equation

Case: eU <0
Initial condition ug(z) = exp(—(z — 3)?) sin(2x).

e = 16|U|dz? e = 32|U|6z2.

Represention of the function v(t,x) = log(1 + 1000|u(t, x)|)

Maria Kazakova Perfectly matched layers methods for mixed hyperbolic-dispersive equations



Water Waves Boundaries PML KdV Hyperbolic Kd\

The linear KdV equation

Case: eU <0
Initial condition ug(z) = exp(—(z — 3)?) sin(2x).
e = 16|U|0z> e = 32|U|dz2.

We recover in this analysis the classical stability condition
Since the phase and group velocities do not always have the same sign
the PML for KdV is not always stable.
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Hyperbolic KdV

A hyperbolic KdV system

We now consider a relaxation of the original Korteweg-de Vries equation.

_ WU, —
Ut+uum+51/}:v:07 ptipzT’l/):O’ wt+ pr:(L

€ — the dispersion parameter, 7 > 0 — the relaxation parameter.

Also: Euler-Lagrange equations for a given Lagrangian <hal>

Formally, 7 — 0, the function u turns out to be an approximate solution
of the KdV equation. Indeed, p,® expand as

P = Uz + TUtzy + 0(7_2), ’(/) =Ugy + T (utx;v:v - utw) + 0(7-2)-
By inserting this expansion we have
(U = TUgy + TUzgaz); + UUy + EUzzy = o(7?).

which is the Benjamin-Bona-Mahoney (BBM) regularization of the KdV.

Maria Kazakova Perfectly matched layers methods for mixed hyperbolic-dispersive equations


https://hal.archives-ouvertes.fr/hal-03762145/

Hyperbolic KdV

A hyperbolic KdV system

We now consider a relaxation of the original Korteweg-de Vries equation.

_ WU, —
ut+uum+5¢z:07 ptipzT’l/):O’ wt+ pr:(L

€ — the dispersion parameter, 7 > 0 — the relaxation parameter.
Also: Euler-Lagrange equations for a given Lagrangian <hal>
il

/ . il W M
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Hyperbolic KdV

A hyperbolic KdV system

A classical PML are easily derived for first order systems:

ut + ou+ Uwug +epy =0, t+0'p_p7_ + ¢—0

xz — D

U o
i + o+ —;4207 Gt = D, ¢t=¢-

An “alternative” approach is to neglect (forget!) the source terms:

PML I

:|

Utou+U uy+ep, =0, pt+ap—px T_ v =0, Ytop+-—= L 0.
PML Il satisfies the energy estimate:

u2 P2 i u2 X ) W e ep?

— = R — —+—gYu——] =0
(27+52 +52>t+0(7_+61/) +ep )+<U27+Twu 27)30

The system is strongly stable, however recall that it is not an exact PML
system!
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Hyperbolic KdV

A hyperbolic KdV system

We carry out a Fourier transform in space on PML I:

Vi +AQV =0,
We study the eigenvalues of A, the characteristic equation associated to
A is given by
(0 — X +iU) (rX2(0 — X)(7(0 — X) — i) + (0 — X)?) +
e&2X? (1(0 — X) —i€) = 0.
& — oo (high frequency limit):

the roots are nothing but the characteristic speeds of the original system
+ an additional root x = 0 (double).

Conclusion: if eU > 0, the system is not stable.
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undaries PML KdV Hyperbolic KdV abcd Conclusions

A hyperbolic KdV system
Initial wave: ug(x) = exp(—40(x + 2)?)

PML 1l PML |
v(t,x) = log(1 + 1000|u(t, )|) in the (z,t)
in the case eU > 0, U = 1, £ = 502>
(unstable for the original KdV and for PML 1)

Message I

PML | is not always stable, and although not an exact PML Il absorb
outgoing waves without numerical instabilities, however recall that it is
not an exact PML system!
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abed

Application to abcd-model

We consider the hyperbolic-dispersive systems which models water wave
propagation BBM-Boussinesq type model (also known as abcd-model):

(1 —b02)9n + Opu + ad3u = 0,
V(ta I) € [O’T] X [mbxr]'

(1 — d2)opu + 0z + cd2n = 0,
Bona, Chen and Saut (2002)

By-product: KdV dynamic is included in this model (properly chosed
initial data creates approximate one-way propagating waves)

Maria Kazakova Perfectly matched layers methods for mixed hyperbolic-dispersive equations



abed

Application to abcd-model

We consider the hyperbolic-dispersive systems which models water wave
propagation BBM-Boussinesq type model (also known as abcd-model):

(1= 00%)0n + Opu + ad3u = 0,
(1 — dO?)0su + Oyn + cO3n =
Bona, Chen and Saut (2002)

V(t,z) € [0,T] x [ze, xr].

O¢(n — bnz) + o(n — bz) + O (u + auz) =0,

Or(u — dug) + o(u — dug) + 0, (n + ¢en2) =0,

Oe(m — Ozn) +om =0, Ox(n2 — um) +om2 =0,
Ot(uy — Ozu) + oup =0,  O(ug — Ozuy) + oug = 0.

The initial conditions are given by

Nilt=0= OzNi—1lt=0, Wilt=0= OpUi—1lt=0, & =1,2.
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Application to abcd-model

Necessary condition

Denote v, and v, respectively the group velocity and phase velocity. A
necessary condition of stability is written again vg(k)v,(k) > 0 for all
keR

Proposition

The PML equations associated to the classical Boussinesq equation
(a=b=c=0,d > 0) and the shallow water equations with surface
tension (a =b=d =0,c < 0) are stable.

Proposition

The PML system is stable under the assumption a = d =0 and

b > 0,c < 0. The PML system is also stable in the case b = ¢ = 0 and
d>0,a<0.

Maria Kazakova Perfectly matched layers methods for mixed hyperbolic-dispersive equations



abed

Application to abcd-model

The classical linearized Boussinesq approximation:
a=b=c=0and d> 0 (we have fixed d = 1/3)

Discretization: centered FD in space with a Crank Nicolson in time

hﬂ_nﬂ A 1 _Uﬂ_l
) J J h’n, J+ J =0
T AT :
2 n n n n n n h’n-i-l B hn—l
5 (0] —dvy ;) — (uf —duy ;) + o (V] + v ;) + # =0,
2 n U?+1 7’05}*1 n U?Jrl 7“?*1 n
2 (o - 2222 ) - (aty - 252 ) ) ot =0,
2 (0 Ve U1 L o Bl W no_
2 (o - o) (g, - B2 ) ) g o
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Application to abcd-model

Bidirectionnel wave propagation
n(t =0,2) = exp(—x?), u(t=0,2)=0.
In order to chose a right propagating wave we need to set:
u(t =0,2) = (1 —dd?)~ Y2yt =0, ).

The FFT and inverse FFT allow to calculate the fractional derivative.

fro0 surface
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Application to abcd-model

Bidirectionnel wave propagation
n(t=0,z) = exp(—2?), wu(t=0,z)=0.
In order to chose a right propagating wave we need to set:
u(t =0,z) = (1 —dd>)~ Y2yt =0, ).

The FFT and inverse FFT allow to calculate the fractional derivative.

Message Il

The PML is always stable when dispersive properties of the model are
better suited for this technique, i.e. the condition vy(k)v,(k) > 0 is
always satisfied.
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Wa Boundaries PML KdV perb: <dV abcd Conclusions

Conclusions

Results on PML stability for linearised water wave problem:

— PML is not suitable for KdV, partially for the hyperbolic version:
hyperbolization does not help.

— PML works for large class of BBM-Boussinesq equations

— DTBC are better when vy (k)v, (k) < 0 (which is a common situation
in dispersive problems).

I. Dispersive properties of the model are important for stability of PML

Il. If the dispersive properties of the model do not fits to the necessary
stability condition

Chose another model
Construct a non-classical PML
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