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Introduction to
micro-magnetism
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Definition

The micro-magnetism aims at studying the magnetic phenomenon at
micro or nano-metric scale where arises specific behaviors due to
quantum effects (electron-exchange interaction).

Magnetic tape 1/4-inch

for audio recording

(1950’)

First chip card

manufactured by

Giesecke & Devrient in

1979.

Solid-state drive (SSD)

Serial ATA storage unit.
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Klechkowski-Hund rules for the filling of electronic orbits:

The Klechkowski rule gives the order of

filling the electronic layers.

The Hund rule states the maximization

of the spin inside a layer.

Definition

The exchange interaction is a quantum mechanical effect that only occurs
when two electrons partially exchange position.

Symmetric or anti-symmetric interaction.

Creates ferro or anti-ferro magnetism.
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The Brown model consists in the minimization of

E(M) := A

∫
Ω

|∇M|2 + K

∫
Ω

G(M, x)−
∫
Ω

Ha ·M dx − 1

2

∫
Ω

Hd(M) ·M dx ,

under the constraint ∀x ∈ Ω, M(x) ∈ S2. We have:

A the interaction constant (A > 0 for ferro-magnetism).

K the anisotropy constant and G : S2 × Ω → R the anisotropy profile.

Ha the external magnetic field.

Hd the self-induced magnetic field (demagnetizing field).

The demagnetizing field is solution to
div

(
Hd +M) = 0,

curl Hd = 0,
Hd(x) −→ 0. as |x | → +∞.
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Some pictures from F. Alouges book:

6/59 Ludovic Godard-Cadillac Modeling and analysis of micro-magnetism of nano-particles and nano-wires



The Landau Lifschitz Gilbert equation:

dM

dt
= −M ∧ Heff − αM ∧ (M ∧ Heff ),

with Heff the effective magnetic field and α ≪ 1 the damping
coefficient.The effective field is computed using the Brown Energy. It
involves :

The external magnetic field Ha.

The demagnetizing self-induced field Hd .

The exchange interaction −∆M.

The anisotropy potential G ′(M, x).

The first term in the equation (Landau-Lifschitz term) is derived using
the Schrödinger equation and the Maxwell equations.

The second term (Gilbert term) is phenomenological. Theoretical works
from physicists suggests a relativistic effect (Dirac equations).
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Simulations of the LLG on a single spin in a magnetic field (low or strong
damping, with or without anisotropy):
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About Anisotropy :

Theorem (Alouges, Beauchard, 2009)

Study the Brown energy without anisotropy on a small domain εΩ.

(i) After a rescale, the energy Γ-converges towards a situation where the
magnetisation is constant.

(ii) Without rescale, we obtain an ODE that keep trace of the geometry
of the domain.

When the domain is small : only one Weiss domain remains.
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Presentation of the
nano-particles model

Dynamique d’aimantation ultra-rapide de nano-particules magnétique,
PhD thesis by Guillaume Klughertz (IPCMS, Strasbourg)
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Model :

Nanometric spherical magnetic particles

Magnetic spin immobile in the particle frame

Particles immersed in a very viscous fluid (low Reynolds)

Fluid assumed immobile in comparison to the particles movement

Particles cannot intersect each-other (collisions)

Optional thermal effects (white noise effects)
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The equations of the dynamics

Magnetic field generated by a magnetic dipole m:

B(r) =
µ0

4π

(
3(m · r) r

|r |5
− m

|r |3

)
.

Force exerted by dipole m1 on m2 separated by vector r :

Fdip(r) = ∇(m2·B1) =
3µ0

4π|r |5

(
(m1·r)m2 +(m2·r)m1 +(m1·m2)r −

5(m1 · r)(m2 · r)r
|r |2

)
.

Repulsive force that models collisions of particles:

Frep(r) := C

(
R

|r |

)α
r

|r |
.

Viscosity coefficients:

ζtr = 6πηR, and ζr = 8πηR3.
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Magnetic field generated by a Magnetic dipole (source Wikipedia).
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The equations of the dynamics

Dynamics in translation, the second Newton law gives:

m
dvi
dt

= Fi − ζtrvi ,

where Fi the sum of all conservative forces acting on dipole mi .

Dynamics in rotation:

I
dωi

dt
= Ti − ζrωi ,

where I = mR2/10 the moment of inertia of the sphere and
Ti = mi × Bi the magnetic couple.

Dynamics of the spins, change of frame equation gives:

d

dt
mi |R =

d

dt
mi |R′ + ωi ×mi .

Time-scale separation hypothesis : d
dtmi |R′ = 0.
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Numerical simulations
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Dynamics of the 2 particles system :
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Dynamics of the 12 particles system (Aligned structure) :
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Dynamics of the 12 particles system (Ring structure) :
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Dynamics of the 343 particles system (Complex structure) :
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Dynamics of the 343 particles system with magnetic field :
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Dynamics of the 324 particles system with planar constraint (z = 0): :
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Dynamics of the 324 particles system with planar constraint and
magnetic field :
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Simple structures when N is small:
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Complex structures when N is large:

Evolution of 216 nano-particles at times 0, 1, 10, 30, 60, and 100 µ-seconds.
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To study these structures : statistics (500 init. with N = 2, 3, ...)

Probability to have one connected component that is an aligned structure.
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Probability to have one connected component that is a ring structure.
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Probability to have one connected component that is neither aligned nor ring.
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Probability to have more than one connected component.
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Stability of structures in
presence of temperature
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We add temperature and compute the mean potential and kinetic energy
when the thermodynamical regime is reached:

Mean kinetic and potential energy with respect to the temperature
(Blue : kinetic, orange : potential)
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Zoom around the temperature 150 (first phase transition)
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Evolution in time of the system at temperature T = 140K

Initial datum: 9 particles with aligned structure

Left: Kinetic and potential Energy

Middle: Indicators of structure (aligned or ring)

Right: Number of isolated particles
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Evolution of the system at temperature T = 150K

Initial datum: 9 particles with aligned structure

Left: Kinetic and potential Energy

Middle: Indicators of structure (aligned or ring)

Right: Number of isolated particles
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Evolution of the system at temperature T = 300K

Initial datum: 9 particles with aligned structure

Left: Kinetic and potential Energy

Middle: Indicators of structure (aligned or ring)

Right: Number of isolated particles
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Evolution of the system at temperature T = 410K

Initial datum: 9 particles with aligned structure

Left: Kinetic and potential Energy

Middle: Indicators of structure (aligned or ring)

Right: Number of isolated particles
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Evolution of the system at temperature T = 440K

Initial datum: 9 particles with aligned structure

Left: Kinetic and potential Energy

Middle: Indicators of structure (aligned or ring)

Right: Number of isolated particles
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Evolution of the system at temperature T = 470K

Initial datum: 9 particles with aligned structure

Left: Kinetic and potential Energy

Middle: Indicators of structure (aligned or ring)

Right: Number of isolated particles
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The described phenomenon is the following:

An “aligned phase” until T = 147K .

Brutal switch to a “ring phase” until T = 410K .

Alternate switch between “aligned” and “ring”.

Evaporation phenomenon.

“Gaz phase” from T = 510K .

AND : we can see a modification of the structure of nano-particles in the
variations of the potential energy.
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What about theory ?
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Theorem (R. Côte, C. Courtès, G. Ferrière, L.G-C., Y. Privat)

(i) The system of N magnetic nano-particles admits a stationary state.

(ii) A unique stationary state where positions and spins are aligned.

(iii) Study of the properties of this stationnary states (details after).

If the positions and spins are initially aligned, the dynamic becomes 1D. It is
the gradient flow for x1, . . . , xN ∈ R of:

J0(X ) :=
1

2

N∑
i=1

N∑
j=1

L
(
|xi − xj |

)
, with L(s) :=

A

|s|α − B

|s|β .

Invariance by permutation: we can asssume
xk+1 > xk .

Invariance by translation: we work with
hk := xk+1 − xk > 0:

J (H) :=
N∑
i=1

i−1∑
j=1

L
( i−1∑

ℓ=j

hℓ
)
.
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Lemma

The function L(s) :=
A

|s|α
−

B

|s|β
is decreasing, then increasing towards 0 as infinity

and it admits as global minimizer:

s =

(
αA

βB

) 1
α−β

.

Corollary (upper bound on the distances)

The minimizers of J (H) :=
N∑
i=1

i−1∑
j=1

L
( i−1∑

ℓ=j

hℓ

)
are such that hℓ < s for all ℓ.

Proof. Compute the sign of the derivative of J with respect to hℓ.

Lemma (lower bound on the distances)

The minimizers of J are such that hℓ > c for all ℓ, where

c :=

(
αA

βB ζ(β)

) 1
α−β

,

where ζ is the Riemann zeta function,

This gives existence of a minimizer by compactness arguments.
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Proof.
Let X ∈ RN a minimizer of J0 and i0 be such that |xi0 − xi0+1| = minj |xj − xj+1|.
We now define X̃ by

x̃i = xi , if i ≤ i0, and x̃i = xi + δ, otherwise,

where δ > 0. Since X is a minimizer, then

J0(X )− J0(X̃ ) =

i0∑
i=1

N∑
j=i0+1

(
L
(
|xi − xj |

)
− L

(
|x̃i − x̃j |

))
≤ 0.

Dividing by δ and letting δ → 0 (isolate the case j = i0 + 1):

i0−1∑
i=1

L′
(
|xi − xi0 |

)
+

i0∑
i=1

N∑
j=i0+2

L′
(
|xi − xj |

)
≥ −L′

(
|xi0 − xi0+1|

)
.

With the explicit formula for L′ (removing terms in α+ 1 in the left-hand side):

i0−1∑
i=1

βB

|xi − xi0+1|β+1
+

i0∑
i=1

N∑
j=i0+2

βB

|xi − xj |β+1
≥

αA

|xi0 − xi0+1|α+1
−

βB

|xi0 − xi0+1|β+1
.

If we denote the smallest distance δ0 := |xi0 − xi0+1|:

βB

δβ+1
0

(i0−1∑
i=1

1

|i − (i0 + 1)|β+1
+

i0∑
i=1

N∑
j=i0+2

1

|i − j |β+1

)
≥

αA

δα+1
0

−
βB

δβ+1
0

.
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If we denote the smallest distance δ0 := |xi0 − xi0+1|:

βB

δβ+1
0

(i0−1∑
i=1

1

|i − (i0 + 1)|β+1
+

i0∑
i=1

N∑
j=i0+2

1

|i − j |β+1

)
≥

αA

δα+1
0

−
βB

δβ+1
0

.

Standard manipulations on the double sums:

i0∑
i=1

N∑
j=i0+2

1

|i − j |β+1
=

i0∑
i=1

N−i∑
k=i0+2−i

1

kβ+1
=

N−1∑
k=2

min(i0,N−k)∑
i=max(1,i0+2−k)

1

kβ+1

Moreover, we can easily prove that

min(i0,N − k)−max(1, i0 + 2− k) + 1 ≤ k − 1.

Thus,

i0−1∑
i=1

1

|i − i0 + 1|β+1
+

i0∑
i=1

N∑
j=i0+2

1

|i − j |β+1
≤

i0∑
k=2

1

kβ+1
+

N∑
k=2

k − 1

kβ+1
≤

+∞∑
k=2

1

kβ

Plugging this back into the main estimate:

βB

δβ+1
0

(ζ(β)− 1) ≥
αA

δα+1
0

−
βB

δβ+1
0

, =⇒ δ0 ≥
(

αA

βBζ(β)

) 1
α−β

.
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In the asymptotic α → +∞ we recover a hard sphere model: s, c −→ 1.

On the contrary : what is the asymptotic N → +∞? with fixed parameters A,B, α, β ?

Lemma (Equation satisfied by the minimizer)

The equation solved by H∗ is, for all k = 1, . . . ,N,
k∑

i=1

N∑
j=k+1

L′
( j−1∑

ℓ=i

h∗ℓ

)
= 0.

Difficulty: the limit distance is different in the center or at the extremities.

In the center, we expect the distances to converge towards some h > 0. Formally:

0∑
i=−∞

∞∑
j=1

L′
(
(j − i)h

)
= 0. This give: h :=

(
αA ζ(α)

βB ζ(β)

) 1
α−β

.

On the opposite, at the extremities:

∞∑
j=1

L′
(
j ĥ
)
= 0. This give: ĥ :=

(
αA ζ(α+ 1)

βB ζ(β + 1)

) 1
α−β

.

Lemma

For all k = 1, . . . ,N, we have: h +
C

Nβ−1
≤ h∗k ≤ ĥ +

C

Nβ
.

→ remark that c < h < ĥ < s.
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Proposition (Property of the Hessian matrix [going toward uniqueness !])

Let H ∈ [c, s]N−1. Assume α > β > 1 and α “large enough”. The Hessian HessJ (H) of J at H
satisfies:

The diagonal terms are positive :

∂
2
hµ,hµ

J (H) ≥
βB

sβ+2
(α − β) −

βB(β + 1)

cβ+2
(ζ(β + 1) − 1) =: Λd > 0

The non-diagonal terms are non positive and decrease away of the diagonal:

0 ≥ ∂
2
hµ,hν

J (H) ≥ −C
βB(β + 1)

cβ+2
|µ − ν|−β =: −

Λnd

|µ − ν|β
.

The Hessian is a uniformly diagonally dominant matrix : for all µ,

∑
ν ̸=µ

|∂2
hµ,hν

J (H)| = −
∑
ν ̸=µ

∂
2
hµ,hν

J (H) ≤
βB(β + 1)

cβ+2
(ζ(β) − 1),

which leads in particular to

|∂2
hµ,hµ

J (H)|−
∑
ν ̸=µ

|∂2
hµ,hν

J (H)| ≥
βB

sβ+2
(α−β)−

βB(β + 1)

cβ+2

(
ζ(β+1)+ζ(β)

)
=: Λ1 > 0.
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Lemma (Uniqueness result !)

J is strictly convex in [c, s]N−1. Furthermore, J admits a unique critical point which
is its minimizer on ]c, s[N−1.

Proof.

From previous lemma and the Gershgorin circle theorem, it is standard to show
that the lowest eigenvalue of Hess cJ(H) is larger than Λ1 > 0 (for every H in
the set [c, s]N−1).

Thus J is strictly convex on [c, s]N−1.

Then it admits at most one critical point.

We already know that there are no critical points for J outside ]c, s[N−1.

This proves uniqueness.

→ This conclude the proof of the theorem !
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Nevertheless: Can we use the information on the Hessian matrix to improve the study of
the asymptotic N → +∞ ??? YES !

Theorem (Convergence theorem)

Let N ∈ N large enough and 1 ≤ k ≤ N. Recall that h :=

(
αA ζ(α)

βB ζ(β)

) 1
α−β

.

Then there holds: |h − h∗k | ≲
(

1

kβ−1
+

1

(N − k)β−1
+

1

Nβ−1

)
.

Related work : Gardner and Radin, The infinite-volume ground state of the Lennard-Jones
potential. Journal of statistical physics (1979).

Proposition (Quantitative Gerschgorin circles)

Let γ > 1 and δ = 2(1 + 2γ)ζ(γ). Then for c, d > 0 such that r+ :=
c

d

δ +
√

δ2 + 4ζ(2γ)

2
< 1.

Let A ∈ Mn(C) such that A is strictly diagonally dominant and

|Aij | ≤
c

|i − j|γ
for i ̸= j, and |aii | ≥ d.

Then A is invertible and there exist κ = κ(γ, c
d ) (bounded as c

d → 0) such that

|(A−1)ij | ≤ κ
c

d2|i − j|γ
for i ̸= j, and (A−1)ii ≤ κd−1 + κ

c

d
, for all i.
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Proof of the theorem. Let H∗ realize the min of J and H = (h, . . . , h). The equation on h gives:

∂hk
J (H) =

k∑
i=1

N∑
j=k+1

L′((j − i)h) =
0∑

i=1−k

N−k∑
j=1

L′((j − i)h)

= 0 −
−k∑

i=−∞

∞∑
j=1

L′((j − i)h) −
0∑

i=1−k

∞∑
j=N−k+1

L′((j − i)h)

= −
−k∑

i=−∞

∞∑
ℓ=1−i

L′(ℓh) −
0∑

i=1−k

∞∑
ℓ=N−k+1−i

L′(ℓh)

= −
∞∑

ℓ=1+k

−k∑
i=1−ℓ

L′(ℓh) −
∞∑

ℓ=N−k+1

0∑
i=max(1−k,N−k+1−ℓ)

L′(ℓh)

= −
∞∑

ℓ=1+k

(ℓ − k)L′(ℓh) −
∞∑

ℓ=N−k+1

(k − max(0,N − ℓ))L′(ℓh)

= −
∞∑

ℓ=1+k

(ℓ − k)L′(ℓh) −
N∑

ℓ=N−k+1

(ℓ + k − N)L′(ℓh) −
∞∑

ℓ=N+1

kL′(ℓh).

Since ℓ ≥ 2 in each of those terms, we know that all the L′(ℓh) are positive, which leads to

∂hk
J(H) ≤ 0.
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On the other hand, we also know that L′(x) ≤ βB

xβ+1 , which implies:

|∂hk
J (H)| =

∣∣∣∣ ∞∑
ℓ=1+k

(ℓ − k)L′(ℓh) +
N∑

ℓ=N−k+1

(ℓ + k − N)L′(ℓh) +
∞∑

ℓ=N+1

kL′(ℓh)

∣∣∣∣
≤

∞∑
ℓ=1+k

(ℓ − k)
βB

(ℓh)β+1
+

N∑
ℓ=N−k+1

(ℓ + k − N)
βB

(ℓh)β+1
+

∞∑
ℓ=N+1

k
βB

(ℓh)β+1

≤
βB

h
β+1

( ∞∑
ℓ=1+k

(ℓ − k)ℓ−(β+1) +
∞∑

ℓ=N−k+1

(ℓ + k − N)ℓ−(β+1) +
∞∑

ℓ=N+1

(ℓ − N)ℓ−(β+1)
)

≤
βB

h
β+1

(
ξ(k) + ξ(N − k) + ξ(N)

)
,

where ξ(n) =
∑∞

ℓ=n+1(ℓ − n)ℓ−(β+1). Moreover, we know that ξ(n) ≤
Cβ

nβ−1 for some Cβ

depending only on β > 1. Thus,

|∂hk
J (H)| ≤ Cβ

βB

h
β−1

(
1

kβ−1
+

1

(N − k)β+1
+

1

Nβ−1

)
.
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We also have: ∇J (H) = ∇J (H) − ∇J (H∗) =

∫ 1

0

HessJ (H + t(H∗ − H))dt (H − H∗).

For all t ∈ (0, 1), there holds H + t(H∗ − H) ∈ [c, s]N−1, therefore HessJ (H + t(H∗ − H))
satisfies the hypothesis of the Refined Gerschorin Circles lemma. The inversion of the Hessian
matrix leads to:

H − H∗ =

(∫ 1

0

HessJ (H + t(H∗ − H))dt

)−1

∇J(H).

Thus,

|h − h∗k | ≤
N−1∑
ℓ=1

∣∣∣∣∣
((∫ 1

0

HessJ (H + t(h∗ − h))dt

)−1)
kℓ

∣∣∣∣∣∣∣∣∂hℓ
J(H)

∣∣∣
≤ κ

1 + Λnd

Λd

∣∣∣∂hk
J (H)

∣∣∣ +∑
ℓ ̸=k

κ
Λnd

Λ2
d |ℓ − k|β+1

∣∣∣∂hℓ
J(H)

∣∣∣.
Using now the previous estimate on ∇hk

J(H) gives:

|h − h∗k | ≤ κCβ
1 + Λnd

Λd

βB

h
β−1

(
1

kβ−1
+

1

(N − k)β−1
+

1

Nβ−1

)

+ κCβ
Λnd

Λ2
d

βB

h
β+1

∑
ℓ ̸=k

1

|ℓ − k|β−1

(
1

ℓβ−1
+

1

(N − ℓ)β−1
+

1

Nβ−1

)
.

How to estimate the second term in the estimate above ?
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Lemma ∑
k∈J1,nK\{i,j}

1

|i − k|γ
1

|k − j|γ
≤ 2

(1 + 2γ)ζ(γ)

|i − j|γ
.

It suffices to consider the case i < j . Then

i−1∑
k=1

1

(i − k)γ
1

(j − k)γ
=

i−1∑
h=1

1

hγ
1

(j − i + h)γ
≤

1

(j − i)γ

+∞∑
h=1

1

hγ
≤

ζ(γ)

(j − i)γ
.

Similarly,

n∑
k=j+1

1

(k − i)γ
1

(k − j)γ
=

n−j∑
h=1

1

(j − i + h)γ
1

hγ
≤

1

(j − i)γ

+∞∑
h=1

1

hγ
≤

ζ(γ)

(j − i)γ
.

Finally, splitting the middle sum around (j − i)/2, there hold

j−1∑
k=i+1

1

(k − i)γ
1

(j − k)γ
≤ 2

⌈ j−i
2

⌉∑
k=i+1

1

(k − i)γ
1

(j − k)γ

≤ 2

⌈ j−i
2

⌉∑
k=i+1

1

(k − i)γ
2γ

(j − i)γ
≤

2γ+1ζ(γ)

(j − i)γ
.

Summing up the three bounds concludes the proof.
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What about the One Ring ?

The ring structure of radius r > 0, noted Rr ∈ (R3 × S2)n is characterized by:

xj = r


cos

(
2jπ
n

)
sin

(
2jπ
n

)
0

 and mj =


− sin

(
2jπ
n

)
cos

(
2jπ
n

)
0

 .

Theorem (R. Côte, C. Courtès, G. Ferrière, L.G-C., Y. Privat)

(i) Existence and Uniqueness of a critical point with a “ring” structure.

(ii) An explicit formula for the radius of the ring.
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Lemma

The gradient of the energy at the ring Rr is given by:

∇xi
U(Rr ) = ∇xi

Ud (Rr ) + ∇xi
Us (Rr ) and ∇mi

U(Rr ) = ∇mi
Ud (Rr ),

where

∇xi
Ud (Rr ) =

3

16 r4

⌊
n−1
2

⌋∑
j=1

1∣∣ sin ( jπ
n

)∣∣3
(

cos2
(

jπ

n

)
+ 2

)
xi

|xi |
,

∇xi
Us (Rr ) = −

2

rα+1

⌊
n−1
2

⌋∑
j=1

1∣∣∣2 sin( jπ
n

) ∣∣∣α xi

|xi |

∇mi
Ud (Rr ) =

1

4r3

⌊
n−1
2

⌋∑
j=1

(
1∣∣ sin( jπ

n

)∣∣ − 2∣∣ sin( jπ
n

)∣∣3
)

mi

|mi |
.

The conclusions on the theorem then follows from direct study of the function

r 7−→
A

rα+1
−

B

r4
,

with A and B given by the lemma.
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“Proof” of the lemma. To start, we compute:

∇x0
Ud =

n−1∑
j=1

−3

|r0j |5

[
(m0 · r0j )mj + (mj · r0j )m0 + (m0 · mj )r0j − 5

(m0 · r0j )(mj · r0j )
|r0j |2

r0j

]
.

∇x0
Us = −

n−1∑
j=1

(
1

|r0j |

)α+1 r0j

|r0j |
, and ∇mi

Ud =

n−1∑
j=1

[
mj

|r0j |3
− 3

(mj · r0j )r0j
|r0j |5

]
.

Since we have a ring structure, the scalar products write

|r0j | = r

√
2 − 2 cos

( 2jπ

n

)
= 2r

∣∣∣ sin( jπ

n

)∣∣∣, m0 · r0j = −r sin
( 2jπ

n

)
,

mj · r0j = −r sin
( 2jπ

n

)
, m0 · mj = cos

( 2jπ

n

)
.

The lemma is given by tedious but straightforward computation (involving classical trigonometry
formulas for simplifications).

→ The main important point is to gather the terms associated to the indices j and n − j to
obtain cancellations due to the symmetry of the structure.
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The magnetic nano-wire
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A 1D model of ferro-magnetic nano-wire

We consider here a simple and rich model introduced in works by Carbou for notched
ferro-magnetic nano-wires:

- G. Carbou. Notch-Induced Domain Wall Pining in Ferromagnetic Nanowires (2020).

- G. Carbou and D. Sanchez. Stabilization of walls in notched magnetic nanowires (2018).

The magnetization behavior is obtained thanks to a Γ-convergence reasoning: a
cylindrical material Dη is considered by

Dη =
{
(x , y , z) ∈ R3, y2 + z2 ≤ η2ρ(x)2

}
,

whose circular section, parametrized by a function ρ, has radius ηρ(x) with η > 0.

Figure: An example of domain Dη.

A 1D model is then derived by making η tend towards 0. The 1D model involves the
cross section area s defined by s(x) = πρ(x)2.
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In this work we focus on the 1 notch case for the infinite nano-wire.

We work on the class of localized and symmetric notches (s0 > 0):

Sa(Ω) =
{
s ∈ BV (R; [s0; 1]) : s ≡ 1 outside [−a, a], s is even and non-decreasing on R+.

}
.

The asymptotic 1D Landau-Lifshitz-Gilbert model for magnetization in notched nanowires reads:{
∂tm = −m × H(m) − αm × (m × H(m))

H(m) = ℓ2

s(x)∂x (s∂xm) − 1
2 (m2e2 + m3e3),

It has been proved in Carbou’s works that every steady solution reads

m(x) = Rφ

sin θ(x)
cos θ(x)

0

 , with Rφ =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 ,

where φ ∈ R is the rotation angle, and θ solves the non-linear Sturm-Liouville equation:

s(x)θ′′(x) + s′(x)θ′(x) + s(x) cos θ(x) sin θ(x) = 0, ∀ x ∈ R.
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θ
′′(x) +

s′(x)

s(x)
θ
′(x) +

sin 2θ(x)

2
= 0, ∀ x ∈ R.

Theorem (Carbou)

This Strum-Liouville Equation admits a non-trivial solution θ0 in

W :=
{
ϑ ∈ Ḣ1(R) : cos(ϑ) ∈ L2

}
. This solution is odd, increasing, with limits ±

π

2
at ±∞.

→ Idea: Proceed by analogy with the simple pendulum and solve a shooting problem.

Theorem (Carbou)

For θ a solution to this Strum-Liouville Equation, the associated steady magnetization m is
asymptotically stable (up to rotations around the x-axis) whenever θ ∈ W, provided that s ̸≡ 1.

→ Idea: The solutions are the critical points of the following energy

Es (θ) :=
1

2

∫
R
θ
′(x)2s(x) dx +

1

2

∫
R
cos2

(
θ(x)

)
s(x) dx.

Stability is then given by the computation of the second derivative at a critical point.

Theorem (R. Côte, C. Courtès, G. Ferrière, L.G-C., Y. Privat)

There exists a unique non-trivial solution in W (up to symmetry or additive constant) if s ̸≡ 1.

Deny the existence of 2 solutions by constructing a 3rd , using the mountain-pass theorem
(contradiction with the previous result).
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Thank-you for your attention !
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