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Introduction to
micro-magnetism
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Definition

The micro-magnetism aims at studying the magnetic phenomenon at
micro or nano-metric scale where arises specific behaviors due to
quantum effects (electron-exchange interaction).

‘ GIESECKE & DEVRIENT

First chip card
Magnetic tape 1/4-inch f

. . manufactured by Solid-state drive (SSD)
for audio recording Giesecke & Devrient in

, Serial ATA storage unit.
(1950°) 1979. £
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Klechkowski-Hund rules for the filling of electronic orbits:

L]
1s 2s 2p 3s

The Hund rule states the maximization

of the spin inside a layer.

The Klechkowski rule gives the order of
filling the electronic layers.

Definition
The exchange interaction is a quantum mechanical effect that only occurs
when two electrons partially exchange position.

@ Symmetric or anti-symmetric interaction.

@ Creates ferro or anti-ferro magnetism.
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The Brown model consists in the minimization of

E(M) ::A/ \VM|2+K/ G(M,x)—/Ha.de—l/Hd(M).de,
Q Q Q 2 Q
under the constraint Vx € Q, M(x) € S>. We have:

@ A the interaction constant (A > 0 for ferro-magnetism).

@ K the anisotropy constant and G : S? x Q — R the anisotropy profile.

@ H, the external magnetic field.
@ Hy the self-induced magnetic field (demagnetizing field).
The demagnetizing field is solution to
div(Hq + M) =0,

curl Hy =0,
Hy(x) — 0. as |x| = +o0.
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Some pictures from F. Alouges book:

F1G. 1.4 - Trois configurations en domaines dans une méme particule circu-
laire.
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The Landau Lifschitz Gilbert equation:

dM
o = —M A Heir — aM A (M/\ Heff)a

with Hes the effective magnetic field and a < 1 the damping
coefficient. The effective field is computed using the Brown Energy. It
involves :

@ The external magnetic field H,.

@ The demagnetizing self-induced field Hy.
@ The exchange interaction —AM.
°

The anisotropy potential G'(M, x).

The first term in the equation (Landau-Lifschitz term) is derived using
the Schrodinger equation and the Maxwell equations.

The second term (Gilbert term) is phenomenological. Theoretical works
from physicists suggests a relativistic effect (Dirac equations).
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Simulations of the LLG on a single spin in a magnetic field (low or strong
damping, with or without anisotropy):
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About Anisotropy :

Theorem (Alouges, Beauchard, 2009)

Study the Brown energy without anisotropy on a small domain £52.

(i) After a rescale, the energy '-converges towards a situation where the
magnetisation is constant.

(ii) Without rescale, we obtain an ODE that keep trace of the geometry
of the domain.

When the domain is small : only one Weiss domain remains.
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Presentation of the
nano-particles model

Dynamique d’'aimantation ultra-rapide de nano-particules magnétique,
PhD thesis by Guillaume Klughertz (IPCMS, Strasbourg)
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Model :

@ Nanometric spherical magnetic particles
@ Magnetic spin immobile in the particle frame
o Particles immersed in a very viscous fluid (low Reynolds)

@ Fluid assumed immobile in comparison to the particles movement

Particles cannot intersect each-other (collisions)

Optional thermal effects (white noise effects)
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The equations of the dynamics

@ Magnetic field generated by a magnetic dipole m:

o Force exerted by dipole m; on my separated by vector r:

5(m1'f)(m2"f)f)

Ir[?

3
Faip(r) = V(m2-By) = WM:P ((mrr)mz + (m2-rymy 4+ (mi-mp)r —

@ Repulsive force that models collisions of particles:

e Viscosity coefficients:

Cor = 6mNR, and ( =8mR.
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Magnetic field generated by a Magnetic dipole (source Wikipedia).
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The equations of the dynamics

e Dynamics in translation, the second Newton law gives:

dv;
:FI_ rVi,
mdt Cerv,

where F; the sum of all conservative forces acting on dipole m;.
@ Dynamics in rotation:

dw,-

/
dt

= —rl - Crwiv

where | = mR?/10 the moment of inertia of the sphere and
T; = m; x B; the magnetic couple.

e Dynamics of the spins, change of frame equation gives:

d

Em,-m = —-mjR —+ wj X mj.

dt

Time-scale separation hypothesis : %m,-m, =0.
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Numerical simulations
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Dynamics of the 2 particles system :

(=]
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Dynamics of the 12 particles system (Aligned structure) :

(=]
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Dynamics of the 12 particles system (Ring structure) :

(=]
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Dynamics of the 343 particles system (Complex structure) :

100

100 =25

(=]
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Dynamics of the 343 particles system with magnetic field :

100

(=]

20/59 Ludovic Godard-Cadillac

Modeling and analysis of micro-magnetism of nano-particles and



Dynamics of the 324 particles system with planar constraint (z = 0):

(=]
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Dynamics of the 324 particles system with planar constraint and
magnetic field :

(=]
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Simple structures when N is small:
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Complex structures when N is large:
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Evolution of 216 nano-particles at times 0, 1, 10, 30, 60, and 100 p-seconds.
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To study these structures : statistics (500 init. with N = 2,3,...)
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Probability to have one connected component that is an aligned structure.
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Probability to have one connected component that is a ring structure.
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Probability to have one connected component that is neither aligned nor ring.
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Probability to have more than one connected component.
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Stability of structures in
presence of temperature
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We add temperature and compute the mean potential and kinetic energy
when the thermodynamical regime is reached:
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Mean kinetic and potential energy with respect to the temperature
(Blue : kinetic, orange : potential)
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Zoom around the temperature 150 (first phase transition)
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Energy
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Evolution in time of the system at temperature T = 140K

Initial datum: 9 particles with aligned structure

Left: Kinetic and potential Energy
Middle: Indicators of structure (aligned or ring)
Right: Number of isolated particles

32/59 Ludovic Godard-Cadillac Modeling and analysis of micro-magnetism of nano-particles and



Energy
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Evolution of the system at temperature T = 150K

Initial datum: 9 particles with aligned structure
Left: Kinetic and potential Energy
Middle: Indicators of structure (aligned or ring)
Right: Number of isolated particles
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Evolution of the system at temperature T = 300K
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Initial datum: 9 particles with aligned structure
Left: Kinetic and potential Energy
Middle: Indicators of structure (aligned or ring)
Right: Number of isolated particles
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Evolution of the system at temperature T = 410K

Initial datum: 9 particles with aligned structure
Left: Kinetic and potential Energy
Middle: Indicators of structure (aligned or ring)

Right: Number of isolated particles
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Energy
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Evolution of the system at temperature T = 440K

Initial datum: 9 particles with aligned structure
Left: Kinetic and potential Energy
Middle: Indicators of structure (aligned or ring)
Right: Number of isolated particles
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Evolution of the system at temperature T = 470K

Initial datum: 9 particles with aligned structure
Left: Kinetic and potential Energy
Middle: Indicators of structure (aligned or ring)

Right: Number of isolated particles
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The described phenomenon is the following:

@ An “aligned phase” until T = 147K.

@ Brutal switch to a “ring phase” until T = 410K.
@ Alternate switch between “aligned” and “ring".
@ Evaporation phenomenon.

@ "“Gaz phase” from T = 510K.

AND : we can see a modification of the structure of nano-particles in the
variations of the potential energy.
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What about theory ?

39/59 ovic Godard-Cadillac Modeling and analysis of micro-magnetism of nano-particles a



Theorem (R. Céte, C. Courtes, G. Ferriere, L.G-C., Y. Privat)

(/) The system of N magnetic nano-particles admits a stationary state.
(if) A unique stationary state where positions and spins are aligned.

(iif) Study of the properties of this stationnary states (details after).

If the positions and spins are initially aligned, the dynamic becomes 1D. It is

the gradient flow for xi,...,xy € R of:
1 A B
E ; ; L |X, Xj| with L(S) = w — W

@ Invariance by permutation: we can asssume
Xk+1 > Xk.
@ Invariance by translation: we work with
hi = Xk41 — xx > 0:
-1

k)= 3Y L(z he).

i=1 j=1 1 2 3 a 5
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A B
The function L(s) := —— — —— s decreasing, then increasing towards 0 as infinity

s| |s|?
_ aA\ a5
s=(—
BB

and it admits as global minimizer:
Corollary (upper bound on the distances)

.

—1

The minimizers of J(H Z Z L<Z hg) are such that hy <'s for all £.
i=1 j=1 l=j
y
Proof. Compute the sign of the derivative of J with respect to hy. O

Lemma (lower bound on the distances)

The minimizers of J are such that hy, > ¢ for all £, where

= (mam)

where ( is the Riemann zeta function,

This gives existence of a minimizer by compactness arguments.
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Proof.
Let X € RN a minimizer of J and iy be such that [Xip = Xig+1| = min; [x; — xj41].
We now define X by

xi = x;, ifi<ig, and X; = x; + 0, otherwise,
where 6 > 0. Since X is a minimizer, then
To(X) = To(X) = Z Z (L% = x1) = L(% = %)) <0
i=1 j=ip+1

Dividing by § and letting 6 — 0 (isolate the case j = iy + 1):

ip—1
Z L/(|Xl XIO + Z Z ‘XI — X ) > _L/(‘Xig - Xf0+l‘)'
i=1 i=1 j=ip+2

With the explicit formula for L’ (removing terms in a + 1 in the left-hand side):

Io—
aA B
Sl ey s s T e S
|Xl — Xig +1| i=1 j=ig+2 X - X| |Xio - Xl'o+1‘ ‘Xl'o - Xio+1‘
If we denote the smallest distance do := |xj, — Xjp+1]:
o—1
B (X 1 QA B
O RS D) D N o3
85 [i — (i + 1) it U | 5 B3
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If we denote the smallest distance do := |xj, — Xjp+1]:

ip—1

aA B
oz W*ZZ ) 2 e g
Standard manipulations on the double sums:
i —1  min(io,N—k) 1
21 %2 leH ;k ,OZ+2 i kﬁ“ ; i= max(lZIOJerk) kot
Moreover, we can easily prove that
min(ip, N — k) —max(1,ip +2 — k) +1 < k— 1.
Thus,
=2 o1 k-1 =1
Z |:f:0+1\6+1 +;,§2 J|z3+1 —kz:;kﬁﬂ +kz:; KB+ S;TB

Plugging this back into the main estimate:

aA BB QA TP
5ﬁ+1(<( S A (Ww)) '
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In the asymptotic &« — 400 we recover a hard sphere model: 5,¢ — 1.

On the contrary : what is the asymptotic N — +007? with fixed parameters A, B, o, 8 7

Lemma (Equation satisfied by the minimizer)

k N Jj—1
The equation solved by H* is, for all k =1,..., N, Z Z L'(Z hZ) =0.
i=1 j=k+1 =i

Difficulty: the limit distance is different in the center or at the extremities.

In the center, we expect the distances to converge towards some h > 0. Formally:

S OSSN UG iR) =0 This give: h = ( 2AS) =
i;mj:zl ((j — 1) ) =0. is give: = (W) .
On the opposite, at the extremities:
— (7 _ o (aAl(a+1) a7
; L (Jh) =0. This give: h:= (753 B+ 1)) .

For all k =1,...,N, we have: E+7<hzgh+—.

— remark that € < h < E<§.
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Proposition (Property of the Hessian matrix [going toward uniqueness !])

Let H € [,5]V~!. Assume a > 8 > 1 and o ‘“large enough”. The Hessian Hess J (H) of J at H
satisfies:

@ The diagonal terms are positive :

BB BB(B +1)

B, i, T (H) > (e —B) - —5—(KB+1) - 1) =As >0

@ The non-diagonal terms are non positive and decrease away of the diagonal:

BB(,@-‘rl) - And
OZBfZ,lL,hVJ(H)Z TU‘*V\ B:;,m.

@ The Hessian is a uniformly diagonally dominant matrix : for all p,

B(B+1
SO 183, 0, TH) = = 3287, T(H) < ZEEED () ),
v v#p
which leads in particular to
B(B+1
158 TN =3 168, 1, TN 2 22 (- p)-PBEED (¢(g1a)4¢(8)) = mi > 0.

vZu

v
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Lemma (Uniqueness result !)

J s strictly convex in [C, E]N‘l. Furthermore, J admits a unique critical point which
is its minimizer on |¢,s[V=1.

Proof.
@ From previous lemma and the Gershgorin circle theorem, it is standard to show
that the lowest eigenvalue of Hess cJ(H) is larger than A1 > 0 (for every H in
the set [¢,5]V1).

Thus 7 is strictly convex on [¢,5]V—1.

Then it admits at most one critical point.

We already know that there are no critical points for J outside ]¢, 5[V 1.

This proves uniqueness.

— This conclude the proof of the theorem !
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Nevertheless: Can we use the information on the Hessian matrix to improve the study of
the asymptotic N — 400 ??? YES !

Theorem (Convergence theorem)

— aA((a) aiﬂ
Let N € N large enough and 1 < k < N. Recall that h := [ ———= .

BB ((B)
Th h holds: h—h| < ! L !
en there holds:  |h — h| < F+W+W'

Related work : Gardner and Radin, The infinite-volume ground state of the Lennard-Jones
potential. Journal of statistical physics (1979).

Proposition (Quantitative Gerschgorin circles)

8+ /02 + 4¢(2
Lety > 1 and § = 2(1+ 27)((vy). Then for c,d > 0 such that ry := E%M <1
Let A € M,(C) such that A is strictly diagonally dominant and

|A;] < fori#j, and |az| > d.

c
i —jl”
Then A is invertible and there exist k = (v, §) (bounded as § — 0) such that

(A7) <

c . . 1 —1 c .
NW fori # j, and (A7) < kd +K}g, for all i.
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Proof of the theorem. Let H* realize the min of J and H = (h, ... ,E). The equation on h gives:

k N 0 -
M TH)Y =D S L'(G—h)= > Z (G = )h)
i=1 j=k+1 i=1—k j=1
) 0 )
Z SUG-dk = > > (G- i)h
i=—oo j=1 i=1—k j=N—k+1
o 0 )
=- Z PR D D N (7))
i=—o0 £=1—i i=1—k £=N—k+1—i
oo —k oo 0
==—> > - > > L' (¢h)
L=1+ki=1—¢ £=N—k+1 i=max(1—k,N—k+1—2)
=— i (£ — k)L’ (¢h) — i (k — max(0, N — £))L’(¢h)
£=1+k £=N—k+1
) N oo
== > (—KLER) - > (E+k—N)L'(¢h)y— > KL'(¢h).
£=1+k £=N—k+1 £=N+1

Since £ > 2 in each of those terms, we know that all the L’(£h) are positive, which leads to
Bth( ) <o0.
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On the other hand, we also know that L'(x) < —52;, which implies:

oo N o
on T(H) = | S (=KL ER) + > (t+k—NL'(Eh)+ > kL’(EE)‘
£=1+k =N—k+1 Pyt
- BB N oo
<S> U—kK———+ > (L+k=N Z
=11k (Eh)BFY Nk B+1 frmd ﬁ+1
B /& - oo B .
< —ij < S =R 4 ST (k= Ny Z (- Ny (am)
h £=14k PN kt1 Pt

< S (st + ev =1+ €m)).

where £(n) = 3272 (£ — n)¢~ B+ Moreover, we know that &(n) < n[f% for some Cg
depending only on 8 > 1. Thus,

BB 1 1 1
|9n, T ()] < Cﬁ*ﬁ—l <kﬂ—1 + (N — k)AL + Nﬁ—l)'
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p— j— 1 — — —
We also have: VJ(H) = VJ(H) — VJ(H") = / Hess J(H + t(H™ — H))dt (H — H™).
— — 0 j— —
For all t € (0,1), there holds H + t(H* — H) € [¢, 5]V, therefore Hess 7 (H + t(H* — H))
satisfies the hypothesis of the Refined Gerschorin Circles lemma. The inversion of the Hessian

matrix leads to:

HeH = (/0 Hess 7 (A + t(H* — H))dt) ).

Thus,
B N—1 1 - B 1 .
[EYHEDS <(/0 Hess 7 (H + t(h* — h))dt) )M ‘BhZJ(H)‘
—1
+ And T And T
SR, T H)‘ S kg, S|
Sl g A31E— e P
Using now the previous estimate on Vj, J(ﬁ) gives:
- * 1+ A BB 1 1 1
Ih=hil < mCp—3"= 5= (W WJFW)

nd BB 1 1 1
+rCp 27ﬁ+12‘47k|ﬁ71<zﬁ—1 WJFW)

How to estimate the second term in the estimate above ?
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11 _,a+2%m

| — vy —Jjlr = i — j|
cen S oy 11— K7 Te= 1] =i

It suffices to consider the case i < j. Then

i 1 A 1 1 X1 <M
P e R O (i P S e T

Similarly,

n

! o 1 1 1 X1
k:zj;l(k*")”(kff)v’Zuﬂm)wmS(jff)v;mf(jf/)«

A

Finally, splitting the middle sum around (j — i)/2, there hold

<2
Sy (k=) (= k)Y Sy (k=07 (= k)7
VT’.W Yy y+1
s 1 2 ¢(v)
R 2 () E V) e V)
Summing up the three bounds concludes the proof. O
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What about the One Ring ?

The ring structure of radius r > 0, noted %, € (R3 x S?)" is characterized by:
cos (21—"> —sin (2/—”)
n n
Xj =T sin <2J—"> and mj =1 cos (2—”)
n

0 0

Theorem (R. Céte, C. Courtes, G. Ferriere, L.G-C., Y. Privat)

(i) Existence and Uniqueness of a critical point with a “ring” structure.

(if) An explicit formula for the radius of the ring.
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The gradient of the energy at the ring R, is given by:

Vi UR) = Vi UNR,) + Vi US(R,) and Vi U@R,) = Vi, UY(R,),

i

where
L75]
d 3 1 2 (J X
e e GO
L"z*]
2 1 Xi
Vi U(R,) = s
X; r rotl ; |2sm(”>‘ [xi]

j=1 - o

L2
p 1 1 2 mj
VmU'(R) = > — e~ T e T
4r (}sm(”>| !sm(”)} >|m,\

The conclusions on the theorem then follows from direct study of the function

A

r— —— N
ro+l r4

with A and B given by the lemma.
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“Proof” of the lemma. To start, we compute:

n—1

(mo - roj)(m; - roj)
=" —% |(mo - rp)m; + (m; - roj)mo + (mo - mj)r; — 5 T |
= I Jl [roj]
j=1
1\ 0 S m j * o) roj
ViU’ = — <7) — and Vo US = [ — 37}.
’ 2\ iwl) Tl ' Z IR Iroj[®
Since we have a ring structure, the scalar products write
2jm jr 2jm
|roj| = ry/2 — 2cos (J—) = Zr‘ sin (J—) ’, mg - rgj = —rsin (J—),
n n n
. m 2jm
mj - rpj = —rsin (7), mg - mj = Cos (7)
n n

The lemma is given by tedious but straightforward computation (involving classical trigonometry
formulas for simplifications).

— The main important point is to gather the terms associated to the indices j and n — j to
obtain cancellations due to the symmetry of the structure. O
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The magnetic nano-wire
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A 1D model of ferro-magnetic nano-wire

We consider here a simple and rich model introduced in works by Carbou for notched
ferro-magnetic nano-wires:

- G. Carbou. Notch-Induced Domain Wall Pining in Ferromagnetic Nanowires (2020).

- G. Carbou and D. Sanchez. Stabilization of walls in notched magnetic nanowires (2018).
The magnetization behavior is obtained thanks to a '-convergence reasoning: a
cylindrical material D, is considered by

2 2 2 2
Dy ={(x,y,2) €R®, y* +2* <0’p(x)*},

whose circular section, parametrized by a function p, has radius np(x) with n > 0.

s emb RN Op)

Figure: An example of domain D,,.

[

A 1D model is then derived by making 7 tend towards 0. The 1D model involves the
cross section area s defined by s(x) = mp(x)2.
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In this work we focus on the 1 notch case for the infinite nano-wire.

Sssasaz)=uBBEEEEZS

We work on the class of localized and symmetric notches (sp > 0):

S.(Q2) = {s € BV(R;[s;1]) : s =1 outside [-a,a], s iseven and non-decreasing on R,.}.

The asymptotic 1D Landau-Lifshitz-Gilbert model for magnetization in notched nanowires reads:

Oem = —m X H(m) — am x (m x H(m))
H(m) = %@ (s8m) — J(mae; + maes),

It has been proved in Carbou's works that every steady solution reads

sin 6(x) 1 0 0
m(x) =R, | cosf(x) |, with R, =[0 cosp —sing]|,
0 0 sing cos ¢

where ¢ € R is the rotation angle, and 6 solves the non-linear Sturm-Liouville equation:

s(x)0" (x) + s’ (x)6’(x) + s(x) cos O(x) sin O(x) = 0, VxeR.
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" 5,(X) ’
0" (x) + m@ (x) +

sin 20(x)

=0, \4 R.
3 X €

Theorem (Carbou)

This Strum-Liouville Equation admits a non-trivial solution 6y in
W= {19 € H'(R) : cos(d) € Lz}. This solution is odd, increasing, with limits :i:g at foo.

— Idea: Proceed by analogy with the simple pendulum and solve a shooting problem.

Theorem (Carbou)

For 6 a solution to this Strum-Liouville Equation, the associated steady magnetization m is
asymptotically stable (up to rotations around the x-axis) whenever § € W, provided that s # 1.

— Idea: The solutions are the critical points of the following energy

Es(0) := %/RG'(X)ZS(X) dx + % -/Rcosz (0(x)) s(x) dx.

Stability is then given by the computation of the second derivative at a critical point.

Theorem (R. Céte, C. Courtes, G. Ferriere, L.G-C., Y. Privat)

There exists a unique non-trivial solution in W (up to symmetry or additive constant) if s # 1.

Deny the existence of 2 solutions by constructing a 3rd, using the mountain-pass theorem
(contradiction with the previous result).
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Thank-you for your attention

Ludovic Godard-Cadillac Modeling and analysis of micro-magnetism of nano-particles and
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