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Classes of liquid crystals

Liguid crystals are of many different types, three main
classes being nematics, cholesterics and smectics.

Many liquid crystals consist of rod-like molecules.
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Space-filling models courtesy Claudic Zannoni.



Depending on the nature of the molecules, the interac-
tions between them and the temperature the molecules
can arrange themselves in different phases.
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Orientational and some
positional order

T he molecules have time-varying orientations due
to thermal motion.



Isotropic to nematic phase transition

The nematic phase typically forms on cooling
through a critical temperature 6. by a phase
transformation from a high temperature isotropic

phase.
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The Oseen-Frank model.

Nematic LC at rest at constant temperature, no EM fields, filling
container Q ¢ R3, a bounded Lipschitz domain with boundary 9.

Free energy I(n) = /Q W(n, Vn) dx,

splay twist bend
2W(n,Vn) = K1(divn)? + K»(n - curln)? 4+ K3|n A curln|?
+ (K + K4)(tr(Vn)? — (divn)?).
saddle-splay null Lagrangian

Jo((tr Vn)? — (divn)?) dx depends only on n|yg

)

o T n(x) € S2 (unit sphere) The K; are the
IS the director. Frank constants.
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Energy minimization problem: find n that minimizes
I(n) = [oW(n,Vn)dx subject to suitable boundary
conditions, for example n|30 = n, where n is given.

2W(n, Vn) = K;(divn)? + K»(n - curln)? + K3|n A curln|?
+(K2 4 K4)(tr(Vn)? — (divn)?).

Ericksen (1966) inequalities: We will always assume the strict form

K1 >0, Kp >0, K3>0, Ky > |Kyl|, 2K1 > Ky + Ky,

which are necessary and sufficient for W(n, Vn) > u|Vn|? for all n
and some constant u > 0.

(Proof. Apply the Ericksen inequalities to W (n, Vn) —u|Vn|?.)

Thus the natural function space (finite energy) is H1(Q; S2).



2W (n, Vn) = K7(divn)? + Ko(n - curln)? 4+ K3|n A curln|?
+ (Ko + K2)(tr(Vn)? — (divn)?).

Important identities
(n - curln)? 4+ |n A curln|? = |curln|?
'Vn|? = (divn)?4(n-curln)?+|nAcurln|?+(tr (Vn)?—(divn)?).

So if K1 = Ky = K3,K4 = 0 (the one constant
approximation) then

K
I(n) = 2L / 'Vn|2dx,
2 JQ

which is the energy functional for harmonic maps
n:Q — 52



Orientability
n(x) and —n(x) are physically indistinguishable.

So n(x) is better thought of as a line field, or
0 equivalently as a map from €2 to the set of all
0 T lines through the origin.

A typical such line with direction +=n can be
represented by the matrix N = n ® n having
components n;n;. The set of such lines forms
the real projective plane RP?.

Smooth line fields need not be orientable, so
that it is impossible to assign a direction that
turns them into a smooth vector field.




Unoriented Oseen-Frank model

We can write W(n,Vn) = W(N,VN), N = n ® n,
with W quadratic in VN.

Indeed, since N;;p = n;n; . + n;n; , we have that
Nj;gnj = n;, using which all the terms in W(n, Vn)
can be expressed in terms of N, VN.

In particular, for the one-constant approximation we have

Kq Kq Kq

|VN|2 (nz ]k_l_n zk)(nz jk’_I_n 'Lk)_ |Vn]2

Let RP2 = {N € M3%3 : N = n® n,n € S2}. Equivalently
RP?2={Nec M3*3:N=N! trN=1,|N|?=1,detN = 0}.



Unoriented energy minimization problem: find N : €2 — R P2
that minimizes I(N) = [o W(N, VN) dx subject to suitable

boundary conditions.

Natural function space is H1(2; RP?2).

Theorem. (Bethuel & Chiron 2007, JB/Zarnescu 2011)
If Q2 is simply-connected and N & Hl(Q; IR{PQ) there exists

nec H1(Q; S2) with N =n®n.

Thus the Oseen-Frank model and its unoriented version are
equivalent if €2 is simply-connected.

However, if 2 is not simply-connected the minimizing
N in the unoriented theory may not be orientable.



E)(a m ple Modified from JB/Zarnescu (2011).
Q=Dx (-1,1)

L1

less energy when o0 large

N=n&®n

Boundary conditions
tangent withn-e3 =0
on outer curved

and flat boundary,

weak anchoring on inner
curved boundary
(0D1U0D5) x (—=1.1).

K >
kel ALY
D /(apluapz)x(—1,1)(n V) ds

So constrained theory not equivalent to Oseen-Frank for
13
¢2 not simply connected.



From now on we consider the standard (oriented)
Oseen-Frank model with energy

I(n) = /Q Wi(n,Vn) dx

and boundary condition n|yo = n.

If n is a minimizer and m : 2 — R3 is any smooth mapping
with m|39 — 0, then

n(x) + em(x)
n(x) + em(x)|

satisfies |n:(x)| = 1 and n:|5 = n.

n:(x) =

Hence formally we have that d%[(ngﬂgzo = 0.



Noting that 90| _; = P(n(x))m(x), where P(n) = 1—n®n,
we obtain the weak form of the Euler-Lagrange equation, that
for all such m

A (é%w V(P(n(x))m(x)) +— P(a(0)m(x)) dx = 0.

(WEL)

Hence, integrating by parts and using the arbitrariness of
m, we formally obtain the Euler-Lagrange equation

div oW oW = A(xX)n (EL)
ovn On

a system of second order nonlinear PDE to be solved
subject to the pointwise constraint |n| = 1.




How can we solve these equations?
Are there some exact solutions?

The question of what (smooth) n(x) can be solutions of
(EL) for all K1, K>, K3, K4, sO called universal solutions,

was addressed by Marris (1978,1979), following Ericksen
(1967).

Marris showed that these consist of

(i) constant vector fields, or those orthogonal to families
of concentric spheres or cylinders,
(ii) pure twists, such as

n(x) = (cospuzx3z,sin uzrs,0),

(iii) planar fields that form concentric or coaxial circles.



An example from family (i) is the hedgehog

X

n(x) = — < —
x|

which represents a point defect.
Of course n is not even continuous at 0, but for x = 0 it
IS smooth and we have

1 2

Vii(x) = (1 — i ) |Vn(x)]2 —>

x| |x | x| x|
so that formally calculating its energy over the ball
B(0,1) = {|x| < 1} we find that
/ W (@, Vi) dx < C Vii|2dx = 47rc/ —dfr < o0,

B(0,1) B(0,1)

so that i € H1(Q; S?).



T heorem (Brezis, Coron & Lieb (1986), Lin (1987), Helein (1987), Ou (1992))
If K1 < Ko then @i is the unique minimizer of I(n) in H1(2; S2) subject
to its own boundary conditions.

Proof that nn is a minimizer. (JB/Virga)
Claim: if Ki < K5 then

K1(divn)? + Ko(n - curln)? + Ks|n A curln|?
+2K1[tr (Vn)? — (divn)?] > 0.

Proof of claim: Ky, Ko, K3, K4 = 2K — K> satisfy the
Ericksen inequalities.

Hence, ignoring the saddle-splay term
1
I(n) = Q/Q (Kl(div n)? + K>(n-curln)? + K3|n A curl n\2) dx
: 2 2
> Ky fQ ((divn)? — tr (Vn)?) dx
— Ky /Q ((divi)? — tr (VA)?) dx = I(R).

since by direct computation (divii)? = 2tr (Vn)?2, curlfi = 0.



Pure twist solutions.

2= 1(0,11) x (0,12) x (0,d)

|
I2

2
~ 1 /
I 1
Boundary conditions:
n|331=0 — n‘:l’}l:llﬂ n‘CCQ:O — nlCCQZZQ?
n|:133:0 — 119, n‘m3=d — g,
ng-e3 = ny-ez =0.

Theorem. Assume ny; #= £ng. Suppose Ko < min(Ky, K3).
Then there is a unique minimizer n* € H1(Q; S2) satisfying the
boundary conditions, and n* is a pure twist of the form

n*(x) = (cos(A + pz3),sin(A + px3),0)
for constants \, u. "



Existence and regularity results for general Frank constants

A routine use of the direct method of the calculus of variations gives:

Theorem. If in € H1($2; S2) then there exists n* that minimizes I(n)
over all n € H1(Q; $?) with n|yn = @1, and n* satisfies (WEL).

AS we have seen, minimizers can have point defects, so we cannot expect
regularity of minimizers. However we can hope for partial regularity.

The best known such result for general Frank constants is:

Theorem (Hardt, Lin & Kinderlehrer (1986)) Any minimizer
n € H1(; 52) is analytic outside a closed set S whose Hausdorff
dimension is less than one.

It is not known whether & consists of finitely many or a
countable number of points, or whether minimizers can
have a more complicated defect structure.



T he one-constant case

In the one-constant case (EL) becomes

Al’l—|—|VIl‘2l’l — O, i.e. TLZ’]J—I-(?’LJ,;C’)’LJ,]{)“)% =0 (”L — 1, 2, 3)

Thus the Lagrange multiplier, which in general depends
on second derivatives of n, is an explicit function —|Vn|?
of first derivatives.

Another special feature of the one-constant case is
that if n is a minimizer or equilibrium solution then
so is Rn for any R € O(3). So, for example, the
rotated hedgehog Rn minimizes I subject to its own
boundary conditions.



In the one-constant case there is a more precise partial regu-
larity result due to Schoen & Uhlenbeck (1982), Brezis, Coron
& Lieb (1986).

Theorem. In the one-constant case n* is smooth except for
a finite number of point defects located at points x(7) € €,

and
n*(x) ~ R (3) X X0

x—x(0) as x — x(12),

for some R(7) € SO(3).
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The case of planar solutions

n(x) = (n1(x1,x2),n2(xr1,72),0)
can be treated by complex analysis, writing z = x4 4+ x> and

n=mnq-4ino, = el P(x)

Then the equilibrium equation is equivalent to
Afi + |Vn|?ii = ie!®Ad = 0,

that is to the linear Laplace equation A®d = 0, so that in
particular equilibrium solutions of locally finite energy are
smooth (no defects).

Also, if n = n(z),m = m(z) are equilibrium solutions
so is n(z)m(z) as a product of complex numbers,
and so is n(z) 1.



We can use this to treat an exterior problem:

w; C R? disjoint, bounded Lipschitz domains.
Q = R? \ Uz—l W;

M
U w; C B(O, RO)
=1

Let k£ = Z — 1 degn;.

What can we say about equilibrium configurations n in
X={n:Q—5t: / IVn|? dx < oo
QﬂBR
for all R > R07n|8wi =n;}.

and their behaviour at oco? 24



Consider the renormalized energy

2
E(n) = /Q <|V1f1|2 — ‘;2) dx.

Theorem. (JB/ Lu Liu) There is a unique minimizer ng
of E(n) in each homotopy class C of X, no: Q2 — St is
a smooth harmonic map and

C
no(x) — nF (x)] < 7,

for some constant Cg > 0, where

n (x) = (cos(kd + fc),sin(k0 + fc))
and B~ € R. In each homotopy class C there is also a
harmonic map ngo with E(ng) = +oo.
Furthermore E attains a minimum n* in X, but n* is not
iNn general unique.

Remark: The case of nonorientable line fields n ® n can
be handled by the trick of considering fi(z)2.



Main idea of proof.

Carbou’s trick. Pick a; e w;, 1 =1,..., M.

Let d; = degn;. Then we can write any equilibrium
solution n as

dq drs

ﬁ(z)=<2_a1> ---(Z_aM> e'?(2).
|z — aj| |z — apy|

where ¢ is a smooth solution of A = 0 in €2.

Rough proof:

—dy —d g
2 —a z—ay
a(z) ( ) ) ( )
|z —aq| |z —ayy]|

IS an equilibrium solution of degree zero.




Line defects

nf(x) = (%4,%2,0), r = /27 + 23
Vok(x)]? = 5

I(nﬁ)>C’/ —dr—oo

nt ¢ H1(Q: S2). \

These problems could

2D hedgehog / pote.nti-ally be fixed by
modifying the growth of
Index defects W((n,Vn) for large |Vn|
fail to be described to be subquadratic.
by Oseen-Frank - (i) they are/wot orientable
for two reasons

(ii) Energy oo in each sector

Can also consider surface defects (n € SBV).



The Landau - de Gennes model

The Landau - de Gennes model uses a tensor order parame-

ter based on the probability distribution p(x,p) of molecular
orientations at a point x.

It gives structure to defects, so that in particular line defects

have finite energy, and in a natural ansatz reduces to the
unoriented Oseen-Frank model.
| If § = 1um
B(x,d) contains
~ 1 billion molecules

p(x,p) >0
P(X, p) — p(X: _p)
/32 p(x,p)dp =1

28



First moment

/32 pp(x,p)dp = — /32 pp(x,—p)dp = 0.
Second moment

M(x) = [, p®Ppp(x,p)dp >0

If p(x,p) = z is isotropic, then M(x) = 31.

The de Gennes (Q tensor is defined as

QG = Mo -1

1
= J(P®P = Dp(x,p)dp.

Thus Q(x) = Q1 (x), trQ(x) =0, A\yin(Q(x)) > —3.



Free-energy for nematic (constant temperature)

1(Q) = [ ¥(Q.VQ) dx

v(Q,VQ) = ¥(Q,0)+ (»(Q,VQ) —¥(Q,0))
= bulk 4 elastic.
If a < % then g minimized by
uniaxial Q = s(n®n — 1), n € 52,
Often assumed that = btV 2dac

vp(Q) = @&— 2tr Q3

ctr Q4,

where b > 0.¢ > 0 Ilnear In temperature
\ .
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Usually it is assumed that ¥ (Q, VQ) is quadratic in VQ.
Examples of isotropic functions quadratic in VQ are:

11 = Qi kQij ke 12 = Qi i Qik i

I3 = Qik,jQij k> 14 :@m@

One of 6 possible linearly
Note that independent cubic terms

. that are quadratic in VQ
Ir — I3 = (QijQik k), j — (QijQik ) k (see Longa, Monselesan.

IS a null Lagrangian. Trebin (1987)).

IfL2=L3=L4=O
then yp = /vQ|?

4
1=1

We assume that

where the L; are material constants.



From Landau - de Gennes to Oseen-Frank

Since ¢ g is minimized for uniaxial

Q:S<N—%1), N=n®n (+)

in the limit of small elastic constants L, we expect minimizers
of I(Q) to be nearly uniaxial. This motivates the constrained
theory in which we minimize I(Q) subject to ().

Putting (%) into ¢ we obtain the (unoriented) Oseen-
Frank energy W (N, VN) with Frank constants given by

[ K1) (211%3\ Ly
Ko . 200—§8 Lo
K3 2 1 1 3s Ls

\ K4 ) \0 01 0 J\La




From the Onsager model to the bulk energy

Consider a homogeneous nematic liquid crystal at constant
temperature, with probability distribution of molecular

orientations p(x,p) = p(p) independent of x.

The Onsager model with the Maier-Saupe molecular
interaction has free energy proportional to

B(p) = [, p(P)Inp(p) dp — Z1Q(p)I
with

Q) = [, (pop—21) dp=M(p) - _1.



Following Katriel et al (1986), JB/Majumdar (2010, 20197)
we define for Q = Q1 trQ =0

F@ = min [ o(p)Inp(p) dp,

¢5(Q) = F(Q) - |QP.

Theorem (JB/Majumdar) f(Q) is strictly convex and

1 1 1
2 " <(27T)3€7min(Q)> < Q= <”Ymin(Q)> ’
where ymin(Q) = Amin(Q) + %




Critical points of E(p)

Since |Q(p)|? = [M(p) — £1|2 = [M(p)|%2 — 3, critical
points of FE correspond to solutions of the Euler-
Lagrange equation

14+ Inp(p) =xM(p) -p®p -+ constant,

and soO are given by

exp k(M(p) - p ® p)
Z(p) |

_exp k(M(p) - p ® p) dp.

p(p) =

where Z(p) = /S



3
Writing M(p) = > ~ve; ® e;, where ~; > 0,
=
3 1
Z v, = 1, we thus have to solve the equations

1=1
3

/SQpZZeXpK(Z Jp]> p:fyZZ, 7;:1’2’37

where Z = / exp k (Z Y; p]> dp.

1=1



3
/52 exD“(Z ”Yjp32'> dp=~;Z, 1=1,2,3 (EL)
> 2 2
Z:/SQQXDKJ Zlfyjpj d
]:

Fatkullin & Slastikov (2005), Liu, Zhang &
Zhang(2005) (see also Zhou, Wang, Forest & Wang
(2005)) characterize all solutions, and in particular
show that they are axisymmetric. That is, there are
no solutions with the ~; all different.



Proof of axial symmetry

Lemma.

3
o (pT — p3) exp s (Z mﬁ-) dp

.

j=1

3
= 2k(y1 —73) o pIp3 exp K (Z vjpf-) dp.
j=1

Proof. Apply the divergence theorem on B(0,1) to
the divergence free vector field

u(p) = (p1,0, —p3(1 + 2x(71 — v3)P?))
exp k[v3 + (71 — 13)pT + (72 — 13)P3)-



Suppose all the ~; are distinct. By the lemma
and (EL), and since ~v1 # 73,

3
2K /SQp%p% exp k (Z ”yjij-) dp = Z.
J=1

T herefore

/52 p1(p3 — p3) exp (
J

3
vjpf-) dp = 0.
=1

But the LHS equals

2 2
/52 p1(p5 — p3) exp k(v1p1 + 72p5 + 73p3) dp.



Adding, we get that
/52 p%(p% — p3) exp(ky1p1)g(p2, p3)dp = O,

where (p2.s) = ex0 r(1283 +7383) — X0 n(rar3+ 20)

But g(p2,p3) > 0 iff k(2 —v3)(p5 —p5) > O, SO since
v> #= ~v3 the integrand has one sign. Contradiction.



