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Background and Motivation

→ Stability analysis of nonlinear systems is not always an easy task.

Especially when the systems are time-varying, have delays,
discontinuities, are complicated interconnected systems.

→ Lyapunov functions are fundamental tools.

Lyapunov-Krasovskii functionals: natural analog of Lyapunov
functions.

Razumikhin’s theorem: crucial result, (especially when the delays
are time-varying).
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Background and Motivation

→ Attention ! Frequently, Lyapunov-Krasovskii techniques in
general do not apply to systems with time-varying delays.

The same is true for the frequency domain techniques.

→ Then what can be done ?
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Background and Motivation

Difficult case: delays with discontinuities.

→ Motivations: sampling, networked systems, biomedical models.

Alternative techniques:

• Trajectory based approach.
• Result based on Halanay’s inequality.
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Background and Motivation

→ They can be applied to many families of systems: ODE coupled
with difference equations, interconnected and networked systems
with time-varying delay, time-varying linear systems.

→ They help to solve both stability analyzes and stabilization
problems.

→ They help overcome the difficulties of finding Lyapunov
functionals.
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Part I: Trajectory based approach: key result

Part I: Trajectory based
approach: key result
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Result

Theorem 1

Let T ∗ > 0. Consider w : [−T ∗,+∞)→ [0,+∞),
d : [0,+∞)→ [0,+∞) and ρ ∈ (0, 1) s. t.

w(t) ≤ ρ sup
`∈[t−T∗,t]

w(`) + d(t) , ∀t ≥ 0. (1)

Then

w(t) ≤ sup
`∈[−T∗,0]

w(`)e
ln(ρ)
T∗ t +

1

(1− ρ)2
sup
`∈[0,t]

d(`) , ∀t ≥ 0. (2)
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Result

→ Since ρ ∈ (0, 1), the function e
ln(ρ)
T∗ t goes exponentially to zero.

→ The inequality (2) is an ISS inequality.
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Academic examples

Consider the system with delay

ẋ(t) = −x(t) + bx(t − τ) (3)

with b ∈ (0, 1) and τ > 0.

1) Let T > 0. We integrate to get

x(t) = e−T x(t − T ) + b

∫ t

t−T
em−tx(m − τ)dm.

2) Then

|x(t)| ≤ e−T |x(t − T )|+ b
(
1− e−T

)
sup

`∈[t−T−τ,t−τ ]
|x(`)|.

(4)
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Academic examples

3) As an immediate consequence,

|x(t)| ≤
[
e−T + b

(
1− e−T

)]
sup

`∈[t−T−τ,t−τ ]
|x(`)|. (5)

4) Since b < 1, e−T + b
(
1− e−T

)
< 1 for all T > 0.

Conclusion: from Theorem 1, we conclude that the system (3) is
UGES to zero.
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Academic examples

Consider the system

ẋ(t) = −x(t) + 9 cos2p(t)x(t − τ), (6)

with x ∈ R, p ∈ N and τ ≥ 0.

Remark. When τ = 0 and p = 1, x(t) = e
7
2
t+ 9

2
sin(t) cos(t)x(0).

Then the system is unstable. But when p is sufficiently large, the
system is GUES.

Remark. One cannot establish that the origin of (6) is GUES by
applying Razumikhin’s theorem: with V (x) = 1

2x
2,

V̇ (t) = −x(t)2 + 9 cos2p(t)x(t)x(t − τ).
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Academic examples

1) We integrate to get

x(t) = e−2πx(t − 2π) + 9

∫ t

t−2π
em−t cos2p(m)x(m − τ)dm.

2) Then

|x(t)| ≤ e−2π|x(t − 2π)|
+9
∫ t
t−2π e

m−t cos2p(m)dm sup
`∈[t−2π−τ,t−τ ]

|x(`)|. (7)
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Academic examples

3) Then, when p > 2,

|x(t)| ≤ e−2π + 1

2
sup

`∈[t−2π−τ,t−τ ]
|x(`)|. (8)

Conclusion: from Theorem 1, we conclude that the system (6) is
UGES to zero.
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Equations with delay

We consider the system

ẋ(t) = f (t, x(t), ζ(t, τ(t)), δ(t)) (9)

where x ∈ Rn,
ζ(t, τ(t)) = (X1(t − τ1(t)),X2(t − τ2(t)), . . . ,XL(t − τL(t))), each
subvector Xi of x has some dimension ni .

Property: τi (t) ∈ [τS , τM ] for all t and i with τM ≥ τS > 0.
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Equations with delay

We introduce assumptions:

Assumption A1. There are β ∈ KL and γ ∈ K∞ s. t. all
trajectories of ξ̇(t) = f (t, ξ(t), u(t)) for all u valued in Rn × Rm

satisfy

|ξ(t)| ≤ β(|ξ(t0)|, t − t0) + γ

(
sup

`∈[t0,t]
|u(`)|

)
, ∀t ≥ t0. (10)

Assumption A2. There are T > 0 and ρ0 ∈ (0, 1) s. t.

β(s,T ) + γ(s) ≤ ρ0s , ∀s ≥ 0. (11)
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Equations with delay

Theorem 2

We can build a L ∈ K∞ s. t. with

β(s, t) = L(s)
(
e

ln(ρ0)
2T

(t−2T ) + e2T−t
)

and γ(s) = sρ0
(1−ρ0)2 + L(s) ,

(12)

the ISS estimate

|x(t)| ≤ β

(
sup

`∈[t0−τ ,t0]
|x(`)|, t − t0

)
+ γ

(
sup

`∈[t0,t]
|δ(`)|

)
(13)

holds along all trajectories of (9).
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Equations with delay

Proof.
1) Assumptions A1 and A2 give

|x(t)| ≤ β

(
sup

`∈[t−2T ,t]
|x(`)|+ sup

`∈[t0,t]
|δ(`)|,T

)

+γ

(
sup

`∈[t−2T ,t]
|x(`)|+ sup

`∈[t0,t]
|δ(`)|

)

≤ ρ0

(
sup

`∈[t−2T ,t]
|x(`)|+ sup

`∈[t0,t]
|δ(`)|

) (14)

for all t ≥ t0 + 2T and all δ.
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Equations with delay

2) By applying Theorem 1 with w(t) = |x(t + 2T + t0)|, ρ = ρ0,
T∗ = 2T , and d(t) = ρ0 sup

`∈[t0,t0+2T+t]
|δ(`)| we obtain:

|x(t)| ≤ sup
`∈[t0,t0+2T ]

|x(`)|e
ln(ρ0)
2T

(t−2T−t0) +
ρ0

(1− ρ0)2
sup

`∈[t0,t]
|δ(`)|

(15)
for all t ≥ 2T + t0.

3) Next, by studying the trajectories over [t0, t0 + 2T ], we can
conclude.
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Systems with impulses

We consider now a system with impulses and delay:
{

ẋ(t) = f
(
t, x(t), x(t − τ), z(t)

)
ż(t) = g

(
t, x(t), z(t)

)
∀t ∈ [tk , tk+1) and k ≥ 0

z(tk) = h
(
z(t−k )

)
, k ∈ N

(16)
with τ ≥ 0.

Stability result: obtained under 2 assumptions:
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Systems with impulses

Assumption B1. There are c1 ≥ 0, c2 ≥ 0, and c3 > 0 s. t.
(a) |h(z)| ≤ c1|z | and
(b) all solutions of

ξ̇(t) = g(t, v(t), ξ(t)) (17)

satisfy
|ξ(t)| ≤ ec3(t−t0)|ξ(t0)|+ c2 sup

`∈[t0,t]
v(`). (18)

Also,
ec3τc1 < 1. (19)
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Systems with impulses

Assumption B2. The system

ξ̇(t) = f
(
t, ξ(t), u(t)

)
(20)

satisfies ISS for some β ∈ KL and γ ∈ K∞. There are an integer
j ≥ 1 and ρ ∈ (0, 1

1+c2
) s. t.

β(s, jτ) + γ(s) ≤ ρs , ∀s ≥ 0 (21)

and

c j1e
jc3τ + ρ+

√
(c j1e

jc3τ − ρ)2 + 4ρc2(1+c1ec3τ )
1−c1ec3τ < 1 (22)

hold.
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Part II: Vector version of the trajectory based approach

Part II: Vector version of the
trajectory based approach
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Result

→ Let S ∈ Rl×l be a positive and Schur stable matrix.

Bearing in mind Perron-Frobenius theorem, let V ∈ [1 +∞)n be
s. t.

SV = qV (23)

with q ∈ (0, 1).

→ Let ∆ : [0,+∞)→ [0,+∞)n be s. t. each component ∆i is
piecewise continuous and nondecreasing.

→ Let
ρ(t) = −(−I + S)−1∆(t). (24)
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Result

Theorem 3

Let T? > 0 and n functions zi : [−T? +∞)→ [0 +∞) be s. t.

 z1(t)
...

zn(t)

 ≤ S


sup

s∈[t−T?,t]
z1(s)

...
sup

s∈[t−T?,t]
zn(s)

+ ∆(t). (25)

Then  z1(t)
...

zn(t)

 ≤ n∑
j=1

sup
`∈[−T?,0]

zj(`)e
ln(q)
T?

tV + ρ(t). (26)
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Result

→ Since q ∈ (0, 1), the function e
ln(q)
T∗ t goes exponentially to zero.

→ From the vector inequality (26), an ISS inequality can be
deduced.

→ Since −I + S is Metzler and Hurwitz, ρ is nonnegative and
nondecreasing.
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Academic example

We consider the system:{
ẋ1(t) = −2x1(t)− x2(t − τ1)
x2(t) = sin(x1(t)) + 1

4x2(t − τ2)
(27)

with τ1 ≥ 0 and τ2 > 0.

Then, for all R > 0,

x1(t) = e−2Rx1(t − R)−
∫ t
t−R e2(`−t)x2(`− τ1)d`

|x2(t)| ≤ |x1(t)|+ 1
4 |x2(t − τ2)|. (28)
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Academic example

Consequently, for all R ≥ τ2:

|x1(t)| ≤ e−2R |x1(t − R)|+ 1−e−2R

2 sup
`∈[t−τ1−R,t]

|x2(`)|

|x2(t)| ≤ |x1(t)|+ 1
4 sup
`∈[t−τ1−R,t]

|x2(`)|
(29)

for all t ≥ τ1 + R.

Let

ΥR =

[
e−2R 1−e−2R

2
1 1

4

]
. (30)
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Academic example

Then (
|x1(t)|
|x2(t)|

)
≤ ΥR

 sup
`∈[t−τ1−R,t]

|x1(`)|

sup
`∈[t−τ1−R,t]

|x2(`)|

 (31)

for all t ≥ τ1 + R.

Question: is ΥR a Schur stable matrix for some constant R ?
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Academic example

The positive eigenvalue of:

Υln(10) =

[
1

100
99
200

1 1
4

]
(32)

is 13
100 + 1

100

√
5094 < 1.

It follows that Υln(10) is Schur stable.

We conclude from Theorem 3 that the origin of (27) is UGES.
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Observer

Consider {
ẋ(t) = [A + δ(t)]x(t)
y(t) = Cx(t)

(33)

where x is valued in Rn and y is valued in Rp.

Assumption C1. δ is known and for all (i , j),

|δi ,j(t)| ≤ δ (34)

for all t.

Assumption C2. (A,C ) is observable.

Objective: construction of a finite-time or an almost
finite-time observer under Assumptions C1 and C2.
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Observer

Difficulty to construct a finite-time observer: δ is time-varying.

Let τ > 0 and

E =

∫ 0

−τ
eA
>sC>CeAsds (35)

Assumption C2 ensures that E is invertible.

One can prove that

x(t) = E−1
∫ t
t−τ e

A>(s−t)C>y(s)ds

+E−1
∫ t
t−τ e

A>(s−t)C>
∫ t
s eA(s−m)δ(m)x(m)dm

(36)

for all t ≥ τ .
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Observer

We introduce the observer:

x̂(t) = E−1
∫ t
t−τ e

A>(s−t)C>y(s)ds

+E−1
∫ t
t−τ e

A>(s−t)C>
∫ t
s eA(s−m)δ(m)x̂(m)dm.

(37)
Then

x̃(t) = E−1
∫ t
t−τ e

A>(s−t)C>
∫ t
s eA(s−m)δ(m)x̃(m)dm (38)

with x̃(t) = x̂(t)− x(t).
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Observer

Assumption C1 ensures that there is a matrix P > 0 s. t.

 |x̃1(t)|
...

|x̃n(t)|

 ≤ τ2δP


sup
m∈[t−τ,t]

|x̃1(m)|

...
sup

m∈[t−τ,t]
|x̃n(m)|

 . (39)

The matrix τ2δP is Schur stable when δ is sufficiently small.

We deduce from Theorem 3 that the convergence rate of observer
is proportional to − ln(δ).

In other words, we have an almost finite-time observer.
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Remarks

We have established a vector discrete-time version of the trajectory
based approach.

Let S > 0, p ∈ (0, 1) and U ∈ [1,+∞)n be such that

SU = pU (40)

and

Vi =

 v1,i
...

vn,i

 ∈ [0,+∞)n (41)

be such that
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Remarks

Vi+1 ≤ S

 max{v1,i , ..., v1,i−r+1}
...

max{vn,i , ..., vn,i−r+1}

+ ∆i (42)

Then
Vi ≤ Γi (43)

with
Γi = cp

i
r U + (I − S)−1∆i (44)

and

c >
1

p
max
{−r ,...,0}

{max{v1,i , ..., vn,i}} (45)
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Remarks

Potential advantages of our trajectory based methods:

1 We do not require special regularity on the dynamics such as
Lipschitzness conditions.

2 We can study ‘complicated’ interconnected systems.

3 We do not need Lyapunov function formulas for any
subsystems.

4 We get explicit comparison functions in the final exponential
ISS estimates.
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Part III: Trajectory based approach and Halanay’s
inequality

Part III: Trajectory based
approach and Halanay’s

inequality
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Classical result

Classical result:

A. Halanay, Differential Equations: Stability, Oscillations, Time Lags,
Academic Press, New York, 1966.

Let v : [−τ,+∞)→ [0,+∞) be a scalar function of class C 1 and
constants a > 0, b ≥ 0 and τ ≥ 0 be s. t.

v̇(t) ≤ −av(t) + b sup
`∈[t−τ,t]

v(`). (46)

Then if a > b, then v(t) exponentially converges to zero as t → +∞.
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Time-varying inequality

Can the approach be extended to time-varying inequalities:

v̇(t) ≤ −a(t)v(t) + b(t) sup
`∈[t−τ,t]

v(`) (47)

and to vector inequalities:

 v̇1(t)
...

v̇n(t)

 ≤ M(t)

 v1(t)
...

vn(t)

+ P(t)


sup

s∈[t−τ,t]
v1(s)

...
sup

s∈[t−τ,t]
vn(s)

 (48)

where M is Metzler and P ≥ 0 ?
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Time-varying inequality

Possible approach for (47): the trajectory based approach.

→ We integrate (47):

v(t) ≤ e

∫ t

s
a(`)d`

v(t − s) +

∫ t

s
e
∫ t
m a(`)d`b(m) sup

`∈[m−τ,m]
v(`)dm.

(49)
→ Consequently, for any h > 0,

v(t) ≤

e
∫ t

t−h
a(`)d`

+

∫ t

t−h
e
∫ t
m a(`)d`b(m)dm

 sup
`∈[t−h−τ,t]

v(`).

(50)
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Time-varying inequality

→ Consequently, if there is ρ ∈ (0, 1) s. t.

e

∫ t

t−h
a(`)d`

+

∫ t

t−h
e
∫ t
m a(`)d`b(m)dm ≤ ρ (51)

for all t ∈ R, Theorem 1 applies.

Then we conclude that v exponentially converges to zero as
t → +∞.

Remark. When an additive term is present, an ISS inequality can
be obtained.
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Time-varying inequality

The previous result applies in many cases.

However, it has a limitation.

To understand it, we consider a particular example.
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Time-varying inequality

→ Let ti = iT . Let v be s. t.

v̇(t) ≤ −v(t) + b(t) sup
`∈[t−τ,t]

v(`) (52)

where b is defined by

b(t) =

{
2, if t ∈ ∪i∈Z≥0

[ti , ti + T ),

0, if t ∈ ∪i∈Z≥0
[ti + T , ti+1),

(53)

where T > 0 is “small”.
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Time-varying inequality

Notice that if T = 0, then

v̇(t) ≤ −v(t) (54)

Thus the intuition suggests that if T > 0 is sufficiently small,
then v converges to zero.

Question: Can we establish this result via the trajectory based
approach ?

Answer: A direct application of the trajectory based approach does
not allow us to conclude.
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Time-varying inequality

→ Integrating (52) over [ti , t] with t ∈ [ti , ti+1) yields

v(t) ≤ eti−tv(ti ) +
∫ t
ti
em−tb(m)dm sup

`∈[ti−T ,t]
v(`). (55)

→ Thus for any t ∈ [ti , ti + T ),

v(t) ≤ (2− eti−t) sup
`∈[ti−T ,t]

v(`). (56)

→ Since 2− eti−t > 1 for any t > ti , the trajectory based
approach does not apply.
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Time-varying inequality

We provided an extension of Halanay’s inequality in the
contribution:

F. Mazenc, M. Malisoff, M. Krstic, Stability and observer designs using
new variants of Halanay’s inequality., Automatica, Vol. 123, Jan. 2021.
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Vector inequality

Interconnected systems often lead to the problem of studying
inequalities

 v̇1(t)
...

v̇n(t)

 ≤ M(t)

 v1(t)
...

vn(t)

+ P(t)


sup

s∈[t−τ,t]
v1(s)

...
sup

s∈[t−τ,t]
vn(s)

 (57)

where M(t) is Metzler, P(t) is nonnegative, τ > 0 and where
each vi is a nonnegative real-valued function.

Frédéric Mazenc A stability analysis technique called trajectory-based approach



51/61

Vector inequality

We have: v1(t)
...

vn(t)

 ≤ Φ(t, t0)

 v1(t0)
...

vn(t0)



+

∫ t

t0

Φ(t,m)P(m)


sup

s∈[m−τ,m]
v1(s)

...
sup

s∈[m−τ,m]
vn(s)

 dm

(58)
for all t ≥ t0 ≥ τ , where Φ is the state transition matrix of M.
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Vector inequality

Consequently v1(t)
...

vn(t)

 ≤ Φ(t, t − T )

 v1(t − T )
...

vn(t − T )



+

∫ t

t−T
Φ(t,m)P(m)dm


sup

s∈[t−T−τ,t]
v1(s)

...
sup

s∈[t−T−τ,t]
vn(s)


(59)

for any T > 0 and t ≥ T + τ .
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Vector inequality

We obtain the vector inequality

 v1(t)
...

vn(t)

 ≤ G (t,T )


sup

s∈[t−T−τ,t]
v1(s)

...
sup

s∈[t−T−τ,t]
vn(s)

 (60)

with G (t,T ) = Φ(t, t − T ) +

∫ t

t−T
Φ(t,m)P(m)dm.

Notice that G (t,T ) ≥ 0
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Vector inequality

Assumption D1. There are T > 0 and a Schur stable matrix S > 0
s. t.

G (t,T ) ≤ S (61)

for all t ≥ T.

Then  v1(t)
...

vn(t)

 ≤ S


sup

s∈[t−T−τ,t]
v1(s)

...
sup

s∈[t−T−τ,t]
vn(s)

 . (62)

The vector version of the trajectory based approach (Theorem 3)
allows us to conclude.
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Conclusion

Conclusion
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Conclusion

. We developed a trajectory based approach to prove UGES for
nonlinear systems, notably with time-varying delays.

. They apply in many cases (ODEs coupled with difference
equations, systems with delay of neutral type, and networked
control systems).

. Using our approach, we proved stabilizability of nonlinear
systems in the case where the delay could be unknown and not
necessarily continuous, and where the system is subjected to
additive uncertainties on the right side.
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Thank you for your attention.
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