The Mean-Field Ensemble Kalman Filter

Andrew Stuart

Computing and Mathematical Sciences
California Institute of Technology
DoD, NSF, ONR

Leçons Jacques-Louis Lions Lectures
Sorbonne Université, Paris
December 12th-14th 2023

Collaborators

- Edo Calvello (Caltech)
- Sebastian Reich (Potsdam)

Reference: E. Calvello, S. Reich, and S
Ensemble Kalman Methods: a Mean-Field Perspective. arXiv:2209.11371 (2022).

- José Carrillo (Oxford)
- Franca Hoffmann (Caltech)
- Urbain Vaes (CERMICS)

Reference: J. A. Carrillo, F. Hoffmann, S, and U. Vaes
The Ensemble Kalman Filter in the Near-Gaussian Setting. arXiv:2212.13239 (2022).

Overview

Mean-Field Optimization Perspective
Probabilistic Perspective: True Filter
Probabilistic Perspective: Ensemble Kalman Filter
Main Theorem: Relating The True and Ensemble Kalman Filters

Closing

Mean-Field
 Optimization Perspective

Optimization: Albers, Blancquart, Levine, Seylabi and S [1] (2022)

Mean-Field: Calvello, Reich and S [3] (2022)

Kalman Filter (Navigation)

State Space Model

Dynamics Model: $\quad v_{n+1}=M v_{n}+\xi_{n}, \quad n \in \mathbb{Z}^{+}$
Data Model: $\quad y_{n+1}=H v_{n+1}+\eta_{n+1}, \quad n \in \mathbb{Z}^{+}$
Probabilistic Structure: $\quad v_{0} \sim N\left(m_{0}, C_{0}\right), \quad \xi_{n} \sim N(0, \Sigma), \quad \eta_{n} \sim N(0, \Gamma)$
Probabilistic Structure: $\quad v_{0} \Perp\left\{\xi_{n}\right\} \Perp\left\{\eta_{n}\right\}$ independent

- Rudolph Kalman [19] (1960).
- $\approx 43,500$ citations (Google Scholar 12/23).
- Apollo 11.
- The Algorithm:
- $Y_{n}^{\dagger}=\left\{y_{\ell}^{\dagger}\right\}_{\ell=1}^{n}$.
- $v_{n}^{\dagger} \mid Y_{n}^{\dagger} \sim \mathrm{N}\left(m_{n}, C_{n}\right)$.
- $\left(m_{n}, C_{n}\right) \mapsto\left(m_{n+1}, C_{n+1}\right)$.

Kalman Filter

Sequential Optimization Viewpoint

$$
\begin{aligned}
\text { Predict: } & \widehat{m}_{n+1} & =M m_{n}, \quad n \in \mathbb{Z}^{+} \\
\text {Model/Data Compromise: } & J_{n}(m) & =\frac{1}{2}\left|m-\widehat{m}_{n+1}\right| \hat{\widehat{c}}_{n+1}^{2}+\frac{1}{2}\left|y_{n+1}^{\dagger}-H m\right|_{\Gamma}^{2} \\
\text { Optimize: } & m_{n+1} & =\operatorname{argmin}_{m} J_{n}(m) .
\end{aligned}
$$

- $|\cdot|$ Euclidean norm on any \mathbf{R}^{r} and induced matrix norm.
$-|\cdot|_{A}=\left|A^{-\frac{1}{2}} \cdot\right|$ for $A>0$ spd.
$-d$ the state space dimension $\left(m_{n}, v_{n} \in \mathbb{R}^{d}\right)$.
- Updating \widehat{C}_{n+1} is expensive: $\mathcal{O}\left(d^{2}\right)$ storage.

3DVAR Filter (Weather Forecasting)

State Space Model

Dynamics Model: $\quad v_{n+1}=\Psi\left(v_{n}\right)+\xi_{n}, \quad n \in \mathbb{Z}^{+}$
Data Model: $\quad y_{n+1}=H v_{n+1}+\eta_{n+1}, \quad n \in \mathbb{Z}^{+}$
Probabilistic Structure: $\quad v_{0} \sim N\left(m_{0}, C_{0}\right), \quad \xi_{n} \sim N(0, \Sigma), \quad \eta_{n} \sim N(0, \Gamma)$
Probabilistic Structure: $\quad v_{0} \Perp\left\{\xi_{n}\right\} \Perp\left\{\eta_{n}\right\}$ independent

- Andrew Lorenc [23] (1986).
- $\approx 2,000$ citations (Google Scholar 12/23).
- Introduced in UK Met Office.
- The Algorithm:
- $\left\{v_{n}\right\} \mapsto\left\{v_{n+1}\right\}$.
- Given Y_{n}^{\dagger} want $v_{n} \approx v_{n}^{\dagger}$. (Again $Y_{n}^{\dagger}=\left\{y_{\ell}^{\dagger}\right\}_{\ell=1}^{n}$.)

3DVAR

Sequential Optimization Viewpoint

$$
\begin{aligned}
\text { Predict: } & \widehat{v}_{n+1} & =\Psi\left(v_{n}\right), \quad n \in \mathbb{Z}^{+} \\
\text {Model/Data Compromise: } & J_{n}(v) & =\frac{1}{2}\left|v-\widehat{v}_{n+1}\right|_{\widehat{C}}^{2}+\frac{1}{2}\left|y_{n+1}^{\dagger}-H v\right|_{\Gamma}^{2} \\
\text { Optimize: } & v_{n+1} & =\operatorname{argmin}_{v} J_{n}(v) .
\end{aligned}
$$

- \widehat{C} is a fixed model covariance (not updated sequentially).
- $d=\mathcal{O}\left(10^{9}\right) ; \mathcal{O}\left(d^{2}\right)$ entries of \widehat{C} prohibitive in general.
- \widehat{C} chosen to have simple, computable, structure.

Ensemble Kalman Filter

State Space Model

Dynamics Model: $\quad v_{n+1}=\Psi\left(v_{n}\right)+\xi_{n}, \quad n \in \mathbb{Z}^{+}$
Data Model: $\quad y_{n+1}=H v_{n+1}+\eta_{n+1}, \quad n \in \mathbb{Z}^{+}$
Probabilistic Structure: $\quad v_{0} \sim N\left(m_{0}, C_{0}\right), \quad \xi_{n} \sim N(0, \Sigma), \quad \eta_{n} \sim N(0, \Gamma)$
Probabilistic Structure: $\quad v_{0} \Perp\left\{\xi_{n}\right\} \Perp\left\{\eta_{n}\right\}$ independent

- Geir Evensen [11] (1994).
- $\approx 6,000$ citations (Google Scholar 12/23).
- Originally ocean dynamics; now weather.
- $\mu_{n}:=\operatorname{Law}\left(v_{n}^{\dagger} \mid Y_{n}^{\dagger}\right)$. (Here $Y_{n}^{\dagger}=\left\{y_{\ell}^{\dagger}\right\}_{\ell=1}^{n}$.)
- Mean-Field Algorithm:
- $\left(v_{n}, \mu_{n}^{E K}\right) \mapsto\left(v_{n+1}, \mu_{n+1}^{E K}\right) . \quad \mu_{n}^{E K}:=\operatorname{Law}\left(v_{n}\right)$.
- When is this approximation valid: $\mu_{n}^{E K} \approx \mu_{n}$?

Mean-Field Ensemble Kalman Filter

Sequential Optimization Viewpoint

$$
\begin{array}{rlrl}
\text { Predict: } & & \widehat{v}_{n+1} & =\Psi\left(v_{n}\right)+\xi_{n}, \quad n \in \mathbb{Z}^{+} \\
\text {Model/Data Compromise: } & J_{n}(v) & =\frac{1}{2}\left|v-\widehat{v}_{n+1}\right|{\widehat{\tilde{C}_{n+1}}}^{2}+\frac{1}{2}\left|y_{n+1}^{\dagger}+\eta_{n+1}-H v\right|_{r}^{2} \\
\text { Optimize: } & v_{n+1} & =\operatorname{argmin}_{v} J_{n}(v) .
\end{array}
$$

In What Sense Is This A Mean-Field Model?

- $\mu_{n}^{E K}:=\operatorname{Law}\left(v_{n}\right)$.
- \widehat{C}_{n+1} is the covariance under $\widehat{\mu}_{n+1}^{E K}:=\operatorname{Law}\left(\widehat{v}_{n+1}\right)$.
- $|\cdot|$ Euclidean norm on \mathbf{R}^{r} and induced matrix norm (any r).
$-|\cdot|_{A}=\left|A^{-\frac{1}{2}} \cdot\right|$ for $A>0 \mathrm{spd}$.

Mean-Field Ensemble Kalman Filter

Sequential Optimization Viewpoint

$$
\begin{array}{rlrl}
\text { Predict: } & \quad \widehat{v}_{n+1} & =\Psi\left(v_{n}\right)+\xi_{n}, \quad n \in \mathbb{Z}^{+} \\
\text {Model/Data Compromise: } & J_{n}(v) & =\frac{1}{2}\left|v-\widehat{v}_{n+1}\right|_{\hat{c}_{n+1}}^{2}+\frac{1}{2}\left|y_{n+1}^{\dagger}+\eta_{n+1}-H v\right|_{r}^{2} \\
\text { Optimize: } \quad v_{n+1} & =\operatorname{argmin}_{v} J_{n}(v) .
\end{array}
$$

In What Sense Is This A Mean-Field Model?

- $\mu_{n}^{E K}:=\operatorname{Law}\left(v_{n}\right)$.
- \widehat{C}_{n+1} is the covariance under $\widehat{\mu}_{n+1}^{E K}:=\operatorname{Law}\left(\widehat{v}_{n+1}\right)$.
- $|\cdot|$ Euclidean norm on \mathbf{R}^{r} and induced matrix norm (any r).
$-|\cdot|_{A}=\left|A^{-\frac{1}{2}} \cdot\right|$ for $A>0 \mathrm{spd}$.
- In practice: use $j \in\{1, \ldots, J\}, J$ number of ensemble members.
- Use resulting ensemble $\widehat{v}_{n+1}^{(j)}$ to estimate \widehat{C}_{n+1}.

Summary Of Optimization Perspective

Nudging

$$
\begin{aligned}
\text { Prediction: } & \widehat{v}_{n+1}=\Psi\left(v_{n}\right)+\xi_{n} \\
\text { Analysis: } & v_{n+1}=\widehat{v}_{n+1}+K\left(y_{n+1}^{\dagger}-H \widehat{v}_{n+1}\right)+K \eta_{n+1}, \\
\text { 3DVAR: } & K \text { constant, no noise }
\end{aligned}
$$

$$
\text { EnKF: } \quad K=K\left(\widehat{\mu}_{n+1}^{E K}\right), \quad \widehat{\mu}_{n+1}^{E K}=\operatorname{Law}\left(\widehat{v}_{n+1}\right)
$$

Two Goals

Control (3DVAR, EnKF):
UQ (EnKF):

$$
\left|v_{n}-v_{n}^{\dagger}\right| \ll 1, \quad \text { next slide. }
$$

$$
\mu_{n}^{E K} \approx \mu_{n}=\operatorname{Law}\left(v_{n}^{\dagger} \mid Y_{n}^{\dagger}\right), \quad \text { rest of talk. }
$$

3DVAR and Small Noise

Synchronization and Lorenz '63 Pecora and Carroll [24] (1990)
Synchronization and Navier-Stokes Hayden, Olson and Titi [15] (2011)

Theorem Law, Shukla and $S[21]$ (2012)

Assume synchronization and small noise $\mathcal{O}(\epsilon)$ in truth, no noise in filter. Consider 3DVAR with $K=\gamma H^{\star}$ and $|\gamma-1| \leq 1$. Then

$$
\limsup _{n \rightarrow \infty} \mathbb{E}\left|v_{n}-v_{n}^{\dagger}\right|^{2} \leq C \epsilon^{2}
$$

Corollary sanzAlonso and $\mathrm{S}[29]$ (2015)

Assume synchronization and small noise $\mathcal{O}(\epsilon)$ in truth, no noise in filter. The true filtering distribution $\mu_{n}=\operatorname{Law}\left(v_{n}^{\dagger} \mid Y_{n}^{\dagger}\right)$ satisfies

$$
\limsup _{n \rightarrow \infty} \mathbb{E}\left|\mathbb{E}^{v \sim \mu_{n}} v-v_{n}^{\dagger}\right|^{2} \leq C \epsilon^{2}
$$

Probabilistic Perspective: True Filter

Filtering: Doucet, de Freitas and Gordon [10] (2004)

Unconditioned Dynamics

State-Data Viewpoint (Nonlinear)

$$
\begin{array}{cll}
\text { State: } & v_{n+1}=\Psi\left(v_{n}\right)+\xi_{n}, & \xi_{n} \sim N(0, \Sigma), \text { i.i.d., } \\
\text { Data: } & y_{n+1}=h\left(v_{n+1}\right)+\eta_{n+1}, & \eta_{n+1} \sim N(0, \Gamma), \text { i.i.d. } \\
& v_{0} \sim N\left(m_{0}, C_{0}\right), \quad v_{0} \Perp\left\{\xi_{n}\right\}_{n \in \mathbb{N}} \Perp\left\{\eta_{n+1}\right\}_{n \in \mathbb{N}}
\end{array}
$$

Probability Viewpoint (Linear)

$$
\begin{aligned}
v_{n} & \sim \pi_{n}, \quad\left(v_{n}, y_{n}\right) \sim \mathfrak{r}_{n} \\
\pi_{n+1} & =P \pi_{n} \\
\mathfrak{r}_{n+1} & =Q \pi_{n+1}
\end{aligned}
$$

Key Linear Operators on \mathcal{P}

Definition of \mathcal{P}, \mathcal{G}

- $\mathcal{P}\left(\mathbf{R}^{r}\right)$: all probability measures on \mathbf{R}^{r}.
- $\mathcal{G}\left(\mathbf{R}^{r}\right)$: all Gaussian probability measures on \mathbf{R}^{r}.

Definition of P

$P: \mathcal{P}\left(\mathbf{R}^{\boldsymbol{d}}\right) \rightarrow \mathcal{P}\left(\mathbf{R}^{\boldsymbol{d}}\right)$ is the linear operator:

$$
P \pi(u)=\frac{1}{\sqrt{(2 \pi)^{d} \operatorname{det} \Sigma}} \int \exp \left(-\frac{1}{2}|u-\Psi(v)|_{\Sigma}^{2}\right) \pi(v) \mathrm{d} v
$$

Definition of Q

$Q: \mathcal{P}\left(\mathbf{R}^{d}\right) \rightarrow \mathcal{P}\left(\mathbf{R}^{d} \times \mathbf{R}^{K}\right)$ is the linear operator:

$$
Q \pi(u, y)=\frac{1}{\sqrt{(2 \pi)^{K} \operatorname{det} \Gamma}} \exp \left(-\frac{1}{2}|y-h(u)|_{\Gamma}^{2}\right) \pi(u)
$$

Key Nonlinear Operator on \mathcal{P}

Probability Viewpoint (Nonlinear)

$$
\begin{aligned}
& Y_{n}^{\dagger}=\left\{y_{\ell}^{\dagger}\right\}_{\ell=1}^{n}, \quad v_{n} \mid Y_{n}^{\dagger} \sim \mu_{n} \\
& \widehat{\mu}_{n+1}=P \mu_{n}, \quad v_{n+1} \mid Y_{n}^{\dagger} \sim \widehat{\mu}_{n+1} \\
& \rho_{n+1}=Q \widehat{\mu}_{n+1}, \quad\left(v_{n+1}, y_{n+1}\right) \mid Y_{n}^{\dagger} \sim \rho_{n+1} \\
& \mu_{n+1}=B\left(\rho_{n+1} ; y_{n+1}^{\dagger}\right), \quad \text { conditioning. }
\end{aligned}
$$

Conditioning (Nonlinear)

$B\left(\odot ; y^{\dagger}\right): \mathcal{P}\left(\mathbf{R}^{d} \times \mathbf{R}^{K}\right) \rightarrow \mathcal{P}\left(\mathbf{R}^{\boldsymbol{d}}\right)$ describes conditioning on observation $y=y^{\dagger}:$

$$
B\left(\rho ; y^{\dagger}\right)(u)=\frac{\rho\left(u, y^{\dagger}\right)}{\int_{\mathbf{R}^{d}} \rho\left(u, y^{\dagger}\right) \mathrm{d} u}
$$

The True Filter

Sequential Interleaving of Prediction and Bayes Theorem

$P \mu_{n}$ is prior prediction; $L\left(\bullet ; y^{\dagger}\right):=B\left(\bullet ; y^{\dagger}\right) \circ Q$ maps prior to posterior:

$$
\begin{aligned}
& \mu_{n+1}=B\left(Q P \mu_{n} ; y_{n+1}^{\dagger}\right) \\
& \mu_{n+1}=L\left(P \mu_{n} ; y_{n+1}^{\dagger}\right)
\end{aligned}
$$

Particle Filter Doucet (10) (2015)

$S^{J}: \mathcal{P}\left(\mathbf{R}^{r}\right) \times \Omega \rightarrow \mathcal{P}\left(\mathbf{R}^{r}\right)$ is empirical approximation operator:

$$
S^{J} \mu=\frac{1}{J} \sum_{j=1}^{J} \delta_{v_{j}}, \quad v_{j} \sim \mu \text { i.i.d. }
$$

S^{J} : is thus a random approximation of the identity operator on $\mathcal{P}\left(\mathbf{R}^{r}\right)$.

$$
\mu_{n+1}^{P F}=L\left(S^{J} P \mu_{n}^{P F} ; y_{n+1}^{\dagger}\right)
$$

Particle Filter Convergence

Theorem Del Moral [7] (1997), Del Moral and Guionnet [9] (2001)

$$
\sup _{0 \leq n \leq N} d\left(\mu_{n}, \mu_{n}^{P F}\right) \leq \frac{C}{\sqrt{J}}
$$

Comments on Proof Rebschini and Van Handel [25] (2015).

- Metric $d(\cdot, \cdot)$ on random probability measures:
$-d(\mu, \nu)^{2}=\sup _{|f| \leq 1} \mathbb{E}|\mu(f)-\nu(f)|^{2}$.
- Reduces to TV between deterministic measures.
- Consistency + Stability Implies Convergence.
- Consistency: $d\left(S^{J} \mu, \mu\right) \leq \frac{1}{\sqrt{\jmath}}$.
- Stability: P, L Lipschitz in $d(\cdot, \cdot)$.
- Suffers from weight collapse.

Weights

Particle Filter (Weight Collapse)

$$
\begin{aligned}
& \widehat{v}_{n+1}^{(j)}=\Psi\left(v_{n}^{(j)}\right)+\xi_{n}^{(j)}, \quad v_{n}^{(j)} \sim \mu_{n}^{P F} \\
& \ell_{n+1}^{(j)}=\exp \left(-\frac{1}{2}\left|y_{n+1}^{\dagger}-h\left(\widehat{v}_{n+1}^{(j)}\right)\right|_{\Gamma}^{2}\right), \\
& \mu_{n+1}^{P F}=\sum_{j=1}^{J} w_{n+1}^{(j)} \delta_{\widehat{v}_{n+1}^{(j)}}, \quad w_{n+1}^{(j)}=\ell_{n+1}^{(j)} /\left(\sum_{m=1}^{J} \ell_{n+1}^{(m)}\right) .
\end{aligned}
$$

Ensemble Kalman Filter (No Weight Collapse!)

$$
\begin{aligned}
& \widehat{v}_{n+1}^{(j)}=\Psi\left(v_{n}^{(j)}\right)+\xi_{n}^{(j)}, \quad v_{n}^{(j)} \sim \mu_{n}^{E K}, \\
& \widehat{y}_{n+1}^{(j)}=h\left(\widehat{v}_{n+1}^{(j)}\right)+\eta_{n+1}^{(j)}, \\
& v_{n+1}^{(j)}=\widehat{v}_{n+1}^{(j)}+\mathcal{C}^{v y}\left(\rho_{n+1}^{E K, J}\right) \mathcal{C}^{y y}\left(\rho_{n+1}^{E K, J}\right)^{-1}\left(y_{n+1}^{\dagger}-\widehat{y}_{n+1}^{(j)}\right), \\
& \mu_{n+1}^{E K}=\frac{1}{J} \sum_{j=1}^{J} \delta_{v_{n+1}^{(j)}} .
\end{aligned}
$$

Probabilistic Perspective: Ensemble Kalman Filter

The Mean Field Ensemble Kalman Filter

Comparison With True Filter

$$
\begin{aligned}
& \mu_{n+1}^{E K}=T\left(Q P \mu_{n}^{E K} ; y_{n+1}^{\dagger}\right) \\
& \mu_{n+1}=B\left(Q P \mu_{n} ; y_{n+1}^{\dagger}\right)
\end{aligned}
$$

Observations About T

- Choose T to recover mean-field EnKF;
- T defined through pushforward;
- Key is to understand when $T \approx B$.
- $T \equiv B$ on $\mathcal{G}\left(\mathbb{R}^{d} \times \mathbb{R}^{K}\right)$.

Approximate Conditioning

Block Form Of State-Data Covariance

Write covariance under $\rho \in \mathcal{P}\left(\mathbf{R}^{d} \times \mathbf{R}^{K}\right)$ as:

$$
\operatorname{cov}_{\rho}=\left(\begin{array}{cc}
\mathcal{C}^{v v}(\rho) & \mathcal{C}^{v y}(\rho) \\
\mathcal{C}^{v y}(\rho)^{\top} & \mathcal{C}^{\text {by }}(\rho)
\end{array}\right)
$$

Key Nonlinear Operator on $\mathcal{P} \quad\left(T\left(\rho ; y^{\dagger}\right) \equiv B\left(\rho ; y^{\dagger}\right)\right.$ for Gaussian inputs)
$T\left(\odot ; y^{\dagger}\right): \mathcal{P}\left(\mathbf{R}^{d} \times \mathbf{R}^{K}\right) \rightarrow \mathcal{P}\left(\mathbf{R}^{d}\right)$ approximates conditioning of ρ on $y=y^{\dagger}$:

$$
\begin{aligned}
\mathfrak{T}\left(\odot, \bullet ; \rho, y^{\dagger}\right) & : \mathbf{R}^{d} \times \mathbf{R}^{K} \rightarrow \mathbf{R}^{d} ; \\
(v, y) & \mapsto v+\mathcal{C}^{v y}(\rho) \mathcal{C}^{y y}(\rho)^{-1}\left(y^{\dagger}-y\right), \\
T\left(\rho ; y^{\dagger}\right) & =\left(\mathfrak{T}\left(\bullet, \bullet ; \rho, y^{\dagger}\right)\right)_{\sharp} \rho, \\
\mu_{n+1}^{E K} & =T\left(Q P \mu_{n}^{E K} ; y_{n+1}^{\dagger}\right) .
\end{aligned}
$$

Mean Field EnKF \& Maps on Probability Measures

State-Data Space Picture

$$
\begin{aligned}
& \widehat{v}_{n+1}=\Psi\left(v_{n}\right)+\xi_{n} \\
& \widehat{y}_{n+1}=h\left(\widehat{v}_{n+1}\right)+\eta_{n+1}, \\
& v_{n+1}=\widehat{v}_{n+1}+\mathcal{C}^{v y}\left(\rho_{n+1}^{E K}\right) \mathcal{C}^{y y}\left(\rho_{n+1}^{E K}\right)^{-1}\left(y_{n+1}^{\dagger}-\widehat{y}_{n+1}\right) .
\end{aligned}
$$

Remarks

- Recovers mean-field EnKF in nudging form.
- Use equal weight particle approximation to implement.

Main Theorem
 Relating The True and Ensemble Kalman Filters

Main Theorem: Carrillo, Hoffmann, S and Vaes [4] (2022)

The Mean Field Ensemble Kalman Filter

Comparison With True Filter

$$
\begin{aligned}
& \mu_{n+1}^{E K}=T\left(Q P \mu_{n}^{E K} ; y_{n+1}^{\dagger}\right) \\
& \mu_{n+1}=B\left(Q P \mu_{n} ; y_{n+1}^{\dagger}\right)
\end{aligned}
$$

Remarks

- When is $T\left(\odot ; y^{\dagger}\right) \approx B\left(\circ ; y^{\dagger}\right)$?
- A form of Consistency.
- Try Consistency + Stability Implies Convergence.

Gaussian Projection

Best Gaussian Approximation in KL

$$
\begin{aligned}
G & : \mathcal{P} \rightarrow \mathcal{G}, \\
G \pi & =\operatorname{argmin}_{\mathfrak{p} \in \mathcal{G}} d_{\mathrm{KL}}(\pi \| \mathfrak{p}) .
\end{aligned}
$$

Best Gaussian Approximation in KL

$$
G \pi=N\left(\operatorname{mean}_{\pi}, \operatorname{cov}_{\pi}\right)
$$

The Mean Field Ensemble Kalman Filter

Comparison With True Filter

$$
\begin{aligned}
& \mu_{n+1}^{E K}=T\left(Q P \mu_{n}^{E K} ; y_{n+1}^{\dagger}\right) \\
& \mu_{n+1}=B\left(Q P \mu_{n} ; y_{n+1}^{\dagger}\right)
\end{aligned}
$$

Key Fact

$$
T\left(G \rho ; y^{\dagger}\right)=B\left(G \rho ; y^{\dagger}\right) \quad \forall\left(\rho, y^{\dagger}\right) \in \mathcal{P}\left(\mathbf{R}^{d} \times \mathbf{R}^{E K}\right) \times \mathbf{R}^{E K}
$$

Pushforward beyond the Gaussian setting (continuous time): Yang, Mehta and Meyn [33] (2013)
Pushforward beyond the Gaussian setting (discrete time): Spantini, Baptista and Marzouk [32] (2022)

Closness of Exact Filter and EnKF

Weighted TV Metric

Let $g(v)=1+|v|^{2}$.

$$
d_{g}\left(\mu_{1}, \mu_{2}\right)=\sup _{|f| \leq g}\left|\mu_{1}[f]-\mu_{2}[f]\right|, \quad \mu[f]=\int f(u) \mu(d u) .
$$

Definition

Measure of how close true filter $\left\{\mu_{n}\right\}$ is to being Gaussian:

$$
\varepsilon:=\sup _{0 \leq n \leq N} d_{g}\left(G Q P \mu_{n}, Q P \mu_{n}\right) .
$$

Closness of Exact Filter and EnKF

Weighted TV Metric

Let $g(v)=1+|v|^{2}$.

$$
d_{g}\left(\mu_{1}, \mu_{2}\right)=\sup _{|f| \leq g}\left|\mu_{1}[f]-\mu_{2}[f]\right|, \quad \mu[f]=\int f(u) \mu(d u)
$$

Definition

Measure of how close true filter $\left\{\mu_{n}\right\}$ is to being Gaussian:

$$
\varepsilon:=\sup _{0 \leq n \leq N} d_{g}\left(G Q P \mu_{n}, Q P \mu_{n}\right) .
$$

Theorem Carrillo, Hoffimann, S and Vaes [4] (2022)

Let $\mu_{0}^{E K}=\mu_{0}$ and assume that $\|\Psi\|_{L^{\infty}},\|h\|_{L^{\infty}}$ and $|h|_{C^{0,1}}$ are bounded by r. Then there is $C:=C(N, r)>0$:

$$
\sup _{0 \leq n \leq N} d_{g}\left(\mu_{n}, \mu_{n}^{E K}\right) \leq C \varepsilon
$$

Closness of Exact Filter and EnKF

Assumptions C

- Data Y_{j}^{\dagger} lies in set

$$
B_{y}:=\left\{Y^{\dagger} \in \mathbf{R}^{K J}: \max _{0 \leq j \leq J}\left|y_{j}^{\dagger}\right| \leq \kappa_{y}\right\}
$$

$-\Psi_{0}: \mathbf{R}^{d} \rightarrow \mathbf{R}^{d}$ and $\mathbf{h}_{0}: \mathbf{R}^{d} \rightarrow \mathbf{R}^{K}$ are constant functions and denote by $B_{\Psi, h}(r)$ the set (Ψ, h) satisfying $\Psi \in B_{L \infty}\left(\Psi_{0}, r\right), h \in B_{L \infty}\left(h_{0}, r\right)$.

Corollary Carrillo, Hoffmann, S and Vaes [4] (2022)

Let Assumptions T of Theorem hold and Assumptions C. Then for any $\epsilon>0$ there is $\delta>0$ such that

$$
\sup _{Y^{\dagger} \in B_{y}} \sup _{(\Psi, h) \in B_{\Psi, h}(\delta)} \sup _{0 \leq n \leq N} d_{g}\left(\mu_{n}, \mu_{n}^{E K}\right) \leq \epsilon
$$

Proof of Theorem (Lipschitz Estimates)

Linear Maps P, Q
The maps P, Q are globally Lipschitz on $\mathcal{P}\left(\mathbf{R}^{d}\right)$ in d_{g}.

Proof of Theorem (Stability Estimate I)

Conditioning is not Lipschitz stable. However, if Ψ is bounded:
Nonlinear Conditioning Map $B^{y^{\dagger}}$
The maps $B^{y^{\dagger}}(\odot):=B\left(\odot ; y^{\dagger}\right)$ satisfy:

$$
\begin{aligned}
& \forall \mu \in \mathcal{P}\left(\mathbf{R}^{d}\right) \\
& \qquad d_{g}\left(B^{y^{\dagger}}(G Q P \mu), B^{y^{\dagger}}(Q P \mu)\right) \leq \ell_{B} d_{g}(G Q P \mu, Q P \mu) .
\end{aligned}
$$

Proof of Theorem (Stability Estimate II)

Let \mathcal{P}_{R} denote the following subset of probability measures
$\mathcal{P}_{R}\left(\mathbf{R}^{r}\right)=\left\{\mu \in \mathcal{P}\left(\mathbf{R}^{r}\right): \max \left\{|\operatorname{mean}(\mu)|,|\operatorname{cov}(\mu)|^{\frac{1}{2}},|\operatorname{cov}(\mu)|^{-\frac{1}{2}}\right\} \leq R\right\}$.
Using linearity of \mathfrak{T}, which defines nonlinear map $T y^{\dagger}$:

Approximate Nonlinear Conditioning Map $T^{\dagger}{ }^{\dagger}$

The maps $T y^{\dagger}(\odot):=T\left(\odot ; y^{\dagger}\right)$ satisfy, using Ψ bounded,

$$
\begin{aligned}
\forall(\mu, \rho) & \in \mathcal{P}\left(\mathbf{R}^{d}\right) \times \mathcal{P}_{R}\left(\mathbf{R}^{d} \times \mathbf{R}^{K}\right) \\
& d_{g}\left(T^{y^{\dagger}}(Q P \mu), T^{y^{\dagger}}(\rho)\right) \leq \ell_{T}(R) d_{g}(Q P \mu, \rho)
\end{aligned}
$$

Proof of Theorem

Since $T^{y_{n+1}^{\dagger}}(G \bullet)=B^{y_{n+1}^{\dagger}}(G \bullet)$ we have

$$
\begin{aligned}
& d_{g}\left(\mu_{n+1}^{E K}, \mu_{n+1}\right)=d_{g}(\left.T y_{n+1}^{\dagger}\left(Q P \mu_{n}^{E K}\right), B^{y_{n+1}^{\dagger}}\left(Q P \mu_{n}\right)\right) \\
& \leq d_{g}\left(T_{y_{n+1}^{\dagger}}\left(Q P \mu_{n}^{E K}\right), T_{n+1}^{\dagger}\left(Q P \mu_{n}\right)\right) \\
& \quad+d_{g}\left(T^{y_{n+1}^{\dagger}}\left(Q P \mu_{n}\right), T^{y_{n+1}^{\dagger}}\left(G Q P \mu_{n}\right)\right) \\
& \quad+d_{g}\left(T^{y_{n+1}^{\dagger}}\left(G Q P \mu_{n}\right), B^{y_{n+1}^{\dagger}}\left(Q P \mu_{n}\right)\right) \\
& \leq \ell_{T}(R) d_{g}\left(Q P \mu_{n}^{E K}, Q P \mu_{n}\right) \\
&\left.+\ell_{T}(R) d_{g}\left(Q P \mu_{n}, G Q P \mu_{n}\right)\right) \\
& \quad+d_{g}\left(B^{y_{n+1}^{\dagger}}\left(G Q P \mu_{n}\right), B^{y_{n+1}^{\dagger}}\left(Q P \mu_{n}\right)\right) \\
& \leq c d_{g}\left(\mu_{n}^{E K}, \mu_{n}\right)+\left(\ell_{T}(R)+\ell_{B}\right) \varepsilon .
\end{aligned}
$$

Proof of Theorem

Since $T^{y_{n+1}^{\dagger}}(G \bullet)=B^{y_{n+1}^{\dagger}}(G \bullet)$ we have

$$
\begin{aligned}
& d_{g}\left(\mu_{n+1}^{E K}, \mu_{n+1}\right)=d_{g}\left(T^{y_{n+1}^{\dagger}}\left(Q P \mu_{n}^{E K}\right), B^{y_{n+1}^{\dagger}}\left(Q P \mu_{n}\right)\right) \\
& \leq d_{g}\left(T^{y_{n+1}^{\dagger}}\left(Q P \mu_{n}^{E K}\right), T_{n+1}^{\dagger}\left(Q P \mu_{n}\right)\right) \\
& +d_{g}\left(T^{y_{n+1}^{\dagger}}\left(Q P \mu_{n}\right), T^{y_{n+1}^{\dagger}}\left(G Q P \mu_{n}\right)\right) \\
& +d_{g}\left(T^{y_{n+1}^{\dagger}}\left(G Q P \mu_{n}\right), B^{y_{n+1}^{\dagger}}\left(Q P \mu_{n}\right)\right) \\
& \leq \ell_{T}(R) d_{g}\left(Q P \mu_{n}^{E K}, Q P \mu_{n}\right) \\
& \left.+\ell_{T}(R) d_{g}\left(Q P \mu_{n}, G Q P \mu_{n}\right)\right) \\
& +d_{g}\left(B^{y_{n+1}^{\dagger}}\left(G Q P \mu_{n}\right), B^{y_{n+1}^{\dagger}}\left(Q P \mu_{n}\right)\right) \\
& \leq c d_{g}\left(\mu_{n}^{E K}, \mu_{n}\right)+\left(\ell_{T}(R)+\ell_{B}\right) \varepsilon .
\end{aligned}
$$

Closing

Conclusions

- Introduced in 1960 by Rudolph Kalman.
- Basic algorithm generalized: 3DVAR, Ensemble Kalman (EK).
- EK methods:
- developing as a general methodology for state estimation;
- developing as a general methodology for inverse problems.
- EK methods applied in numerous fields:
- weather forecasting;
- oceanography;
- hydrology, subsurface flow;
- medical imaging, machine learning
- Analysis in its infancy:
- accuracy of 3DVAR (State Estimation) - last decade.
- accuracy of EK (UQ) - end of last year.
- Many open mathematical questions: great field to enter!

References I

[1] D. J. Albers, P.-A. Blancquart, M. E. Levine, E. E. Seylabi, and A. Stuart.
Ensemble Kalman methods with constraints. Inverse Problems, 35(9):095007, 2019.
[2] M. Asch, M. Bocquet, and M. Nodet. Data assimilation, volume 11 of Fundamentals of Algorithms. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2016.
Methods, algorithms, and applications.
[3] E. Calvello, S. Reich, and A. M. Stuart.
Ensemble Kalman methods: a mean-field perspective.
Acta Numerica, arXiv 2209.11371, 2025.
[4] J. Carrillo, F. Hoffmann, A. Stuart, and U. Vaes.
The ensemble Kalman filter in the near Gaussian setting. arXiv preprint, 2212.13239, 2022.

References II

[5] J. Carrillo and U. Vaes.
Wasserstein stability estimates for covariance-preconditioned fokker-planck equations.
Nonlinearity, 34(4):2275, 2021.
[6] M. Dashti and A. M. Stuart.
The Bayesian approach to inverse problems.
In Handbook of uncertainty quantification. Vol. 1, 2, 3, pages 311-428. Springer, Cham, 2017.
[7] P. Del Moral.
Nonlinear filtering: interacting particle resolution.
Comptes Rendus de l'Académie des Sciences-Series
I-Mathematics, 325(6):653-658, 1997.
[8] P. Del Moral, A. Doucet, and A. Jasra.
Sequential Monte Carlo samplers.
J. R. Stat. Soc. Ser. B Stat. Methodol., 68(3):411-436, 2006.

References III

[9] P. Del Moral and A. Guionnet.
On the stability of interacting processes with applications to filtering and genetic algorithms.
In Annales de I'Institut Henri Poincaré (B) Probability and
Statistics, volume 37, pages 155-194. Elsevier, 2001.
[10] A. Doucet, N. De Freitas, N. J. Gordon, et al.
Sequential Monte Carlo methods in practice, volume 1.
Springer, 2001.
[11] G. Evensen.
Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics.
Journal of Geophysical Research: Oceans, 99(C5):10143-10162, 1994.

References IV

[12] G. Evensen.
Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics.
J. Geophys. Res. Oceans, 99(C5):10143-10162, 1994.
[13] A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart. Interacting Langevin diffusions: gradient structure and ensemble Kalman sampler.
SIAM J. Appl. Dyn. Syst., 19(1):412-441, 2020.
[14] A. Garbuno-Inigo, N. Nüsken, and S. Reich.
Affine invariant interacting Langevin dynamics for Bayesian inference.
SIAM J. Appl. Dyn. Syst., 19(3):1633-1658, 2020.

References V

[15] K. Hayden, E. Olson, and E. S. Titi.
Discrete data assimilation in the lorenz and 2d navier-stokes equations.
Physica D: Nonlinear Phenomena, 240(18):1416-1425, 2011.
[16] D. Z. Huang, J. Huang, S. Reich, and A. M. Stuart.
Efficient derivative-free bayesian inference for large-scale inverse problems.
Inverse Problems, 38(12):125006, 2022.
[17] D. Z. Huang, T. Schneider, and A. M. Stuart. Iterated kalman methodology for inverse problems. Journal of Computational Physics, 463:111262, 2022.
[18] M. A. Iglesias, K. J. H. Law, and A. M. Stuart.
Ensemble Kalman methods for inverse problems.
Inverse Problems, 29(4):045001, 20, 2013.

References VI

[19] R. Kalman.
A new approach to linear filtering and prediction problems.
Journal of Basic Engineering, 82:35-45, 1960.
[20] R. E. Kalman.
A new approach to linear filtering and prediction problems. Trans. ASME Ser. D. J. Basic Engrg., 82(1):35-45, 1960.
[21] K. Law, A. Shukla, and A. Stuart.
Analysis of the 3dvar filter for thepartially observed Lorenz '63 model.
Discrete and Continuous Dynamical Systems, 34(3):1061-1078, 2013.
[22] K. Law, A. Stuart, and K. Zygalakis.
Data Assimilation.
Texts in Applied Mathematics 62. Springer, 2015.

References VII

[23] A. C. Lorenc.
Analysis methods for numerical weather prediction.
Quarterly Journal of the Royal Meteorological Society,
112(474):1177-1194, 1986.
[24] L. M. Pecora and T. L. Carroll.
Synchronization in chaotic systems.
Physical review letters, 64(8):821, 1990.
[25] P. Rebeschini and R. van Handel.
Can local particle filters beat the curse of dimensionality? Ann. Appl. Probab., 25(5):2809-2866, 2015.
[26] S. Reich.
A dynamical systems framework for intermittent data assimilation.
BIT Numerical Mathematics, 51(1):235-249, 2011.

References VIII

[27] S. Reich and C. Cotter.
Probabilistic Forecasting and Bayesian Data Assimilation. Cambridge University Press, New York, 2015.
[28] D. Sanz-Alonso, A. Stuart, and A. Taeb.
Inverse Problems and Data Assimilation, volume 107.
Cambridge University Press, arXiv 1810.06191, 2023.
[29] D. Sanz-Alonso and A. M. Stuart.
Long-time asymptotics of the filtering distribution for partially observed chaotic dynamical systems.
SIAM/ASA Journal on Uncertainty Quantification, 3(1):1200-1220, 2015.
[30] C. Schillings and A. M. Stuart. Analysis of the ensemble Kalman filter for inverse problems. SIAM J. Numer. Anal., 55(3):1264-1290, 2017.

References IX

[31] C. Schillings and A. M. Stuart.
Convergence analysis of ensemble Kalman inversion: the linear, noisy case.
Appl. Anal., 97(1):107-123, 2018.
[32] A. Spantini, R. Baptista, and Y. Marzouk.
Coupling techniques for nonlinear ensemble filtering. SIAM Review, 64(4):921-953, 2022.
[33] T. Yang, P. G. Mehta, and S. P. Meyn.
Feedback particle filter.
IEEE Trans. Automat. Control, 58(10):2465-2480, 2013.

Citations

- Data Assimilation [2, 22, 27, 28]
- Particle Filter [7, 25]
- Kalman Filter [20]
- Ensemble Kalman Filter (EnKF) [12, 3]
- Inverse Problems [6, 28]
- Transport and Sequential Monte Carlo [8]
- Transport and EnKF [26]
- Ensemble Kalman Inversion (EKI) [18]
- EKI and regularized optimization [17]
- EKI and sampling [16]
- EKI and Approximate Gradient Descent [30, 31]
- EKI and Approximate Langevin Dynamics (EKS)[13, 14, 5]

