Polycrystal microstructures for more than two wells

BaTiO₃ ceramic: G. Arlt, J. Materials Science, 25 (1990) 2655-2666.

Consider a cubic-to-tetragonal transformation with

$$K = \bigcup_{i=1}^{3} SO(3)\mathbf{U}_{i},$$

$$\mathbf{U}_1 = \text{diag}(\eta_2, \eta_1, \eta_1), \ \mathbf{U}_2 = \text{diag}(\eta_1, \eta_2, \eta_1), \ \mathbf{U}_3 = \text{diag}(\eta_1, \eta_1, \eta_2).$$

Theorem

 \mathcal{E} contains a relatively open neighbourhood of $(\eta_1^2\eta_2)^{\frac{1}{3}}SO(3)$ in $\mathcal{D}:=\{\mathbf{A}\in GL^+(3,\mathbb{R}): \det\mathbf{A}=\eta_1^2\eta_2\}.$

Proof. $\mathcal E$ is isotropic and by Dolzmann & Kirchheim (2013) $K^{\rm qc}$ contains a relatively open neighbourhood of $(\eta_1^2\eta_2)^{\frac13}\mathbf 1$ in $\mathcal D$.

In fact, if the austenite is cubic and the transformation strain \mathbf{U} is not a dilatation then K^{qc} always contains a nontrivial set of tetragonal wells (c.f. Bhattacharya (1992), B/Koumatos (2014)) and so \mathcal{E} contains a relatively open neighbourhood of $(\det \mathbf{U})^{\frac{1}{3}}SO(3)$ in $\mathcal{D}:=\{\mathbf{A}\in GL^+(3,\mathbb{R}): \det \mathbf{A}=\det \mathbf{U}\}$. Hence, for example, we have a nontrivial \mathcal{E} for cubic to orthorhombic transformations.

A related remark is:

Theorem There is no homogeneous gradient Young measure

$$\nu = \sum_{i=1}^{4} \lambda_i \delta_{\mathbf{A}_i}, \quad \lambda_i \ge 0, \sum_{i=1}^{4} \lambda_i = 1,$$

with $\mathbf{A}_i \in K$ and $\bar{\nu} = (\eta_1^2 \eta_2)^{1/3} \mathbf{1}$.

Arlt (1990).

Microstructure with approximately four gradients in BaTiO₃.

Is the apparent conflict with experiment due to ignoring interfacial energy, or because the deformation is not a dilatation on the boundary?

Another issue (c.f. recent work of F. Della Porta) is whether all microstructures with supp $\nu_{\mathbf{x}} \subset K^{\mathsf{qc}}\mathbf{R}_i$ for a.e. $\mathbf{x} \in \Omega_i$ are obtainable by a suitable path starting from the austenite.

rank
$$(\mathbf{A_i}-1)=1,$$
 $i=1,\ldots,12$ rank $(\mathbf{A_i}-\mathbf{A_j})>1,$ $i\neq j$

What is $\{A_1, \ldots, A_{12}\}^{qc}$?

 $Ti_{76}Nb_{22}Al_2$ (T. Inamura) cubic to orthorhombic, $\lambda_2 = 1$

