The case of two wells

We take

$$K = SO(3)\mathbf{U}_1 \cup SO(3)\mathbf{U}_2,$$

$$U_1 = diag(\eta_1, \eta_2, \eta_3), \ U_2 = diag(\eta_2, \eta_1, \eta_3),$$

and $\eta_2 > \eta_1 > 0$, $\eta_3 > 0$ (e.g. tetragonal to orthorhombic, or special orthorhombic to monoclinic transformations).

The advantage of this case is that it is the only one for which K^{qc} is known.

Theorem (B/James 92) K^{qc} consists of the matrices $A \in GL^+(3,\mathbb{R})$ such that

$$\mathbf{A}^T \mathbf{A} = \begin{pmatrix} a & c & 0 \\ c & b & 0 \\ 0 & 0 & \eta_3^2 \end{pmatrix},$$

where $a > 0, b > 0, a + b + |2c| \le \eta_1^2 + \eta_2^2, \ ab - c^2 = \eta_1^2 \eta_2^2.$

In addition (B/James 91), if $Dy(x) \in K^{qc}$ a.e. then y is a plane strain, i.e.

$$y(x) = Q(y_1(x), y_2(x), \eta_3 x_3 + a),$$

where $y_{1,3} = y_{2,3} = 0$, $Q \in SO(3)$ and $a \in \mathbb{R}$.

Theorem

$$\mathcal{E} = \begin{cases} \emptyset & \text{if } \eta_3 \neq \sqrt{\eta_1 \eta_2} \\ SO(3)\eta_3 & \text{if } \eta_3 = \sqrt{\eta_1 \eta_2} \end{cases}$$

Proof. Suppose $\mathbf{D}=\operatorname{diag}\left(d_1,d_2,d_3\right)\in\mathcal{E}$. Then for any $\mathbf{R}\in SO(3)$ we have $\mathbf{D}\mathbf{R}\in\mathcal{E}$, and so there exist a,b,c with $a>0,\,b>0,\,ab-c^2=\eta_1^2\eta_2^2,\,a+b+|2c|\leq \eta_1^2+\eta_2^2$ and

$$\begin{pmatrix} a & c & 0 \\ c & b & 0 \\ 0 & 0 & \eta_3^2 \end{pmatrix} = \mathbf{R} \begin{pmatrix} d_1^2 & 0 & 0 \\ 0 & d_2^2 & 0 \\ 0 & 0 & d_3^2 \end{pmatrix} \mathbf{R}^T.$$

Hence $d_1 = d_2 = d_3 = \eta_3$ and both sides equal $\eta_3^2 1$, so that we must have $a = b = \eta_3^2, c = 0$. Thus $\eta_3 = \sqrt{\eta_1 \eta_2}$, when indeed $2\eta_3^2 + 0 \le \eta_1^2 + \eta_2^2$.

(For particular grain geometries and rotations there could be additional zero-energy microstructures.)

Now consider the set

$$\mathcal{E}_{2D} = \bigcap_{\mathbf{R} \in SO(3), \mathbf{Re}_3 = \pm \mathbf{e}_3} K^{\mathsf{qc}} \mathbf{R}.$$

Theorem

 $A \in \mathcal{E}_{2D}$ iff $A = RD\tilde{R}$, where $R, \tilde{R} \in SO(3)$, $\tilde{R}e_3 = \pm e_3$,

$$\mathbf{D} = \left(\begin{array}{ccc} v_1 & 0 & 0 \\ 0 & v_2 & 0 \\ 0 & 0 & \eta_3 \end{array} \right),$$

and
$$v_1 > 0, v_2 > 0$$
, $v_1 v_2 = \eta_1 \eta_2$, $|v_i| \le \sqrt{\frac{\eta_1^2 + \eta_2^2}{2}}$.

(See Kohn & Niethammer (2000) and the book of Dolzmann (2003).)

There are nontrivial deformations \mathbf{y} with $D\mathbf{y}(\mathbf{x}) \in \mathcal{E}_{2D}$ a.e. $\mathbf{x} \in \Omega$, such as

$$\mathbf{y}(\mathbf{x}) = (\sqrt{\eta_1 \eta_2} \, x_1, \sqrt{\eta_1 \eta_2} \, x_2, \eta_3 x_3) + \varepsilon g(\mathbf{x} \cdot \mathbf{e}^{\perp}) \mathbf{e},$$
 where $|\mathbf{e}| = |\mathbf{e}^{\perp}| = 1, \mathbf{e}^{\perp} \cdot \mathbf{e} = \mathbf{e} \cdot \mathbf{e}_3 = 0, \ |g'| \leq M < \infty$ and $|\varepsilon|$ sufficiently small.

Such deformations nontrivially deform the grain boundaries (it would be interesting to have experimental results on grain boundary deformation resulting from martensitic transformations).

Zero-energy microstructures for a bicrystal

Energy wells
$$K = SO(3)U_1 \cup SO(3)U_2$$

$$\begin{aligned} \mathbf{U}_1 &= \text{diag}\,(\eta_2,\eta_1,\eta_3), \\ \mathbf{U}_2 &= \text{diag}\,(\eta_1,\eta_2,\eta_3), \\ \eta_2 &> \eta_1 > 0, \\ \eta_3 &> 0 \end{aligned}$$

$$\Omega_1 = \omega_1 \times (0,d)$$
 supp $\nu_x \subset K$ a.e. $x \in \Omega_1$

Grain 2

$$\Omega_2 = \omega_2 \times (0, d)$$

 $\mathrm{supp} \, \nu_{\mathrm{x}} \subset K\mathbf{R}(\alpha) \text{ a.e. } \mathrm{x} \in \Omega_2$
 $\mathbf{R}(\alpha)\mathbf{e}_3 = \mathbf{e}_3$

Question: Is it true that every zero-energy microstructure is nontrivial (i.e. not a pure phase $\nu_{\rm x}=\delta_{\rm A}$) in each of the grains?

(If the interface between the grains were not vertical, so that it had the form $x_3 = g(x_1, x_2)$ for some open set of (x_1, x_2) , we cannot have a pure phase in one of the grains because a short calculation shows that it violates the microstructure being a plane strain in the other grain.)

Result 1. If the interface is *planar* then whatever its normal n there always exists a zero-energy microstructure which has a pure phase (i.e. $\nu_{\rm x}=\delta_{\rm A}$) in one of the grains.

Therefore the interface needs to be curved in order to show that the microstructure has to be nontrivial. Write the normal to the interface as $\mathbf{n} = (\cos \theta, \sin \theta, 0)$.

Result 2. Suppose that $\alpha = \pi/4$. Then it is impossible to have a zero-energy microstructure with a pure phase in one of the grains if the boundary between the grains contains a normal with $\theta \in D_1$ and another normal with $\theta' \in D_2$.

Proofs use:

- 1. A reduction to 2D using the plane strain result for the two-well problem.
- 2. The characterization of the quasiconvex hull of two wells.
- 3. Use of a generalized Hadamard jump condition in 2D to show that there has to be a rank-one connection $\mathbf{b} \otimes \mathbf{N}$ between the polyconvex hulls for each grain.
- 4. Long and detailed calculations.

For the details see, JB & C. Carstensen, *Interaction of martensitic microstructures in adjacent grains*, ICOMAT 2017 Proceedings.