Another possibility is to take pu =1+P®Q with P-Q = 0, when

we have M =1+BP®B1Q and

MIM —1

so that again SO(3) and SO(3)M are rank-one connected with
normals B=7Q and BP + 3|BP|?B~7Q and |a]? = |Bp|?|B~Tq°.

B~ 'Q®BP +BP®B7Q+ BP°’B1Q®B~1Q

(BP + _[BPP’BTQ) & B 7Q

1
+B-7Q® (BP + _|BP|’B~7Q),

1 O

O 1
For bcc with P = (1) Q= (O) we get the normals (

(twinning),

0
1 | (slip) with |a|? = 2.
1
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Polycrystals

Different orientations of the crystal lattice in each grain.

No diffusion, within the
grains, or of the grain
boundaries.




Description of grain geometry

Consider a polycrystal that occupies in a reference con-
figuration a bounded domain (open, connected set)
Q C R3 composed of a finite number of disjoint grains
Q;,7=1,...,N, where each £2; is a bounded domain
with Lipschitz boundary 0€2;, so that

N R
2 = int U Q]
1=1



Topology and graphs

Some topological information is encoded in the
graph whose vertices are the grains (labelled
1,...,N) and with edges (i,j) corresponding to
grains €2;,Q2; with H2(0$2; N 9S2;) > 0 (in 2D this
IS used in the proof of the four colour theorem).

For each grain i let M (i) be the number of j # i for
which (4,7) is an edge.



A and B are interior grains
but touch 0X2.

Interior grains are ones for
which 5’Qj C Uk;&] 0€2;., and
the others are boundary
grains.

The set of triple points is

T = U 8(27;1 M 897;2 M 897;3.
1<11<19<13<N



Theorem Suppose each grain €2; is convex. Then
every interior grain €2; is a convex polyhedron (i.e. an
intersection of a finite number of open half-spaces)
with at most M (i) faces.

Theorem If each ﬁj IS a topological manifold with
boundary then T is nowhere dense in Ué\le 0S2;.



Zero-energy microstructures for a polycrystal

For a polycrystal the total free energy is given by

I(y) = [ W(Dy(x),x)dx,
where W(A,x) = ¢ (AR}) for x € Q; and R; € SO(3).
We fix 8 < 0. and write K = K(0), U =U(#) etc.

Then a zero-energy microstructure corresponds to a gra-
dient YM (vx)xeq With supprvx C KR, for a.e. x € €2;, or
equivalently to a macroscopic deformation gradient with

Dy(x) € (KR)" = KR,

for a.e. x € €2;.



Constant deformation gradient in adjacent grains

flat part of grain R

Grain 1
boundary
\ Dy =A,x-n>k

Dy=DB, x-n<k .
, X -n=
Grain 2

We can assume that grain 1 has unrotated crystal
axes. Hence for this to be a zero-energy deformation

A = Q1U;, B = Q2U;R, where Q1,Qz € SO(3) and R € SO(3)
IS the rotation of grain 2.



For a rank-one connection we must have

det(U2 - RTUZR) = 0.
The function
R — det(U? - RTUZR)

is real analytic on SO(3) and for U; not a multiple of 1 is
not identically zero. Hence (c.f. Mityagin 2015) its zero
set is of measure zero. Thus for generic grain rotations
such a zero-energy deformation is impossible.



Zero-energy microstructures possible for any
grain geometry and rotations

These correspond to gradient YMs (vx)xeq Such

that supprx C Nresoz) KR a.e., or equivalently to
macroscopic deformation gradients satisfying

Dy(x)e&:= () K9Rforae xe
ReSO(3)

The set £ was essentially defined in Bhattacharya & Kohn
(1996,1997) in connection with the ‘Taylor bound’.

Note that £ is isotropic, i.e.

QER = & for all Q,R € SO(3).



