Incompatibility-induced metastability

Example 1

Special case of JB/James 2014 designed to explain hysteresis in the bi-axial experiments of Chu & James on CuAlNi single crystals, in which a transformation occurs under load between two martensitic variants.

$$I(\mathbf{y}) = \int_{\Omega} W(D\mathbf{y}) d\mathbf{x},$$

where $W: GL^+(3,\mathbb{R}) \to \mathbb{R}$ and W has two local minimizers at \mathbf{A}, \mathbf{B} with rank $(\mathbf{A} - \mathbf{B}) > 1$ and $W(\mathbf{A}) - W(\mathbf{B}) > 0$ sufficiently small.

Claim. Under suitable growth hypotheses on W, $\bar{\mathbf{y}}(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{c}$ is a local minimizer of I in $L^1(\Omega; \mathbb{R}^3)$, i.e. there exists $\varepsilon > 0$ such that $I(\mathbf{y}) \geq I(\bar{\mathbf{y}})$ if $\int_{\Omega} |\mathbf{y} - \bar{\mathbf{y}}| \, d\mathbf{x} < \varepsilon$.

Idea: since $\bf A$ and $\bf B$ are incompatible, if we nucleate a region in which $D{\bf y}({\bf x}) \sim {\bf B}$ there must be a transition layer in which the increase of energy is greater than the decrease of energy in the nucleus.

Related work: Kohn & Sternberg 1989, Grabovsky & Mengesha 2009

Example 2. Nucleation of austenite in martensite

(JB/K. Koumatos/H. Seiner 2013,2014)

(b) **NUCLEUS**

Twinning and slip in Bravais lattices

Consider a Bravais lattice B. What are the rank-one connections between SO(3) and SO(3)M, where $M = B\mu B^{-1} \notin P(B)$?

We try
$$\mu=-1+\mathbf{p}\otimes\mathbf{q}$$
 with $\mathbf{p},\mathbf{q}\in\mathbb{Z}^3$ and $\mathbf{p}\cdot\mathbf{q}=2$, when $\mathbf{B}\mu\mathbf{B}^{-1}=-1+\mathbf{B}\mathbf{p}\otimes\mathbf{B}^{-T}\mathbf{q},$

$$\mathbf{M}^{T}\mathbf{M} - \mathbf{1} = (-1 + \mathbf{B}^{-T}\mathbf{q} \otimes \mathbf{B}\mathbf{p})(-1 + \mathbf{B}\mathbf{p} \otimes \mathbf{B}^{-T}\mathbf{q}) - \mathbf{1}$$

$$= -\mathbf{B}^{-T}\mathbf{q} \otimes \mathbf{B}\mathbf{p} - \mathbf{B}\mathbf{p} \otimes \mathbf{B}^{-T}\mathbf{q} + |\mathbf{B}\mathbf{p}|^{2}\mathbf{B}^{-T}\mathbf{q} \otimes \mathbf{B}^{-T}\mathbf{q}$$

$$= (-\mathbf{B}\mathbf{p} + \frac{1}{2}|\mathbf{B}\mathbf{p}|^{2}\mathbf{B}^{-T}\mathbf{q}) \otimes \mathbf{B}^{-T}\mathbf{q}$$

$$+ \mathbf{B}^{-T}\mathbf{q} \otimes (-\mathbf{B}\mathbf{p} + \frac{1}{2}|\mathbf{B}\mathbf{p}|^{2}\mathbf{B}^{-T}\mathbf{q}).$$

Hence SO(3) and $SO(3)\mathbf{M}$ are rank-one connected, with normals parallel to $\mathbf{B}^{-T}\mathbf{q}$ and $-\mathbf{B}\mathbf{p} + \frac{1}{2}|\mathbf{B}\mathbf{p}|^2\mathbf{B}^{-T}\mathbf{q}$.

Note also that if $1 + a \otimes n = QM$ then

$$\operatorname{tr} \mathbf{M}^T \mathbf{M} - 3 = \operatorname{tr} (\mathbf{1} + \mathbf{n} \otimes \mathbf{a}) (\mathbf{1} + \mathbf{a} \otimes \mathbf{n}) - 3$$

= $|\mathbf{B}\mathbf{p}|^2 |\mathbf{B}^{-T}\mathbf{q}|^2 - 4$,

so that
$$|\mathbf{a}|^2 = |\mathbf{B}\mathbf{p}|^2 |\mathbf{B}^{-T}\mathbf{q}|^2 - 4$$
.

For a bcc lattice we can take

$$\mathbf{B} = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}, \ \mathbf{B}^{-1} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

Then the first case with
$$\mathbf{p}=\begin{pmatrix}1\\1\\1\end{pmatrix}$$
, $\mathbf{q}=\begin{pmatrix}1\\1\\0\end{pmatrix}$ gives

the normals
$$\begin{pmatrix} \pm 1 \\ \pm 1 \\ 2 \end{pmatrix}$$
 and $|\mathbf{a}|^2 = \frac{1}{2}$.

These are the most commonly observed normals for bcc metals and alloys, and work of Bevis & Crocker (1968,1969), Jaswon & Dove (1956,1957,1960) probably shows that they minimize $|\mathbf{a}|$.

For fcc we can take

$$\mathbf{B} = \frac{1}{2} \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \ \mathbf{B}^{-1} = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix}.$$

Then with
$$p=\begin{pmatrix}1\\-1\\1\end{pmatrix}$$
, $q=\begin{pmatrix}1\\0\\1\end{pmatrix}$ we get the commonly observed normals $\begin{pmatrix}\pm1\\\pm1\\1\end{pmatrix}$ and $|a|^2=\frac{1}{2}$.