

(Classical) austenite-martensite interface in CuAlNi (courtesy C-H Chu and R. D. James)

We have to solve

$$\mathbf{R}(\mathbf{U}_i+(\mathbf{1}-\lambda)\mathbf{a}\otimes\mathbf{n})-\mathbf{1}=\mathbf{b}\otimes\mathbf{m}$$
 for $\mathbf{R}\in SO(3), \lambda\in[0,1]$ and $\mathbf{b},\mathbf{m}\in\mathbb{R}^3.$

The solutions (JB/James 1987) give the formulae of the crystallographic theory of martensite (Wechsler, Lieberman & Read 1953)

Let
$$\delta^* = \mathbf{a} \cdot \mathbf{U}_i (\mathbf{U}_i^2 - 1)^{-1} \mathbf{n}$$
.

Case 1. If U_i does not have an eigenvalue 1 then there is a solution iff $\delta^* \leq -2$ and

$${\rm tr}\, {\bf U}_i^2 - {\rm det}\, {\bf U}_i^2 - 2 + \frac{1}{2\delta^*} |{\bf a}|^2 \ge 0,$$

and if $\delta^* < -2$ there are exactly four solutions

$$\begin{split} (R_1,\lambda^*,b_1^+\otimes m\ _1^+), & (R_2,\lambda^*,b_1^-\otimes m\ _1^-),\\ (R_3,1-\lambda^*,b_2^+\otimes m\ _2^+), & (R_4,1-\lambda^*,b_2^-\otimes m\ _2^-),\\ \end{split}$$
 where $\lambda^*=\frac{1}{2}\left(1-\sqrt{1+\frac{2}{\delta^*}}\right).$

Case 2. There are solutions for every $\lambda \in [0,1]$ iff the following cofactor conditions \mathbf{U}_i has middle eigenvalue 1 $\mathbf{a} \cdot \cot(\mathbf{U}_i^2 - 1)\mathbf{n} = 0$, $\cot \mathbf{U}_i^2 - \det \mathbf{U}_i^2 - \frac{|\mathbf{a}|^2}{4} - 2 \ge 0$ hold.

But why (cf JB/Carstensen 1997) should the martensitic microstructure be a simple laminate, rather than something more complicated, such as a double laminate?

Nonclassical austenite-martensite interface in CuAlNi (H. Seiner)

Special compositions and the discovery of low hysteresis alloys.

1. The wedge microstructure (Bhattacharya 1991)

Wedge microstructure in CuAlNi Otsuka & Shimizu (1969)

Microstructure supported on energy wells impossible for cubic-to-tetragonal, possible for cubic to orthorhombic iff the eigenvalues α, β, γ of the transformation strain $U_i(\theta_c)$ satisfy a special relation $f(\alpha, \beta, \gamma) = 0$, which holds to high accuracy for the actual compositions close to Cu-14.2wt.%AI-4.3wt.%Ni used in shape-memory alloys.

2. Ultra-low hysteresis alloys

James et.al. (2013) tuned the composition of a ZnAuCu alloy so that the cofactor conditions were very nearly satisfied, with dramatic results.

- (i) the thermal hysteresis was reduced from typical values of $50^{\circ} 70^{\circ}\text{C}$ to about 2°C .
- (ii) Material undamaged after thousands of thermal cycles (millions for a material discovered later by Quandt, Wuttig et al 2014).
- (iii) During thermal cycling remarkable martensitic microstructures are observed that are completely different in each cycle.

 ${\sf Zn_{45}Au_{30}Cu_2}$ ultra-low hysteresis alloy Song, Chen, Dabade, Shield, James, 2013 'Moving mask' approximation analyzed by Della Porta (2018), who has also identified further conditions on the ${\bf U}_i$ allowing new microstructures, closely satisfied in this alloy.