Mallard’s law

Let U=UT >0, V=VT > 0 be such that

V=(-142e®e)U(-1+2e®e), (1)

where |e| = 1. Then SO(3)U and SO(3)V are rank-one
connected with rank-one connections given by

QV =U + a®n,
( ~1
2 <|UU_—1:|2 —Ue) e (Typel),

2
2Ue ® (e - ﬁé—eg) (Type II).

axxn =«

\

(In fact Chen et al (2013) show that if V = RUR? for some R € SO(3)
then SO(3)U and SO(3)V are rank-one connected iff (1) holds for some e.)
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For example, for cubic-to-tetragonal we can take

U; =diag (n2,n1,m1), U =diag (n1,12,11),
and then
> +2_ 1,0 o
UT-Us = 5(772—?71) (ex—e1)R(ex+e1)+(exte1)R(ex—eq)),

so that twinning is on [110] planes.
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Convexity conditions

Let ¢ : M3%3 5 R be continuous. We say that

W is rank-one convex if t = Y(A +ta®mn) is convex for
3x3 3

all A e M=~ , and a,n € R~, Null Lagrangians

W is polyconvex if P(A) = g(A,cof A,detA) for all

A € M3%3 for some convex g,
W IS quasiconvex if

/ V(Da(x)) dx 2 / w(A) o definition

whenever z € Ax {W(QE) independent
of 2

or C8(2; R3)
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P polyconvex = 1 quasiconvex = 1 rank-one convex
4 Roughly N&S <=
for existence

of minimizers
The free-energy function

—  Y(-,0) is not quasiconvex
because the existence of
rank-one connections be-
tween energy wells implies
that ¥ (-,0) is not rank-one
convex.

So we expect the minimum of the energy in general not
to be attained, with the gradients Dy{7) of minimizing
sequences generating infinitely fine microstructures.
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Gradient Young measures

Given a sequence of gradients
Dy(j), fix 7,x,0.

Let E C M3%3,

vol {z € B(x,9) : DyU)(z) e E}
vol B(x,0d)

VX,j,5(E) —

vx(F) = |lim lim ij5(E) Gradient Young
0—=0j—00 =7 measure
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Gradient Young measure of a simple laminate

n
A—B=a®n
DA
O< A<

Ux = AoA + (1 — \)dp

) S XA+ (1= NB =g = s C dvz(C)
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Theorem (Kinderlehrer/Pedregal)
A family of probability measures (vx)xcq IS the

Young measure of a sequence of gradients Dy(J)
bounded in L°° if and only if

(i) Ux is a gradient (Dy, the weak limit of DyU))
(i) (vx, f) 1= L3x3 f(C) dvx(C) = f(vx)

for all quasiconvex f.
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Convexifications with respect to a cone

Let G be a convex cone of continuous functions
f: M3%3 5 R. Examples are the cones of convex, poly-
convex, quasiconvex and rank-one convex functions.

For a continuous v : M3%3 — R define the
G—convexification & of ¢ by

sz:sup{fEG:fgzp}.
Then ¢ < pPe < p9° < p"c,

p9C(A, 0) is the macroscopic free-energy
function corresponding to .
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Similarly, for K ¢ M3%3 compact define (Sverak)
KC = {A: f(A) < m[?xf for all f € G}.
Then K" C K9° C KP° C K°“.
Theorem (JB/Carstensen (to appear) following Krucik 2000)
K¢ = {A € M3*3: 3, € P(K) with f(A) < (i, f) Vf € G}
In particular

K9° = {v : v homogeneous gradient YM, suppv C K}.

K (6)9¢ is the set of macroscopic deformation gradients
corresponding to zero-energy microstructures.
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Phase nucleation

How does austenite transform to martensite as 6
passes through 6.7

It cannot do this by means of an exact interface be-
tween austenite and martensite, because this requires
the middle eigenvalue of U;(#) to be one, which in
general is not the case (but see later).

So what does it do?
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