Mallard's law

Let $U = U^T > 0$, $V = V^T > 0$ be such that

$$V = (-1 + 2e \otimes e)U(-1 + 2e \otimes e), \qquad (\dagger)$$

where $|\mathbf{e}| = 1$. Then $SO(3)\mathbf{U}$ and $SO(3)\mathbf{V}$ are rank-one connected with rank-one connections given by

$$QV = U + a \otimes n,$$

$$\mathbf{a}\otimes\mathbf{n}=\left\{ \begin{array}{ll} 2\Big(\frac{\mathbf{U}^{-1}\mathbf{e}}{|\mathbf{U}^{-1}\mathbf{e}|^2}-\mathbf{U}\mathbf{e}\Big)\otimes\mathbf{e} & \text{(Type I)},\\ \\ 2\mathbf{U}\mathbf{e}\otimes\Big(\mathbf{e}-\frac{\mathbf{U}^2\mathbf{e}}{|\mathbf{U}\mathbf{e}|^2}\Big) & \text{(Type II)}. \end{array} \right.$$

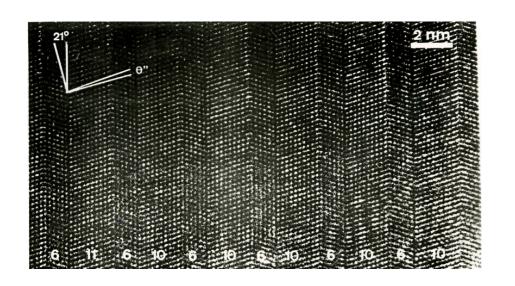
(In fact Chen et al (2013) show that if $V = RUR^T$ for some $R \in SO(3)$ then SO(3)U and SO(3)V are rank-one connected iff (†) holds for some e.)

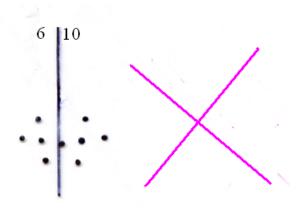
For example, for cubic-to-tetragonal we can take

$$U_1 = \text{diag}(\eta_2, \eta_1, \eta_1), \ U_2 = \text{diag}(\eta_1, \eta_2, \eta_1),$$

and then

$$\begin{split} U_1^2 - U_2^2 &= \frac{1}{2} (\eta_2^2 - \eta_1^2) \Big((e_2 - e_1) \otimes (e_2 + e_1) + (e_2 + e_1) \otimes (e_2 - e_1) \Big), \\ \text{so that twinning is on [110] planes.} \end{split}$$



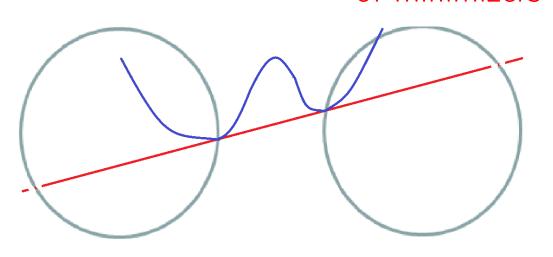


Convexity conditions

Let $\psi: M^{3\times 3} \to \mathbb{R}$ be continuous. We say that ψ is rank-one convex if $t \mapsto \psi(\mathbf{A} + t\mathbf{a} \otimes \mathbf{n})$ is convex for all $\mathbf{A} \in M^{3\times 3}$, and $\mathbf{a}, \mathbf{n} \in \mathbb{R}^3$, Null Lagrangians ψ is polyconvex if $\psi(\mathbf{A}) = g(\mathbf{A}, \operatorname{cof} \mathbf{A}, \det \mathbf{A})$ for all $\mathbf{A} \in M^{3\times 3}$ for some convex g, ψ is quasiconvex if

$$\int_{\Omega} \psi(D\mathbf{z}(\mathbf{x})) \, d\mathbf{x} \geq \int_{\Omega} \psi(\mathbf{A}) \, d\mathbf{x}$$
 definition whenever $\mathbf{z} \in \mathbf{A}\mathbf{x} + W_0^{1,\infty}(\Omega;\mathbb{R}^3)$. independent of Ω

 ψ polyconvex $\Rightarrow \psi$ quasiconvex $\Rightarrow \psi$ rank-one convex $\not\leftarrow$ Roughly N&S $\not\leftarrow$ for existence of minimizers



The free-energy function $\psi(\cdot,\theta)$ is not quasiconvex because the existence of rank-one connections between energy wells implies that $\psi(\cdot,\theta)$ is not rank-one convex.

So we expect the minimum of the energy in general not to be attained, with the gradients $D\mathbf{y}^{(j)}$ of minimizing sequences generating *infinitely fine* microstructures.

Gradient Young measures

Given a sequence of gradients $D\mathbf{y}^{(j)}$, fix j, \mathbf{x}, δ .

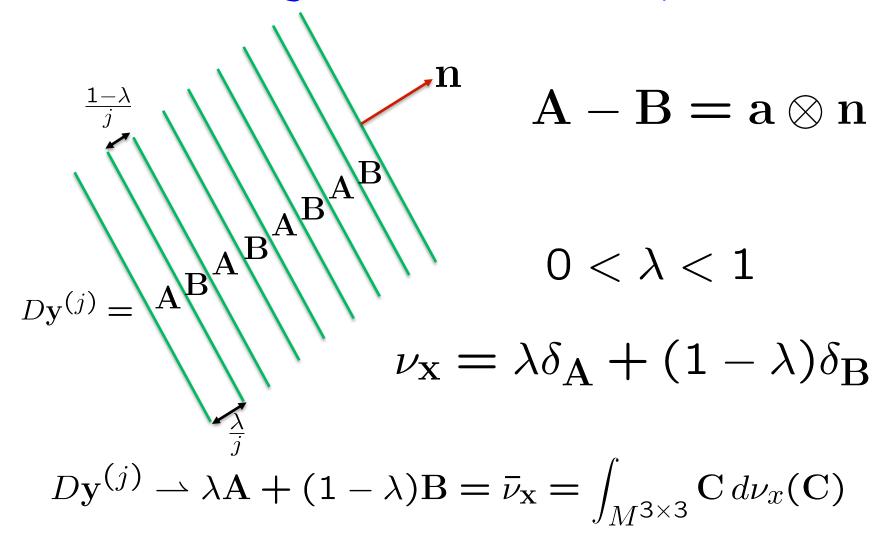
Let $E \subset M^{3\times3}$.

$$B(x,\delta)$$
 Ω

$$\nu_{\mathbf{x},j,\delta}(E) = \frac{\text{vol } \{\mathbf{z} \in B(\mathbf{x},\delta) : D\mathbf{y}^{(j)}(\mathbf{z}) \in E\}}{\text{vol } B(\mathbf{x},\delta)}$$

$$\nu_{\mathbf{X}}(E) = \lim_{\delta \to 0} \lim_{j \to \infty} \nu_{\mathbf{X},j,\delta}(E) \quad \begin{array}{l} \text{Gradient Young} \\ \text{measure} \end{array}$$

Gradient Young measure of a simple laminate



Theorem (Kinderlehrer/Pedregal)

- A family of probability measures $(\nu_x)_{x\in\Omega}$ is the Young measure of a sequence of gradients $D\mathbf{y}^{(j)}$ bounded in L^∞ if and only if
- (i) $\bar{\nu}_{\mathbf{x}}$ is a gradient (Dy, the weak limit of $D\mathbf{y}^{(j)}$)

(ii)
$$\langle \nu_{\mathbf{X}}, f \rangle := \int_{M^{3\times 3}} f(\mathbf{C}) \, d\nu_{\mathbf{X}}(\mathbf{C}) \geq f(\bar{\nu}_{\mathbf{X}})$$
 for all quasiconvex f .

Convexifications with respect to a cone

Let G be a convex cone of continuous functions $f: M^{3\times 3} \to \mathbb{R}$. Examples are the cones of convex, polyconvex, quasiconvex and rank-one convex functions.

For a continuous $\psi:M^{3\times 3}\to\mathbb{R}$ define the G-convexification ψ^G of ψ by

$$\psi^G = \sup\{f \in G : f \le \psi\}.$$

Then
$$\psi^c \leq \psi^{pc} \leq \psi^{qc} \leq \psi^{rc}$$
.

 $\psi^{qc}(\mathbf{A}, \theta)$ is the macroscopic free-energy function corresponding to ψ .

Similarly, for $K \subset M^{3\times3}$ compact define (Šverák)

$$K^G = \{ \mathbf{A} : f(\mathbf{A}) \le \max_K f \text{ for all } f \in G \}.$$

Then $K^{rc} \subset K^{qc} \subset K^{pc} \subset K^c$.

Theorem (JB/Carstensen (to appear) following Krucik 2000)

$$K^G = \{ \mathbf{A} \in M^{3 \times 3} : \exists \mu \in \mathcal{P}(K) \text{ with } f(\mathbf{A}) \leq \langle \mu, f \rangle \ \forall f \in G \}$$

In particular

 $K^{qc} = \{\bar{\nu} : \nu \text{ homogeneous gradient YM}, \text{supp } \nu \subset K\}.$

 $K(\theta)^{qc}$ is the set of macroscopic deformation gradients corresponding to zero-energy microstructures.

Phase nucleation

How does austenite transform to martensite as θ passes through θ_c ?

It cannot do this by means of an exact interface between austenite and martensite, because this requires the middle eigenvalue of $\mathbf{U}_i(\theta)$ to be one, which in general is not the case (but see later).

So what does it do?