More generally this holds for y piecewise  $C^1$ , with Dy jumping across a  $C^1$  surface.



(See later for generalizations when y not piecewise  $C^1$ .)

## **Theorem**

Let  $\mathbf{U} = \mathbf{U}^T > 0$ ,  $\mathbf{V} = \mathbf{V}^T > 0$ . Then SO(3)  $\mathbf{U}$ , SO(3)  $\mathbf{V}$  are rank-one connected iff

$$\mathbf{U}^2 - \mathbf{V}^2 = c(\mathbf{n} \otimes \tilde{\mathbf{n}} + \tilde{\mathbf{n}} \otimes \mathbf{n}) \tag{*}$$

for unit vectors  $\mathbf{n}$ ,  $\tilde{\mathbf{n}}$  and some  $c \neq 0$ . If  $\tilde{\mathbf{n}} \neq \pm \mathbf{n}$  there are exactly two rank-one connections between  $\mathbf{V}$  and  $\mathrm{SO}(3)\,\mathbf{U}$  given by

$$RU=V+a\otimes n,\quad \tilde{R}U=V+\tilde{a}\otimes \tilde{n},$$
 for suitable  $R,\tilde{R}\in SO(3),\ a,\tilde{a}\in \mathbb{R}^3.$ 

(JB/Carstensen version of standard result cf. Ericksen, Gurtin, JB/James ...)

Proof. Note first that

$$det(V + a \otimes n) = det V \cdot det(1 + V^{-1}a \otimes n)$$
$$= det V \cdot (1 + V^{-1}a \cdot n).$$

Hence if  $1+V^{-1}a\cdot n>0$ , then by the polar decomposition theorem  $\mathbf{R}\mathbf{U}=\mathbf{V}+\mathbf{a}\otimes\mathbf{n}$  for some  $\mathbf{R}\in\mathsf{SO}(3)$  if and only if

$$\begin{aligned} \mathbf{U}^2 &= & (\mathbf{V} + \mathbf{n} \otimes \mathbf{a})(\mathbf{V} + \mathbf{a} \otimes \mathbf{n}) \\ &= & \mathbf{V}^2 + \mathbf{V} \mathbf{a} \otimes \mathbf{n} + \mathbf{n} \otimes \mathbf{V} \mathbf{a} + |\mathbf{a}|^2 \mathbf{n} \otimes \mathbf{n} \\ &= & \mathbf{V}^2 + \left(\mathbf{V} \mathbf{a} + \frac{1}{2}|\mathbf{a}|^2 \mathbf{n}\right) \otimes \mathbf{n} + \mathbf{n} \otimes \left(\mathbf{V} \mathbf{a} + \frac{1}{2}|\mathbf{a}|^2 \mathbf{n}\right). \end{aligned}$$

If  $a \neq 0$  then  $Va + \frac{1}{2}|a|^2n \neq 0$ , since otherwise

$$Va \cdot V^{-1}a + \frac{1}{2}|a|^2V^{-1}a \cdot n = 0,$$

i.e.  $2 + V^{-1}a \cdot n = 0$ . This proves the necessity of (\*).

Conversely, suppose (\*) holds. We need to find  $\mathbf{a} \neq \mathbf{0}$  such that  $\mathbf{V}\mathbf{a} + \frac{1}{2}|\mathbf{a}|^2\mathbf{n} = c\tilde{\mathbf{n}}$  and  $\mathbf{1} + \mathbf{V}^{-1}\mathbf{a} \cdot \mathbf{n} > 0$ . So we need to find t such that

$$a = cr + ts$$

where  $|c\mathbf{r} + t\mathbf{s}|^2 + 2t = 0$  and  $1 + (c\mathbf{r} + t\mathbf{s}) \cdot \mathbf{s} > 0$ , where we have written  $\mathbf{r} = \mathbf{V}^{-1}\tilde{\mathbf{n}}$ ,  $\mathbf{s} = \mathbf{V}^{-1}\mathbf{n}$ .

The quadratic for t has the form

$$t^{2}|\mathbf{s}|^{2} + 2t(1 + c\mathbf{r} \cdot \mathbf{s}) + c^{2}|\mathbf{r}|^{2} = 0$$
 with roots

$$t = \frac{-(1 + c\mathbf{r} \cdot \mathbf{s}) \pm \sqrt{(1 + c\mathbf{r} \cdot \mathbf{s})^2 - c^2 |\mathbf{r}|^2 |\mathbf{s}|^2}}{|\mathbf{s}|^2}$$

Since det  $U^2 = \det V^2 \det(1 + c(\mathbf{r} \otimes \mathbf{s} + \mathbf{s} \otimes \mathbf{r}))$ ,

$$det(1 + c(\mathbf{r} \otimes \mathbf{s} + \mathbf{s} \otimes \mathbf{r})) = (1 + c\mathbf{r} \cdot \mathbf{s})^2 - c^2 |\mathbf{r}|^2 |\mathbf{s}|^2$$

is positive and the roots are real. In order to satisfy  $1 + c\mathbf{r} \cdot \mathbf{s} + t|\mathbf{s}|^2 > 0$  we must take the + sign, giving a unique  $\mathbf{a}$ , and thus unique  $\mathbf{R}$  such that  $\mathbf{R}\mathbf{U} = \mathbf{V} + \mathbf{a} \otimes \mathbf{n}$ .

Similarly we get a unique  $\tilde{a}$  and  $\tilde{R}$  such that  $\tilde{R}U=V+\tilde{a}\otimes\tilde{n}.$ 

To complete the proof it suffices to check the following **Lemma** 

If  $c(\mathbf{n} \otimes \tilde{\mathbf{n}} + \tilde{\mathbf{n}} \otimes \mathbf{n}) = c'(\tilde{\mathbf{p}} \otimes \mathbf{p} + \mathbf{p} \otimes \tilde{\mathbf{p}})$  for unit vectors  $\mathbf{p}, \tilde{\mathbf{p}}$  and some constant c', then either  $\mathbf{p} \otimes \tilde{\mathbf{p}} = \pm \mathbf{n} \otimes \tilde{\mathbf{n}}$  or  $\mathbf{p} \otimes \tilde{\mathbf{p}} = \pm \tilde{\mathbf{n}} \otimes \mathbf{n}$ .



## **Corollaries:**

- 1. There are no rank-one connections between matrices A, B belonging to the *same* energy well. Proof. In this case U = V, contradicting  $c \neq 0$ .
- 2. There is a rank-one connection between pairs of matrices  $A \in SO(3)$  and  $B \in SO(3)U$  if and only if U has middle eigenvalue 1.

(Thus it is in generically impossible to have an interface between constant gradients in the austenite and martensite energy wells.)

*Proof.* If there is a rank-one connection then 1 is an eigenvalue since  $det(U^2 - 1) = 0$ .

Choosing e with  $\tilde{\mathbf{n}} \cdot \mathbf{e} > 0$ ,  $\mathbf{n} \cdot \mathbf{e} > 0$  and  $\tilde{\mathbf{n}} \cdot \mathbf{e} > 0$ ,  $\mathbf{n} \cdot \mathbf{e} < 0$ , we see that 1 is the middle eigenvalue. Conversely, if

$$U = \lambda_1 e_1 \otimes e_1 + e_2 \otimes e_2 + \lambda_3 e_3 \otimes e_3$$

with eigenvectors  $\mathbf{e}_i$  and eigenvalues  $\lambda_1 \leq 1 \leq \lambda_3$  then

$$\mathbf{U}^2 - \mathbf{1} = \frac{\lambda_3^2 - \lambda_1^2}{2} \Big( (\alpha \mathbf{e}_1 + \beta \mathbf{e}_3) \otimes (-\alpha \mathbf{e}_1 + \beta \mathbf{e}_3) \\ + (-\alpha \mathbf{e}_1 + \beta \mathbf{e}_3) \otimes (\alpha \mathbf{e}_1 + \beta \mathbf{e}_3) \Big),$$

where 
$$\alpha = \sqrt{\frac{1-\lambda_1^2}{\lambda_3^2-\lambda_1^2}}, \beta = \sqrt{\frac{\lambda_3^2-1}{\lambda_3^2-\lambda_1^2}}.$$

3. If  $U_i, U_j$  are distinct martensitic variants then  $SO(3)U_i$  and  $SO(3)U_j$  are rank-one connected if and only if  $\det(U_i^2 - U_j^2) = 0$ , and the possible interface normals are orthogonal. Variants separated by such interfaces are called *twins*.

*Proof.* Clearly  $\det(\mathbf{U}_i^2 - \mathbf{U}_j^2) = 0$  is necessary, since the matrix on the RHS of (\*) is of rank at most 2. Conversely suppose that  $\det(\mathbf{U}_i^2 - \mathbf{U}_j^2) = 0$ . Then  $\mathbf{U}_i^2 - \mathbf{U}_j^2$  has the spectral decomposition

 $\mathbf{U}_i^2 - \mathbf{U}_i^2 = \lambda \mathbf{e} \otimes \mathbf{e} + \mu \hat{\mathbf{e}} \otimes \hat{\mathbf{e}}.$ 

Since  $\mathbf{U}_j = \mathbf{R}\mathbf{U}_i\mathbf{R}^T$  for some  $\mathbf{R} \in P^{24}$  it follows that  $\operatorname{tr}(\mathbf{U}_i^2 - \mathbf{U}_j^2) = 0$ . Hence  $\mu = -\lambda$  and

$$\begin{array}{rcl} \mathrm{U}_i^2 - \mathrm{U}_j^2 &=& \lambda (\mathbf{e} \otimes \mathbf{e} - \hat{\mathbf{e}} \otimes \hat{\mathbf{e}}) \\ &=& \lambda \left( \frac{\mathbf{e} + \hat{\mathbf{e}}}{\sqrt{2}} \otimes \frac{\mathbf{e} - \hat{\mathbf{e}}}{\sqrt{2}} + \frac{\mathbf{e} - \hat{\mathbf{e}}}{\sqrt{2}} \otimes \frac{\mathbf{e} + \hat{\mathbf{e}}}{\sqrt{2}} \right), \\ \text{as required.} \end{array}$$

Remark: Another equivalent condition due to Forclaz is that  $\det(\mathbf{U}_i - \mathbf{U}_j) = 0$ . This is because of the surprising identity (not valid in higher dimensions)

$$\det(\mathbf{U}_i^2 - \mathbf{U}_i^2) = (\lambda_1 + \lambda_2)(\lambda_2 + \lambda_3)(\lambda_3 + \lambda_1) \det(\mathbf{U}_i - \mathbf{U}_j).$$