Reduction of the symmetry group

It is convenient to consider a simplified theory in which we only consider those μ that generate elements of the point group, thus ignoring large lattice invariant shears that are typically associated with plasticity.

Theorem. (Ericksen-Pitteri neighbourhood) Given a Bravais lattice $\mathbf{B} \in GL^+(3,\mathbb{R})$ there is an open neighbourhood $\mathcal N$ of SO(3) in $GL^+(3,\mathbb{R})$ such that (i) $SO(3)\mathcal N=\mathcal N$

(ii) if $\mu \in GL^+(3,\mathbb{Z})$ then either $\mathcal{N}B\mu B^{-1} = \mathcal{N}$ (in which case $B\mu B^{-1} \in P(B)$), or $\mathcal{N}B\mu B^{-1} \cap \mathcal{N} = \emptyset$.

Thus, if we restrict $\psi(\mathbf{A},\theta)$ to $\mathcal N$ then the symmetry group of ψ is reduced to

$$P^{+}(B) = P(B) \cap SO(3) = S \cap SO(3).$$

Proof. We claim that a suitable neighbourhood is given by

$$\mathcal{N}_{\varepsilon} = \{\mathbf{A} : |\mathbf{A}^T\mathbf{A} - \mathbf{1}| < \varepsilon\}$$

for $\varepsilon > 0$ sufficiently small.

Note that $SO(3)N_{\varepsilon} = N_{\varepsilon}SO(3) = N_{\varepsilon}$, since if $\mathbf{Q} \in SO(3)$

$$|(\mathbf{A}\mathbf{Q})^T\mathbf{A}\mathbf{Q} - \mathbf{1}| = |\mathbf{Q}^T(\mathbf{A}^T\mathbf{A} - \mathbf{1})\mathbf{Q}| = |\mathbf{A}^T\mathbf{A} - \mathbf{1}|.$$

Suppose for contradiction that the result is false for $\varepsilon=j^{-1}$, j=1,2... Then for each j there exists $\mu^{(j)}$ with $\mathbf{B}\mu^{(j)}\mathbf{B}^{-1}\not\in P(\mathbf{B})$ and $\mathbf{C}^{(j)}=\mathbf{D}^{(j)}\mathbf{B}\mu^{(j)}\mathbf{B}^{-1}\in \mathcal{N}_{1/j}$.

We can assume that $C^{(j)} \to R, D^{(j)} \to \tilde{R}, \mu^{(j)} \to \mu$, where $R, \tilde{R} \in SO(3)$, and hence $B\mu B^{-1} \in P(B)$. But $\mu^{(j)} \to \mu$ implies $\mu^{(j)} = \mu$ for j sufficiently large. Contradiction.

If we apply this result to the phase transformation case then we can restrict the symmetry group to $P^+(\mathbf{B})$ provided $\mathbf{U}(\theta)$ is sufficiently close to 1 and θ sufficiently close to θ_c .

Thus, restricting ψ to \mathcal{N} , and defining as before

$$K(\theta) = \{ \mathbf{A} \in \mathcal{N} : \psi(\mathbf{A}, \theta) = 0 \},\$$

we assume that

$$K(\theta) = \begin{cases} \alpha(\theta)SO(3) & \theta > \theta_c \\ SO(3) \cup \bigcup_{i=1}^{M} SO(3) \mathbf{U}_i(\theta_c) & \theta = \theta_c \\ \bigcup_{i=1}^{M} SO(3) \mathbf{U}_i(\theta) & \theta < \theta_c \end{cases},$$

where $U_i(\theta)$ are the distinct matrices $\mathbf{Q}^T \mathbf{U}(\theta) \mathbf{Q}$ for $\mathbf{Q} \in P^c \cap SO(3) = P^{24}$.

M is the number of martensitic variants. If we let

$$G_i = {\mathbf{Q} \in P^c : \mathbf{Q}^T \mathbf{U}(\theta) \mathbf{Q} = \mathbf{U}_i(\theta)}$$

then $|G_i|$ is independent of i and so M divides 24.

Example 1. (cubic-to-tetragonal)

(e.g. InTl, NiAl, NiMn, BaTiO₃)

$$\mathbf{U}(\theta) = \mathrm{diag}(\eta_2, \eta_1, \eta_1),$$

where
$$\eta_1 = \eta_1(\theta) > 0$$
, $\eta_2 = \eta_2(\theta) > 0$, $\eta_1 \neq \eta_2$.

Then M=3 and

$$U_1(\theta) = diag(\eta_2, \eta_1, \eta_1), U_2(\theta) = diag(\eta_1, \eta_2, \eta_1),$$

$$U_3(\theta) = diag(\eta_1, \eta_1, \eta_2).$$

Example 2. (cubic-to-orthorhombic) (e.g. CuAlNi)

$$\mathbf{U}(\theta) = \begin{pmatrix} \frac{\alpha + \gamma}{2} & \frac{\alpha - \gamma}{2} & 0\\ \frac{\alpha - \gamma}{2} & \frac{\alpha + \gamma}{2} & 0\\ 0 & 0 & \beta \end{pmatrix}, \quad \alpha = \alpha(\theta) > 0, \beta = \beta(\theta) > 0,$$

$$\gamma = \gamma(\theta) > 0$$

$$M = 6$$

$$\mathbf{U}_{1} = \begin{pmatrix} \frac{\alpha+\gamma}{2} & \frac{\alpha-\gamma}{2} & 0\\ \frac{\alpha-\gamma}{2} & \frac{\alpha+\gamma}{2} & 0\\ 0 & 0 & \beta \end{pmatrix}, \quad \mathbf{U}_{2} = \begin{pmatrix} \frac{\alpha+\gamma}{2} & \frac{\gamma-\alpha}{2} & 0\\ \frac{\gamma-\alpha}{2} & \frac{\alpha+\gamma}{2} & 0\\ 0 & 0 & \beta \end{pmatrix}, \quad \mathbf{U}_{3} = \begin{pmatrix} \frac{\alpha+\gamma}{2} & 0 & \frac{\alpha-\gamma}{2}\\ 0 & \beta & 0\\ \frac{\alpha-\gamma}{2} & 0 & \frac{\alpha+\gamma}{2} \end{pmatrix},$$

$$\mathbf{U_4} = \begin{pmatrix} \frac{\alpha+\gamma}{2} & 0 & \frac{\gamma-\alpha}{2} \\ 0 & \beta & 0 \\ \frac{\gamma-\alpha}{2} & 0 & \frac{\alpha+\gamma}{2} \end{pmatrix}, \quad \mathbf{U_5} = \begin{pmatrix} \beta & 0 & 0 \\ 0 & \frac{\alpha+\gamma}{2} & \frac{\alpha-\gamma}{2} \\ 0 & \frac{\alpha-\gamma}{2} & \frac{\alpha+\gamma}{2} \end{pmatrix}, \quad \mathbf{U_6} = \begin{pmatrix} \beta & 0 & 0 \\ 0 & \frac{\alpha+\gamma}{2} & \frac{\gamma-\alpha}{2} \\ 0 & \frac{\gamma-\alpha}{2} & \frac{\alpha+\gamma}{2} \end{pmatrix}.$$

Atomistically sharp interfaces for cubic to tetragonal transformation in NiMn
Baele, van Tenderloo, Amelinckx

Macrotwins in $Ni_{65}Al_{35}$ involving two tetragonal variants (Boullay/Schryvers)

Martensitic microstructures in CuAlNi (Chu/James)

The Hadamard jump condition

y piecewise affine
$$D\mathbf{y} = \mathbf{A}, \ \mathbf{x} \cdot \mathbf{n} > k$$

$$D\mathbf{y} = \mathbf{B}, \ \mathbf{x} \cdot \mathbf{n} < k$$

$$\mathbf{x} \cdot \mathbf{n} = k$$

Let
$$C=A-B$$
. Then $Cx=0$ if $x\cdot n=0$. Thus $C(z-(z\cdot n)n)=0$ for all z , and so $Cz=(Cn\otimes n)z$.

Hence

$$A - B = a \otimes n$$

Hadamard jump condition