2. Face-centred tetragonal (fct)

4
/
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3. Body-centred cubic (bcc)

Could take the basis vectors as b,
shown, but the conventional and
84 more symmetric choice is

-1 1 1

B:gQ( 1 -1 1 ),QEO(S)
1 1 -1

Y for which
) 3 —1 -1
B/B=%| -1 3 -1 |.

o)
=1 TN

-1 -1 3

Body-centered tetragonal (bct) treated similarly.
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GL(3,Z) = {pn = (i) : puij € Z,det p = £1}.
Theorem L(B) = L(C) iff

B = Cpu, for some u € GL(3,7).

Proof. Let B = (bl,bg,bg,), C = (01,02,03).
If L(B) = L(C) then b; = pj;c; for some p = (u;;) €
73%3, so that B = Cp. Similarly C = By/ for some
p €73%3. So /' =p 1 and p e GL(3,7).
Conversely, if B = Cpu then b; = puj;c; and so
L(B) Cc £(C). Similarly £(C) C L(B). ]
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Corollary. If F € GL(3,R), then £L(FB) = £(B) iff
F = B[,LB_l for some pu € GL(3,7Z).

Definition. The point group P(B) of L(B) is the set
of Q € O(3) such that £(QB) = £L(B).

By the Corollary,
P(B) ={Q € 0(3): B"1QB e GL(3,2)}.

If B-1QB = pu € GL(3,7Z) then pl'py =BIB1,
and so P(B) is a finite group.
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If R € O(3) then

{Q:R"QR € L(B)}

{RQR' : Q € £(B)}
RP(B)R?,

so that P(RB) is orthogonally conjugate to P(B).

P(RB)

The point groups of the simple cubic (B = aQ1l), fcc
and bcc lattices are the same, namely (taking Q = 1)
the cubic group P°¢ consisting of the 48 orthogonal tran-
formations mapping the unit cube (0, 1)3 into itself.
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Thus the point group does not discriminate between
the different possible cubic lattices, and to do this
one needs to consider the lattice group

L(B) ={p e GL(3,2) : BuB~1 € 0(3)}

L(QB) = L(B) for all Q € O(3). However L(B)
depends on the lattice basis, so that

L(Bp) = pu 1L(B)u for all e GL(3,7).

The corresponding conjugacy classes determine 14 distinct
Bravais lattices (triclinic, monoclinic, orthorhombic, rhom-
bohedral, tetragonal, hexagonal and cubic).
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We now fix a reference lattice £(B) with B € GLT(3,R),
and suppose that there is a free-energy function ¢(C, 9)
defined for C in an open neighbourhood D of B in
GLT1(3,R) satisfying

QDu C D for all Q € SO3), u € GLT(3,Z)(= SL(3,7))

and temperatures 0 in some interval I, such that for all
CeD, el

() »(QC,0) = »(C,0) for all Q € SO(3),
(i) ©(Cu,0) = o(C,0) for all p € GLT(3,7).

That is, the free-energy is rotationally invariant
and depends only on the lattice £(C).
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We now use the Cauchy-Born rule (an implicit coarse-
graining) to relate the macroscopic free-energy density i to

w. Choosing a reference configuration in which the crystal
lattice is B, we assume that

V(A,0) = ¢(AB,0), for A e D(v),0 € I,
where D(y)) = DB~ 1.

Thus 1 inherits the invariances for all A € D(vy),0 € I,
(i) v(QA,0) = y(A,0) for all Q € SO(3),
(i) w(ABuB~1,0) = ¢(A,0) for all uw e GLT(3,7).

Hence ¢ has symmetry group S = BGLT(3,2)B1,
which is a subgroup of SL(3,R).
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Martensitic phase transformations

We now assume that o(-,0) is bounded below for
each 0 € I and attains a minimum. We can suppose
that the minimum value is zero. Hence also the
minimum value of ¥(-,0) is zero.

Let K(0) ={A € D) :¢v(A,0) =0},
Then SO(3)K(0)S = K(0).

We consider a martensitic phase transformation that

takes place at the temperature 6., with the lattice be-
ing cubic (fcc or bcc) for 6 > 6.
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This is described by a change of shape of the lattice with
respect to the lattice B at 6. given by U(#) = U8 > 0.

(Note that by the polar decomposition theorem we can write
any A € GLT(3,R) in the form A = RU with R € SO(3),
U = UT > 0, so that we can always describe the change of
shape by such a U.)

Thus we assume that

( a(0)SO(3)S 0> 0,
K(0) ={ SO(3)SUSOBU.)S =06, ,
SO(3)U(0)S 0 < 0.

where a(0) > 0 gives the thermal expansion of the
cubic lattice, with a(8.) = 1.
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