2. Face-centred tetragonal (fct)

3. Body-centred cubic (bcc)

Could take the basis vectors as $\widehat{\mathbf{b}}_i$ shown, but the conventional and lpha more symmetric choice is

$$\mathbf{B} = rac{lpha}{2}\mathbf{Q} \left(egin{array}{ccc} -1 & 1 & 1 \ 1 & -1 & 1 \ 1 & 1 & -1 \end{array}
ight), \ \mathbf{Q} \in O(3)$$
 for which $\mathbf{B}^T\mathbf{B} = rac{lpha^2}{4} \left(egin{array}{ccc} 3 & -1 & -1 \ -1 & 3 & -1 \ -1 & -1 & 3 \end{array}
ight).$

Body-centered tetragonal (bct) treated similarly.

$$GL(3,\mathbb{Z}) = \{ \mu = (\mu_{ij}) : \mu_{ij} \in \mathbb{Z}, \det \mu = \pm 1 \}.$$

Theorem $\mathcal{L}(B) = \mathcal{L}(C)$ iff

 $\mathbf{B} = \mathbf{C}\boldsymbol{\mu}$, for some $\boldsymbol{\mu} \in GL(3,\mathbb{Z})$.

Proof. Let $B = (b_1, b_2, b_3), C = (c_1, c_2, c_3).$

If $\mathcal{L}(B) = \mathcal{L}(C)$ then $b_i = \mu_{ji}c_j$ for some $\mu = (\mu_{ij}) \in \mathbb{Z}^{3\times 3}$, so that $B = C\mu$. Similarly $C = B\mu'$ for some $\mu' \in \mathbb{Z}^{3\times 3}$. So $\mu' = \mu^{-1}$ and $\mu \in GL(3,\mathbb{Z})$.

Conversely, if $\mathbf{B} = \mathbf{C}\mu$ then $\mathbf{b}_i = \mu_{ji}\mathbf{c}_j$ and so $\mathcal{L}(\mathbf{B}) \subset \mathcal{L}(\mathbf{C})$. Similarly $\mathcal{L}(\mathbf{C}) \subset \mathcal{L}(\mathbf{B})$.

Corollary. If $F \in GL(3,\mathbb{R})$, then $\mathcal{L}(FB) = \mathcal{L}(B)$ iff $F = B\mu B^{-1}$ for some $\mu \in GL(3,\mathbb{Z})$.

Definition. The point group P(B) of $\mathcal{L}(B)$ is the set of $Q \in O(3)$ such that $\mathcal{L}(QB) = \mathcal{L}(B)$.

By the Corollary,

$$P(B) = \{Q \in O(3) : B^{-1}QB \in GL(3, \mathbb{Z})\}.$$

If $\mathbf{B}^{-1}\mathbf{Q}\mathbf{B} = \mu \in GL(3,\mathbb{Z})$ then $\mu^T \mu = \mathbf{B}^T \mathbf{B}^{-T}$, and so $P(\mathbf{B})$ is a *finite* group.

If $R \in O(3)$ then

$$P(RB) = \{Q : R^T QR \in \mathcal{L}(B)\}$$

$$= \{R\tilde{Q}R^T : \tilde{Q} \in \mathcal{L}(B)\}$$

$$= RP(B)R^T,$$

so that P(RB) is orthogonally conjugate to P(B).

The point groups of the simple cubic ($\mathbf{B} = \alpha \mathbf{Q} \mathbf{1}$), fcc and bcc lattices are the same, namely (taking $\mathbf{Q} = \mathbf{1}$) the cubic group P^c consisting of the 48 orthogonal tranformations mapping the unit cube $(0,1)^3$ into itself.

Thus the point group does not discriminate between the different possible cubic lattices, and to do this one needs to consider the *lattice group*

$$L(B) = \{ \mu \in GL(3, \mathbb{Z}) : B\mu B^{-1} \in O(3) \}$$

 $L(\mathbf{QB}) = L(\mathbf{B})$ for all $\mathbf{Q} \in O(3)$. However $L(\mathbf{B})$ depends on the lattice basis, so that

$$L(\mathbf{B}\mu) = \mu^{-1}L(\mathbf{B})\mu$$
 for all $\mu \in GL(3,\mathbb{Z})$.

The corresponding conjugacy classes determine 14 distinct Bravais lattices (triclinic, monoclinic, orthorhombic, rhombohedral, tetragonal, hexagonal and cubic).

We now fix a reference lattice $\mathcal{L}(\mathbf{B})$ with $\mathbf{B} \in GL^+(3,\mathbb{R})$, and suppose that there is a free-energy function $\varphi(\mathbf{C},\theta)$ defined for \mathbf{C} in an open neighbourhood D of \mathbf{B} in $GL^+(3,\mathbb{R})$ satisfying

$$\mathbf{Q}D\boldsymbol{\mu}\subset D$$
 for all $\mathbf{Q}\in SO(3), \boldsymbol{\mu}\in GL^+(3,\mathbb{Z})(=SL(3,\mathbb{Z}))$

and temperatures θ in some interval I, such that for all $\mathbf{C} \in D, \theta \in I$

(i)
$$\varphi(QC, \theta) = \varphi(C, \theta)$$
 for all $Q \in SO(3)$,

(ii)
$$\varphi(\mathbf{C}\mu,\theta) = \varphi(\mathbf{C},\theta)$$
 for all $\mu \in GL^+(3,\mathbb{Z})$.

That is, the free-energy is rotationally invariant and depends only on the lattice $\mathcal{L}(\mathbf{C})$.

We now use the Cauchy-Born rule (an implicit coarse-graining) to relate the macroscopic free-energy density ψ to φ . Choosing a reference configuration in which the crystal lattice is ${\bf B}$, we assume that

$$\psi(\mathbf{A},\theta)=\varphi(\mathbf{A}\mathbf{B},\theta), \text{ for } \mathbf{A}\in D(\psi), \theta\in I,$$
 where $D(\psi)=D\mathbf{B}^{-1}.$

Thus ψ inherits the invariances for all $\mathbf{A} \in D(\psi), \theta \in I$, (i) $\psi(\mathbf{Q}\mathbf{A}, \theta) = \psi(\mathbf{A}, \theta)$ for all $\mathbf{Q} \in SO(3)$, (ii) $\psi(\mathbf{A}\mathbf{B}\mu\mathbf{B}^{-1}, \theta) = \psi(\mathbf{A}, \theta)$ for all $\mu \in GL^+(3, \mathbb{Z})$.

Hence ψ has symmetry group $\mathcal{S} = \mathbf{B} G L^+(3, \mathbb{Z}) \mathbf{B}^{-1}$, which is a subgroup of $SL(3, \mathbb{R})$.

Martensitic phase transformations

We now assume that $\varphi(\cdot, \theta)$ is bounded below for each $\theta \in I$ and attains a minimum. We can suppose that the minimum value is zero. Hence also the minimum value of $\psi(\cdot, \theta)$ is zero.

Let
$$K(\theta) = \{ \mathbf{A} \in D(\psi) : \psi(\mathbf{A}, \theta) = 0 \}.$$

Then
$$SO(3)K(\theta)S = K(\theta)$$
.

We consider a martensitic phase transformation that takes place at the temperature θ_c , with the lattice being cubic (fcc or bcc) for $\theta \geq \theta_c$.

This is described by a change of shape of the lattice with respect to the lattice **B** at θ_c given by $\mathbf{U}(\theta) = \mathbf{U}(\theta)^T > 0$.

(Note that by the polar decomposition theorem we can write any $\mathbf{A} \in GL^+(3,\mathbb{R})$ in the form $\mathbf{A} = \mathbf{R}\mathbf{U}$ with $\mathbf{R} \in SO(3)$, $\mathbf{U} = \mathbf{U}^T > 0$, so that we can always describe the change of shape by such a \mathbf{U} .)

Thus we assume that

$$K(\theta) = \begin{cases} \alpha(\theta)SO(3)S & \theta > \theta_c \\ SO(3)S \cup SO(3)\mathbf{U}(\theta_c)S & \theta = \theta_c \\ SO(3)\mathbf{U}(\theta)S & \theta < \theta_c \end{cases},$$

where $\alpha(\theta) > 0$ gives the thermal expansion of the cubic lattice, with $\alpha(\theta_c) = 1$.