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Short presentation

> Reasearch field 6)%‘ IRIS
» Discrete dynamical systems & fractals |
» Systems biology
» Knowledge representation

> IRISA & INRIA Rennes - Rennes
» 800 members, >40 teams ‘
» Univ Rennes, CNRS, Inria, etc...
> Bioinformatics@Rennes
S [,
» GenOuest: plateform, ressource center % \ Lrezéa

» Genscale : NGS data analysis
> Dyliss: Integration of heterogeneous data
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From life science... to data science

Naturalist approach Experimental approach  Modern biology

= Observing and = Perturbating and = Measuring at lower
deducing observing scales

| » Data science !




Biomolecular data: genomes

Genome sequencing Thousands of publicly available
= Very smart computational genomes
iIssues = Exploration, mapping and

= Bioinformatics analysis



What do we do with genomic data ?

transcription translation activity i function P
> = F- X
AYA"AARERVaveV ﬁ S ° ==

e e T

Genome Transcriptome Proteome Metabolome Fluxome
Y . : PKM1 .
T PKM2 -m
PKN2 N
PKM2 ¢ .
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Assign a function to each DNA fragment

Develop new technologies to validate/refine the assigned functions

DNA sequencing. genetic profiling, genetic mapping, recombinant
DNA technology, structural and func}ional analysis of genome

RNA sequencing, ’ i \ Protem identification,
expression profiling, | ’ quantification, post-
transcriptional - m translational
regulation ( Tl'anscriptomlcs \:mmls maodification

H

=) \n?m;clf ]Mﬁ“ mmsmmm) Data deluge!

.

biochemical mm Metabolomics intermediates,
regulation, - * hormones and
element other signaling
interactions ' -

molecules

Evaluation of morphologml biochemical and physical traits,
establish link between genetic, epigenetic and environmental factors
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Life science data nightmare
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(inspired by [Ste2015)) - science
Heterogeneity
Incompleteness
Different scales of ASTRONOMY
granularity
Inter- TWITTER
dependencies EUTUB_E,
QUANTITY
17 PB/year 1-2 EB/year 40 EB/year

Data characteristics
= Large-scale

= Incomplete
= Inter-dependent
= Heterogeneous / multi-scale

» How to integrate them?



SYSTEMS BIOLOGY

Bioinformatics

Systems biology
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Setting all together

mRNA Protein Metabolites
JfV‘V x }
oe? — U g1t Rt
"VAV
Kyt
Mumnom Epigenetic  Post-transcriptional  Post-translational
modification modifications modifications
| Genomics 'Proteomics 'Metabolomics

Patti et al. (2012). Metabolomics: the apogee of the omics trilogy. Nature

Gene function = regulation of a intra-cellular transformation procedure
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What we get...
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Systems biology

Statement : biology is a complex system

» « Requires to examine the structure and dynamics of a cellular function
rather than the characteristics of isolated parts of a cell »

Large-scale
organization

o 4 ‘
O b —', 5 g
S

Functional modules

(e AD? A ADF
2 ) ‘ .
/ \ SR aN ELOL K NS Y

Ry (Ghp YL (U0 it (UTP - [T
(UmpyeLe{Unppie (UTP D4~ (CTV
’ \

Regulatory motifs Metabolic pathways

S i
259 ¢ 2 ( 3

Genes mRNA Proteins Metabolites »

e e
form ge Processing Execut

Systems biology: Interpreting multi-layer data and graphs
» Produce predictive statements that can be experimentally validated



Case-study: extremophile mining consortium

Role of an empirical taylor-made consortium of bacteria in
copper extraction from ore ?

Data

- Genomes Turn data into
- Expression data * genomics maps
- Metabolic compounds * interaction maps

Understand the contribution of each bacteria to the complete system ?
> integrative and systems biology



A second case-study : algal metabolism

) Station Biologique
de Roscoff

E. siliculosus In axenic condition....

Ectocarpus
[Dittami2014, Tapia2016]

What is the role of environmental bacteria ?
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Complex systems are everywhere

Are molecular/cellular different than others ?
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Dynamical systems

Historical motivation
Model the evolution of the set of components in a system according to

time.
T x S - S
=% (t , 2 —  F(t,2)
(tme , state) new state at time ¢
»(—/’\\\ o= a - K+yn ¥ 4
(") X N B oy fY) «1-X
i | dt  L+X"
J . <, . Boolean model with
= R s ESametniked asynchronous update
\*—‘/_ numerical system yn

scheme

Identification/calibration of a dynamical system

Find the best function F which parcimounously explains and
describes the observed responses of a system.
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Model identification/calibration since the 18th century

What has always allowed a model identification

> A priori knowledge about the (conservation/behavior) laws
governing the system

» Predetermined shape for the function F

. s T S S
» Limited number of components S
» Reduction of the search space (time , state) new state at time t

» Wide panel of sensors and perturbations
» Discriminate parameters

Where is the complexity ?

» The search space grows exponentially with the number of
measured compounds

> The more compounds we measure,
the less calibrated a system can be.
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Differences between application domains

Physical sciences Biological sciences

> Knowledge. — ”~ Knowledge.
Fundamental laws of physics. Empirical laws

> Sensors. —) » Sensors.
Numerous. Low quality (qualitative)

although numerous.

> Pertu rbations. ——————————

Various protocoles in controled » Perturbations.
frameworks. Quite few according to sensors

» System description. > System description.
Independent components Hidden dependencies
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Today’s molecular/cellular biological systems

Om i cS d at a. \4/\‘2’2: mRNA .%("%-Tomn Metabolites
. ’; > ‘ ‘/ 2 >
» Large-scale (variables) oo — - %—’%%
> Noisy o e
Mutations  Epigenetic  Post-transcriptional  Post-translational
modification modifications modihcations
> H ete roge neous. 'Genomics Proteomics 'Metabolomics

Patti et al. (2012). Metabolomics: the apogee of the omics trilogy. Nature

| LEVELS OF Four domains of Big Data in 2025:
COMPLEXITY complexity vs quantity
Biolodaical svstems (inspired by [Ste2015))
g .y . Heterogeneity —
characteristics
» Large-scale B etoness
> E m p| r| Cal IaWS Different scales of ASTRONOMY
granularity
» Few data wrt the search
I r- Tw
Space SlZe :‘et:endencies Al ] YOUT,UBE _
QuANTITY
17 PB/year 1-2 EB/year 40 EB/year

Biological systems observed with omics data
cannot be uniquely determined
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Strategy: combine dynamical systems and
constraints programming

Describe a system by a family of abstract models
» Reason over a family of models instead of
selecting a single one

(Logical) knowledge representation
» Search space description
» Structured knowledge (link open data)

Discrete dynamical systems
> Links between multi-scale observations.

> Invariants of model families.

Solving optimisation problems
» Replace laws by constraints
» Extract robust information



KNOWLEDGE REPRESENTATION

1{murderer(ms_Scarlet); murderer(colonel_Mustard)}l.

1{weapon_of_crime(revolver); weapon_of_crime(candlestick)}1l.

1{place_of_crime(kitchen); place_of_crime(hall);
place_of_crime(dining_room)}1.

crim_record(ms_Scarlet,7). crim_record(colonel_Mustard,4).

weapon_of_crime(candlestick).

:- place_of_crime(kitchen).

place_of_crimeChall) :- murderer(colonel_Mustard), not
weapon_of_crime(revolver).

sol(X,Y,Z) :- murderer(X),weapon_of_crime(y),place_of_crime(z).

#maximize{w , sol : sol(X,Y,z) , crim_record(X,w) , murdered(w)}.

#show sol/3.
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Solving combinatorial problems

Problem I Solutions Problem Solutions
Specification Interpretation Specif& @ Interpretation
programming

F ) N G RN
Set of formulas
How to solve binary program Outputs

ite (boolean, linear)
nstraints (SAT, ILP.,...)

Write a program whic
how the problem sho

Problem Solutions

ﬂModeling Interpretation I

Problem Set of
representation hoolean formula m

(logicl language)

U\I_D_eplative programing

> Problem = axioms & rules
> No need of algorithm

Answer set programming.
Describe what you want to solve
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ASP logical rules : declarative programming

K { atomy; ...; atom, } L :- atompii;...; atom,; not atom,,i1; ..., not atoms.
head sl body
If all terms on the right side are true,

then at least K and at most L terms are true
on the left side.

If nothing on the left side, If nothing on the right side,
then always false. then always true.
:- K{atoml, .. atomN}L. K{atoml, .. atomN}L.

Optimisation rule
#maximize{w,atom(X): condition(X),w}.

High-level model language Highly performant solving technics
> Propositional logics » SAT-based and deductive-DB technics

> Model for negation » Decidable: no infinite loop
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Link with systems biology ?

Integrative and systems biology is a very relevant field to
challenge ASP technologies

» Repair large-scale interaction graph with branch

and bound solving heuristics
Problem statement

> Scale metabolic network completion problem with & modelling
unsatisfiable core solving strategy KYUSS P
» Design experiments with incremental solving C >

AVers;x«.
\3,0\\’ I’S[f‘?)

» Implement and benchmark constrains propagators : @5@
1}

g
%
<
. Q’Qm

Linear constrains atoms Solving heuristics
& problem reformulation

&sum{al*xl;...;al*x1} <= k
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Application: extremophile mining consortium

Role of an empirical taylor-made consortium of bacteria in
copper extraction from ore ?

« NAD(H) biosynthesis metabolic pathways
of A. Cryptum complements metabolic functions
spread between the five strains »

ASP program
-> graph alignment / static modeling

-> chains of reactions explaining the capability of the consortium to
produce the compounds



BACK TO DYNAMICAL SYSTEMS

Biological systems
characteristics
» Large-scale
» Empirical laws
» Few data wrt the search
space size

LEVELS OF Four domains of Big Data in 2025:

COMPLEXITY complexity vs quantity
(inspired by [Ste2015])
Incompleteness
Different scales of ASTRONOMY
granularity
Inter- TWITTER
dependencies L YOUIU,B,E 1
QuANTITY
17 PB/year 1-2 EB/year 40 EB/year

Biological systems observed with omics data
are not uniquely identifiable
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Underlying tool : from genes to dynamical systems

1 genome
G¢ _ = 1 metabolic network
transcription . . .
e [T = bipartite directed graph

ltranslation

Proteome

O Compound . Reaction

Link between genes
and functions

==

Large scale metabolic network

All expected metabolic capabilities of an organism
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How to model fluxes ?

boundary _C: Vo — V3 — V4 — b3
v([substrat]) =Vm[Substrat]/ (Km +[Substrat])

Back to high school chemistry
» Two parameters have to be estimated for each reaction

Intractable in practice !
» QOverapproximation of the dynamics
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Quasi-steady state hypothesis

b dx

—=Svx)=0=§"-v
— System dt
R v([substrat]) = Vm[Substrat]/ (Km +[Substrat])
= constant

Metabolic compounds do not accumulate r is active if

> Fluxes have constant values v, >0 and

» Fluxes are constrained by linear values s.v =0 and

> The system optimises a global objective Ib <v <ub

Replace kinetic constants by conservation law and
global optimisation hypotheses
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Growing phase hypothesis

Functionality: recursive graph-based semantics

@ ‘7 Seeds = growth medium

“and” condition checked recursively

® Non-producible metabolite

Metabolite reachable from the seeds

Reaction

scope(M):- seed(M).
scope(M) :- product(M,R), reaction(R), scope(M') : reactant(Mm:,R).

Study paths in hypergraphs
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Everything is a matter of choices

(s, —>r—>(F —>r—>(c) Accumulation of G?
Activation? (D)

Activation?

Stoichiometry - ratio B/A

The reaction status of the reactions is different according

to the approximation
» No choice but dealing with such overapproximation !
» Use the flexibility of ASP language to handle these questions



APPLICATION TO NETWORK COMPLETION




Data incompleteness

Metabolic networks built from NGS sequencing
» no possible biomass production.
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Gapfilling a metabolic network (nutshell)
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Gapfilling a metabolic network (nutshell)

Seeds
‘,"k> P
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I Draft network

: Database

Target



&:1IRISA

Gapfilling a metabolic network (nutshell)

Seeds

)

I Draft network

: Database

Target



&:1IRISA

Gapfilling a metabolic network (nutshell)
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Gapfilling a metabolic network (nutshell)

Seeds

)

I Draft network

: Database

Target
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Gapfilling a metabolic network

What we have
» Graph with non-accessible target components
» Knowledge database of possible edges

Experimentally Putative
observed interactions
3 4 compounds 5O from knowledge
o ‘ databases

wesj i
> OFC ‘
® 9

Media compounds | /

Gap-filling problem: O—0 @
-

» Restore target accessibility .<E
»Minimal number of reactions A ;
- —p — @ ‘

gapfilling(S, Ry, G, Gpg) =

_ size(reactants(Ry) \ scope(G; U{R;..R,,})
ars it ( size{R;.. R}

{Ri"Rm}CGDB
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Meneco: ASP-based gap-filling for non-model organisms

Hybgapﬁlllng(S, RT' Gl' GDB)
Are min (size(reactants (R7y) \ scope(G; U{R;.. Rm})>

{Ri..Rgm}cGDB size{R;.. Ry}

{reaction(r)}.

scope(M) :- seed(M).

scope(M) :- product(M,R), reaction(R), scope(M') : reactant(M,R).
:- target(T), not scope(T).

#minimize{ reaction(r) }.

Size of gap-filling solutions (log scale)

16 reactions in average are

sufficient to restore degraded stochastic _
bacterial networks MILP _:l i
» MILP-based approaches required ;

from 200 to 4000 reactions. Asp I |

I
1
1
I
1
1
| |
| |
1
0 0,5 1, 15 2,25 3 3,5
1 1
1 1
16 208 3960

Benchmark of 10,800 bacterial networks
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Example of application
» Genome: 1785 reactions, 1981 compounds
2 J

» 54 metabolites to produce:
» 25 are graph-based producible
» None is FBA-based producible.

Ectocarpus
siliculosus » Gapfilling
[Tapia2016] » MILP : 500 reactions (untractable)
» ASP: 50 reactions added to the network
opaid BN isaaaT Ao » Sufficient for fluxes

oo » Manual curation

hortsmate mutase ™

$0002 0121
CL I I
Prephenats

New bifunctional role of a specific enzym

PN CNRS < SORBONNE UNIVERSITE
SZpY ) Station Biologique
N de Roscoff

Arogenatey Prephenite AP.
dehydratase dehydrogenase
Esi0 0583

40000
GINN 1D
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Counter-example of application

Station Biologique
de Roscoff

Network analysis
» 1943 reactions

» 149 reactions added by ASP
» No way to produce biomass

Chondrus crispus

1 910 eider

New problem to be solved - -
» Hybrid problem

roTON

» Constraint propagator S Y CCe
» Reduce the database ZEe T
e o .
Hybgapfilling(S, R, G;,Gpg) = e il i
. size(reactants(Ry) \ scope(Gy U {R;.. Rm})> W“wwm:m""" |
{R?Egmr}rllg) 5 ( size{R;..R,,} i £ul ®

st sv=0vg, >0, lb<v<ub Essential reactions for alanine production in CcrGem



STILL MORE COMPLEXITY




Role of environmental bacteria ?

Without
microbiome

Ectocarpus
[Dittami2014, Tapia2016, Prigent2015]

CNRS « SORBONNE UNIVERSITE
Station Biologique
de Roscoff

Metabolism may be an explanation
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Systems ecology question

+ For each
bacterium
M | Annotated genome |
+ M& | Annotated genome | Ectocarpus

=
- 72N
Pathway Tools ®| Inference of reactions | f\i)

Pathway Tools @| Inference of reactions | f\%)

Enzyme 2

\ /
& @ O —

Can we suggest compound exchanges
that could restore the production of targeted compounds ?

» New gap-filling problem !
» Steiner graph approach or ASP implementation
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Scalability...

But... There are hundreds of bacteria in the environment

B

Hundreds
of bacteria

Marine biology

Hundreds of Genome-scale
models (GSMs)

B i
W5,

Happy few bacteria interact with the algae

How to select communities within large microbiotas which explain
the algal response to stress ?
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Selecting communities of interest within
[large] microbiotas

) PHENOTYPE
0 9 !
‘ ©®~® " CClD
0 rang
=S

Host organism

The “who”, “how” challenges of community selection
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Selecting communities of interest within
[large] microbiotas

PHENOTYPE

\

© =~ ®
© O }9
T ®

WHO .
key species Host organism

The “who”, “how” challenges of community selection
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Selecting communities of interest within
[large] microbiotas

HOW PHENOTYPE
interactions |
| ® ~—® (e
® O ?
®
WHO
key species Host organism

The “who”, “how” challenges of community selection



Complexity

Community selection problem
» Switch from hundreds of symbiots to 3 or 4

» Pinpoint a few number of putative cross-
feedings

size(T \ MBscope(G;,..G;,)

Comsel(S, T,G;..G,) = arg min size{s = exchg(Gil.. GiL) |
{exchg(Giy-Gi)eler-63 | T N CPscope(G,.. Gy, €, S) =

T N MBscope (Gil..GiL,S)}

L D = Y R

» depends on the number of hyperarcs

Size of the search space
» depends on the number of symbionts

Highly combinatorial problem

TT\ (' 7OV )

¥

R‘ g L )
e Symb.d & Symb.2 2 Symb.3,

499,177 combinations of
<6 exchanges

1.62.1081 combinations of
<10 exchanges
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Two-step optimization procedure

HOW? ? 0} i

s vk
S HNHTH=
c

Heuristics for the community selection

problem |
> Who problem mxdbagChnity(S, T, G1..Gn)
. . . . size (T\mxdbagScopc(G,, .G, ,S)),
» Get rid of boundaries and select all 1(,-,1..2:%?}'5‘,..@}(% —_—_—

minimal symbiot families

» How problem.
» Sort the selected families according to the ~ ®@®nhe-00 \
size( T\mxdbagScope(G;, ..G;,,S) ),
number of exchanges (Mwelbegscope(Gi-Gi.5)

size{G;,..G;, },

{G;,..G;,} | size{€ C exchg(G;,..G;, )|

» Manual curation. C{GLGn} | TreptScope(Gy. ot
» Ask your favorite biologist to select the \ = TnmxdbagScope(G;.. G )}
final one
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Validation/benchmarking on human microbiome project

Context of the study [Swainston et al., 2016] [Magnisdéttir et al., 2016]

+46 producible 381
metabolites ,“\ minimal
communltles
89 bacteria
Recon2.2 "
2 iy l

3




©:IRISA
Validation/benchmarking on human microbiome project

Context Of the StUdy [Swainston et al., 2016] [Magnusdéttir et al., 2016]

Vel +46 producible 381
metabolites ,’\ minimal
.’ Q communities
> . l 89 bacteria
Recon2.2 * o X 'ﬁ 1\’0
AGORA(773) ’

Clustering of bacteria

*‘--: E . E Ny a— AV PoED 2 »

i — r g—— -V | - - PO — " A o e — NV ‘

T S b e ey - K ;

Cluster 1: 31 [ Cluster 2: = — Cluster 3: -
Bacteroidetes Firmicutes & Proteobacteria Firmicutes & Proteobacteria

et i N R - e

e R e % g HCE 00 - b o AT -

= -y - - oo -":'_":f:“' : M At MCTC 11299 -
-——-ﬁm- :—n—-u :

Each of the 381 communities is composed of
1 Bacteroidetes (/58) + 1 Firmicute or Proteobacteria (/15) + 1 Firmicute or Proteobacteria (/16)
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Validation/benchmarking on human microbiome project

PWRN-1-1-2 A
MR %

Association of bacteria & functionality S

Groups of equivalent bacteria
in clusters with respect to their
associations [soumeu et al, 2017]

e Powernodes: groups of
bacteria, parts of bicliques

e Poweredges: connect bicliques
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PWRN-1-1-2_A

Validation/benchmarking on human microbiome project

Producible target
m= Non-producible target

PWRN-1-1-1 A

targets explains the
communities — screening ® ,
3%33}&- E§§5 ege

Producibility of individual
B0 RINEET AE: :’"2 BE8E =z
CORUTER

Community composition can be explained by the functional dependencies
of the targets towards specific groups of bacteria
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NNNNNNNNNNNNNNNNNNNNNNN
Station Biologique
de Roscoff

e Ca. P. ectocarpi not culturable Joint work with Enora Fremy, Bertille

e 10 culturable bacteria — functional redundancy Burgunter-Delamare & Simon Dittami
e 6 equivalent communities of 3 bacteria

) N (i\(\e
A 2 20
o N %e\
_ 1 Imperialibacter
i Marinobacter
| Roseovarius sp. 420 g
i b4
“ Q
| Roseovarius sp. 134
1 Bosea
R 134

0! \ | Hoeflea
sl
ino 1

Producibility status of
by the alga provided cooperation with
the considered bacterium

[l Unproducible
Producible

Without
microbiome

Metabolites |

+ 3 selected
bacteria among
30 cultivable
bacteria

S. Dittami,
Bertille Burgunter-Delamare

The algae grew again... But with strange behaviors



TOWARDS CONCLUSION

ecologg
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immunology genomics

g.’ living nanobechnologg animals
£ Sbudgphgsmlogg cel I epsgchologg
= g— fields g beci*nolow
PR Four domains of Big Data in 2025: 3. dscupﬁnes SCIences 8¢
COMPLEXITY complexity vs quantity 5 man s % i
(inspired by [Ste2015]) neJroscnence lmmunobherapg human - s
- medicine asPec"'s8>pharmacology @ 35
HeterogenEity mag'ng organlsms G e
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°
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Inter- TWITTER
dependencies | YOQTl_JBE_
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17 PB/year 1-2 EB/year 40 EB/year
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Take home messages: life science data integration ?

> Life science data are multi-scale and heterogeneous
» Linked by underlying regulatory processes

» Systems biology ?
» study of complex systems which cannot be uniquely identified

» Handling complexity for
» Make (dynamical) hypotheses
» Solve optimization problems instead of identify parameters
» Win-win collaboration with your BFF ASP-tech developers

» We will never replace biologists

Molecular and cellular life science analysis is a user-assisted
data science rather than a modeling system science
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What about the future o . ﬂ& W‘* @%—*ﬂ%‘ﬂi’

'A v,‘;,

Yaypab

Mul.muns Epigenetic
modification r o(” cations

'Genomics »Pro(eomucs »Meubolom-cs
Patti et al. (2012). Metabolomics: the apogee of the omics trilogy. Nature

Four domains of Big Data in 2025:

LEVELS OF - -
COMPLEXITY COMD'EXIW Vs quantity
(inspired by [Ste2015]) _

Heterogeneity

Incompleteness

Different scales of ASTRONOMY
granularity

Inter- TWITTER

dependencies YouTuse o

QuANTITY
17 PB/year 1-2 EB/year 40 EB/year

> Size complexity
» Towards deep-learning ?

» Heterogeneity complexity ?
» Knowledge-based methods
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Linked open data

= More than 1500 life science databases
« Gene Ontology
* Chebi
« KEGG
« Swissprot...

= Many of these DB are being linked and can be queried
 Huge knowledge repositories to support reasoning

Linked Open Data initiative (2014) Linked Open Data initiative (2017)



The futur of life-science data analysis ?

Machine learning : compound,
function and species identification

. F =N F Dot R
n| cobacter ) | pa—" 31 Backeroides BB 1o ‘ .'.l W
frogilis H*

At HE e

‘—v

Legend
Cross Domain

Government

Publications
Social Networking

]
< a
&
a 9
o3
2=
@ g
Cr
cc
T
© »

Knowledge representation :

®

om0
N " Connect data
.‘@ Qg‘”gu a e =€  Performant queries
S L ’ e User-friendly interfaces

Formal approaches : explain
* Automatic reasoning
* Assist biologists and never replace them ¢ 5
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Prospective

» Our future role : facilitate and scale life science data analysis
» Easy exploration of search spaces
» Extract dynamical features as constraints (temporal ?)
» Use knowledge DBs

» Always explain the results
» Give choices to experimentalists

» According to all the hypotheses that we make, biologists have
to double-check our predictions.



______________________________pamma

Acknowledgment

= Equipe Dyliss@IRISA

= Meétabolisme@IRISA
» C. Frioux
« S. Prigent (INRA)
« M. Aite
* M. Chevallier
« J. Got

= Algues@SBR Roscoff

« S. Dittami =  CMM@Univ Chile
* H. Kiliijean * A. Maass
- B. Burgunter * M. P. Cortes
« T. Tonon « P. Bourdon
= ASP tech@Potsdam university = Modélisation métabolisme@Nantes

e T SChan’S team « D. Eveillard (LSZN)

« S. Thiele



