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Evaluation and design of propeller, Seminal models :

e 1865 : "Momentum Theory" : William J. M. Rankine !, also
Greenhill and Froude.

e 1878 : "Blade Element Theory" : William Froude 2, also Taylor
and Drzewiecki.

e 1919 : The 1D-model of Betz and the Betz limit
Cp Bet> = 16/27 ~ 0.5926

e 1926 : "Blade Element Momentum Theory" : Glauert’s
breakthrough.

® Combine "Momentum Theory" and
"Blade Element Theory",

® Take into account the wake
momentum.

1. W. J. M. Rankine. On the mechanical principles of the action of propellers.
Transactions, Institute of Naval Architects, 6 :13-30, 1865.

2. W. Froude. On the elementary relation between pitch, slip and propulsive
efficiency. Trans. Roy. Inst. Naval Arch., 19(47) :47-57, 1878.
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The Glauert’s model

Local/Macro decomposition

Hermann Glauert,
1892-1934.
Ideas :

@ Decompose the blade into elements,
considered to be independent.

@ Coupling of two models :

@ Local 2D model, describing the
lift and drag forces on a 2D

profile
H. GLAUERT . e
The elements of ® Macroscopic model, describing
ofoil and . . .
crew theary the evolution of a fluid ring

crossing the propeler

"The Elements of Aerofoil and Airscrew

Theory" - 1926



Local 2D model :

Using windtunnel, or
Computational Fluid Mechanics,
one use a 2D prototype or model
to assess the Drag and Lift
forces on a profile, assuming
they are on the form :

dL = CL(a)%pW2c(r)dr
dD = C’D(a)%pwzc(r)dr.

with :
@ « = angle of incidence,

@ W = macroscopic velocity
in x = —o0,

@ ¢ = is the chord
distribution.

The Glauert’s model

Local/Macro decomposition

Total
reaction

http://www.pilotwings.org/
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Local 2D model :

Using windtunnel, or
Computational Fluid Mechanics,
one use a 2D prototype or model
to assess the Drag and Lift
forces on a profile, assuming
they are on the form :

1
dL= Cp (a)ngQC(r)dr
1
dD = CD(a)ng%(r)dr.
with :

@ o = angle of incidence,

@ W = macroscopic velocity
in x = —o0,

@ c = is the chord
distribution.

The Glauert’s model

Local/Macro decomposition

0 10

incidence / [degrees]

20 30 40

"Wind Turbine Blade Analysis using the Blade
Element Momentum Method", Notes by G. Ingram.



Macroscopic model :
axial and rotational interference
factors

= U—oo - Uac:O
U—
;) We=0+
T a0

The Glauert’s model

Local/Macro decomposition

inf Propeller

Typical Streamtube of flow passing through Section AA
VH:er Vg =Vipe(1+a)

v,

shipstream

"Aerodynamics for students",

http://www-mdp.eng.cam.ac.uk
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The Glauert’s model

Local/Macro decomposition

occur. This consideration will be modified in the next section. A helicopter, in going from
vertical ascent to autorotational descent can pass through the various states illustrated in Figure
4-6. Glauert (10) used experimental results to quantify the turbulent windmill and vortex ring

states of a rotor.

Macroscopic model : *E %
(o) o)

axial and rotational interference

factors
— U_Oo — z=0 (e) @

U—co

/ Wy=0+ %

a = te)

2Q

Figure 4.6 Working States of a Rotor: (a) propeller; (b) zero-thrust; (c) windmill;
(d) turbulent windmill; (¢) vortex ring

Wilson, Lissaman, "Applied Aerodynamics of

wind power machines", 1974, p.51.



The Glauert’s model

Local/Macro decomposition

16-2, Consider next the aerodynamio forces experienced
by the blade element at radial distance r. The blade element

G

Macroscopic model :

Angular relations Co 0 (1-a)
Fig. 110.

is subject to an axial velocity ¥ (1 + a) and a rotational

¢ = Blade angle velocity rQ2 (1 — a’), so that the resultant velocity W is
. inclined at angle ¢ to the plane of rotation, where
« = Incidence angle tongn ¥ 1ta
. . . ¢ = m ’ l -s :

¢ = Relative angle deviation If 8 is the blade anglo, the element will work st an angle of

incidence ¢ = § — ¢ and will give the corresponding lift and
, . drag coefficients, C; and Cp, appropriate to the aerofoil
The element will work at section in two-dimensional motion. The components of these
foroe coefficients, resolved in the direction of the thrust and
torque, are respectively
M = Cp 008 ¢ — Cpsin 4,
M= Cp8ing + Cpoos ¢,
and the elements of thrust and torque given by the blade
element of area odr are
dT = ), §pWiedr,
dQ = A 3pWicrdr.

a=0—¢.”

"The Elements of Aerofoil and Airscrew Theory”, 1926, p.212.



Macroscopic model :
Angular relations
Glauert motivation :
aeronautics

=0Glauert — —Q,

li /
AGlauert — —Q

9—)’}/)\.
1 1+d
tan” " = A—
l1—-a
r()
A\ —
U

The Glauert’s model

Local/Macro decomposition

16-2, Congider next the aerodynamio forces experienced
by the blade el at radial di r. The blade el

G

G *a (1-a)
Fig. 110,
is subject to an axial velocity ¥ (1 + a) and a rotational
velocity W is
g
fuctined $ V 1+a
= » -——7 .

N A ' 1-a
Ifdis gle of
inciden 't and

drag coefficients, C; and Cp, appropriate to the foil
section in two-dimensional motion. The components of these
foroe coefficients, resolved in the direction of the thrust and
torque, are respectively
M = Cpc08 ¢ — Cpsin 4,
A= Cp8ing + Cpoos ¢,
and the elements of thrust and torque given by the blade
element of area odr are
AT = A §pWiedr,
dQ = A $pWicrdr.

"The Elements of Aerofoil and Airscrew Theory", 1926, p.212.



The Glauert’s model

Local/Macro decomposition

Using Bernouilli’s relation, one can find the elementary force and
torque :

dF, = pU?_,(4a(1 — a))mrdr,
dT = 4ad' (1 — a)pU,—or®Qndr.

But the lift and drag coefficients definitions imply

Uz—o(1—a) :
dF, = a(r)pr(CL(ap — ) cos @ 4+ Cp(p — ) sin)rdr,
U?_ (1 —a)? .
T = a(r)rp 2005 (Coli = w)sinp = (i = ) cos )

where we have introduced the local solidity, defined by :

o(r) = Be(r)

2mr



The Glauert’s model

Local/Macro decomposition

We end up with the Glauert’s system :

1 !
tan "t = A ta ,
1—a
a o(r)

1 ) (CL(p — ) cosp + Cp(p — ) sin p),
—a 4sin”

a o)
l—a 4Xsin?¢

(Cr(p —a)sing — Cp(p — ) cos ¢).
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The Glauert’s model

Reformulation

Simplification : we assume Cp = 0 — fits with the practical cases?
1 !
tan 1l = \ s ,
1—-a
a o(r)

1—a m(CL(SD — M) cos ),
a o(r)

1-a 4)sin? ¢

(CL(p — ) sing).

3. "In the calculation of induction factors,/...] accepted practice is to set Cp
equal to zero [...]. For airfoils with low drag coefficients, this simplification
introduces negligible errors.”, Manwell et al. p.125.



Reformulation

1 !
tan "t = \ —&—a’
1—a
a o(r)

- Cr (o —
. 4sin2@( L(p —7a) cos @),
a' o(r)

1-a 4\ sin?

(CL(p — ) sing).

Remarks :
e Also for practical cases, we are interested in solution such that
Crlep—m) >0 >0,
o (a,d,¢) = (1,d, %) is always a (non-interesting) solution of this
system.



The Glauert’s model

Reformulation

Set Hcey = Hep (90) = m :

4
1 !
tan "t = \ +a7
1—a
a o(r)

= C —_ 5
T2 = T (e~ ) cose)

a o(r)
e = Dz Cele ~m)sing)
(i
1 !
tan~t o = +a7
1—a
a HCy
= cos ©,
1—a sin?¢e 7
a By,




The Glauert’s model

Reformulation

1 !
tan"t o = +a R
l1—a
¢ _ Ko cos @
1—a sin?¢e ’
a _ _Hcr
1—a Asing
)




The Glauert’s model

Reformulation

To study the solution(s) of Glauert’s system, we rewrite it :

tan"lp = A\ (1 + MC; cos ga) + Hew
sin? ¢

o _sin cos @ — Asinp
o = (psin<p+/\cos<p

Suc, =sinptan(fy — @) =: pa.

Solving Glauert’s approach

consists in solving : ) ‘
C _ 0.4 J—— B
W =sinptan(fy — @) e e

ﬁ :0.4—
oy () = pa(e) h

0 0.5 1 15

D




The Glauert’s model

Reformulation

Example : river current power, "Hydrolienne H3’

~
( HYDROTUBE

\ ENERGIE

— A.N.R HyFloEFlu




HYPOTHESE 2: Courbe Mu, & Mug

a0s

The Glauert’s model

Reformulation

HYPOTHESE 2: Courbe Mu, & Mug

x(ad)
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The Glauert’s model

Correction of the model

Recall that :

dF, = 4a(1 — a)U? _prrdr.

20

Glauert empifical relation

Cr=4a(l-a)

The quantity

Thrust eosfficient

05 .
Windmill state Turbulent wake state *.

dF, |
- = 00 .
% UE 0o p27‘r7‘d7“ ’ o‘o o‘z nl4 ole ols 1In

Axial induction factor

Cr =

is called loca,l th'rust coeﬁcient, Figure 3.29 Fits to measured wind wrbine thrust coefficients
Manwell et al, "Wind Energy Explained

Theory, Design and Application”, 2nd Ed.,

p.130



The Glauert’s model

Correction of the model

dF, = 4a(1 — a)U? _ prrdr
U
dF, = 4x(a,a.)U? prrdr
=4(a(l —a)+ v ((a—a.)y)) U2 prrdr

Order Author ac ¥ ((u - ac)+)
2
(a — ac) (a —ac)
3 Glauert 1/3 et < + 42— ac)t + ac
4 ac
(a — ac)4 [Fy(@)(a — ac)t + 2Fy (p)ac — 0.286]
2 Glauert emp.  2/5  ae(l — ac) + )+ ( ot A et Fy (9)
2.5708
2
1 a—ac)
2 Buhl 2/5 (azaec)y
2F) (¢) 1—ac

Wilson et al.  1/3 (a—ace)?
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The Glauert’s model

Existence of solutions

Lemma
Suppose that (p,a,a’) satisfies Glauert’s model.

©® There exists T : ¢ — a = 7(p) satisfying :

a cosfycosp\ ¥ ((@a—ac)y)
l—a (1 COS(H,\—g0)> (1—a)? =9),

with

g(p) :=tan"! ptan(fx — ¢) + S%’; (1+tan™" ptan(0y — ¢)),

® The unknown ¢ satisfies
ey (p) — tan(0x — )pcp (v) = pe (),
where

cos Oxsin® ¥ ((7(¢) — ac)+)
cos( =) (1—7(9)*

pe(p) = pa(e) +



The Glauert’s model

Existence of solutions

Expanding further, one finds

1- c
U( a)@3/2

a=1-
HCp (O)
Lemma AN
The function pg satisfies . _
pep (0) .
1 () p—o+ ; ‘
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Classical solver

Usual algorithm

Usual way to solve this system :

airfoil characteristics. Thus, the total system of equation, which is both nonlinear
and implicit, needs to be solved either by employing a nonlinear solution technique
for the full system of equations or by using a simple iterative updating technique.
For several reasons, the latter is the most convenient method to be used. A solution
procedure may proceed as follows:

1. Divide the rotor blade into a number of spanwise elements (typically 20-30) and
start an iterative procedure for each element.

2. Guess a and @'. The guess may either be based on the values obtained at the
previous element or, e.g., by putting @ = 1/3 and &’ = 0.

3. Compute the flow angle from the expression: ¢ = tan™" (AT(‘:Z:W)’ where 4 = 7¥

is the tip speed ratio and x = r/R.

4. Compute the angle of attack, « = ¢ — y , and based on this, determine the airfoil
characteristics, C; = Cj(«) and Cy = Ca(x).

5. Compute C, and C,.

6. Update a and &’ and continue the process until convergence.

"General Momentum Theory for Horizontal Axis Wind Turbines", J. N. Sorensen



Classical solver

Usual algorithm

Usual way to solve this system :

x 1+a*
tan Lot = N2 17
an - @ -
ak 0(7‘) k & i o
1_arF 4sin? ok (CL(¢" =) cos g™ + Cp(p” — 1) sinp”),
o o(r)

1 — gk = 4\ sin2 SDk (CL(SDk - 'YA) sin <Pk - CD(SOk - ’y>\) COS <pk).




Classical solver

Usual algorithm

Theorem
Let

per (03) < pa(n)-

and

16, llooh(72)

<1
14 )2 -

lncullslt’ )l _ |
14+ M2 -

Then, the sequence (o*)ren defined by the classical solver converges to
a solution of Glauert’s model.
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Classical solver

Convergence issues

All the variant of the model may give rise to multiple solutions. More
preciselly :

©® With the simplification C'p = 0 and C, approximately linear
around 0 : two solutions.

® Stall : possible other solution after the critical angle.
® Corrected model : pg may change of concavity.

— possible problem of convergence..
= Bisection method will always work...
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Optimization

Functional

Quantity to maximize :

8 [ Cp(p — ")
C :—/ ANd(1-a <1—Dtan )d)\.
PExg YO T Gy e

Design parameters : ¢(r), yA(r) = (ney, top)-

Indeed :

pe, = o) 200
ey = o(r) 2R 2 2)
Be(r)




Optimization

Mathematical formulation, for fixed A :

min J(MCL’/LLCD) = a/(l - a) (1 - @tanfl 80> )
ey

under the constraints

1 /
tan "l =\ ta ,
1—a
a 1 .
1—a m (pey, cos@ + pcp singp) ,
a’ 1 .
= oo (1o, sing — pep, cos ).
and with
_o()Crv— ) _a(r)Cp(a — )
Hep = 4 Hcp = 4 .

Functional
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Optimization

Usual algorithm

If the correction on a is not included, the following procedure is used :

3.10.1.2 Define the Blade Shape

5. Obtain and examine the empirical curves for the aerodynamic properties of the airfoil
at each section (the airfoil may vary from the root to the tip), i.e. C; vs. &, C4 vs. . Choose
the design aerodynamic conditions, Cigesign and Ggesigr, Such that Cy design / Ci design 18 at a
minimum for each blade section.

"Wind Energy Ezplained"’, Manwell et al. 2nd Ed.

J(N’CLMU'CD) = a/(l - a) <1 - %tan_l gﬁ)

U, CD ~0
J(pe,) =d'(1-a).
After this step o* = ¢ — 7, is fixed!



Optimization
Usual algorithm

Consider then :
J(/’[’CL) = a’/(l - a’)'

Taking into account that pc, (¢) = pa(p) := sinp tan(dy — ), one
can rewrite J only in term of ¢.

1 sin2ap .
J(p) = I\ sin N sin(2(ep — 0x))

whose optimum is obtained for :

2
*— 29
¥ 3,\



Optimization

Usual algorithm

End of the design procedure :

a(r)Cr(e — )

Recall that a* = ¢ — v and puc, = — then
M=o+t
8mr
= oo~ ha(9”)

BCL (Oz*)



Optimization

Usual algorithm

Summary :

min J(pcy , piep s ) st Eq(pey, pep, @) =0
(1)
min J(pc,, ) st. Eq(pc,, ) =0
4(2)

min J(f (), @)
4

Explicit solution !
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Optimization

With correction ?

Using the expansion :

1- c
Y( a )903/2

a=1- )
HCp (O)
we obtain
(1 —a.)tand
Ty pen) ~ AT e o)
Theorem

There exists a2 < 1 such that for a. < a%, the optimal solution does
not activate the thrust correction.
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Conclusion

The BEM is a 0D x 2D coupled model.

o Condition on vy, and Cf, to guarantee existence of solution of
interest

o Possible multiple solutions

o Optimization : existence, definition of a research interval

Possible extension to 1D x 2D 7?7
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