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Multidisciplinarity and Science Policy

Create a new lab: expensive and political
Create a new activity within a lab: mostly at an interface of science
JL Lions steering Laboria (INRIA applied math lab)
The benefits of the triple point

Jack of all trades master of none
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The 2008 Tsunami Simulated with SPECFEM3D

Wave propagation in the planet earth after the Sumatra earthquake of 2008 (D.
Komatitsch et al)
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The Simulation Code SPECFEM3D

Dimitri Komatitsch and team designed, for earthquake, a Fluid-solid software that
runs on a cluster of CPU/GPU .
• Linear Elasticity in S (wave eq.)+ incompressible flows (p = ∂tφ) in F = Ω\S :

ρ∂tv = −∇p, ∂tp = −κ∇ · v ⇔
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1
2
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.
It is in C++ and uses OpenMP, MPI and CUDA.
It has a block allocation strategy for load balancing
Each block is a spectral element fluid-Structure solver for the wave equation
with an explicit in time discretization.
When blocks are non fitting they are glued by the Mortar method
Effort is made to compute locally in GPUs during the data transfers between
blocks using non blocking MPI comm.
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Performance using GPUs (2008)

The key is to allocate for each macro-element the inner nodes calculations to the
GPU and the boundary nodes calculation and communications to CPUs.
Each spectral element on the GPU has 128 threads, one thread per Gauss-Lebato
point of degree 4 (125 DOF)
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High Performance Computing & Science

1 Nuclear engineering 1943 Los Alamos
2 Aerospace and Automobile : 1970
3 Geology for oil 1980
4 Ab-initio chemistry 1990 ⇐ // Computing
5 Climate and meteorology 2000
6 Astrophysics 2010
7 Deep Learning and AI 2020
8 QCD: quantum chromodynamics 2030

Moore’s law max and mean performance of supercomputer ( numbers are green index)
ref: AMD, Intel, DOI: 10.2298/CSIS150228063F,

O.Pironneau (LJLL) Mathematics & Supercomputing & Multidisciplinarity Roscoff March 2019 6 / 16



Algorithmic Advances

Solution of sparse linear systems
1 Gauss-Seidel / Jacobi iterative method
2 Conjugate gradient method
3 Preconditioned Conjugate gradients
4 Preconditioned GMRES/Quasi Newton
5 Algebraic Multigrids
6 Fast multipole methods & H-Matrix
7 Domain Decomposition

Courtesy of Mathieu Aussal’s gypsilab
Sound wave from a submarine computed by BEM with 105 nodes and H1-method on a PC in
1000sec. Traditional methods would require solving a spase linear system of size 107 at least.

C. Gauss M. Hestenes K.vanDerVorst Y. Saad A. Brandt W.Hackbusch P.Schwarz
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The Fast Mutlipole Method

• Vladimir Rokhlin imported the idea from astrophysics, Leslie Greengard did the
proofs, Weng-Cho Chew, Eric Darve, Guillaume Sylvan, etc perfected the method.
• FMM is an integral equation solver O(n log n).
• For a given large integer J and two given sets of vectors {uj}J1, {xj}J1, let us
compute vi =

∑J
j=1

uj
xi−xj i = 1..J.

• If no trick is applied it takes J2 operations. However one may do the following:

1
x − y

=
1

x − z + z − y
=

1
(x − z)(1 + z−y

x−z )
=

M∑
m=0

(y − z)m

(x − z)m+1 + o((
z − y

x − z
)M)

Hence
J∑

j=1

uj
xi − xj

=
M∑

m=0

[
J∑

j=1

(xj − z)muj ]
1

(xi − z)m+1 = BimAmjuj

Now the operation count is 2M × J + M ×M.
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Top 10 for Algorithms of the 20th Century

1946 Metropolis Algorithm for Monte Carlo.
1947 Simplex Method for Linear Programming.
1950 Krylov Subspace Iteration Methods.
1951 The Decompositional Approach to Matrix Computations.
1957 The Fortran Optimizing Compiler.
1959 QR Algorithm for Computing Eigenvalues.
1962 Quicksort Algorithm for Sorting.
1965 Fast Fourier Transform.

Metropolis Dantzig Krylov Householder Backus Francis Hoare Cooley-Tukey
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Who Devised the Algorithms

From Nick Trefethen’s talk "Who invented the great numerical algorithms?”
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Best Algorithms of late 20th - early 21st Century?

1 Page Rank algorithms
2 Stochastic/genetic/evolutionary algorithms for optimisation
3 Deep Neural Network
4 Quantum Computing
5 Fast Multipole Method
6 H - methods
H stands for Hierarchic. It uses the same idea as FMM: if the kernel f the
differential operator can be approximated (e.g; a polynomial expansion)
K (x , y) ≈

∑
k K̃ (x , ξk)bk(y), then∫

S×S

K(x , y)ui (y)uj(x)dxdy ≈
∑
k

aikbjk ; aik =

∫
S

K̃(x , ξk)ui (x)dx , bjk =

∫
S

bk(y)uj(y)dy

(from Mathieu Aussal) Full Matrix H - matrix H2 -matrix
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Remarks on the Future of HPC

Page ranking is perhaps the most use algorithm: use racks of PCs, cloud...
Memories will have computing capabilities
Banks are among the biggest users of supercomputing: Risk assessment.
They don’t use supercomputers
Mining bitcoins is incredibly expensive, so far without HPC
Deep learning uses GPUs. Supercomputing or Cloud GPU-computing?
Exascale computers will have millions of cores. Requires new algorithms
Green computing (104 ARM processors, slow but cool)? or Wind-mills
attached to supercomputers?
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Neural Network: existence of Solution

A Neural Network (Bruno Després) Let f ∈ C 1(R) ∩W∞1 (R)

f (x) =

∫ x

−∞
f ′(y)dy =

∫
R

H(x − y)f ′(y)dy

≈
J∑

j=−J

φ(
x

ε
− jδx

ε
)f ′(jδx)δx =

J∑
−J

ωjφ(ajx + bj)

where H(x) is Heaviside and φ a sigmoid to approximate H.

Theorem 3 (Hornik et al., Cybenko, 1989) Feedforward network with a linear
output layer and at least one hidden layer with any “squashing” activation function
(such as the logistic sigmoid activation function) can approximate any Borel
measurable function from one finite-dimensional space to another with any desired
non-zero amount of error, provided that the network is given enough hidden units.
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Mathematical Results Pertinent to Deep Learning

Deep learning requires computing resources; Cloud is prefered to HPC but it may
change. Ten years of algorithmic improvements by computer scientists. But no
convergence proof.

Consider a system with stochastic input α and output α 7→ u(α). Let us focus on

uρ(α) := E(u|α), σ2
ρ := E

[
‖u(α)− uρ(α)‖2

∣∣α]
The Deep Neural Network defines an approximation of the output α 7→ un(α).

If m the number of samples to train the network, and {αi}m1 are randomly chosen
according to a probalility law on the set of all sample A, the best we can do is to

choose un the minimizer of Em(un) := 1
m

∑m
i=1 ‖un(αi )− u(αi )‖2

Theorem 1 (see Goodfellow)

E(un) := EA[‖un(α)− u(α)‖2] = EA[‖un(α)− uρ(α)‖2] + σ2
ρ

This means that the best one can expect to achieve is a neural network which
generates α 7→ uρ(α).
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Mathematical Results Pertinent to Deep Learning (II)

Precision improves with the number of samples according to
Theorem 2 (Cucker-Smale)

P
[
|E(un)− Em(un)| < ε

]
≥ 1− 2e

− mε2

2σ2+ 1
3M2ε

where M is such that |un(α)− u(α)| < M a.e. and σ is the variance of un. There
remains the problem of generating uρ with a neural network.

Convergence of the stochastic gradient algorithm (like Adam’s) can be a
problem. There are versions of the Adaptive Adam Stochastic gradient which
achieve precision O( 1√

N
) after N iterations and O( 1

N ) after N iterations in the
batch setting (Rachel Ward, Xiaoxia Wu , and Léon Bottou, arxiv 1806.01811) .

No theorem to support that Deep NN are better!
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More Topics

- Convergence of genetic algorithms
- Smooth Particle Hydrodynamics (SPH)
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