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0.	MOTIVATION	
	
In	the	early	2000,	while	looking	for	PDE’s	from	Geometry,	I	came	across	an	article	of	
Alice	Chang	discussing	the	Laplace-Beltrami-Bratu-Gelfand	problem	
	
	(LBBG)																																					 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 		
where	 Σ		is	a	surface	of	Rd	and	ΔΣ	the	associated	Laplace-Beltrami	operator.	At	the	
time	I	was	more	interested	in	the	Monge-Ampère	equation		 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 		

where	Ω		is	a	bounded	convex	domain	of	Rd	.	For	some	strange	reason,	(LBBG)	
became	in	my	mind 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 		

explaining	what’s	follows	(when	I	realized	my	mistake	it	was	too	late). 	
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1.   FORMULATION	OF	THE	EIGENVALUE	PROBLEM	
Assuming	that	 Ω	is	a	bounded	convex	domain	of		R2,	our	goal	is	to	solve	numerically	the		
following	nonlinear	eigenvalue	problem:		(Monge-Ampère-Bratu-Gelfand	problem)	
	
	

		
	
(MABG)	
	
	
	
Above																				.	
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REMARK	1.	The	convexity	of	Ω	and	u,	and	the	condition	u	=	0	on	∂Ω	⇒	u	<	0	in	Ω.	
	
REMARK	2.	P.L.	Lions,	Annali	di	Matematica		Pura	ed	Applicada,	142(1),	1985	contains	
mathematical	results	associated	with	a	closely	related	nonlinear	eigenvalue	problem	(λu2	
instead	of	λe	–	u	).	
	
REMARK	3.	Suppose	that	Ω	is	the	unit	disk	centered	at	(0,	0).	Looking	for	radial	solutions	to		
(MABG)	we	solve	
	

			(1)																																													
	
	
(by	a	shooting	method	for	example).	The	related	bifurcation	diagram	has	been	visualized	on	

Figure	1,	below,	showing	a	turning	point	at	λ	≈	3.7617,	the	associated	function	u	taking	its	
minimal	value	at	(0,	0)	with	u(0,0)	≈	–	2.	5950.		
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Figure	1:	MABG	problem	on	the	unit	disk:	Exact	solution	bifurcation	diagram	



2.	DIVERGENCE	FORMULATIONS	OF	(MABG)	
An	alternative	formulation	to		(MABG)	is	given	by		
	
	
(MABG.DIV.1)				
	
	
	
In	order	to	take	advantage	(via	operator-splitting)	of	the	methodology	developed	
in		
R.	G.,	H.	Liu,	S.	Leung	&	J.	Qian,	J.	Scient.	Comp.,	2019,	for	the	numerical	solution	
of	the	canonical	elliptic	Monge-Ampère	equation	
	(E-MA)																														det	D2u	=	f	(>	0)	in	Ω,	u	=	g		on	∂Ω,	
we	reformulate		(MABG.DIV1)	as		
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(MABG.DIV.2)	

	
																																																																																																																															
	
3.	AN	ASSOCIATED	INITIAL	VALUE	PROBLEM	
We	are	going	to	associate	with	(MABG.DIV.2)	an	initial	value	problem	whose	steady	
state	solutions	solve	(MABG).	After	time-discretization,	the	resulting	algorithm	can	be	
viewed	as	a	nonlinear	variant	of	the	inverse	power	method	with	shift	(the	shift	being	
here	associated	with	the	operator	I	/τ	,	τ		being	a	time-discretization	step).				
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																																																		(MABG.DIV.2)	-→	(MABG.IVP)	
																																															
	
	
	
(MABG.IVP)	
	
	
	
	
Above:	(i)	ϕ(t):	x	→	ϕ(x,	t).	(ii)	ε	>	0	(ε	≈	h2	in	practice).	(iii)	u0	≤	0.	(iv)	γ		>	0.				
(v)	p0		SPSD	(pointwise).		
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4.	TIME-DISCRETIZATION	BY	OPERATOR-SPLITTING	OF	(MABG.IVP)	
With	τ	(	>	0)	a	time-discretization	step	(	fixed	for	simplicity)	we	approximate	
(MABG.IVP)	by:		
(0)		
For	n	≥	0,		(un,	pn)	→	un+1/3	→	(un+2/3,	pn+1)	→	un+1	as	follows:		
First	Step:				Solve	the	following	(well-posed)	linear	elliptic	problem	
	
(1)	
	
Second	Step:	
(2)1	
	
(2)2	
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Third	Step:	
	
(3)																																									un+1	=	inf	(0,	un+2/3).	
Above:	
♦	Problem	(1)	is	a	very	classical	linear	elliptic	problem.	It	has	the	following	property:	

	
♦	P+	is	an	operator,	mapping	the	space	of	the	2	×	2	real	symmetric	matrices	onto	the	
closed					
			convex	cone	of	the	real	SPSD	2	×	2	matrices	(if	q	is	a	2	×	2	real	symmetric	matrix	with	
			eigenvalues	µ1	and	µ	2,	∃	S	∈	O(2)	s.t.																																then,	operator	P+		is	defined	
by	
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♦	We	consider	system	(2)2	as	an	optimality	system	associated	with	the	following	
minimization	problem	
			

(MIN)																																																																																																									
	
			It	follows	from	(MIN)		that	un+2/3	is	the	L2	-	projection	of	un+1/3	onto	 SC.	Unless	un+1/3	
∈	 SC	problem	(MINP)	may	have	no	solution	since	 SC	is	not	weakly	closed	in	L2(Ω).	
Fortunately	its	
discrete	analogues	have	solutions.	
																	

♦ Algorithm	(0)	–	(3)	has	clearly	the	flavor	of	an	inverse	power	method	(with	
truncation).			

	
♦	Step	3	has	been	included	to	be	on	the	safe	side.	Numerical	experiments	suggest	
that	if	algorithm	(0)	–	(3)	is	properly	initialized,	(3)	is	useless.																				
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Two	important	remarks	are	in	order:	
Remark	4:	Algorithm	(0)	–	(3)	‘enjoys’	a	splitting	error	forcing	us	to	use	a	small		time	–	
discretization	step	τ	.	
	
Remark	5:	There	is	no	need	to	compute	λn+1	at	each	time	step.	Indeed,		
	
	
	

i.e.,	λn+1	is	obtained	by	the	ratio	of		two	small	numbers.	It	is	safer	(?)	to	proceed	as	
follows:	

Denote	by	(uτ	,	pτ	)	the	limit	of	(un+1/3,	pn)n.	It	makes	sense	to	approximate	the	
(nonlinear)	eigenvalue	λ	by	
	
																																																		
a	(kind	of)	generalized	Rayleigh	quotient.							
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5	.	FINITE	ELEMENT	APPROXIMATION	OF	(MABG)	
Assuming	that	Ω	is	a	bounded	convex	polygonal	domain	of	R2	(or	has	been	approximated	
by	a	family	of	such	domains)	we	introduce	a	family	(Th)h	of	triangulations	of	Ω	like	those	
in	Figure	2	(h	is,	typically,	the	length	of	the	largest	edge(s)	of	Th).	Next,	we	approximate	
the	functional	spaces	H1(Ω)	and	H0

1(Ω)	by			
	
and		
	

respectively,	P1	being	the	space	of	the	polynomial	functions	of	two	variables	of	degree	≤	
1.	
																																																														Figure	2	Some	triangulations	
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Let	us	denote	by	Σh		(resp.,	Σ0h)	the	set	of	the	vertices	of	Th	(resp.,	the	set	Σh	\	Σh	∩	∂Ω).	
We	have	then	
																														
																																	dim	Vh	=	Card	Σh	(:	=	Nh	)	and	dim	V0h	=	Card	Σ0h	(:	=	N0h	).		
	
We	assume	that	the	vertices	of	Th		have	been	numbered	so	that																																																											
For			k	=	1,	…,	N0h,    we define ωk	as	the	union	of	those	triangles	of	Th	which	have	Qk	as	a	common	vertex.	We	denote	by	|ωk	|	the	measure	(area)	of	ωk.		
	
Approximating	the	Monge-Ampère	part	of	the	splitting	scheme	(0)	–	(3)	is	a	(boring)	and	
time		
consuming	repetition	of	RG-HL-TL	&	JQ,	J.	Scient.	Comp.,	2019.	Focusing	on	the	
eigenvalue	part,	we	approximate	SC	by	SCh	defined	(trapezoidal	rule)	by:	
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The	discrete	analogue	of	the	L2	–	projection	onto	SC	is	done	by	a	SQP	method	very	easy	to	
implement,	showing	(as	expected)	fast	convergence	properties.	
	

Remark	6:	We	can	take	advantage	of	the	fact	that	τ		is	small	by	replacing	(MIN)	by												
(MIN.LIN)	obtained	by	linearization	
	
			(MIN.LIN)															
	
where	

	
	
The	closed	form	solution	of	(MJN.LIN)	is	given	by		
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The	above	function	coincides	with	the	1st	iterate	of	the	SQP	method	
initialized	
by	un+1/3.	
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6.	NUMERICAL	RESULTS	
6.1.	TEST	PROBLEM	FOR	
THE	UNIT	DISK	

	
	
	
	
Figure	3:	MABG	problem	on	the	unit	disk:	Exact	solution	bifurcation	diagram	



	
	
	
	
	
	
	
	
	
	
	
							Figure	4:	Bifurcation	diagram	comparison	for	the	unit	disk	



	
The	discrepancy	shown	on	Figure	4	for	small	values	of	C	is	the	result	of	an	
erroneous	initialization.	This	mistake	has	been	corrected.	The	reason	we	exhibit	
these	partially	wrong	results	is	to	show	the	robustness	of	our	methodology.	
Indeed,	without	human	intervention,	our	method	‘returns	quickly	by	itself’	
on	the	correct	approximate	bifurcation	diagrams	as	C	increases.	



	
	
	
	
	
	
Figure	5.	
Results		
at	the		
exact	
turning	
point		

(C	=	10.5)		
	
	
	



	
	
	
	
	
____________________________________________________________________
__	
___________________________________________________________________	

λh	–	λ0	=	quasi-textbook	O(h)	



6.2.	TEST	PROBLEMS	FOR	REGULARIZED	SQUARES	
	
	
	
	
																																																																																																																																		
	
	
																																																																																																																																		q	=	4	
	
																																																										FIGURE	6																																																					





																													« il faut essayer, vas-y »(1) 
					

CEDRIC	VILLANI		
DEA	d’	ANALYSE	NUMERIQUE	(Université	P.	&	M.	Curie)	

Fields	Medal	2010	
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(1)																																				“	One	has	to	try,	let’s	go”	


