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0. MOTIVATION

In the early 2000, while looking for PDE’s from Geometry, | came across an article of
Alice Chang discussing the Laplace-Beltrami-Bratu-Gelfand problem

(LBBG) A+ Ae =0 on 3

where X is a surface of R?and A the associated Laplace-Beltrami operator. At the
time | was more interested in the Monge-Ampeére equation

detD’u = f(>0) in Q

where Q is a bounded convex domain of R?. For some strange reason, (LBBG)
became in my mind

detD*u = A" in Q

explaining what’s follows (when | realized my mistake it was too late).



1. FORMULATION OF THE EIGENVALUE PROBLEM

Assuming that Q is a bounded convex domain of RZ, our goal is to solve numerically the
following nonlinear eigenvalue problem: (Monge-Ampeére-Bratu-Gelfand problem)

-

Find u convex and A >0 such that

(MABG) detD’u=Ae™ in Q,
u=0 on 09,

[ (e =1dx = C(>0).

Above :
dx = dx,dx,



REMARK 1. The convexity of 2 and u, and the conditionu=00n 9022 = u<0in Q.

REMARK 2. P.L. Lions, Annali di Matematica Pura ed Applicada, 142(1), 1985 contains
mathematical results associated with a closely related nonlinear eigenvalue problem (Au?
instead of Ae ~Y).

REMARK 3. Suppose that Q is the unit disk centered at (0, 0). Looking for radial solutions to

(MABG) we solve _
u<0,A=0,

luu" = Are™ on (0,1),

u(1) =0,u'(0) =0,

(by a shooting method for example). The related bifurcation diagram has been visualized on

(1)

Figure 1, below, showing a turning point at A = 3.7617, the associated function u taking its
minimal value at (0, 0) with u(0,0) = — 2. 5950.
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2. DIVERGENCE FORMULATIONS OF (MABG)
An alternative formulation to (MABG) is given by

Find u convex and A >0 such that

(MABG.DIV.1) ~V.(cof D’u)Vu = -22e™ in Q,
< u=0 on 09,

L(e'“ -1)dx =C.

In order to take advantage (via operator-splitting) of the methodology developed
in

R. G,, H. Liu, S. Leung & J. Qian, J. Scient. Comp., 2019, for the numerical solution
of the canonical elliptic Monge-Ampeére equation

(E-MA) detD2u=f(>0)in Q, u=g on 92,
we reformulate (MABG.DIV1) as



(Find u convex, p symmetric positive semi - definite and A > 0 s.t.

- V.(cof p)Vu=-24¢™ in Q,
u=0 on 0Q,

p-Du=0,
fg(e -Ddx =C.
3. AN ASSOCIATED INITIAL VALUE PROBLEM

We are going to associate with (MABG.DIV.2) an initial value problem whose steady
state solutions solve (MABG). After time-discretization, the resulting algorithm can be
viewed as a nonlinear variant of the inverse power method with shift (the shift being
here associated with the operator | /7, T being a time-discretization step).

(MABG.DIV.2) |




(MABG.DIV.2) -— (MABG.IVP)
Find u(¢) < 0, p(¢) SPSD (point wise), A(¢) >0 so that:

% —V.[el +cof p]Vu = -2e™ in Qx(0,+),

u=0 on 0Qx(0,+0),

(MABG.IVP)

J\.

‘2_12+ 7(p-D)=0 in Qx(0,+),

fg (e -1)dx =1,Vt>0,

((0),p(0)) = (1,

Above: (i) ¢(t): x = @(x, t). (ii) € > 0 (¢ = h? in practice). (iii) u, < 0. (iv) y > 0.
(v) p, SPSD (pointwise).




4. TIME-DISCRETIZATION BY OPERATOR-SPLITTING OF (MABG.IVP)

With 7 ( > 0) a time-discretization step ( fixed for simplicity) we approximate
(MABG.IVP) by:

(0) (uO,pO) - (anpo)-

Forn=0, (u", p") — u™/3 — (u™?/3, pm1) — y"*! as follows:

First Step: Solve the following (well-posed) linear elliptic problem
THAREI AV [51 + cof p”]Vu”+1/3 =u" inQ,
(1)

u™" = 0 on Q.

Second Step:
(2), p"*(x) = Ple'”p”(x) +(1- e'”)Dzu”+1/3(x)J,a.e. XEQ,

n+2/3

_ —2'L'An+1€_u ’
n+2/3

fg(e'” ~Ddx =C(eu""" €S, ={p measurable,fQ (e -1dx = C}).

-

Z/ln+2/3 _ Z/ln+1/3

(2),




Third Step:

(3) u™1=inf (0, un?/3).
Above:
¢ Problem (1) is a very classical linear elliptic problem. It has the following property:

1
' <0=u"" <0,
¢ P_is an operator, mapping the space of the 2 x 2 real symmetric matrices onto the
closed

convex cone of the real SPSD 2 x 2 matrices (if q is a 2 x 2 real symmetric matrix with

then, operator P, is defined
ﬂl 0) . P

U,

eigenvalues u, and u,, 1S € 0(2) s.t.
by q=S(

max(0, &) 0 S"l)
' O maX(OMUZ) |



¢ We consider system (2), as an optimality system associated with the following
minimization problem

. ] 2
(MIN) - 4,"**" = argmin, —f o] dx —fu”+”3v dx
c|2Je Q

It follows from (MIN) that u"*?/3is the L? - projection of u"**/3onto S. Unless u™'/3

€ S problem (MINP) may have no solution since S is not weakly closed in L>(€2).
Fortunately its

discrete analogues have solutions.

¢ Algorithm (0) — (3) has clearly the flavor of an inverse power method (with
truncation).

¢ Step 3 has been included to be on the safe side. Numerical experiments suggest
that if algorithm (0) — (3) is properly initialized, (3) is useless.



Two important remarks are in order:

Remark 4: Algorithm (0) — (3) ‘enjoys’ a splitting error forcing us to use a small time —
discretization step T .

Remark 5: There is no need to compute A"*1 at each time step. Indeed,

n+2/3  n+l/3 ntl/3 o, n+213y
_ _2/»Ln+le w3 — (SIHCC Mn+2/3 ESC)/YHI — JOQ
T 27(C +|Q))

i.e., A1 is obtained by the ratio of two small numbers. It is safer (?) to proceed as
follows:

)

Denote by (u_, p,) the limit of (u™*'/3, p”) .. It makes sense to approximate the
(nonlinear) eigenvalue A by

, fg (el + cofp, )Vu_. Vu_dx
T 2 j;z u_e"dx

a (kind of) generalized Rayleigh quotient.



5. FINITE ELEMENT APPROXIMATION OF (MABG)

Assuming that Q is a bounded convex polygonal domain of R? (or has been approximated

by a family of such domains) we introduce a family (), of triangulations of Q like those
in Figure 2 (h is, typically, the length of the largest edge(s) of T,). Next, we approximate
the functional spaces H*(€2) and H,'(€2) by

Vh = {gﬂECO(ﬁ),gp‘TEPI,VTETh},

and

1
Vor = {0EV,»0]10= 0} (=V, N H(Q)),
respectively, P, being the space of the polynomial functions of two variables of degree <
1.

Figure 2 Some trianqulations




Let us denote by 2, (resp., 2,,) the set of the vertices of T, (resp., the set 2, | 3, N 9Q).
We have then

dimV,=Card X, (:=N, ) and dim V,, =Card 2, (: = N, ).

We assume that the vertices of 7, have been numbered so t)Zt _ {01
0h k
g

k=1"
For k=1,..,N,,, we define a)i( as the union of those trian

es of 7, which have Q, as
a common vertex. We denote by |w, | the measure (area) of w,.

Approximating the Monge-Ampeére part of the splitting scheme (0) — (3) is a (boring) and
time

consuming repetition of RG-HL-TL & JQ, J. Scient. Comp., 2019. Focusing on the
eigenvalue part, we approximate S, by S, defined (trapezoidal rule) by:

NOh

Scn =19 €V, 2k=1

w (e —1) =3C}.



The discrete analogue of the L? — projection onto S is done by a SQP method very easy to
implement, showing (as expected) fast convergence properties.

Remark 6: We can take advantage of the fact that T is small by replacing (MIN) by
(MIN.LIN) obtained by linearization

"I :
(MIN-LIN) "2 = arg min —f v dx —fu’”mv dx
g ’()EDSZHB 2 0 0 )

where

n+l/3

DS!M7 = {y |j;2 e (1+u™"” -v)dx=C+ ‘Q‘}

The closed form solution of (MJN.LIN) is given by



_ n+l1/3
2/3 1/3 fe Codx=(C+ ‘QD
un+ = un+ + . WEE €
fe “dx
Q

The above function coincides with the 15t iterate of the SQP method
initialized
by U"+1/3.

_un+1/3




6. NUMERICAL RESULTS
6.1. TEST PROBLEM FOR
THE UNIT DISK

Figure 3: MABG problem on the unit disk: Exact solution bifurcation diagram
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Figure 4: Bifurcation diagram comparison tor the unit disk




The discrepancy shown on Figure 4 for small values of C is the result of an
erroneous initialization. This mistake has been corrected. The reason we exhibit
these partially wrong results is to show the robustness of our methodology.
Indeed, without human intervention, our method ‘returns quickly by itself’
on the correct approximate bifurcation diagrams as C increases.
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h u(0, 0) A

1/20 ~2.5411 2.95
1/40 ~2.5983 3.3773
1/60 ~2.6038 3.5102
1/80 ~2.6084 3.5723
0(Y) ~2.5950 3.7617

Table 3. MABG problem: Variation with h of the computed turning points

(*) Exact solution

A, — Ay = quasi-textbook O(h)



6.2. TEST PROBLEMS FOR REGULARIZED SQUARES

(a) )

=4
Mesh for |(z; — 1/2)9] + [(z9 — 1/2)7] < (1/2)7 with h = 1/40: (a) g=3. (b) 9
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Figure 5: Graph of solution, contour of solution and bifurcation diagram. (a) ¢ = 3, At =
h%/2, with C' = 4.5. (b) ¢ = 3. At = h*/8 with C' = 15.(c) ¢ = 4. At = h* /2 with C' = 5.5.
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(1) “One has to try, let’s go”



