ON THE NUMERICAL SOLUTION OF A NONLINEAR EIGENVALUE PROBLEM FOR THE MONGE-AMPÈRE OPERATOR

Roland GLOWINSKI (University of Houston) \& Hao LIU (Georgia Tech)

Dédié à François Murat pour ses contributions à l'analyse mathématique des équations elliptiques non linéaires dont

$$
-\nabla^{2} u=\lambda e^{u}
$$

JL² LAB 50, March 2019

0. MOTIVATION

In the early 2000, while looking for PDE's from Geometry, I came across an article of Alice Chang discussing the Laplace-Beltrami-Bratu-Gelfand problem

$$
\text { (LBBG) } \quad \Delta_{\Sigma} u+\lambda e^{u}=0 \text { on } \Sigma
$$

where Σ is a surface of R^{d} and Δ_{Σ} the associated Laplace-Beltrami operator. At the time I was more interested in the Monge-Ampère equation

$$
\operatorname{det} \mathbf{D}^{2} u=f(>0) \text { in } \Omega
$$

where Ω is a bounded convex domain of \mathbf{R}^{d}. For some strange reason, (LBBG) became in my mind

$$
\operatorname{det} \mathbf{D}^{2} u=\lambda e^{u} \text { in } \Omega
$$

explaining what's follows (when I realized my mistake it was too late).

1. FORMULATION OF THE EIGENVALUE PROBLEM

Assuming that Ω is a bounded convex domain of R^{2}, our goal is to solve numerically the following nonlinear eigenvalue problem: (Monge-Ampère-Bratu-Gelfand problem)
(MABG)

$$
\left\{\begin{array}{l}
\text { Find } u \text { convex and } \lambda>0 \text { such that } \\
\left\{\begin{array}{l}
\operatorname{det} \mathbf{D}^{2} u=\lambda e^{-u} \text { in } \Omega, \\
u=0 \text { on } \partial \Omega,
\end{array}\right. \\
\int_{\Omega}\left(e^{-u}-1\right) d \mathbf{x}=C(>0) .
\end{array}\right.
$$

Above

$$
d \mathbf{x}=d x_{1} d x_{2}
$$

REMARK 1. The convexity of Ω and u, and the condition $u=0$ on $\partial \Omega \Rightarrow u<0$ in Ω.

REMARK 2. P.L. Lions, Annali di Matematica Pura ed Applicada, 142(1), 1985 contains mathematical results associated with a closely related nonlinear eigenvalue problem (λu^{2} instead of λe^{-u}).

REMARK 3. Suppose that Ω is the unit disk centered at (0,0). Looking for radial solutions to (MABG) we solve

$$
\left\{\begin{array}{l}
u \leq 0, \lambda \geq 0 \tag{1}\\
u^{\prime} u^{\prime \prime}=\lambda r e^{-u} \text { on }(0,1) \\
u(1)=0, u^{\prime}(0)=0
\end{array}\right.
$$

(by a shooting method for example). The related bifurcation diagram has been visualized on Figure 1, below, showing a turning point at $\lambda \approx 3.7617$, the associated function u taking its minimal value at $(0,0)$ with $u(0,0) \approx-2.5950$.

2. DIVERGENCE FORMULATIONS OF (MABG)

An alternative formulation to (MABG) is given by
(MABG.DIV.1)

$$
\left\{\begin{array}{l}
\text { Find } u \text { convex and } \lambda>0 \text { such that } \\
\left\{\begin{array}{l}
-\nabla \cdot\left(\operatorname{cof} \mathbf{D}^{2} u\right) \nabla u=-2 \lambda e^{-u} \text { in } \Omega, \\
u=0 \text { on } \partial \Omega,
\end{array}\right. \\
\int_{\Omega}\left(e^{-u}-1\right) d x=C .
\end{array}\right.
$$

In order to take advantage (via operator-splitting) of the methodology developed in
R. G., H. Liu, S. Leung \& J. Qian, J. Scient. Comp., 2019, for the numerical solution of the canonical elliptic Monge-Ampère equation
(E-MA) $\quad \operatorname{det} D^{2} u=f(>0)$ in $\Omega, u=g$ on $\partial \Omega$,
we reformulate (MABG.DIV1) as
(MABG.DIV.2)

$$
\text { (Find } u \text { convex, p symmetric positive semi - definite and } \lambda>0 \text { s.t. }
$$

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
-\nabla \cdot(\operatorname{cof} \mathbf{p}) \nabla u=-2 \lambda e^{-u} \text { in } \Omega, \\
u=0 \text { on } \partial \Omega,
\end{array}\right. \\
\mathbf{p - \mathbf { D } ^ { 2 } u = \mathbf { 0 } ,} \\
\int_{\Omega}\left(e^{-u}-1\right) d \mathbf{x}=C .
\end{array}\right.
$$

3. AN ASSOCIATED INITIAL VALUE PROBLEM

We are going to associate with (MABG.DIV.2) an initial value problem whose steady state solutions solve (MABG). After time-discretization, the resulting algorithm can be viewed as a nonlinear variant of the inverse power method with shift (the shift being here associated with the operator $\mathrm{I} / \tau, \tau$ being a time-discretization step).

(MABG.DIV.2) \rightarrow (MABG.IVP)

Find $u(t) \leq 0, \mathbf{p}(t) \mathbf{S P S D}$ (point wise), $\lambda(t)>0$ so that:

Above: (i) $\varphi(t): x \rightarrow \varphi(x, t)$. (ii) $\varepsilon>0\left(\varepsilon \approx h^{2}\right.$ in practice). (iii) $u_{0} \leq 0$. (iv) $\gamma>0$. (v) p_{0} SPSD (pointwise).

4. TIME-DISCRETIZATION BY OPERATOR-SPLITTING OF (MABG.IVP)

With $\tau(>0)$ a time-discretization step (fixed for simplicity) we approximate $\left.\begin{array}{l}\text { (MABG.IVP) by: } \\ (0) \\ 0\end{array} u^{0}\right)=\left(u_{0}, \mathbf{p}_{0}\right)$.

For $n \geq 0,\left(u^{n}, p^{n}\right) \rightarrow u^{n+1 / 3} \rightarrow\left(u^{n+2 / 3}, p^{n+1}\right) \rightarrow u^{n+1}$ as follows:
First Step: Solve the following (well-posed) linear elliptic problem
(1) $\left\{\begin{array}{l}u^{n+1 / 3}-\tau \nabla \cdot\left[\varepsilon \mathbf{I}+\operatorname{cof} \mathbf{p}^{n}\right] \nabla u^{n+1 / 3}=u^{n} \text { in } \Omega, \\ u^{n+1 / 3}=0 \text { on } \partial \Omega .\end{array}\right.$

Second Step:
$(2)_{1} \mathbf{p}^{n+1}(\mathbf{x})=P_{+}\left\lfloor e^{-\gamma \tau} \mathbf{p}^{n}(\mathbf{x})+\left(1-e^{-\gamma \tau}\right) \mathbf{D}^{2} u^{n+1 / 3}(\mathbf{x})\right\rfloor$, a.e. $\mathbf{x} \in \Omega$,
(2) $)_{2}\left\{\begin{array}{l}u^{n+2 / 3}-u^{n+1 / 3}=-2 \tau \lambda^{n+1} e^{-u^{n+2 / 3}}, \\ \int_{\Omega}\left(e^{-u^{n+2 / 3}}-1\right) d \mathbf{x}=C\left(\Leftrightarrow u^{n+2 / 3} \in S_{C}=\left\{\varphi \text { measurable, } \int_{\Omega}\left(e^{-\varphi}-1\right) d \mathbf{x}=C\right\}\right) .\end{array}\right.$

$$
\begin{equation*}
u^{n+1}=\inf \left(0, u^{n+2 / 3}\right) . \tag{3}
\end{equation*}
$$

Above:

- Problem (1) is a very classical linear elliptic problem. It has the following property:

$$
u^{n} \leq 0 \Rightarrow u^{n+1 / 3} \leq 0
$$

- P_{+}is an operator, mapping the space of the $\mathbf{2} \times \mathbf{2}$ real symmetric matrices onto the closed
convex cone of the real SPSD $\mathbf{2 \times 2}$ matrices (if q is a $\mathbf{2 \times 2}$ real symmetric matrix with eigenvalues μ_{1} and $\mu_{2}, \exists \mathbf{S} \in \mathbf{O}(2)$ s.t. $\quad\left(\begin{array}{ll}\mu_{1} & 0\end{array}\right)_{\mathbf{S}^{-1} .} \quad$ then, operator \boldsymbol{P}_{+}is defined

$$
\left.P_{+}(\mathbf{q})=\mathbf{S}\left(\begin{array}{cc}
\max \left(0, \mu_{1}\right) & 0 \\
0 & \max \left(0, \mu_{2}\right)
\end{array}\right) \mathbf{S}^{-1}\right)
$$

- We consider system (2) ${ }_{2}$ as an optimality system associated with the following minimization problem
(MIN)

$$
u^{n+2 / 3}=\arg \min _{v \in S_{C}}\left[\frac{1}{2} \int_{\Omega}|v|^{2} d \mathbf{x}-\int_{\Omega} u^{n+1 / 3} v d \mathbf{x}\right]
$$

It follows from (MIN) that $\boldsymbol{u}^{n+2 / 3}$ is the L^{2} - projection of $\boldsymbol{u}^{n+1 / 3}$ onto S_{C}. Unless $\boldsymbol{u}^{n+1 / 3}$ $\in S_{C}$ problem (MINP) may have no solution since S_{C} is not weakly closed in $L^{2}(\Omega)$. Fortunately its
discrete analogues have solutions.

- Algorithm (0) - (3) has clearly the flavor of an inverse power method (with truncation).

Step 3 has been included to be on the safe side. Numerical experiments suggest that if algorithm (0) - (3) is properly initialized, (3) is useless.

Two important remarks are in order:

Remark 4: Algorithm (0) - (3) 'enjoys' a splitting error forcing us to use a small time discretization step τ.

Remark 5: There is no need to compute λ^{n+1} at each time step. Indeed,

$$
\frac{u^{n+2 / 3}-u^{n+1 / 3}}{\tau}=-2 \lambda^{n+1} e^{-u^{n+2 / 3}} \Rightarrow\left(\text { since } u^{n+2 / 3} \in S_{C}\right) \lambda^{n+1}=\frac{\int_{\Omega}\left(u^{n+1 / 3}-u^{n+2 / 3}\right) d \mathbf{x}}{2 \tau(C+|\Omega|)}
$$

i.e., λ^{n+1} is obtained by the ratio of two small numbers. It is safer (?) to proceed as follows:
Denote by $\left(u_{\tau}, \mathbf{p}_{\tau}\right)$ the limit of $\left(\boldsymbol{u}^{n+1 / 3}, \mathbf{p}^{n}\right)_{n}$. It makes sense to approximate the (nonlinear) eigenvalue λ by
a (kind of) generalized Rayleigh quotient.

$$
\lambda_{\tau}=-\frac{\int_{\Omega}\left(\varepsilon \mathbf{I}+\operatorname{cof} \mathbf{p}_{\tau}\right) \nabla u_{\tau} \cdot \nabla u_{\tau} d \mathbf{x}}{2 \int_{\Omega} u_{\tau} e^{-u_{\tau}} d \mathbf{x}}
$$

5. FINITE ELEMENT APPROXIMATION OF (MABG)

Assuming that Ω is a bounded convex polygonal domain of \mathbf{R}^{2} (or has been approximated by a family of such domains) we introduce a family $\left(\tau_{h}\right)_{h}$ of triangulations of Ω like those in Figure 2 (h is, typically, the length of the largest edge(s) of τ_{h}). Next, we approximate the functional spaces $H^{1}(\Omega)$ and $H_{0}{ }^{1}(\Omega)$ by
and

$$
V_{h}=\left\{\varphi \in C^{0}(\bar{\Omega}),\left.\varphi\right|_{T} \in P_{1}, \forall T \in \mathcal{T}_{h}\right\},
$$

$$
V_{0 h}=\left\{\varphi \in V_{h},\left.\varphi\right|_{\partial \Omega}=0\right\}\left(=V_{h} \cap H_{0}^{1}(\Omega)\right)
$$

respectively, \boldsymbol{P}_{1} being the space of the polynomial functions of two variables of degree \leq 1.

Figure 2 Some trianqulations
(a)

(b)

(c)

Let us denote by Σ_{h} (resp., $\Sigma_{0 h}$) the set of the vertices of $\mathcal{T}_{h}\left(\right.$ resp., the set $\left.\Sigma_{h} \backslash \Sigma_{h} \cap \partial \Omega\right)$. We have then

$$
\operatorname{dim} V_{h}=\operatorname{Card} \Sigma_{h}\left(:=N_{h}\right) \text { and dim } V_{0 h}=\operatorname{Card} \Sigma_{0 h}\left(:=N_{0 h}\right) .
$$

We assume that the vertices of \mathcal{T}_{h} have been numbered so that ${ }_{{ }^{n}=}=\left\{Q_{k}\right\}_{k=1}^{N_{k j}}$.
For $k=1, \ldots, \boldsymbol{N}_{\text {oh }}$, we define ω_{k} as the union of those triangles of \mathcal{T}_{h} which have Q_{k} as a common vertex. We denote by $\left\{\omega_{k} \mid\right.$ the measure (area) of ω_{k}.

Approximating the Monge-Ampère part of the splitting scheme (0) - (3) is a (boring) and time
consuming repetition of RG-HL-TL \& JQ, J. Scient. Comp., 2019. Focusing on the eigenvalue part, we approximate S_{c} by $S_{C h}$ defined (trapezoidal rule) by:

$$
S_{C h}=\left\{\varphi \in V_{0 h}, \sum_{k=1}^{N_{0 h}}\left|\omega_{k}\right|\left(e^{-\varphi\left(Q_{k}\right)}-1\right)=3 C\right\}
$$

The discrete analogue of the L^{2} - projection onto S_{C} is done by a SQP method very easy to implement, showing (as expected) fast convergence properties.

Remark 6: We can take advantage of the fact that τ is small by replacing (MIN) by (MIN.LIN) obtained by linearization

$$
\text { (MIN.LIN) } u^{n+2 / 3}=\arg \min _{v \in D S_{C}^{n+1 / 3}}\left[\frac{1}{2} \int_{\Omega}|v|^{2} d \mathbf{x}-\int_{\Omega} u^{n+1 / 3} v d \mathbf{x}\right]
$$

where

$$
D S_{C}^{n+1 / 3}=\left\{v\left|\int_{\Omega} e^{-u^{n+1 / 3}}\left(1+u^{n+1 / 3}-v\right) d \mathbf{x}=C+|\Omega|\right\}\right.
$$

The closed form solution of (MJN.LIN) is given by

$$
u^{n+2 / 3}=u^{n+1 / 3}+\frac{\int_{\Omega} e^{-u^{n+1 / 3}} d \mathbf{x}-(C+|\Omega|)}{\int_{\Omega} e^{-2 u^{n+1 / 3}} d \mathbf{x}} e^{-u^{n+1 / 3}}
$$

The above function coincides with the $1^{\text {st }}$ iterate of the SQP method initialized
by $u^{n+1 / 3}$.

6. NUMERICAL RESULTS

6.1. TEST PROBLEM FOR THE UNIT DISK

Figure 3: MABG problem on the unit disk: Exact solution bifurcation diagram

Figure 4: bifurcatıon aıagram comparıson tor the unit disk

The discrepancy shown on Figure 4 for small values of C is the result of an erroneous initialization. This mistake has been corrected. The reason we exhibit these partially wrong results is to show the robustness of our methodology. Indeed, without human intervention, our method 'returns quickly by itself' on the correct approximate bifurcation diagrams as C increases.

Figure 5.
Results
(a) at the exact turning point
($C=10.5$)

(b)

h	$u(0,0)$	λ
$1 / 20$	-2.5411	2.95
$1 / 40$	-2.5983	3.3773
$1 / 60$	-2.6038	3.5102
$1 / 80$	-2.6084	3.5723
$0\left({ }^{1}\right)$	-2.5950	3.7617

Table 3. MABG problem: Variation with h of the computed turning points
$\left.{ }^{1}\right)$ Exact solution

$$
\lambda_{h}-\lambda_{0}=\text { quasi-textbook } \mathrm{O}(\mathrm{~h})
$$

6.2. TEST PROBLEMS FOR REGULARIZED SQUARES

$$
q=4
$$

FIGURE 6

Figure 5: Graph of solution, contour of solution and bifurcation diagram. (a) $q=3, \Delta t=$ $h^{2} / 2$, with $C=4.5$. (b) $q=3, \Delta t=h^{2} / 8$ with $C=15$.(c) $q=4, \Delta t=h^{2} / 2$ with $C=5.5$.

$$
\text { "ilfaut essayer, vas- } y^{»(1)}
$$

CEDRIC VILLANI

DEA d' ANALYSE NUMERIQUE (Université P. \& M. Curie) Fields Medal 2010

MERCI POUR VOTRE ATTENTION

" One has to try, let's go"

