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Presentation outline

Deep Learning successes — examples

Context
* Statistical vs physical modeling

Learning differential equations from data

Learning dynamical systems from noisy observations
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Deep Learning successes

* Machine learning is at the heart of Al revolution
* Deep Learning is today state of the art technology for data science
* Unprecedented technological development over the last ten years
* Important progresses in many engineering domains

* Research and technological developments are leaded by tech.

giants in the US and in China
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Deep Learning successes - Vision
Object detection -YOLO (Redmon 2016)

* Objective detect and label objects in images, video

gRlitative Resulis. YOLO running on artwork and natural images. It is mostly accurate although it does think one person in
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Deep Learning successes
Vision — Scene segmentation ( Segnet, Badrinarayanan

2017)

* Segment objects in image — pixel level

RGB Image

2019-03-05

Convolutional Encoder-Decoder Output

Pooling Indices
I conv + Batch Normalisation + RelU
I Focling I Upsampling Softmax

Segmentation

http://mi.eng.cam.ac.uk/projects/segnet/#demo
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Deep Learning successes - Translation

Google Neural Machine Translation System
(Wu et al 2016)
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html

e General Architecture

Encoder: 8 stacked LSTM RNN +
residual connections
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Figure from Wu et al. 2016
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Deep Learning successes - Natural Language Processing
GPT2 (Radford 2018 - OpenAl)

* Language model trained to predict the next word
* Probability models of sequences of items (x1, x2, ..., x%)

« Estimate p(xt|xt71, ..., x1)
* Items may be words or characters, or character bigrams, etc

e Model

* Large transformer- based language model with 1.5 billion
parameters, trained on a dataset of 8 million web pages,

representing 40 GB of internet text.

“New Al fake text generator may be too dangerous to release, say creators
(The Guardian, 2019-02-14)"

https://blog.openai.com/better-language-models/
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Deep Learning successes - Natural Language

Processing

GPT2 (Radford 2018 - OpenAl)

e Context

Some of the most glorious historical
attractions in Spain date from the
period of Muslim rule, including The
Mezquita, built as the Great Mosque of
Cordoba and the Medina Azahara, also
in Cordoba and now in ruins but still
visitable as such and built as the
Madinat al-Zahra, the Palace of al-
Andalus; and the Alhambra in Granada,
a splendid, intact palace. ........ [ edit ]

2019-03-05

* Text generated

The Reconquista (literally, “The return to the
country”) of 1092 and 1095 saw the
establishment in the Iberian peninsula of a
united kingdom of Castile and Aragon in
which a Muslim dynasty would exist. This
was the last time in Europe where Muslim
rule would be considered “native” and the
last occasion where Christian-inflamed and
organized conflicts would make themselves
known in Europe.

The reign of Muslim Moors in Spain is often
referred to, especially among non-Muslims,
as the “Conquest of Granada” and Spain is
sometimes referred to as Spain in Granada”.
The last years of Muslim rule were followed
by the Spanish Reconquista where the
Muslims were driven or compelled out of
the Iberian Peninsula with the victory of
Ferdinand IX. in the Battle of Poitiers in
March 1189 and the conquest of Jerusalem

Physico-statistical siteb1:87 by Saladin. 8



Deep Learning successes
Learning Complex Distributions
Generative Adversarial Networks -GANs

e About 2.2 k papers on Arxiv at Feb. 2019
* Example: illustration from (Karras et al. 2019) — Style GAN

destination

>

Coamse styles copied
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Deep Learning successes
Games

Figure I: Screen shots from five Atari 2600 Games: (Lefi-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

Atari games, Self
trained on 49 games,
(Mnih 2013, 2015)

AlphaGo, AlphaGo Zero, Alpha Zero
from Google DeepMind (2015,
2017)

2019-03-05 Physico-statistical systems 10



Deep Learning successes

Platforms
* Deep Learning platforms offer * Among the most populars
e Classical DL models platforms:
* Optimization algorithms * TensorFlow - Google Brain -«

Python, C/C++ TensorFioy
* PyTorch — Facebook- PythorpYTéreH

 Caffe — UC Berkeley / Caffe2
Facebook, Python, MATLAB

* Higher level interfaces

source communities: lots of

* Automatic differentiation

* Popular options/ tricks

* Pretrained models

 CUDA/ GPU/ CLOUD support

code available * And also:
i _ * PaddlePaddle (Baidu), MXNet
* Easy to build/ train (Amazon), Mariana (Tencent),
sophisticated models PAl 2.0 (Alibaba), .....

-31'\|'lr

: - &g
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Statistical modeling versus knowledge based
approaches

* Al has a long history on knowledge based vs statistical approaches
* Perception, language, diagnosis, reasoning, explainability, learning,
knowledge representation, etc
* e.g. symbolic Al vs statistical learning

 Elements of answer

* Frederick Jelinek (1932 —2010)

* researcher in information theory, automatic speech recognition,
and natural language processing

* Pioneer of speech recognition technology
e Apocryphal ? Statement

* "Every time | fire a linguist, the performance of the speech recognizer goes
upll

* Today
* Availability of data has changed everything
* All that matters is: Data, Computer Ressources
* Machine Learning is ubiquituous in many engineering fields
* Vision, speech, language, web, mobile applications, etc
* (Cars, drones, robots, etc

2019-03-05 Physico-statistical systems 12



Physico-statistical systems

Focus on spatio-temporal dynamics
* Learning differential equations from data

* Learning dynamical systems from noisy
observations



Motivation - Example

Deep Learning and Physical Sciences - Geoscience
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MANY ASPECTS OF geosciences pose novel problems
forintelligent systems research. Geoscience data

is challenging because it tends to be uncertain,
intermittent, sparse, multiresolution, and multi-
scale. Geosciences processes and objects often have
amorphous spatiotemporal boundaries. The lack of
ground truth makes model evaluation, testing, and
comparison difficult. Overcoming these challenges
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Deep learning and process understandmg
for data-driven Earth system science

Markus Reichstein’?*, Gustau Camps- Valls®, Bjorn Stevens®, Martin Jung’, Joachim Denzler’, Nuno Carvalhais'* & Prabhat’

used to extract and insights f i i f
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umans have always striven to predict and understand the world,

and the ability to make better predictions has given compet!

tive advantages in diverse contexts (such as weather, diseases or
financial markets). Yet the tools for prediction have substantially changed
over Lime, from ancient Greek philosophical reasoning to non-scientific
medieval methods such as soothsaying, towards modern scientific dis-
«course, which has come to Include hypothesis testing theory develop-
ment and computer modeiling underpinned by statistical and physical
relationships, that is, laws'. A success story in the geosciences is weather
pmllmnn which has greatly improved through the integration of better

fo 'Lﬁmmwﬂlh-mm
learning.

varlety and veracity (see Fig. 1). One key challenge is to extract interpret-
able information and knowledge from this big data, possibly almost in
real time and integrating between disciplines.

Taken together, our ability to collect and create data far outpaces our
ability to sensibly asstmilate it, let alone understand it. Predictive abtlity in
the last few decades has not Increased apace with data avatlability. To get
the most oul of the explosive growth and diversity of Earth system data,
we face two major tasks in the coming years: (1) extracting knowledge
from the data deluge, and (2) dertving models that learn much more
from data than traditional data

power, and

ryﬁems.\d:ldulbuh thy of large data tnto the
modellng system’. Nevertheless, we can accurately predict the evolution
of the weather on a timescale of days, not months. Seasonal meteorolog-
kzlpmdsnmheaﬂmganmmuﬂ:aihodmgm&n and
long-term cl tions are still major ch 1s especially
true for predicting dynamics in the blosphere, whldn:\hmlmlndby
buologically medtated processes such as growth or reproduction, and 1s
mm‘;lym&ﬁbysmmmﬁym disturbances such as fires and

landslides. Such predictive problems have not seen much progress in the
past few decades”

Al the same time, a deluge of Farth system data has become available,
with storage volumes beyond dozens of p and rapsdly
Increasing rates of terabytes per day*.
These data come from a plethora of sensors measuring states, fluxes and
inlensive or 'sp variables, ng fifteen or more
wdnsu[lunpummwmmqnnuﬂ.mm&mmkm
from a few metres to hundreds of kilometres above Earth as well as in situ
observations (Increasingly from autonomous sensors) at and below the
surface and in the atmosphere, many of which are further betng comple-
mented by citizen science observations. Mode simulation output adds to
this deluge; the CMIP-5 dataset of the (limate Model Intercompartson

Project, used for scientific dwork towards periodic
climate assessments, Is over 3 petabytes in size, and the next generation,
CMIP-6, 18 d to reach up to 30 p *. The data from models

mmdmwmwmmmmzwm
data, induding many forms of uncertainty. In summary, Earth system
data are exemplary of all four of the our Vs’ of ‘big data’; volume, veloaty,

evolving
The combination of unprecedented data sources, increased computa-
tional power, and the recent lﬂunmmn.mxl] modelitng and machine
offer exating new opp
about the Earth system from data. l.npamcﬂar.mnylmkmaﬂihbh
from the fiekds of machine learning and artificial intelligence, but they
need to be further developed and adapted to geo-scientific analysts. Farth
system science offers new op and
demands, In particular for recent research lines focusing on spmn
kmponl context and uncertainties (Box 1; see hitps://developers
/machine learning/glossary/ and http://www.wikiml com/
dn'p ltlrmng glossary/ for more complete glossaries).
the following sections we review the development of machine learn-
lnglnthrgmmmuﬂccumuLmdhlgNwhmdwpkm—
Is, the automatic extraction of abstract (spatio-lemporal) features—has
the potential to overcome many of the limitations that have, until now,
hindered a more wide-spread adoption of machine learntng. We further
lay out the most alsoc approaches In ¢
machine learning with physical modelling.

State-of-the-art ientific hine | i

Machine learning is now a successful part of several research-driven
and operational geoscientific processing schemes, addressing the
atmosphere, the land surface and the ocean, and has co-evolved with
data availability over the past decade. Early landmarks in classifica-
tion of land cover and clouds emerged almost 30 years ago through
the cotncidence of high-resolution satellite data and the first revival
of neural networks®”. Most major machine learning methodological
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DATA-DRIVEN
c ND

Learning Differential Equations from Data

* Data driven discovery of PDEs — (Rudy et al. 2017) - Sparse linear
regression

 Deep Hidden Physics models (Raissi 2018) - Neural Networks
e PDE-Nets (Long 2018) -Neural Networks

2019-03-05 Physico-statistical systems 15



Objectives

Uncover the governing equations of dynamical spatio-temporal
phenomena from data

Arguments
* Data are ubiquitous in many domains
* Climate, Finance, Epidemiology, ecology, etc

* Variables or governing dynamics may be partially known or
unknown so that using data may help

Consider non linear equations of the form
o Uy = F(U, Uy, Uyy, oer ) X, 0)
* Relevant variables and F may be unknown
Objective (s)
* Learn the unknown dynamics
* Learn when possible the explicit form of the underlying PDE

Current work: tests performed on data generated from PDE

2019-03-05 Physico-statistical systems 16



Data driven discovery of PDEs— (Rudy et al. 2017)
Sparse regression
* Collect observations

e Consider a library of terms, e.g. system state, derivatives, ...
* Use sparse linear regression to fit observations on library terms

1c. Solve sparse
1b. Build nonlinear regression
library of data and L4

derivatives

la. Data collection 2

arg min||©f — w; ]|§ + Ao
£

¥

d. Identified dynamics
wy + 0.9931uw, + 0.9910vw,
= 0.0099wzz + 0.0099w,,

Compare to true
Navier-Stokes (Re = 100)

i
w+ - Vw= Ev{u

5| = |~a=:33 ...

§ €l w=0(w,u,v)f

U zy

Full data

s wy = O(w,u,v)€ 2b. Compressed library

k 2a. Subsample data I l Con = COw, 1, D)€

o o I ‘

% | Sampling

o = 2 2c. Solve compressed

g* ' ¢ i = sparse regression

S arg min|[COE — Cwil + AlE]lo
(I Fr— = | £

Fig. 1. Steps in the PDE functional identification of nonlinear dynamics (PDE-FIND) algorithm, applied to infer the Navier-Stokes equations from data. (1a)
Data are collected as snapshots of a solution to a PDE. (1b) Numerical derivatives are taken, and data are compiled into a large matrix €, incorporating candidate terms
for the PDE. (1¢) Sparse regressions are used to identify active terms in the PDE. (2a) For large data sets, sparse sampling may be used to reduce the size of the problem.
2071¢ (2b) Subsampling the data set is equivalent to taking a subset of rows from the linear system in Eq. 2. (2c) An identical sparse regression problem is formed but with 17

fewer rows. (d) Active terms in % are synthesized into a PDE.



Data driven discovery of PDEs— (Rudy et al. 2017)
Example

la. Data collecti

i C

n

Sample (space and time)
_, Compute derivatives at the sampled points
st ) Fit the data using sparse regression

* Regression
o U(X,t) =< U, Uy, Uyy, Uly, ...; W > sampled at nxm points
* W parameter vector
* Discrete form for nxm sampled points
. Ut == AW
e with U; : nxm vector, A : n.mxnb library terms
e Regression loss : sparse regression
~ - 2
« w=argmin,|[Aw — U5 + Allwllo
* Sparse regression allows finding these terms

2019-03-05 Physico-statistical systems

18



Data driven discovery of PDEs— (Rudy et al. 2017)

Examples

Table 1. Summary of regression results for a wide range of canonical models of mathematical physics. In each example, the correct model structure is
identified using PDE-FIND. The spatial and temporal sampling of the numerical simulation data used for the regression is given along with the error produced in
the parameters of the model for both no noise and 1% noise. In the reaction-diffusion system, 0.5% noise is used. For Navier-Stokes and reaction-diffusion, the

percent of data used in subsampling is also given. NLS, nonlinear Schrodinger; KS, Kuramoto-Sivashinsky.

PDE

Form

Error (no noise, noise)

Discretization

A

U + 6UUL + Ugze = 0

1+0.2%,7 + 5%

z€[—30, 30], n=512, t€[0,20], m = 201

l - Burgers

Ut + YUy — EULx = 0

0.15+0.06%, 0.8 + 0.6%

zc[8,8],n =256, tc[0,10],m =101

“ Schrodinger

2
Zu=0

. 1
zut + EU:Z o= 2

0.25+0.01%,10 £ 7%

[

z€[—7.5,7.5],n=>512, t€[0, 10], m = 40

‘\ NLS

e + Juze + [uf?u =0

0.05+0.01%,3 + 1%

z€[-5, 5], n = 512, t€[0, w], m =501

Ut + Uz + Uzy + Uzzzx = 0

1.3+1.3%,52 + 1.4%

z€[0, 100], n= 1024, t€[0, 100}, m = 251

1

Reaction

ue = 0.1V2u + MA)u — w(A)v
vy = 0.1V?v 4+ w(A)u + A(A)v
A? =u? 402 w=—BA% A\=1- A?

0.02+ 0.01%, 3.8 =2.4%

—_

z,y€[—-10, 10], n = 256, t€[0, 10], m =20
subsample 1.14%

> - Diflusion
<

)

gt?)‘ﬁee;— wet (u: Vjw = 7V 1£0.2% , 7+ 6% z€[0, 9], n, =449, y€[0, 4], n, =199,
t€[0, 30], m = 151, subsample 2.22%
2019-03-05 Physico-statistical systems 19




Data driven discovery of PDEs— (Rudy et al. 2017)

* Hypothesis
* Full state observable
* An overcomplete dictionary is available

e All required terms are available
* Non linearity requires cross product terms

* Only a few terms will be involved in the dynamics
* These are the conditions for sparse regression to work

* Comments
* Interpretability
* Requires numerical differentiation
* Pb for large datasets
* In the experiments noise level does not exceed 1%
e Requires « enough » data points

2019-03-05 Physico-statistical systems
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Deep Hidden Physics models (Raissi 2018)

Same objective and general idea as (Rudy 2017), uncover the
dynamics of an underlying PDE

Novelty
* Learns a model of the data
* Allows replacing numerical differentiation by automatic differentiation
* Replace linear regression by a non linear neural network

Hypothesis
* All relevant PDE terms are provided to the model (idem Rudy 2017)
 Full state observation is assumed (idem Rudy 2017)
* But no need for cross terms — non linearities are taken into account
by the model
* Assesment
* No more explicit solution — how to assess the quality of the sol. ?

2019-03-05 Physico-statistical systems 21



Deep Hidden Physics models (Raissi 2018)

Dataset of observations: D = {(ti,xi,ui)}

Learn model dynamics F
o ur = F(u,uy, Usy, ..., X, 0)

Learn Data model for learning the solution u

 u(t,x)
* This model will be used to provide derivatives at the sampled points

* Derivatives computed through automatic differentiation

Training criterion
. . .12 . 2
e L = Iiv=1(|u(t‘,x‘) — u‘| +f(tl,x‘) )
o with f(x,t) = u; — F(t, X, U, Uy, Usy, --e, O0)

* wuand f are simple non linear Neural Networks

2019-03-05 Physico-statistical systems 22



34-layer residual

PDE-NET (Long et al. 2018)

* Inspired from classical NN architectures, e.g. ResNet

Ixi ooy, N4
M com, S12, 2 .""._
Iximay, S12

.o."-.n|

IIHIil I [
q
]
3

‘:‘ | 1 - NI~
I = 3 3 a 2| (4] »
- 's's > FlFIL |
g i@ gl gl § bl
3 IR 2 3 (2

e Each block implements
e Convolution filters
* Exploit local properties with learned convolutional filters
* Here used to approximate differential operators
* Constraints on the filters forces the approximation of differential opera
* Skip connections
* Xpyr = X+ f(x)
* Orsimilar schemes used for time discretization Xt

of given order

Xepr = Xe + f(xt)

3x3 conv, 128

3x3 conv, 128

* Implement the F dynamics with a specific NN

* Represent all the polynomials of its inputs (differential operators) with a limited
number of operations

2019-03-05 Physico-statistical systems 23



PDE-NET (Long et al. 2018)

e Considers equations of the form
o Uy = F(U, Uy, Uyy, ..., X, 0)

e Elementary module (6t —block) implements 1 step of forward
Euler

¢ U,(t + 5t, ) =~ U,(t, ) + 4t. Net(Doou, DOlu, Dlou, )
* With

* D;j convolution operator associated to a filter approximating
differential operators

aitiy

oixdJjy

* Netis a specific « neural network » approximating F

d Dl-ju =~

2019-03-05 Physico-statistical systems 24



PDE-NET (Long et al. 2018)

e Implementation: 6t —block

F= SymNetm(DooU, Do, U,

i ut+6t —_ ut + 5t F

B Upsge =Up +68t-F

Figure 1: The schematic diagram of a §-block.

1st 5t — block

* Multiple steps

2nd 8t — block n-th §t — block

N0

VN
" r
u-g--8-
i l

| | ||

o |
11

|

Figure 2: The schematic diagram of the PDE-Net 2.0.

2019-03-05

Physico-statistical systems 25



PDE-NET (Long et al. 2018)

* More flexible
* |learned filters
» Efficient implementation of polynomials

* Provides an explicit form of the underlying PDE

* e.g. 2 D Burgers
* Only 1st component (1) shown here
* Correct: uy = —uuy, — vy, + 0.05(Uyy + Uyy)
* ldentified: u; = —0.98uu, — 0.97vu,, + 0.054u,, + 0.054u,,,

r=0.0 T=1.0 =20 T=3.0

™ | o

‘ " ‘ ‘ "03 06 0.6

u component v o
e Top: true dynamics r=0.0 ” =20 T=3.0 I

* Bottom: predicted, 6t = 0.01 '.::" .

T & e

2019-03-05 Physico-statistical systems 26



Learning from observations

égrfostic Approaches: Spatio-temporal NN for space time series forecasting,
7/

Deep Learning for Physical Processes: Incorporating Prior Scientific Knowledge,

2018

Learning Dynamical Systems from Partial Observations, 2019

2019-03-05 Physico-statistical systems
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Context
Spatio-temporal dynamics

* Dynamical system
 State variables describe the evolution of the system
* They may be known, partially known, unknown

* Observations provide a partial knowledge on the state variables and
on the system dynamics

e Objective(s)
* Model the evolution of the system (dynamics of state variables)

* Forecast future evolution
* (QObservation level
e State variable level

2019-03-05 Physico-statistical systems 28



Agnostic approaches, e.g. (Ziat et al. 2018)

e Data are considered as discrete spatio-temporal time series
* Observations: Y; € R™, Y ;is the it" time series

* An underlying latent dynamical process Z generates the observations:
« Z; € R"is a latent representation of the process at time t

* Z has no physical signification _
Unfolded NN
C@ 7, 7 > @_@—>
* State space model 7y = 9g(Zi—1)

* Ve =d(Z) + & d and g: linear or non linear functions to be
* Zy =9g(Zt-1) t €2 learned

2019-03-05 Physico-statistical systems



Agnostic approaches, e.g. (Ziat et al. 2018)

* Example
* Pacific Sea Temperature - s
dataset (Columbia.edu)
* Monthly SST in Pacific i

180 160w 140
lengitude

Iong tude

e 2520 spatial locations - .. e
° # E "

395 months (1970-2003) *

Iatitude

[ J Figure In gtuﬂc
* Different time steps (3 !
successive months) 5
« Color: actual sea T e T e

temperature
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Deep Learning for Physical Processes: Incorporating Prior
Scientific Knowledge (de Bezenac 2018)
Example: Sea Surface Temperature Prediction - SST

* Problem: predicting SST (< 1 meter deep) on Atlantic ocean

* Data: satellite imagery (IR)

* Use cases:

* Weather prediction, anomaly detection, component of climate
models

 Classical approach
e Data assimilation
* Differential equations
* Discretization
* Finite difference
* Model
* Assimilation
* Coupling with SST data
e Adjust to initial conditions
* Forward integration for prediction

2019-03-05 Physico-statistical systems 31



Deep Learning for Physical Processes: Incorporating Prior
Scientific Knowledge (de Bezenac 2018)
Physical model: Advection — Diffusion

e Describes transport of I through advection and diffusion

it R

a—+ (W \7)] = DVZ

» [: quantity of interest (Temperature Image)

A . e .
W= A—: motion vector, D diffusion coefficient

* There exists a closed form solution

* Lepac(x) = (k* I)(x —w(x))
* I; A+ (x)can be obtained from I; through a convolution with kernel
k (pdf of a Normal distribution: k(x —w,y) = N(y|x — w, 2DAt))

 If we knew the motion vector w and the diffusion coefficient D we could

calculate Iz (x) from I;
e wand D unknown
e ->LearnwandD

2019-03-05 Physico-statistical systems 32



Deep Learning for Physical Processes: Incorporating Prior
Scientific Knowledge (de Bezenac 2018)
Prediction Model: Objective: predict I, from past I, I;_+, ...

e 2 components: Convolution- Deconvolution NN for Warping Scheme

estimating motion vector w; Implements discretized
A-D solution

Supervision

Past Images ft+l +1 Target image
) l
Color: orientation
Intensity: flow * Endto End learning using only I, 1 supervision
intensity . . .. .
2019-03-05 * StOChaStIC gyrslacgslt%!?l;:l:alg e.!:nlsmlzatlon 33



Deep Learning for Physical Processes: Incorporating Prior
Scientific Knowledge (de Bezenac 2018)

Warping Scheme

* Motion vector W is now provided by the Conv-Deconv NN

e W is used to compute it+1 from ft
* using the following warping scheme:

a0 = ) kG = D0, L)

./ YEQ

Discretized version of the
AD equation solution

L

Pixel value for time t+1 at position x, I;,1(x):
1. Compute its previous position at timet,i.e. x —w
2.  Center a Gaussian in that position in order to obtain a weight value for each
pixel in I; based on its distance with x — w
3. Compute a weighted average of the pixel values of I,.
* This weighted average will correspond to the new pixel value at x in I
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Loss function

* Prediction loss + penalty terms incorporating prior physical
knowledge

Lt = Seenp (le1 () = I (1)) + penalty terms
« p(x) = (x + €)¥/%: Charbonier loss — reduces the influence of

: : 1
outliers compared to L, loss — equivalent to L, fore = 0,a = E

* Penalty
~ 2 ~ ~
* Adiv(v- Wt(x)) + Amagn”Wt(x)llz + Agrad”VWt(x)llz
divergence magnitude gradient
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Experiments

* Data

2019-03-05

Figure 4: Sub regions extracted for the dataset. Test regions are regions 17 to 20.

Synthetic data from the NEMO simulator (Nucleus for European
Modeling of the Ocean)

The generated data is based on real SST data (using reanalysis).
3734 daily SST images of 481 x 781 pixels from 2006 to 2017

we concentrate of 64 x 64 pixel sub regions

we use 2006-2015 for training and validation, and the rest as test
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Experiments

SOTA Numerical model
e (Quantitative results

Model Average Scope (MSE)  Average Time
Numerical model Bereziat & Herlin (2015) 18s
ConvLL.5TM 5hi et al. (2015) 0.018 s
ACNN 0.54 ¢
GAN Video Generation (Mathieu et al. (2015)) 0.006 s
Proposed model with regularization 0.040 =
Proposed model without regularization 0.040 5

Table 1: Average score and average time pif test data. Average score 15 calculated using the mean
square ervor metric (MSE), time is in seConds. The regularization coeffigients for our model have
been set using a validation set with My, = 1. Apagn = —0.03 and Agrag = 0N

SOTA Deep NN models Proposed model
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Learning Dynamical Systems from Partial Observations

(Ayed et al. 2019)
Problem
* Forecasting non linear dynamical systems from observations only

* Hypothesis
* the underlying system follows an unknown differential equation

* Objective
* Learn the evolution of this system (observations and state) with a
NN
* Discover automatically the relation between states (dynamics)

* Results
e Cast the problem in a general control framework
e Derive a generic algorithm

* for solving the optimization problem

* Correspondance with the training of a NN through an explicit ODE
solver for partially observed states

* Experiments on different spatio temporal data
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Learning Dynamical Systems from Partial Observations

(Ayed et al. 2019)
Setting

* Dynamical system with initial conditions
( Xo
dX;

. <E=F(Xt)

\Yt = H(X;)
e Variables
» H: observation operator linking state to observation (known)

e X :spatio temporal field — system state (unknown)
* Hyp: X contains the quantities of interest for describing the system
* Here X is a function of time t and space x (spatio-temporal)
* e.g. velocity, pressure (Ocean)

e Y : observation
* e.g. temperature, salinity, ocean color (Ocean)

2019-03-05 Physico-statistical systems
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Learning Dynamical Systems from Partial Observations

(Ayed et al. 2019)
Model

* Use a parametrical model

(Xo = go(Y_1, Xo)
- = Fo(Xt)

dt
L Y, = H(X;)
e Where

¢ Y—k = (Y—k+1' L) YO)
* Fp is a smooth operator defining the trajectory of X

* (g gives the initialization for X

* Learning

* Learn 0 by gradient
* Approximate the gradient using an adjoint method
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Learning Dynamical Systems from Partial Observations

(Ayed et al. 2019)
Optimization problem

e Loss function
 J(V,7) = [ || - T e

* Learning problem

* Minimize EY observed U(Y: H(X) )]
* subject to constraints: % = Fo(X;)

Xo = 9o (Y-, Xo)
* Implementation
* Fgisimplemented as a residual network
* ggis a Unet (for the NEMO experiments)
* An explicit Euler scheme with a fixed step-size is used to solve the
forward equation % = Fp(Xp): X%, 5, = X%, 5, + StFy(XP)
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Datasets

e Euler equations
* Navier Stokes equations when neglecting the viscosity term
* Discretised on a spatial 64x64 grid
 State: fluid particle density + velocity
e Observations: density only
* Initial state: true full state X,

e NEMO — Nucleus for European Modelling of the Ocean Engine

e Observations: Sea Surface Temperature
* Daily temperatures 2006-2015

» State: multiple variables, we make use only of 2 variables
corresponding to the velocity field

* Initial state: interpolated from previous observations

* For all test, data are partitioned into a training and a test set
* 6 time steps used for the target sequence for training

2019-03-05 Physico-statistical systems
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Euler equations

TN EEER

llllllllll”m“
(Y; = H(Xp))
s\ 1 s L 3 Q T 0 R 0 ) 0 Predictions ()?t)

AT AITANARAYRA YR YR YR Y2 D VD> ) Targets(X)

L] L]

Figure 3. Forecasting the Euler equations on the test set. From
top to bottom: input and target observations, model output, model
hidden state, hidden state input and ground truth.
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NEMO — Global Ocean Physics Reanalysis

. EECEEEE

Ours

Ours (with Estimation)

PKnl .de Bézenac et al., 2018)

ConvLSTM (Shi et al., 2015)
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Conclusion

* Several emerging topics at the crossroad of NNs and dynamical
systems

* Open several perspectives both for statistical machine learning
and for physical modeling

* Cross fertilization of model based approaches (physics) and data
driven approaches

* New models for describing complex dynamics exploiting the large
amounts of observation data

* New perspectives for modeling/ training neural networks
e e.g. as continuous dynamical systems

* NN models may be interpreted as discretization schemes for
dynamical systems
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