Calculs Analogiques dans les Programmes Biochimiques Naturels et Synthétiques

François Fages
Project-Team Lifeware http://lifeware.inria.fr/

Institut National de Recherche en Informatique et Automatique Inria Saclay - Ile de France

Cells Compute

They process signals

Regulate their metabolism

- Migration

Understanding these processes is a central difficulty in many applications in medicine, health, agriculture and the ultimate goal of molecular cell biology.

Chemical Reaction Networks (CRNs)

CRN structure: network of reactants, products, and reactions

- $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ but not necessarily mass balanced
- synthesis reactions _ $\rightarrow A$ degradation reactions $A \rightarrow$ _
- hypergraph of reactions (bipartite species-reaction graph)

CRN dynamics: several interpretations

- differential equations, continuous-time Markov chains,
- Petri net, Boolean transitions

CRN model repositories (Systems Biology Markup Language SBML):

- BioModels.net ≈ 2000 models +10000 models of metabolism

CRN theory: interplay between CRN structure and CRN dynamics

- static analysis of steady states, stable states, oscillations,...
- reductions by quasi-steady state (QSS) and quasi-equilibrium (QE) approximations
- Turing completeness and computational complexity of CRNs

Several Interpretations $A+B \xrightarrow{\text { k.A.B }} C$

Continuous semantics: concentrations, continuous time evolution
Ordinary differential equations (ODE)

$$
\frac{d A}{d t}=-k \cdot A \cdot B \quad \frac{d B}{d t}=-k \cdot A \cdot B \quad \frac{d C}{d t}=k \cdot A \cdot B
$$

- Cdc2
- Cdc2P
- CyclinP
— Cdc2CyclinP
— Cdc2CyclinPP

- Cyclin
— CyclinTot
— Cdc2Tot
Extrinsic variability to parameter change)

Several Interpretations $A+B \xrightarrow{\text { k.A.B }} C$

Continuous semantics: concentrations, continuous time evolution
Ordinary differential equations (ODE)

$$
\frac{d A}{d t}=-k \cdot A \cdot B \frac{d B}{d t}=-k \cdot A \cdot B \frac{d C}{d t}=k \cdot A \cdot B
$$

Stochastic semantics: numbers of molecules, probability and time of transition

Continuous Time Markov Chain (CTMC)

$$
\mathrm{A}, \mathrm{~B} \xrightarrow{\mathrm{p}\left(\mathrm{~S}_{\mathrm{i}}\right), \mathrm{t}(\mathrm{Si})} \mathrm{C}++, \mathrm{A}--, \mathrm{B}--
$$

Intrinssic variabulicy

 (with same genetic and epigenetic parameters)
Several Interpretations $A+B \xrightarrow{\text { k.A.B }} C$

Continuous semantics: concentrations, continuous time evolution
Ordinary differential equations (ODE)

$$
\frac{d A}{d t}=-k \cdot A \cdot B \frac{d B}{d t}=-k \cdot A \cdot B \frac{d C}{d t}=k \cdot A \cdot B
$$

Stochastic semantics: numbers of molecules, probability and time of transition
Continuous Time Markov Chain (CTMC)

$$
\mathrm{A}, \mathrm{~B} \xrightarrow{\mathrm{p}\left(\mathrm{~S}_{\mathrm{i}}\right), \mathrm{t}(\mathrm{Si})} \mathrm{C}++, \mathrm{A}--\mathrm{B}--
$$

Multi-agent simulation: numbers of molecules, space, diffusion speed, affinity

Several Interpretations $A+B \xrightarrow{\text { k.A.B }} C$

Continuous semantics: concentrations, continuous time evolution
Ordinary differential equations (ODE)

$$
\frac{d A}{d t}=-k \cdot A \cdot B \frac{d B}{d t}=-k \cdot A \cdot B \frac{d C}{d t}=k \cdot A \cdot B
$$

Stochastic semantics: numbers of molecules, probability and time of transition
Continuous Time Markov Chain (CTMC)
$A, B \xrightarrow{p\left(S_{i}\right), t\left(S_{i}\right)} C++, A--, B--$

Petri net semantics: numbers of molecules
Multiset rewriting
CHAM [Berry Boudol 90] [Banatre Le Metayer 86]
$A, B \rightarrow C++, A--$ B--

Several Interpretations $A+B \xrightarrow{\text { k.A.B }} C$

Continuous semantics: concentrations, continuous time evolution
Ordinary differential equations (ODE)

$$
\frac{d A}{d t}=-k \cdot A \cdot B \frac{d B}{d t}=-k \cdot A \cdot B \frac{d C}{d t}=k \cdot A \cdot B
$$

Stochastic semantics: numbers of molecules, probability and time of transition
Continuous Time Markov Chain (CTMC)

$$
\mathrm{A}, \mathrm{~B} \xrightarrow{\mathrm{p}\left(\mathrm{~S}_{\mathrm{i}}\right), \mathrm{t}(\mathrm{Si})} \mathrm{C}++, \mathrm{A}--, \mathrm{B}--
$$

Petri net semantics: numbers of molecules

$$
\text { A , B } \rightarrow \text { C++, A--, B-- }
$$

Multiset rewriting
CHAM [Berry Boudol 90] [Banatre Le Metayer 86]

Boolean semantics: presence/absence
Asynchronous transition system
Symbolic model-checking

$$
\begin{aligned}
& A \wedge B \rightarrow C \wedge \neg A \wedge \neg B \\
& A \wedge B \rightarrow C \wedge A \wedge \neg B \\
& A \wedge B \rightarrow C \wedge \neg A \wedge B \\
& A \wedge B \rightarrow C \wedge A \wedge B
\end{aligned}
$$

Hierarchy of CRN Semantics

Turing Completeness of CRNs ?

MAPK Signalling Cascade

MAPK Signaling Network: 30 reactions 18 species [Huang Ferrel PNAS 1996]

MAPK Input/Output Function

Dose-response diagrams alias Bifurcation diagrams

MAPK responses as Hill function $\frac{x^{n}}{c+x^{n}}$
[Huang Ferrel 96 PNAS]
$n \approx 4.9$ at $3^{\text {rd }}$ level $n \approx 1.7$ at $2^{\text {nd }}$ level
$\mathrm{n}=1$ at $1^{\text {st }}$ level (Michaelis-Menten)

MAPK implements the function of an analog/digital converter in the cell. How would one program $\frac{x^{n}}{c+x^{n}}$ with biochemical reactions ?
What does it mean to compute with real numbers ?

Computable Real Numbers and Functions

Classical definitions of computable analysis based on Turing machines

Definition. A real number r is computable if there exists a Turing machine with Input: precision $p \in \mathrm{~N}$
Output: rational number $q \in Q$ with $|r-q|<2^{-p}$
Examples. Rational numbers, limits of computable Cauchy sequences π, e, \ldots

Definition. A real function $f: R \rightarrow R$ is computable if there exists a Turing machine that computes $f(x)$ with an oracle for x.
Examples. Polynomials, trigonometric functions, ...
Counter-examples. $x=0,\lceil x\rceil$ are not computable (undecidable on $x=0.000 \ldots$) discontinuous functions

Analog encoding $\mathrm{e}(\mathrm{w})$ of decision problems by f : accept w if $f(\mathrm{e}(\mathrm{w})) \geq 1$ reject if ≤-1

Analog Computer? Differential Analyzer [Bush 1931]

Underlying principles: Lord Kelvin, 1876 First ever built: Vannevar Bush, MIT, 1931

Applications: from gunfire control up to aircraft design

- Intensively used by the U.S. and Japanese armies during world war II
- Electronic versions from late 40s, used until 70s

General Purpose Analog Computer [Shannon 1941]

Shannon's formalization of the Differential Analyser by GPAC circuits A time function if GPAC-generated if it is the output of some unit of a GPAC circuit built from:

1. Constant unit
2. Sum unit
3. Product unit
4. Integral $\int x d y$ unit

What does this GPAC circuit compute ?

CRN Implementation of GPAC Units

Mass action law kinetics reaction network with output concentration stabilizing on the result of the operation applied to the input concentrations

Positive constant units: molecular concentrations

Product unit $z=x . y$
Sum unit $z=x+y$

$$
\begin{aligned}
& \mathrm{x} \xrightarrow[\rightarrow]{k . x} x+z \\
& y \xrightarrow{k . y} y+z \\
& z \xrightarrow{k . z}- \\
& \begin{aligned}
\frac{d z}{d t} & =k(x+y-z) \\
& =0 \text { when } z=x+y
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& x+y \xrightarrow{k \cdot x \cdot y} x+y+z \\
& z \xrightarrow{k . z}- \\
& \begin{aligned}
\frac{d z}{d t} & =k(x y-z) \\
& =0 \text { when } z=x . y
\end{aligned}
\end{aligned}
$$

Polynomial ODE Initial Value Problems (PIVP)

Graça and Costa 2003's formalization of Shannon's GPAC

Definition. A real time function $f: R_{+} \rightarrow R$ is GPAC-generable iff there exist a vector of polynomials $p \in R^{n}\left[R^{n}\right]$ and of initial values $y(0) \in R^{n}$ and a solution function $y: R_{+} \rightarrow R^{n}$ such that $y^{\prime}(t)=p(y(t))$ and $f(t)=y_{1}(t)$

Closure properties:
$f+g$, f-g, f.g, $1 / f$, , $\circ \mathrm{g}$, y s.t. $\mathrm{y}^{\prime}=\mathrm{f}(\mathrm{y})$ are GPAC-generable if f, g are.

A GPAC-generated function must be analytic (i.e. convergent power series) Famous analytic non-GPAC-generable functions [Shannon 41]

- Euler's Gamma function $\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t$ [Hölder1887]
- Riemann's Zeta function $\zeta(x)=\sum_{k=0}^{\infty} \frac{1}{k^{x}}$ [Hilbert]

PIVP-Computable Functions $\mathrm{f}(\mathrm{x})$

Definition. [Graça Costa 03 J. Complexity] A real function f:R $\rightarrow R$ is PIVP-computable if there exists vectors of polynomials $p \in R^{n}\left[R^{n}\right]$ and $q \in R^{n}[R]$ and a function $y: R^{n} \rightarrow R^{n}$ such that $y^{\prime}(t)=p(y(t)), y(0)=q(x)$ and $\left|y_{1}(t)-f(x)\right|<y_{2}(t)$ with $y_{2}(t) \geq 0$ decreasing for $t>1$ and $\lim _{t \rightarrow \infty} y_{2}(t)=0$

Example. cos(4)

Theorem (analog characterization of Turing computability).
[Bournez Campagnolo Graça Hainry 07 J. Complex]]
A real function is computable (by Turing machine) iff it is PIVP-computable.

Analog characterization of Ptime

Time in ODE is a bad measure of complexity

- Exponential speedup by changing time variable $t^{\prime}=e^{t}$
- But price to pay in the amplitude of t^{\prime}

A computational complexity measure should combine time and space-amplitude

- length in the n dimensions of the trajectory to compute the result

Theorem [Pouly PhD thesis 2015, Bournez Graca Pouly 16 ICALP]
A real function is computable in P iff it is PIVP-computable with a trajectory of polynomial length (i.e. polynomial time and polynomial amplitude)

Turing Completeness of Continuous CRNs 1/3

Lemma (positive systems) Any PIVP-computable function can be encoded by a PIVP of double dimension on R^{+}, preserving polynomial length complexity.

Proof. Encode $y_{i} \in R$ by $y_{i} y_{i}^{+} \in R^{+}$such tha $y_{i}=y_{i}^{+}-y_{i}^{-}$al each time
(encoding used in [Oishi Klavins 2011] for linear I/O systems)
Let $p_{i}\left(y^{+}{ }_{1}, y_{1}^{-}, \ldots, y^{+}{ }_{n}, y_{n}^{-}\right)=p_{i}\left[y=y_{i}^{+}-y_{i}^{-}\right]$and $p_{i}=\underline{p}_{i}^{+}-\underline{p}_{i}^{-}$

$$
\begin{array}{ll}
y_{i}^{+}{ }_{i}=q_{q_{i}^{+}}^{+}-f_{i} y_{i}^{+} y_{i}^{-} & y_{i}^{+}(0)=\max \left(0, y_{i}(0)\right) \\
y_{i}^{-}=q_{i}^{-}-f_{i} y_{i}^{+} y_{i}^{\top} & y_{i}^{\top}(0)=\max \left(0,-y_{i}(0)\right)
\end{array}
$$

Where $f_{i}=q_{i}^{+}+q_{i}$ are positive coefficient polynomials $f_{i} \geqq \max \left(q_{i}^{+}, q_{i}\right)$

- Fast annihilation reactions: $y_{i}^{+}+y_{i}^{-} \xrightarrow{f_{i}}$ _
- n -ary catalytic synthesis reactions for each monomial $\mathrm{m}^{+}{ }_{\mathrm{i}, \mathrm{j}} \mathrm{n}_{\mathrm{p}}{ }_{\mathrm{i}}, \mathrm{m}_{\mathrm{i}, \mathrm{j}}^{-}$in $\underline{\mathrm{p}}_{\mathrm{i}}^{-}$:

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{i}, \mathrm{j}}+\xrightarrow{\mathrm{m}_{\mathrm{i}, \mathrm{j}}^{+}} \mathrm{y}_{\mathrm{i}+}^{+}+\mathrm{m}_{\mathrm{i}, \mathrm{j}}^{+} \\
& \mathrm{m}_{\mathrm{i}, \mathrm{j}}-\xrightarrow{\mathrm{m}_{\mathrm{i}, \mathrm{j}}} \mathrm{y}_{\mathrm{i}}^{+}+\mathrm{Mi}_{\mathrm{i}, \mathrm{j}}^{-}
\end{aligned}
$$

Turing Completeness of Continuous CRNs 2/3

Lemma (quadratic systems) [Carothers Parker Sochacki Warne 2005]
Any PIVP can be encoded by a PIVP of degree ≤ 2.

Proof. Introduce variable $v_{i 11, \ldots, \text { in }}$ for each possible monomial $y_{1}{ }^{i 1} \ldots y_{n}{ }^{\text {in }}$
We have $y_{1}=v_{1,0 \ldots, 0}, y_{2}=v_{0,1,0, \ldots, 0}, \ldots$
y_{i}^{\prime} is of degree one in $v_{i 11, \ldots, i n}$
$v^{\prime}{ }_{i 1}, \ldots$, in $=\sum_{k=1}^{n} i_{k} v_{i_{1}, \ldots, i_{k_{-}}, \ldots, i_{n}} y_{k}^{\prime} \quad$ is of degree at most 2.
i.e. trade high dimension for low degrees.
(yet naïve algorithm of exponential complexity)

Turing Completeness of Continuous CRNs $3 / 3$

Theorem (Turing completeness of continuous CRNs) [F Le Guludec Bournez Pouly CMSB 2017] Any computable function over the reals can be computed by a continuous CRN over a finite set of molecular species (no polymerization, no locations)
Proof: By previous lemmas, any PIVP-computable function can be encoded by a PIVP of degree at most 2 with positive variables. A positive PIVP of degree at most 2 can be represented by an elementary CRN with at most 2 reactants per reaction.

In this view, the (protein) concentrations are the information carriers.

The programs of a cell are implicitly defined by the set of all possible reactions with the proteins encoded in its genome_and the chemicals of the environment.

Program change is determined by gene expression (= metaprogram).

In this view, programming becomes a natural science

From Abstract to Concrete Implementation

Theorem (abstract CRN)

A real function is computable (respectively in polynomial time)
if and only if it is computable by a system of elementary reactions of the form

$$
\text { _ => z or } \quad x=>x+z \quad \text { or } \quad x+y=>x+y+z
$$

plus annihilation reactions $x+y=>\quad$ with mass action law kinetics (respectively with trajectories of polynomial length as a function of both the unary precision and the argument values).
Proof Close analysis of the encoding used in the lemmas (positive monomials)

Intermediate CRN: Instead of formal synthesis and degradation reactions, activation and deactivation reactions (e.g. phosphorylation, complexation)

Concrete CRN: catalogue of real enzymes [F. Molina's Lab Sys2Diag, Montpellier] microreactors in DNA-free vesicles created by microfluidic device

Compilation of the Cosine(t) function

biocham: compile_from_expression(cos,time,f). d(f_p)/dt = z_p-k*f_m*f_p
_ $=\left[z _p\right]=>$ f_p. $\quad z_{-} m+z _p=>$.
_ $=\left[z_{-} m\right]=>$ f_m. \quad f_m+f_p $=>$.
_ = [f_m]=> z_p.
_ $=\left[f _p\right]=>z_{-} m$.
present(f_p,1).

$d\left(f _m\right) / d t=z _m-k * f _m * f _p$ $d\left(z _p\right) / d t=f _m-k * z _m * z _p$ $d\left(z _m\right) / d t=f _p-k * z _m * z _p$ f_p(0)=1

Compilation of the Cosine(x) Function

biocham: present(x_p, 4).
biocham: compile_from_expression(cos,x,f). present(f_p, 1).

```
_=[g_m]=>g_p.
=[x_p]=>g_p.
= [g_p]=>g_m.
_=[x_m]=>g_m.
=[g_m+z_p]=>f_p.
_=[g_p+z_m]=>f_p.
_=[x_m+z_m]=>f_p.
_=[x_p+z_p]=>f_p.
_=[g_m+z_m]=>f_m.
_=[g_p+z_p]=>f_m.
```

$$
\begin{aligned}
& =\left[g _m+f _m\right]=>z _p . \\
- & =\left[g _p+f _p\right]=>z _p . \\
& =\left[x _p+f _m\right]=>z _p . \\
& =\left[x _m+f _p\right]=>z _p . \\
= & {\left[g _m+f _p\right]=>z _m . } \\
= & {\left[g _p+f _m\right]=>z _m . } \\
= & {\left[x _m+f _m\right]=>z _m . } \\
= & =\left[x _p+f _p\right]=>z _m . \\
= & {\left[x _p+f _p\right]=>z _m . } \\
= & =\left[x _m+z _p\right]=>f _m .
\end{aligned}
$$

PIVP that generates $\mathrm{f}(\mathrm{g}(\mathrm{t}))$ with $\lim _{t \rightarrow \infty} g(t)=x$
$g^{\prime}(t)=x-g(t)$
$g(t)=x+(x 0-x) e^{-t}$

François Fages

Sigmoid Functions

Hyperbolic tangent

 $d(H T) / d t=1-H T^{\wedge} 2$
Logistic

$d(S) / d t=S-S^{\wedge} 2$

Arc tangent

$d(T) / d t=1$
$d(A T) / d t=1 /\left(1+T^{\wedge} 2\right)$
Hill functions order 1，2，5
$d(\mathrm{H} 1) / \mathrm{dt}=\mathrm{NH} 1^{\wedge} 2$
$d(\mathrm{NH} 1) / d t=-\mathrm{NH} 1 \wedge 2$

```
d(H2)/dt=2*T*NH2^2
d(NH2)/dt= - (2*T*NH2^2)
```

$d(\mathrm{H} 5) / \mathrm{dt}=5 * \mathrm{~T}^{\wedge} 4 * \mathrm{NH}^{\wedge}{ }^{\wedge} 2$
$d($ NH5 $) / d t=-\left(5 * T^{\wedge} 4 * N H 5{ }^{\wedge} 2\right)$

$$
\begin{aligned}
& =>\mathrm{HT} . \\
& \mathrm{HT}=[\mathrm{HT}]=>.
\end{aligned}
$$

$$
\text { _= [S] }=>\mathrm{S} .
$$

$$
S=[S]=>.
$$

present(S,0.001).
_=>T.

$$
1 /\left(1+T^{\wedge} 2\right) \text { for _/T=>AT }
$$

$$
\mathrm{NH} 1=[\mathrm{NH} 1]=>.
$$

$$
=[2 * \mathrm{NH} 1]=>\mathrm{H} 1 .
$$

present(NH1,1).

$$
\text { MA (2) for NH2 }=[T+\mathrm{NH} 2]=>_{-} \text {. }
$$

$$
\text { MA (} 2 \text {) for }=[T+2 * \text { NH } 2]=>H 2 \text {. }
$$

present(NH2,1).

$$
\text { MA (5) for NH5 }=[4 * T+\text { NH5 }]=>.
$$

$$
\text { MA (5) for } \quad=[4 * T+2 * \text { NH5 }]=>H 5 \text {. }
$$

present(NH5,1).

Logical Gates

And $C=A \wedge B \quad A+B=>C \quad[C]=\min ([A],[B])$

Or $\mathrm{C}=\mathrm{A} \vee \mathrm{B} \quad$| $\mathrm{A}=>\mathrm{C}$ |
| :--- |
| $\mathrm{B}=>\mathrm{C}$ |$\quad[\mathrm{C}]=[\mathrm{A}]+[\mathrm{B}]$

Not $C=\neg A \quad C+A=>\quad[C]=\max \left(\left[C_{0}\right]-[A], 0\right)$

Computer-Aided Biochemical Programming of Synthetic Micro-reactors as Diagnostic Devices

Alexis Courbet ${ }^{1}$, Patrick Amar ${ }^{2}$, François Fages ${ }^{3}$,
Eric Renard ${ }^{4}$, Franck Molina ${ }^{1}$

${ }^{1}$ Sys2diag UMR9005 CNRS/ALCEDIAG, Montpellier
${ }^{2}$ LRI, Université Paris Sud - UMR CNRS 8623, Orsay
${ }^{3}$ http://lifeware.inria.fr, Inria Saclay IdF, Palaiseau
4 INSERM 1411, Montpellier University Hospital

Protosensor CRN Design Workflow

Biomolecular problem to solve

Pathology | Molecular |
| :--- |
| Biomarkers |

Biochemical programming

Functional protosensor

Realistic model prediction Hybrid entity centered／SSA automaton and ODE simulator

Silicell Maker
Automated implementation of logic function
from parts and devices mined in biological networks
Silicell Maker
Automated implementation of logic function
from parts and devices mined in biological networks
Silicell Maker
Automated implementation of logic function
from parts and devices mined in biological networks

Optimization \＆Model checking Sensitivity／Robustness analysis Temporal logic specifications

4
ノ

Diabetes Differential Diagnostic Algorithm

François Fages

Reactions for Implementing Logical Gates

And $C=A \wedge B \quad A+B=>C \quad[C]=\min ([A],[B])$
Or $\mathrm{C}=\mathrm{A} V \mathrm{~B}$
A => C
$[C]=[A]+[B]$

Not $C=\neg A$
C+A =>
$[\mathrm{C}]=\max \left(\left[\mathrm{C}_{0}\right]-[\mathrm{A}], 0\right)$

Microfluidic Assembly and Validation in Human Urine

Sequentiality and Iteration

```
Division \((A, B)\)
    begin
    01 while \(A \geq B\)
    \(02 \quad A:=A-B\)
    \(03 \quad Q:=Q+1\)
    \(04 \quad R:=A\)
    end
\begin{tabular}{lcl}
\multicolumn{3}{c}{ Main Reactions } \\
01 & while \([A] \geq[B]\) & Preconditions \\
02 & \((A+B \rightarrow D)\) & \(\neg G_{\theta}\) \\
03 & \(C \rightarrow Q+E\) & \(A_{\theta} \wedge \neg B_{\theta}\) \\
04 & \(D \rightarrow F\) & \(\neg C_{\theta}\) \\
05 & \(E \rightarrow G\) & \(\neg D_{\theta}\) \\
06 & \(F \rightarrow B\) & \(\neg E_{\theta}\) \\
07 & \(G \rightarrow C\) & \(\neg F_{\theta}\) \\
08 & \(D \rightarrow R\) & \(\neg A_{\theta}\)
\end{tabular}
```

[Huang Jiang Huang Cheng 2012 ICCAD]
[Huang Huang Chiang Jiang F 2013 IWBDA]

Cell Division Cycle Program

$$
\text { while true \{growing; replication; verification; mitosis\} }
$$

\rightarrow compilation of sequentiality and loops with program control variables
$\rightarrow 50$ reactions
$\rightarrow 13$ variables

Cyclins D, E, A, B appear as necessary markers for implementing sequentiality

Conclusion

- Binary reaction systems over a finite set of molecules (without polymerization) are Turing-complete under the differential semantics
- PIVP definition of computable function
- Notion of computational complexity as trajectory length of stabilizing PIVPs
- Biochemical compiler of real functions (in Biocham modeling software)
- Input: Function specification by PIVP, mixed digital-analog program
- Output: system of binary reactions with mass action law kinetics
- Exact characterization of the result for an ideal fluid implementation
- Comparison to natural circuits
- The natural MAPK program implements an analog-digital converter (sigmoid Hill5)
- Different from generated CRN for Hill5 but similar complexity
- Alternative design by artificial evolution:
- Artificial evolution of CRNs
- Nature algorithms for learning [Valliant 2013]

CRN \leftrightarrow Function
U
Mutation

