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Cells	Compute

They process signals

Regulate their metabolism

Take decisions such as 
– Replication

– Differentiation

– Migration

Understanding these processes is a central difficulty in many applications in 
medicine, health, agriculture and the ultimate goal of molecular cell biology.
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Chemical	Reaction	Networks	(CRNs)

CRN structure: network of reactants, products, and reactions
– 2𝐻# + 𝑂# → 2𝐻#𝑂 but not necessarily mass balanced
– synthesis reactions  _ → 𝐴	 degradation reactions  𝐴 → _
– hypergraph of reactions (bipartite species-reaction graph)

CRN dynamics: several interpretations
– differential equations, continuous-time Markov chains, 
– Petri net, Boolean transitions

CRN model repositories (Systems Biology Markup Language SBML):
– BioModels.net ≈ 2000 models + 10000 models of metabolism

CRN theory: interplay between CRN structure and CRN dynamics 
– static analysis of steady states, stable states, oscillations,…
– reductions by quasi-steady state (QSS) and quasi-equilibrium (QE) approximations
– Turing completeness and computational complexity of CRNs
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Continuous semantics: concentrations, continuous time evolution 

Ordinary differential equations (ODE)          *+
*,
= −𝑘. 𝐴. 𝐵		 *2

*,
= −𝑘. 𝐴. 𝐵		 *3

*,
= 𝑘. 𝐴. 𝐵	

Several	Interpretations	A + B
6.7.8

C
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*,
= −𝑘. 𝐴. 𝐵		 *3
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Stochastic semantics: numbers of molecules, probability and time of transition

Continuous Time Markov Chain (CTMC)    A	,	B
; <= ,	>(<=) C++,	A--,	B--
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Continuous semantics: concentrations, continuous time evolution 

Ordinary differential equations (ODE)          *+
*,
= −𝑘. 𝐴. 𝐵		 *2

*,
= −𝑘. 𝐴. 𝐵		 *3

*,
= 𝑘. 𝐴. 𝐵

Stochastic semantics: numbers of molecules, probability and time of transition

Continuous Time Markov Chain (CTMC)    A	,	B
; <= ,	>(<=) C++,	A--,	B--

Multi-agent simulation: numbers of molecules, space, diffusion speed, affinity

Random walk (ex. Hsim simulator [Amar 04])
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Continuous semantics: concentrations, continuous time evolution 

Ordinary differential equations (ODE)          *+
*,
= −𝑘. 𝐴. 𝐵		 *2

*,
= −𝑘. 𝐴. 𝐵		 *3

*,
= 𝑘. 𝐴. 𝐵

Stochastic semantics: numbers of molecules, probability and time of transition

Continuous Time Markov Chain (CTMC)                   A	,	B
; <= ,	>(<=) C++,	A--,	B--

Petri net semantics: numbers of molecules              A	,	B	→ C++,	A--,	B--
Multiset rewriting
CHAM [Berry Boudol 90] [Banatre Le Metayer 86]
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Continuous semantics: concentrations, continuous time evolution 

Ordinary differential equations (ODE)          *+
*,
= −𝑘. 𝐴. 𝐵		 *2

*,
= −𝑘. 𝐴. 𝐵		 *3

*,
= 𝑘. 𝐴. 𝐵

Stochastic semantics: numbers of molecules, probability and time of transition

Continuous Time Markov Chain (CTMC)                   A	,	B
; <= ,	>(<=) C++,	A--,	B--

Petri net semantics: numbers of molecules    A	,	B	→ C++,	A--,	B--
Multiset rewriting
CHAM [Berry Boudol 90] [Banatre Le Metayer 86]

Boolean semantics: presence/absence                    A	Ù B	→ C	Ù ¬A	Ù ¬B
Asynchronous transition system                                 A	Ù B	→ C	Ù A	Ù ¬B
Symbolic model-checking A	Ù B	→ C	Ù ¬A	Ù B

A	Ù B	→ C	Ù A	Ù B
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Several	Interpretations	A + B
6.7.8
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Hierarchy of	CRN	Semantics

Stochastic traces (CTMC)

Continuous
traces (ODE)

Discrete traces (Petri net)

Boolean traces

Thm. (approximation   ) For large 
numbers of  molecules the 
ODE semantics approximates 
the mean stochastic behavior                                                                                                                     
[Gillespie 1971 Kurtz 1978]Reaction set
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Thm. (abstract interpretation    ) 
Galois connections between the 
syntactical, stochastic, Petri net 
and Boolean trace semantics  
[Fages Soliman Theoretical Computer Science 2008]

Animal	model Synthetic	microreactor



Turing	Completeness of	CRNs ?

Stochastic sem.

ODE
semantics

Discrete sem.

Boolean sem.

Reaction set

JLLL'50	Roscoff,	Mars	2019 10

Discrete CRN: Not Turing complete without
• Test of absence (Petri net inhibitor arc)
• Polymerisation reactions
[Cardelli Zavatero MSCS 2010, Cook et al 2009]

• Unbounded membranes
[Berry Boudol CHAM 1994, Paun Rozenberg TCS 2002, 
Busi Gorrieri CMSB 2005]

Stochastic CRN: Simulation of a 
Turing machine with a small 
probability of error

[Cook, Soloveichik, Winfree, Bruck 2009]

Continuous CRN: Non uniform 
computability: for each function 
for each input there exists a 
circuit computing the result

[Magnosco 1997 Phys. Rev.,              
Helmfelt Weinberger PNAS 1991]

Strong Turing completeness?



MAPK Signaling Network: 30 reactions 18 species [Huang Ferrel PNAS 1996]
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MAPK	Signalling Cascade



MAPK	Input/Output Function

Dose-response diagrams alias Bifurcation diagrams
biocham: load(library:examples/mapk/mapk).

biocham: dose_response(‘E1',1.0e-6,1e-4,200).
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MAPK implements the function of an analog/digital converter in the cell.
How would one program BC

D	E	BC
with biochemical reactions ?

What does it mean to compute with real numbers ? 

MAPK responses as Hill function  BC

D	E	BC

[Huang Ferrel 96 PNAS]
n ≈ 4.9 at 3rd level
n ≈ 1.7 at 2nd level
n = 1 at 1st level (Michaelis-Menten)



Computable	Real	Numbers and	Functions
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Classical definitions of computable analysis based on Turing machines

Definition. A real number r is computable if there exists a Turing machine with
Input: precision pÎN
Output: rational number qÎQ with | r-q |<2-p

Examples. Rational numbers, limits of computable Cauchy sequences π,	e,	…

Definition. A real function f:R®R is computable if there exists a Turing machine 
that computes f(x) with an oracle for x.
Examples. Polynomials, trigonometric functions, …

Counter-examples. x=0, ⌈x⌉ are not computable (undecidable on x=0.000…) 
discontinuous functions

Analog encoding e(w) of decision problems by f: accept w if f(e(w)) ≥1 reject if ≤-1



Analog	Computer?	Differential	Analyzer	[Bush	1931]

Underlying principles: Lord Kelvin, 1876 
First ever built: Vannevar Bush, MIT, 1931 

Applications: from gunfire control up to aircraft design 
– Intensively used by the U.S. and Japanese armies during world war II
– Electronic versions from late 40s, used until 70s 
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Shannon’s General Purpose Analog Computer

The GPAC is a mathematical abstraction from Claude
Shannon (1941) of the Di↵erential Analyzers.

[Graça Costa 03]: This corresponds to polynomial Ordinary
Di↵erential Equations (pODEs), i.e.

y0 = p(t, y)

y(t
0

) = y
0

where
I p is a (vector of) polynomials.

4

A machine from 20th Century: Di↵erential analyzers

Vannevar Bush’s 1938 mechanical

Di↵erential Analyser

Underlying principles: Lord
Kelvin 1876.

First ever built: V. Bush
1931 at MIT.

Applications: from gunfire
control up to aircraft design

Intensively used during U.S.
war e↵ort.

Electronic versions from late
40s, used until 70s
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General	Purpose	Analog	Computer	[Shannon	1941]
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Shannon’s formalization of the Differential Analyser by GPAC circuits
A time function if GPAC-generated if it is the output of some unit of a
GPAC circuit built from:
1. Constant unit
2. Sum unit
3. Product unit
4. Integral ∫𝑥	𝑑𝑦�

� unit

What does this GPAC circuit compute ?

𝑦P =
𝑑𝑦
𝑑𝑡

𝑑𝑦P
𝑑𝑡 = −𝑦	 = 	𝑦’’

if 𝑦(0) = 1, 𝑦P(0) = 0
𝑦(𝑡) = 𝑐𝑜𝑠 𝑡 𝑦P(𝑡) = 𝑠𝑖𝑛(𝑡)	



CRN	Implementation	of	GPAC	Units
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Mass action law kinetics reaction network with output concentration stabilizing 
on the result of the operation applied to the input concentrations

Positive constant units: molecular concentrations

Product unit  𝑧 = 𝑥. 𝑦 Sum unit 𝑧 = 𝑥 + 𝑦	 Time integral z = ∫𝑥	𝑑𝑡�
� unit

𝑥 + 𝑦	
\.B.]

		𝑥 + 𝑦 + 𝑧
z	
\.^
	_

𝑑𝑧
𝑑𝑡 = 𝑘(𝑥𝑦 − 𝑧)

= 0	when	𝑧 = 𝑥. 𝑦

x	
B
→ 		𝑥 + 𝑧

𝑑𝑧
𝑑𝑡 = 𝑥

z=∫ 𝑥	𝑑𝑡_
`

x	
\.B
		𝑥 + 𝑧

	𝑦	
\.]
		𝑦 + 𝑧

	𝑧	
\.^
		_

𝑑𝑧
𝑑𝑡 = 	𝑘(𝑥 + 𝑦 − 𝑧)
							= 	0	when	𝑧 = 𝑥 + 𝑦



Polynomial	ODE	Initial	Value	Problems	(PIVP)	

Graça and Costa 2003’s formalization of Shannon‘s GPAC

Definition. A real time function f:R+®R is GPAC-generable iff there exist a 
vector of polynomials pÎRn[Rn] and of initial values y(0)ÎRn

and a solution function y:R+®Rn such that y’(t)=p(y(t))	and f(t)=y1(t)

Closure properties: 
f+g, f-g, f.g, 1/f, ,f ◦g, y s.t. y′ =f(y) are GPAC-generable if f, g are. 

A GPAC-generated function must be analytic (i.e. convergent power series)
Famous analytic non-GPAC-generable functions [Shannon 41] 
• Euler’s Gamma function Γ(𝑥) = ∫ 𝑡BiP𝑒i,𝑑𝑡k

` 	[Hölder1887] 

• Riemann’s Zeta function 𝜁(𝑥) 	= 	∑ P
\n
		k

\o` [Hilbert]
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Definition. [Graça Costa 03 J. Complexity] A real function f:R®R is PIVP-computable
if there exists vectors of polynomials pÎRn[Rn] and qÎRn[R] and 
a function y: Rn ®Rn such that y’(t)=p(y(t))	, y(0)=q(x)	and |y1(t)-f(x)|<y2(t)
with y#(t) ≥ 0 decreasing for t>1 and lim

>→k
y#(t) = 0

Example. cos(4)

Theorem (analog characterization of Turing computability).
[Bournez Campagnolo Graça Hainry 07 J. Complex]]

A real function is computable (by Turing machine) iff it is PIVP-computable.

PIVP-Computable	Functions	f(x)
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Time in ODE is a bad measure of complexity
• Exponential speedup by changing time variable 𝑡t = 𝑒,

• But price to pay in the amplitude of 𝑡t

A computational complexity measure should combine time and space-amplitude 
• length in the n dimensions of the trajectory to compute the result

Theorem [Pouly PhD thesis 2015, Bournez Graca Pouly 16 ICALP] 

A real function is computable in P iff it is PIVP-computable with a trajectory of 
polynomial length (i.e. polynomial time and polynomial amplitude)

Analog	characterization	of	Ptime
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Turing	Completeness	of	Continuous	CRNs	1/3

Lemma (positive systems) Any PIVP-computable function can be encoded by 
a PIVP of double dimension on R+, preserving polynomial length complexity.

Proof. Encode yiÎR by y-
i y+

iÎR+ such that yi = y+
i - y-

i at each time
(encoding used in [Oishi Klavins 2011] for linear I/O systems)

Let pi(y+
1, y-

1,…, y+
n, y-

n) = pi[y = y+
i - y-

i] and pi = p+
i - p-

i

y+
i‘ = q+

i - fi y+
i y-

i y+
i(0) = max(0, yi(0))

y-
i ‘ = q-

i - fi y+
i y-

i y-
i(0) = max(0, -yi(0))

Where fi =q+
i +q-

i are positive coefficient polynomials fi≧ max(q+
i , q-

i )

• Fast annihilation reactions:   y+
i + y−

i		
fi→		_

• n-ary catalytic synthesis reactions for each monomial m+
i,j	

in p+
i	
, m−

i,j	
in p−

i	
:  

Mi, j
+ 				m+

i,j						y+
i +	Mi, j

+

Mi, j
− 					m−

i,j 					y+
i +	Mi, j

−
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Turing	Completeness	of	Continuous	CRNs	2/3

Lemma (quadratic systems) [Carothers Parker Sochacki Warne 2005] 

Any PIVP can be encoded by a PIVP of degree £ 2.

Proof. Introduce variable vi1,…,in for each possible monomial y1
i1…yn

in

We have y1 =v1,0…,0,	y2 =v0,1,0…,0 ,…					

y’i is of degree one in vi1,…,in

𝑣t𝑖1, … , 𝑖𝑛
= ∑ 𝑖𝑘	𝑣𝑖P, … , 𝑖\iP	, … , 𝑖z		

	𝑦t𝑘z
\oP is of degree at most 2.

i.e. trade high dimension for low degrees.

(yet naïve algorithm of exponential complexity)
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Turing	Completeness	of	Continuous	CRNs	3/3

Theorem (Turing completeness of continuous CRNs) [F Le Guludec Bournez Pouly CMSB 2017]

Any computable function over the reals can be computed by a continuous CRN 
over a finite set of molecular species (no polymerization, no locations)
Proof: By previous lemmas, any PIVP-computable function can be encoded by a 
PIVP of degree at most 2 with positive variables. A positive PIVP of degree at most 
2 can be represented by an elementary CRN with at most 2 reactants per reaction.

In this view, the (protein) concentrations are the information carriers.

The programs of a cell are implicitly defined by the set of all possible reactions with 
the proteins encoded in its genome and the chemicals of the environment.

Program change is determined by gene expression (= metaprogram).

In this view, programming becomes a natural science
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From	Abstract	to	Concrete	Implementation

Theorem (abstract CRN) 
A real function is computable (respectively in polynomial time) 
if and only if it is computable by a system of elementary reactions of the form

_ => z          or x => x+z or x+y => x+y+z
plus annihilation reactions x+y => _ with mass action law kinetics
(respectively with trajectories of polynomial length as a function of both the 
unary precision and the argument values).
Proof Close analysis of the encoding used in the lemmas (positive monomials)

Intermediate CRN: Instead of formal synthesis and degradation reactions,
activation and deactivation reactions (e.g. phosphorylation, complexation) 

Concrete CRN: catalogue of real enzymes [F. Molina’s Lab Sys2Diag, Montpellier]
microreactors in DNA-free vesicles created by microfluidic device 
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Compilation	of	the	Cosine(t)	function
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biocham: compile_from_expression(cos,time,f).
_ =[z_p]=> f_p.   z_m+z_p => _. 
_ =[z_m]=> f_m.   f_m+f_p => _. 

 _ =[f_m]=> z_p.
 _ =[f_p]=> z_m. 
present(f_p,1). 

d(f_p)/dt = z_p-k*f_m*f_p 
d(f_m)/dt = z_m-k*f_m*f_p 
d(z_p)/dt = f_m-k*z_m*z_p 
d(z_m)/dt = f_p-k*z_m*z_p
f_p(0)=1  



Compilation	of	the	Cosine(x)	Function
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biocham: present(x_p, 4). 
biocham: compile_from_expression(cos,x,f). 
 present(f_p, 1).
 _=[g_m]=>g_p. _=[g_m+f_m]=>z_p.
 _=[x_p]=>g_p. _=[g_p+f_p]=>z_p.
 _=[g_p]=>g_m. _=[x_p+f_m]=>z_p.
 _=[x_m]=>g_m. _=[x_m+f_p]=>z_p.
 _=[g_m+z_p]=>f_p. _=[g_m+f_p]=>z_m.
 _=[g_p+z_m]=>f_p.  _=[g_p+f_m]=>z_m.
 _=[x_m+z_m]=>f_p.  _=[x_m+f_m]=>z_m.
 _=[x_p+z_p]=>f_p. _=[x_p+f_p]=>z_m.
 _=[g_m+z_m]=>f_m. _=[x_p+f_p]=>z_m.
 _=[g_p+z_p]=>f_m. _=[x_m+z_p]=>f_m. 

PIVP	that	generates	f(g(t))
with	 lim

,ik
𝑔 𝑡 = 𝑥

𝑔′(𝑡) = 𝑥 − 𝑔(𝑡) 	
𝑔 𝑡 = 𝑥 + 𝑥0 − 𝑥 𝑒i,



Sigmoid	Functions
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_=>HT. 
HT=[HT]=>_. 

_=[S]=>S. 
S=[S]=>_. 
present(S,0.001).

_=>T. 
1/ (1+T^2) for _/T=>AT

NH1=[NH1]=>_. 
_=[2*NH1]=>H1. 
present(NH1,1). 
MA(2)for NH2=[T+NH2]=>_. 
MA(2)for _=[T+2*NH2]=>H2. 
present(NH2,1). 
MA(5)for NH5=[4*T+NH5]=>_. 
MA(5)for _=[4*T+2*NH5]=>H5.  
present(NH5,1).

Hyperbolic tangent
d(HT)/dt=1-HT^2

Logistic
d(S)/dt=S-S^2

Arc tangent
d(T)/dt=1
d(AT)/dt=1/ (1+T^2)

Hill functions order 1,2,5
d(H1)/dt=NH1^2
d(NH1)/dt= -NH1^2

d(H2)/dt=2*T*NH2^2
d(NH2)/dt= - (2*T*NH2^2)

d(H5)/dt=5*T^4*NH5^2
d(NH5)/dt= - (5*T^4*NH5^2)



Logical	Gates

And C = A /\ B           A+B => C [C] = min([A],[B])

Or C = A \/ B           A => C                  [C] = [A]+[B]
B => C

Not C = ￢ A     C+A => _              [C] = max([C0]-[A], 0)
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Computer-Aided	Biochemical	Programming	of	
Synthetic	Micro-reactors	as	Diagnostic	Devices

Alexis	Courbet 1,	Patrick	Amar 2,	François	Fages 3,	
Eric Renard 4,	Franck	Molina 1

1 Sys2diag	UMR9005	CNRS/ALCEDIAG, Montpellier	
2 LRI, Université	Paris	Sud	-	UMR	CNRS	8623, Orsay	
3 http://lifeware.inria.fr,	Inria Saclay	IdF,	Palaiseau
4 INSERM	1411, Montpellier	University Hospital



Protosensor CRN	Design	Workflow
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Diabetes	Differential	Diagnostic	Algorithm
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Reactions	for	Implementing	Logical	Gates

And C = A /\ B           A+B => C [C] = min([A],[B])

Or C = A \/ B           A => C                  [C] = [A]+[B]
B => C

Not C = ￢ A     C+A => _              [C] = max([C0]-[A], 0)
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Microfluidic	Assembly	and	Validation	in	Human	Urine

GT	Bioss,	Marseille	2018 François	Fages
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Sequentiality and	Iteration

[Huang	Jiang	Huang	Cheng	2012	ICCAD]
[Huang	Huang	Chiang	Jiang	F	2013	IWBDA]



Cell	Division	Cycle	Program

while true {growing; replication; verification; mitosis}

à compilation of sequentiality and loops with program control variables
à 50 reactions
à 13 variables

Cyclins D, E, A, B appear as necessary markers for implementing sequentiality
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Conclusion

• Binary reaction systems over a finite set of molecules (without polymerization) 
are Turing-complete under the differential semantics

– PIVP definition of computable function
– Notion of computational complexity as trajectory length of stabilizing PIVPs

• Biochemical compiler of real functions (in Biocham modeling software)
– Input: Function specification by PIVP, mixed digital-analog program
– Output: system of binary reactions with mass action law kinetics 
– Exact characterization of the result for an ideal fluid implementation

• Comparison to natural circuits
– The natural MAPK program implements an analog-digital converter (sigmoid Hill5)
– Different from generated CRN for Hill5 but similar complexity 

• Alternative design by artificial evolution:                CRN   ⟷ Function  
– Artificial evolution of CRNs ↻
– Nature algorithms for learning [Valliant 2013] Mutation
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