Calculs Analogiques dans les Programmes Biochimiques Naturels et Synthétiques

François Fages Project-Team Lifeware http://lifeware.inria.fr/

Institut National de Recherche en Informatique et Automatique Inria Saclay – Ile de France

They process signals

Regulate their metabolism

Take decisions such as

- Replication
- Differentiation
- Migration

Understanding these processes is a central difficulty in many applications in medicine, health, agriculture and the ultimate goal of molecular cell biology.

JLLL'50 Roscoff, Mars 2019

Chemical Reaction Networks (CRNs)

CRN structure: network of reactants, products, and reactions

- $2H_2 + O_2 \rightarrow 2H_2O$ but not necessarily mass balanced
- synthesis reactions $_ \rightarrow A$ degradation reactions $A \rightarrow _$
- hypergraph of reactions (bipartite species-reaction graph)

CRN dynamics: several interpretations

- differential equations, continuous-time Markov chains,
- Petri net, Boolean transitions

CRN model repositories (Systems Biology Markup Language SBML):

BioModels.net ≈ 2000 models + 10000 models of metabolism

CRN theory: interplay between CRN structure and CRN dynamics

- static analysis of steady states, stable states, oscillations,...
- reductions by quasi-steady state (QSS) and quasi-equilibrium (QE) approximations
- Turing completeness and computational complexity of CRNs

JLLL'50 Roscoff, Mars 2019

Continuous semantics: concentrations, continuous time evolution

Ordinary differential equations (ODE)

$$\frac{dA}{dt} = -k.A.B \quad \frac{dB}{dt} = -k.A.B \quad \frac{dC}{dt} = k.A.B$$

Continuous semantics: concentrations, continuous time evolution

Ordinary differential equations (ODE) $\frac{dA}{dt} = -k.A.B \quad \frac{dB}{dt} = -k.A.B \quad \frac{dC}{dt} = k.A.B$

Stochastic semantics: numbers of molecules, probability and time of transition

Continuous Time Markov Chain (CTMC)

Intrinsic variability (with same genetic and epigenetic parameters)

A. $B \xrightarrow{p(S_i), t(Si)} C++, A--, B--$

Continuous semantics: concentrations, continuous time evolution

Ordinary differential equations (ODE) $\frac{dA}{dt} = -k.A.B \quad \frac{dB}{dt} = -k.A.B \quad \frac{dC}{dt} = k.A.B$

Stochastic semantics: numbers of molecules, probability and time of transitionContinuous Time Markov Chain (CTMC)A, $B \xrightarrow{p(S_i), t(Si)} C++, A--, B--$

Multi-agent simulation: numbers of molecules, space, diffusion speed, affinity

JLLL'50 Roscoff, Mars

Continuous semantics: concentrations, continuous time evolution

Ordinary differential equations (ODE) $\frac{dA}{dt} = -k.A.B$

 $\frac{dA}{dt} = -k.A.B \quad \frac{dB}{dt} = -k.A.B \quad \frac{dC}{dt} = k.A.B$

 $A : B \xrightarrow{p(S_i), t(Si)} C++, A--, B--$

Stochastic semantics: numbers of molecules, probability and time of transition

Continuous Time Markov Chain (CTMC)

Petri net semantics: numbers of molecules Multiset rewriting CHAM [Berry Boudol 90] [Banatre Le Metayer 86] A, $B \rightarrow C++$, A--, B--

Continuous semantics: concentrations, continuous time evolution

Ordinary differential equations (ODE) $\frac{dA}{dt} = -k.A.B \quad \frac{dB}{dt} = -k.A.B \quad \frac{dC}{dt} = k.A.B$

Stochastic semantics: numbers of molecules, probability and time of transition

Continuous Time Markov Chain (CTMC)

Petri net semantics: numbers of molecules Multiset rewriting CHAM [Berry Boudol 90] [Banatre Le Metayer 86]

Boolean semantics: presence/absence Asynchronous transition system Symbolic model-checking A, B \rightarrow C++, A--, B--

 $A : B \xrightarrow{p(S_i), t(Si)} C++, A--, B--$

 $A \land B \rightarrow C \land \neg A \land \neg B$ $A \land B \rightarrow C \land A \land \neg B$ $A \land B \rightarrow C \land \neg A \land B$ $A \land B \rightarrow C \land \neg A \land B$

JLLL'50 Roscoff, Mars 2019

Turing Completeness of CRNs ?

MAPK Signalling Cascade

MAPK Signaling Network: 30 reactions 18 species [Huang Ferrel PNAS 1996]

MAPK Input/Output Function

Dose-response diagrams alias Bifurcation diagrams

```
biocham: load(library:examples/mapk/mapk).
biocham: dose_response('E1',1.0e-6,1e-4,200).
```


MAPK implements the function of an analog/digital converter in the cell. How would one program $\frac{x^n}{c+x^n}$ with biochemical reactions ? What does it mean to compute with real numbers ?

Computable Real Numbers and Functions

Classical definitions of computable analysis based on Turing machines

Definition. A real number *r* is computable if there exists a Turing machine with <u>Input</u>: precision $p \in \mathbb{N}$ <u>Output</u>: rational number $q \in \mathbb{Q}$ with $|r-q| < 2^{-p}$

Examples. Rational numbers, limits of computable Cauchy sequences π , e, ...

Definition. A real function $f: R \rightarrow R$ is computable if there exists a Turing machine that computes f(x) with an oracle for x.

Examples. Polynomials, trigonometric functions, ...

Counter-examples. x=0, [X] are not computable (undecidable on x=0.000...) discontinuous functions

Analog encoding e(w) of decision problems by f: accept w if $f(e(w)) \ge 1$ reject if ≤ -1

JLLL'50 Roscoff, Mars 2019

Analog Computer? Differential Analyzer [Bush 1931]

Underlying principles: Lord Kelvin, 1876 First ever built: Vannevar Bush, MIT, 1931

Applications: from gunfire control up to aircraft design

- Intensively used by the U.S. and Japanese armies during world war II
- Electronic versions from late 40s, used until 70s

JLLL'50 Roscoff, Mars 2019

General Purpose Analog Computer [Shannon 1941]

Shannon's formalization of the Differential Analyser by GPAC circuits A time function if GPAC-generated if it is the output of some unit of a GPAC circuit built from:

- 1. Constant unit
- 2. Sum unit
- 3. Product unit
- 4. Integral $\int x \, dy$ unit

What does this GPAC circuit compute ?

 $y(t) = cos(t) \quad y_1(t) = sin(t)$

CRN Implementation of GPAC Units

Mass action law kinetics reaction network with output concentration stabilizing on the result of the operation applied to the input concentrations

Positive constant units: molecular concentrations

Product unit
$$z = x.y$$

 $x + y \xrightarrow{k.x.y} x + y + z$
 $z \xrightarrow{k.z} - \frac{dz}{dt} = k(xy - z)$
 $= 0$ when $z = x.y$
Sum unit $z = x + y$
Time integral $z = \int x \, dt$ unit
 $x \xrightarrow{k.x} x + z$
 $y \xrightarrow{k.y} y + z$
 $z \xrightarrow{k.z} - \frac{dz}{dt} = k(xy - z)$
 $= 0$ when $z = x + y$
Time integral $z = \int x \, dt$ unit
 $x \xrightarrow{k.x} x + z$
 $\frac{dz}{dt} = x$
 $z = \int_0^T x \, dt$

JLLL'50 Roscoff, Mars 2019

Polynomial ODE Initial Value Problems (PIVP)

Graça and Costa 2003's formalization of Shannon's GPAC

Definition. A real time function $f:\mathbb{R}_{+} \rightarrow \mathbb{R}$ is GPAC-generable iff there exist a vector of polynomials $p \in \mathbb{R}^n[\mathbb{R}^n]$ and of initial values $y(0) \in \mathbb{R}^n$ and a solution function y: $R_+ \rightarrow R^n$ such that y'(t) = p(y(t)) and $f(t) = y_1(t)$

Closure properties:

f+g, f-g, f.g, 1/f, f \circ g, y s.t. y' =f(y) are GPAC-generable if f, g are.

A GPAC-generated function must be analytic (i.e. convergent power series) Famous analytic non-GPAC-generable functions [Shannon 41]

- But analytic functions are • Euler's Gamma function $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$ [Hölder1887]
- Riemann's Zeta function $\zeta(x) = \sum_{k=0}^{\infty} \frac{1}{k^{k}}$ [Hilbert]

computable

PIVP-Computable Functions f(x)

Definition. [Graça Costa 03 J. Complexity] A real function $f: \mathbb{R} \to \mathbb{R}$ is PIVP-computable if there exists vectors of polynomials $p \in \mathbb{R}^n[\mathbb{R}^n]$ and $q \in \mathbb{R}^n[\mathbb{R}]$ and a function y: $\mathbb{R}^n \to \mathbb{R}^n$ such that y'(t) = p(y(t)), y(0) = q(x) and $|y_1(t)-f(x)| < y_2(t)$ with $y_2(t) \ge 0$ decreasing for t>1 and $\lim_{t \to \infty} y_2(t) = 0$

Theorem (analog characterization of Turing computability).

[Bournez Campagnolo Graça Hainry 07 J. Complex]]

A real function is computable (by Turing machine) iff it is PIVP-computable.

Analog characterization of Ptime

Time in ODE is a bad measure of complexity

- Exponential speedup by changing time variable $t' = e^t$ ٠
- But price to pay in the amplitude of t'٠

A computational complexity measure should combine time and space-amplitude

length in the n dimensions of the trajectory to compute the result ٠

Theorem [Pouly PhD thesis 2015, Bournez Graca Pouly 16 ICALP]

A real function is computable in P iff it is PIVP-computable with a trajectory of polynomial length (i.e. polynomial time and polynomial amplitude)

Turing Completeness of Continuous CRNs 1/3

Lemma (positive systems) Any PIVP-computable function can be encoded by a PIVP of double dimension on R⁺, preserving polynomial length complexity.

Proof. Encode y_i∈R by y_i⁻ y_i⁺ ∈R⁺ such that $y_i = y_i^+ - y_i^-$ at each time (encoding used in [Oishi Klavins 2011] for linear I/O systems) Let $\underline{p}_i(y_1^+, y_1^-, ..., y_n^+, y_n^-) = p_i[y = y_i^+ - y_i^-]$ and $\underline{p}_i = \underline{p}_i^+ - \underline{p}_i^$ $y_i^+ = \underline{q}_i^+ - f_i y_i^+ y_i^ y_i^+(0) = \max(0, y_i(0))$ $y_i^- = \underline{q}_i^- - f_i y_i^+ y_i^ y_i^-(0) = \max(0, -y_i(0))$

Where $f_i = q_i^+ + q_i^-$ are positive coefficient polynomials $f_i \ge max(q_i^+, q_i^-)$

- Fast annihilation reactions: $y_{i}^{+} + y_{i}^{-} \xrightarrow{f_{i}} -$
- n-ary catalytic synthesis reactions for each monomial $m_{i,i}^+$ in p_i^+ , $m_{i,j}^-$ in p_i^- :

$$\begin{array}{cccc} M_{i,j}^{}^{} & \stackrel{m^{+}_{i,j}}{\longrightarrow} & y^{+}_{i} + M_{i,j}^{}^{} \\ M_{i,j}^{}^{} & \stackrel{m^{-}_{i,j}}{\longrightarrow} & y^{+}_{i} + M_{i,j}^{}^{} \end{array}$$

Turing Completeness of Continuous CRNs 2/3

Lemma (quadratic systems) [Carothers Parker Sochacki Warne 2005] Any PIVP can be encoded by a PIVP of degree ≤ 2 .

Proof. Introduce variable $v_{i1,...,in}$ for each possible monomial $y_1^{i1}...y_n^{in}$

We have $y_1 = v_{1,0\dots,0}$, $y_2 = v_{0,1,0\dots,0}$,...

 $\boldsymbol{y'}_i$ is of degree one in $\boldsymbol{v}_{i1,\ldots,in}$

 $v'_{i_{1,\ldots,i_{n}}} = \sum_{k=1}^{n} i_k v_{i_{1},\ldots,i_{k-1},\ldots,i_n} y'_k$ is of degree at most 2.

i.e. trade high dimension for low degrees.

(yet naïve algorithm of exponential complexity)

JLLL'50 Roscoff, Mars 2019

Turing Completeness of Continuous CRNs 3/3

Theorem (Turing completeness of continuous CRNs) [F Le Guludec Bournez Pouly CMSB 2017]
Any computable function over the reals can be computed by a continuous CRN over a finite set of molecular species (no polymerization, no locations)
Proof: By previous lemmas, any PIVP-computable function can be encoded by a PIVP of degree at most 2 with positive variables. A positive PIVP of degree at most 2 can be represented by an elementary CRN with at most 2 reactants per reaction.

In this view, the (protein) concentrations are the information carriers.

The programs of a cell are implicitly defined by the set of all possible reactions with the proteins encoded in its genome_and the chemicals of the environment.

Program change is determined by gene expression (= metaprogram).

In this view, programming becomes a natural science

JLLL'50 Roscoff, Mars 2019

From Abstract to Concrete Implementation

Theorem (abstract CRN)

A real function is computable (respectively in polynomial time) if and only if it is computable by a system of elementary reactions of the form

 $_{=>z}$ or x => x+z or x+y => x+y+zplus annihilation reactions $x+y => _$ with mass action law kinetics (respectively with trajectories of polynomial length as a function of both the unary precision and the argument values).

Proof Close analysis of the encoding used in the lemmas (positive monomials)

Intermediate CRN: Instead of formal synthesis and degradation reactions, activation and deactivation reactions (e.g. phosphorylation, complexation)

Concrete CRN: catalogue of real enzymes [F. Molina's Lab Sys2Diag, Montpellier] microreactors in DNA-free vesicles created by microfluidic device

Compilation of the Cosine(t) function

Compilation of the Cosine(x) Function

8

6

PIVP that generates f(g(t))with $\lim_{t\to\infty} g(t) = x$

$$g'(t) = x - g(t)$$

$$g(t) = x + (x0 - x)e^{-t}$$

JLLL'50 Roscoff, Mars 2019

Л

Time

0

Ω

Sigmoid Functions

Hyperbolic tangent

 $d(HT)/dt=1-HT^{2}$

Logistic

 $d(S)/dt=S-S^2$

Arc tangent

d(T)/dt=1 d(AT)/dt=1/ (1+T²)

Hill functions order 1,2,5

d(H1)/dt=NH1^2 d(NH1)/dt= -NH1^2

d(H2)/dt=2*T*NH2^2 d(NH2)/dt= - (2*T*NH2^2)

d(H5)/dt=5*T⁴*NH5² d(NH5)/dt= - (5*T⁴*NH5²)

=[S]=>S. S=[S]=>. present(S,0.001).

_=>T. 1/ (1+T²) for _/T=>AT

NH1=[NH1]=>_. _=[2*NH1]=>H1. present(NH1,1). MA(2)for NH2=[T+NH2]=>_. MA(2)for _=[T+2*NH2]=>H2. present(NH2,1). MA(5)for NH5=[4*T+NH5]=>_. MA(5)for _=[4*T+2*NH5]=>H5. present(NH5,1).

Logical Gates

And $C = A \land B$	A+B => C	[C] = min([A],[B])

Or $C = A \lor B$ $A \Rightarrow C$ [C] = [A]+[B] $B \Rightarrow C$

Not $C = \neg A$ C + A = > $[C] = max([C_0]-[A], 0)$

Computer-Aided Biochemical Programming of Synthetic Micro-reactors as Diagnostic Devices

Alexis Courbet¹, Patrick Amar², François Fages³, Eric Renard⁴, Franck Molina¹

- ¹ Sys2diag UMR9005 CNRS/ALCEDIAG, Montpellier
- ² LRI, Université Paris Sud UMR CNRS 8623, Orsay
- ³ <u>http://lifeware.inria.fr</u>, Inria Saclay IdF, Palaiseau
- ⁴ INSERM 1411, Montpellier University Hospital

Protosensor CRN Design Workflow

Diabetes Differential Diagnostic Algorithm

Reactions for Implementing Logical Gates

And $C = A \land B$ A+B => C [C] = min([A],[B])

Or $C = A \lor B$ A => CB => C

Not $C = \neg A$

 $[C] = max([C_0]-[A], 0)$

[C] = [A] + [B]

Microfluidic Assembly and Validation in Human Urine

Sequentiality and Iteration

Cell Division Cycle Program

while true {growing; replication; verification; mitosis}

 \rightarrow compilation of sequentiality and loops with program control variables

Cyclins D, E, A, B appear as necessary markers for implementing sequentiality

Conclusion

- Binary reaction systems over a finite set of molecules (without polymerization) are Turing-complete under the differential semantics
 - PIVP definition of computable function
 - Notion of computational complexity as trajectory length of stabilizing PIVPs
- Biochemical compiler of real functions (in Biocham modeling software)
 - Input: Function specification by PIVP, mixed digital-analog program
 - Output: system of binary reactions with mass action law kinetics
 - Exact characterization of the result for an ideal fluid implementation
- Comparison to natural circuits
 - The natural MAPK program implements an analog-digital converter (sigmoid Hill5)
 - Different from generated CRN for Hill5 but similar complexity
- Alternative design by artificial evolution:
 - Artificial evolution of CRNs
 - Nature algorithms for learning [Valliant 2013]

JLLL'50 Roscoff, Mars 2019

CRN ↔ Function v Mutation