VARIATIONS ON A LEMMA OF JACQUES-LOUIS LIONS

Philippe G. CIARLET

City University of Hong Kong

Table of Contents

1. J.L. LIONS LEMMA

1.1 The classical J.L. Lions lemma
1.2 The "general" J.L. Lions lemma
1.3 A first application: Korn's inequality
1.4 A second application: Stokes equations
1.5 A third application: Weak Poincaré lemma
1.6 A fourth application: Weak Saint-Venant lemma

2. AN EQUIVALENCE THEOREM

2.1 Classical J.L. Lions lemma $\Rightarrow \mathrm{J}$. Nečas inequality
2.2 J. Nečas inequality \Rightarrow grad has closed range
2.3 grad has closed range \Rightarrow de Rham theorem in $\boldsymbol{H}^{1}(\Omega)$
2.4 de Rham theorem in $\boldsymbol{H}^{1}(\Omega) \Rightarrow$ div is onto
2.5 div is onto \Rightarrow "approximation lemma"
2.6 "approximation lemma" \Rightarrow J.L. Lions lemma
2.7 An equivalence theorem
2.8 Two proofs of J.L. Lions lemma

3. TWO FURTHER EQUIVALENCES

3.1 J.L. Lions lemma \Leftrightarrow weak Poincaré lemma
3.2 J.L. Lions lemma \Leftrightarrow de Rham theorem in $\boldsymbol{H}^{-1}(\Omega) \Leftrightarrow$ "refined" de Rham theorem in $\boldsymbol{H}^{-1}(\Omega)$

4. EXTENSIONS

4.1 Vector version of J.L. Lions lemma
4.2 J.L. Lions lemma in $W^{-m, p}(\Omega)$

1. J.L. LIONS LEMMA

1.1 THE CLASSICAL J.L. LIONS LEMMA

LEMMA $\quad \Omega$: open in $\mathbb{R}^{N} ; \quad H^{-1}(\Omega)$: dual of $H_{0}^{1}(\Omega)$

$$
f \in L^{2}(\Omega) \Rightarrow f \in H^{-1}(\Omega) \text { and } \operatorname{grad} f:=\left(\partial_{i} f\right)_{i=1}^{N} \in \boldsymbol{H}^{-1}(\Omega) .
$$

Proof $\langle T, \varphi\rangle:={ }_{\mathcal{D}^{\prime}(\Omega)}\langle T, \varphi\rangle_{\mathcal{D}(\Omega)}$ for any $T \in \mathcal{D}^{\prime}(\Omega)$ and any $\varphi \in \mathcal{D}(\Omega)$ $f \in L^{2}(\Omega) \Rightarrow\langle f, \varphi\rangle=\int_{\Omega} f \varphi \mathrm{~d} x$ and $\left\langle\partial_{i} f, \varphi\right\rangle=-\left\langle f, \partial_{i} \varphi\right\rangle=-\int_{\Omega} f \partial_{i} \varphi \mathrm{~d} x$ for any $\varphi \in \mathcal{D}(\Omega)$. Therefore, for any $\varphi \in \mathcal{D}(\Omega)$,

$$
\begin{gathered}
|\langle f, \varphi\rangle| \leq\|f\|_{L^{2}(\Omega)}\|\varphi\|_{L^{2}(\Omega)} \leq\|f\|_{L^{2}(\Omega)}\|\varphi\|_{H^{1}(\Omega)}, \\
\left|\left\langle\partial_{i} f, \varphi\right\rangle\right| \leq\|f\|_{L^{2}(\Omega)}\left\|\partial_{i} \varphi\right\|_{L^{2}(\Omega)} \leq\|f\|_{L^{2}(\Omega)}\|\varphi\|_{H^{1}(\Omega)} .
\end{gathered}
$$

Ω : domain in \mathbb{R}^{N} : bounded, connected, open subset of \mathbb{R}^{N} such that $\partial \Omega$ is Lipschitz-continuous and Ω is locally on the same side of $\partial \Omega$.

The classical J.L. Lions lemma asserts that \Leftarrow holds if Ω is a domain.

CLASSICAL J.L. LIONS LEMMA $\quad \Omega$: domain in \mathbb{R}^{N}

$$
f \in H^{-1}(\Omega) \text { and } \operatorname{grad} f \in \boldsymbol{H}^{-1}(\Omega) \Rightarrow f \in L^{2}(\Omega) .
$$

E. Magenes \& G. Stampacchia [1958]: Footnote ${ }^{27}$
G. Duvaut \& J.L. Lions [1972]: English translation: Inequalities in Mechanics and Physics, Springer, 1976: First published proof for domains with smooth boundaries.
L. Tartar [1978]: Another proof, again for domains with smooth boundaries.

$$
\left|\xi^{\prime}\right|^{2}=\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}+\ldots+\xi_{n-1}^{2}
$$

Annali della Seuola Normale Superiore di Pisa Tol. 12 (1958), 247-357

I PROBLEMI AL CONTORNO PER LE EQUAZIONI DIFFERENZIALI DI TIPO ELLITIXIOO

di Enrioo Magenes e Guido Stampadouia (Genova)

Lo studio dei problemi al contorno per le equazioni differenziali lineari di tipo ellittico di ordine qualunque ha avuto negli ultimi anni uno sviluppo notevole e ancora attualmente sono in corso interessanti ricerche.

Il presente lavoro è un'esposizione, che riteniamo abbastanza completa e generale, delle diverse teorie relative ai problemi in questioni, sviluppata in una serie di seminari all'Istituto matematico dell'Universita di Genova.

Abbiamo ritenuto ntile pubblicare questo lavoro, sia perchè un'esposizione generale non ci sembra ancora fatta - anche le monografie esistenti, quale ad esempio quella di C. Mrranda [3] (*), sono quasi esclusivamente dedicate alle equazioni del secondo ordine o a equazioni particolari - sia perchè abbiamo eercato di portare, in alcuni punti, qualche contribato nuovo.

Of sono state ntili le conversazioni avate con i proff. Miranda, Fichiera, Prodr ; in modo particolare desideriamo ringraziare il prof. Lions oltre che per i suoi consigli anche per averci dato in visione manoscritti non ancora pubblicati. E siamo anche grati al prof. ARUFFo e ai dott. Camparato e Gagliardo per la loro collaborazione

Genova, Gingno 1958.

[^0]Possiamo allora concludere che se $u \in O^{\infty}(\bar{\pi}) \cap K(\pi)$ segue $P_{u} \in H^{1}\left(R^{n}\right)$,
Il lemma di Lions segue immediatamente osservando che se $u \in K(\omega)$, φu con $\varphi \in \mathscr{D}\left(R^{n}, \omega\right)$ si può considerare come una funzione di $K(\pi)$ e pertanto $\in K\left(R^{n}\right)$. Ciò implica che $u \in H^{1}\left(\sigma_{r}\right)$ con $r<R$. c. v. d. $\left.{ }^{(27}\right)$
c) Prima di terminare questo numero osserviamo ehe i ragionament fin qui svolti ei permettono di assicurare che le formule di maggiorazione trovate alla fine del n .10 si estendono in modo ovvio.
(1) interessa per il seguito segnalare che la formula (10.27) sussiste anche, in virtù dei risultati ottenuti in questo numero, quando $t \equiv\left(t_{1}, t_{2}, \ldots, t_{u-1}, t_{n}\right)$ con $|t| \leq m$. Si lua cioè

$$
\begin{equation*}
\|\varphi u\|_{2 m, \omega} \leq o\left(\|f\|_{0, \omega}+\|u\|_{m, \omega}+\|g\|\right) \tag{11.18}
\end{equation*}
$$

ove $\left\|_{1} g\right\| \|$ è data dalla (10.28) o dalla (10.30) nelle stessé ipotesi sn g ivi fatte e con e indipemente da u.

Si osservi poi che la (10.26) quando sia $\sum^{2}=I_{01}^{\prime \prime \prime}(\omega)$ vale atuche se $n=\left(s_{1}, x_{2}, \ldots, s_{u}\right)$ con $|s| \leq k$.
(er) É intereasante maservare, aprondo una breve parantesi, ohe il tipo di dimostrazione ora dato permetto di risolvers mat questione relativa a eerti spazi di distribuzioni ehe ai pone abbastunza naturalmente a proposito delle ipoteai F_{k}) o $\left.r_{k}^{(}\right)$da noi introdoto nel n. 10: dato un insieme Ω aperto $\#$ limitato di R^{n}, ogni distribusione T tale cho $D^{\nu} T^{T} \in H^{-m}(\Omega)$
 10.). J. L. Lions ha oltenato in proposity \mathfrak{i} segnenti risultati ohe cil ha gentilmente oo mnnieati : si possono dare esempi di aperti Ω per eni la risposta a tale questione $\dot{\theta}$ nega-

 tando il prohiamin, mediunte una opportana trasfurmazione di coordinute, al segnenta teoroma : Sin π il semiepuzio di R^{n} oon $x_{n}>0$ e $\sin T$ nur distribazione sin π tale ohe

$$
D_{x^{\prime}}^{\star} T \in H^{-m}(\pi),|s| \leq k, \frac{\partial^{k} T}{\partial x_{u}^{k}} \in H^{-m}(\pi)
$$

allora $T \in H^{-m+k}(\pi)$. E questo teorema ni ottiene proprio cou una dimostrazione del tipo il quella ora inata par it lemma 11.9
G. Geymonat \& P. Suquet [1986]: First proof for general domains; point of departure:

NEČAS INEQUALITY Ω : domain in \mathbb{R}^{N}. There exists $C_{0}(\Omega)$

such that

$$
\begin{array}{r}
\|f\|_{L^{2}(\Omega)} \leq C_{0}(\Omega)\left(\|f\|_{\boldsymbol{H}^{-1}(\Omega)}+\| \text { grad } f \|_{\boldsymbol{H}^{-1}(\Omega)}\right) \\
\text { for all } f \in L^{2}(\Omega)
\end{array}
$$

J. Nečas [1965]: Equations aux Dérivées Partielles, Université de Montréal

1.2 THE "GENERAL" J.L. LIONS LEMMA

J.L. LIONS LEMMA Ω : domain in \mathbb{R}^{N}

$$
f \in \mathcal{D}^{\prime}(\Omega) \text { and } \operatorname{grad} f=\boldsymbol{H}^{-1}(\Omega) \Rightarrow f \in L^{2}(\Omega) .
$$

W. Borchers \& H. Sohr [1990]; point of departure:

SURJECTIVITY OF div

Ω : domain in \mathbb{R}^{N}

$$
\boldsymbol{H}_{0}^{1}(\Omega)=\left\{\boldsymbol{v}=\left(v_{i}\right)_{i=1}^{N} ; v_{i} \in H_{0}^{1}(\Omega)\right\} .
$$

The operator

$$
\operatorname{div}: \boldsymbol{H}_{0}^{1}(\Omega) \rightarrow L_{0}^{2}(\Omega):=\left\{f \in L^{2}(\Omega) ; \int_{\Omega} f \mathrm{~d} x=0\right\}
$$

is onto
O.A. Ladyzhenskaya [1969]: Surjectivity of div already implicit there, for domains in \mathbb{R}^{3} with smooth boundaries
M.E. Bogovskii [1979]: Constructive proof (see Sect. 2.8)
B. Dacorogna [2002]: Constructive proof for domains with a smooth boundary

Different proof: C. Amrouche \& V. Girault [1994]; point of departure: Nečas inequality

Extension to $\boldsymbol{W}^{-1, p}(\Omega) ; 1<p<\infty$: Geymonat \& Suquet [1986]
Extension to $\boldsymbol{W}^{-m, p}(\Omega) ; m \geq 1,1<p<\infty$: W. Borchers \& H. Sohr [1990]; C. Amrouche \& V. Girault [1994]

1.3 A FIRST APPLICATION: KORN'S INEQUALITY

Ω : open subset of \mathbb{R}^{N}
Given $\boldsymbol{v}=\left(v_{i}\right)_{i=1}^{N} \in \boldsymbol{H}^{1}(\Omega)$ (e.g., a displacement field with $N=3$ in elasticity theory), let (\mathbb{S}^{N} : space of $N \times N$ symmetric matrices)

$$
\nabla_{s} \boldsymbol{v}:=\frac{1}{2}\left(\nabla \boldsymbol{v}^{T}+\nabla \boldsymbol{v}\right)=\left(\frac{1}{2}\left(\partial_{i} v_{j}+\partial_{j} v_{i}\right)\right) \in \mathbb{L}^{2}(\Omega):=L^{2}\left(\Omega ; \mathbb{S}^{N}\right)
$$

denote the corresponding linearized strain tensor. So:

$$
\nabla_{s}: \boldsymbol{H}^{1}(\Omega) \rightarrow \mathbb{L}^{2}(\Omega)
$$

Then (\mathbb{A}^{N} : space of $N \times N$ antisymmetric matrices)

$$
\begin{array}{r}
\operatorname{Ker} \nabla_{s}=\left\{\boldsymbol{v}: x \in \Omega \rightarrow \boldsymbol{v}(x)=\boldsymbol{b}+\boldsymbol{B} x \in \mathbb{R}^{N}\right. \\
\text { for some } \left.\boldsymbol{b} \in \mathbb{R}^{N} \text { and } \boldsymbol{B} \in \mathbb{A}^{N}\right\}
\end{array}
$$

THEOREM: KORN'S INEQUALITY: Ω : domain in \mathbb{R}^{n}.
There exists a constant C such that, for all $\boldsymbol{v}=\left(v_{i}\right) \in \boldsymbol{H}^{1}(\Omega)$,

$$
\begin{aligned}
\|\boldsymbol{v}\|_{\boldsymbol{H}^{1}(\Omega)} & :=\left(\sum_{i}\left\|v_{i}\right\|_{L^{2}(\Omega)}^{2}+\sum_{i, j}\left\|\partial_{j} v_{i}\right\|_{L^{2}(\Omega)}^{2}\right)^{1 / 2} \\
& \leq C\left(\sum_{i}\left\|v_{i}\right\|_{L^{2}(\Omega)}^{2}+\sum_{i, j}\left\|\frac{1}{2}\left(\partial_{j} v_{i}+\partial_{i} v_{j}\right)\right\|_{L^{2}(\Omega)}^{2}\right)^{1 / 2}
\end{aligned}
$$

So: The $L^{2}(\Omega)$-norms of $\frac{n(n+1)}{2}$ linear combinations

$$
e_{i j}(\boldsymbol{v}):=\frac{1}{2}\left(\partial_{j} v_{i}+\partial_{i} v_{j}\right)=\left(\nabla_{s} \boldsymbol{v}\right)_{i j}
$$

control the $L^{2}(\Omega)$-norms of n^{2} partial derivatives $\partial_{j} v_{i}$.

Proof (i) Define

$$
\boldsymbol{K}(\Omega):=\left\{\boldsymbol{v}=\left(v_{i}\right) ; v_{i} \in L^{2}(\Omega), e_{i j}(\boldsymbol{v}) \in L^{2}(\Omega)\right\} \supset \boldsymbol{H}^{1}(\Omega)
$$

Also, $\boldsymbol{K}(\Omega) \subset \boldsymbol{H}^{1}(\Omega)$ (again, $\frac{n(n+1)}{2}$ vs. n^{2}):
$\boldsymbol{v}=\left(v_{i}\right) \in K(\Omega) \Rightarrow\left\{\begin{array}{l}\partial_{k} v_{i} \in H^{-1}(\Omega) \\ \partial_{j}\left(\partial_{k} v_{i}\right)=\left(\partial_{j} e_{i k}(\boldsymbol{v})+\partial_{k} e_{i j}(\boldsymbol{v})-\partial_{i} e_{j k}(\boldsymbol{v})\right) \in H^{-1}(\Omega)\end{array}\right.$
Classical J.L. Lions lemma: $\partial_{k} v_{i} \in H^{-1}(\Omega)$ and $\partial_{j}\left(\partial_{k} v_{i}\right) \in H^{-1}(\Omega) \Rightarrow \partial_{k} v_{i} \in L^{2}(\Omega)$
Therefore $\boldsymbol{K}(\Omega)=\boldsymbol{H}^{1}(\Omega)$.
(ii) Apply Banach open mapping theorem to id: $\boldsymbol{H}^{1}(\Omega) \rightarrow \boldsymbol{K}(\Omega)=\boldsymbol{H}^{1}(\Omega)$.

Remarks: (1) There exist different proofs, i.e., that do not use J.L. Lions lemma, of the Korn inequality on a domain in \mathbb{R}^{N} :
J. Gobert [1962]: Proof uses Calderón-Zygmund singular integrals
P.P. Mosolov \& V.P. Muasnikov [1971]: Proof uses Cesàro-Volterra path integral formula and Calderón-Zygmund singular integrals
V.A. Kondrat'ev \& O.A. Oleinik [1988]: Proof uses integral inequalities with ($\operatorname{dist}(\cdot, \partial \Omega))^{2}$ as a weight and hypoellipticity of Δ.
(2) Using J.L. Lions lemma as in the proof of the Korn inequality on a domain in \mathbb{R}^{N}, one can establish a Korn inequality on a surface or, more generally, on a Riemannian manifold:
M. Bernadou, P.G. Ciarlet \& B. Miara [1994]: Surface in \mathbb{R}^{3} with boundary
S. Mardare [2003]: Compact surface in \mathbb{R}^{3} without boundary
W. Chen \& J. Jost [2002]: Riemannian manifold

1.4 A SECOND APPLICATION: STOKES EQUATIONS

THEOREM Ω : domain in \mathbb{R}^{N}; viscosity $\nu>0$. Given $\boldsymbol{h} \in \boldsymbol{H}^{-1}(\Omega)$, there exists a unique solution $(\boldsymbol{u}, \lambda) \in \boldsymbol{H}_{0}^{1}(\Omega) \times L_{0}^{2}(\Omega)$ to the Stokes equations

$$
\begin{aligned}
-\nu \Delta \boldsymbol{u}+\boldsymbol{g r a d} \lambda & =\boldsymbol{h} \text { in } \boldsymbol{H}^{-1}(\Omega) \\
\operatorname{div} \boldsymbol{u} & =0 \text { in } \Omega \\
\boldsymbol{u} & =\mathbf{0} \text { on } \partial \Omega
\end{aligned}
$$

Principle of proof We will see later (cf. Part 2) that:
Classical J.L. Lions lemma $\Rightarrow \mathrm{J}$. Nečas inequality $\Rightarrow \operatorname{div}: \boldsymbol{H}_{0}^{1}(\Omega) \rightarrow L_{0}^{2}(\Omega)$ is onto

Then:

$$
\left.\begin{array}{l}
\operatorname{div}: \boldsymbol{H}_{0}^{1}(\Omega) \rightarrow L_{0}^{2}(\Omega) \text { is onto } \\
\text { Babuška-Brezzi inf-sup condition }
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
\text { existence and uniqueness } \\
\text { for the Stokes equations }
\end{array}\right.
$$

R. Temam [1977]: Navier-Stokes Equations, North-Holland, Amsterdam V. Girault \& P.A. Raviart [1986]: Finite Element Methods for Navier-Stokes Equations, Springer, Berlin
F. Brezzi \& M. Fortin [1991]: Mixed and Hybrid Finite Element Methods, Springer, New York
P.G. Ciarlet [2013]: Linear and Nonlinear Functional Analysis with Applications, SIAM, Philadelphia

1.5 A THIRD APPLICATION: WEAK POINCARÉ LEMMA

WEAK POincaré lemma (P.G. Ciarlet \& P. Ciarlet, Jr. [2005]; then simpler proof by S. KESAVAN [2005])
Ω : simply-connected domain in \mathbb{R}^{N}. Let $\boldsymbol{h}=\left(h_{i}\right) \in \boldsymbol{H}^{-1}(\Omega)$ be such that

$$
\partial_{i} h_{j}=\partial_{j} h_{i} \text { in } H^{-2}(\Omega) \Leftrightarrow \text { curl } \boldsymbol{h}=\mathbf{0} \text { in } \boldsymbol{H}^{-2}(\Omega)
$$

Then there exists $p \in L^{2}(\Omega)$, unique up to the addition of constants,such that

$$
\partial_{i} p=h_{i} \text { in } H^{-1}(\Omega) \Leftrightarrow \boldsymbol{g r a d} p=\boldsymbol{h} \text { in } \boldsymbol{H}^{-1}(\Omega)
$$

Proof There exists $(\boldsymbol{u}, \lambda) \in \boldsymbol{H}_{0}^{1}(\Omega) \times L^{2}(\Omega)$ such that (Stokes equations; cf. Sect. 1.4)

$$
-\boldsymbol{\Delta} \boldsymbol{u}+\boldsymbol{g r a d} \lambda=\boldsymbol{h} \text { in } \boldsymbol{H}^{-1}(\Omega) \text { and } \operatorname{div} \boldsymbol{u}=0 \text { in } L^{2}(\Omega) .
$$

Then curl $\boldsymbol{h}=\mathbf{0} \Rightarrow \Delta(\boldsymbol{c u r l} \boldsymbol{u})=\mathbf{0} \Rightarrow \boldsymbol{c u r l} \boldsymbol{u} \in \mathcal{C}^{\infty}\left(\Omega ; \mathbb{R}^{n}\right)$ (hypo-ellipticity of Δ)

$$
\Rightarrow \partial_{j}\left(\partial_{j} u_{i}-\partial_{i} u_{j}\right)=\Delta u_{i}-\partial_{i}(\operatorname{div} \boldsymbol{u})=\Delta u_{i} \in \mathcal{C}^{\infty}(\Omega) .
$$

Consequently,

$$
\Delta \boldsymbol{u} \in \mathcal{C}^{\infty}\left(\Omega ; \mathbb{R}^{N}\right) \text { and curl } \Delta \boldsymbol{u}=\Delta(\text { curl } \boldsymbol{u})=\mathbf{0}
$$

Hence there exists $\tilde{\lambda} \in \mathcal{C}^{\infty}(\Omega) \subset \mathcal{D}^{\prime}(\Omega)$ such that

$$
\boldsymbol{\operatorname { g r a d }} \tilde{\lambda}=\boldsymbol{\Delta} u=\boldsymbol{\operatorname { g r a d }} \lambda-\boldsymbol{h}
$$

by the classical Poincaré lemma (this is where the assumption that Ω is simply-connected is used). Then

$$
p:=\lambda-\tilde{\lambda} \in \mathcal{D}^{\prime}(\Omega) \text { satisfies } \operatorname{grad} p=\boldsymbol{\operatorname { g r a d }} \lambda-\boldsymbol{\operatorname { g r a d }} \widetilde{\lambda}=\boldsymbol{h} \in \boldsymbol{H}^{-1}(\Omega),
$$

and J.L. Lions lemma implies that $p \in L^{2}(\Omega)$.

1.6 A FOURTH APPLICATION: WEAK SAINT-VENANT LEMMA

WEAK SAINT-VENANT LEMMA (P.G. Ciarlet \&
P. Ciarlet, Jr., M3AS [2005])
Ω : simply-connected domain in \mathbb{R}^{N}. Let $\left(e_{i j}\right) \in \mathbb{L}^{2}(\Omega)=L^{2}\left(\Omega ; \mathbb{S}^{N}\right)$ be such that the following SAINT-VENANT COMPATIBILITY CONDITIONS are satisfied:

$$
\partial_{\ell j} e_{i k}+\partial_{k i} e_{j \ell}-\partial_{\ell i} e_{j k}-\partial_{k j} e_{i \ell}=0 \text { in } H^{-2}(\Omega) .
$$

Then there exists $\boldsymbol{v} \in \boldsymbol{H}^{1}(\Omega)$, unique up to the addition of a vector field in $\operatorname{Ker} \nabla_{s}$ (equivalently, there exists a unique $\left.\dot{\boldsymbol{v}} \in \dot{\boldsymbol{H}}^{1}(\Omega)=\boldsymbol{H}^{1}(\Omega) / \operatorname{Ker} \nabla_{s}\right)$, such that

$$
\left(\nabla_{s} \boldsymbol{v}\right)_{i j}:=\frac{1}{2}\left(\partial_{j} v_{i}+\partial_{i} v_{j}\right)=e_{i j} \text { in } L^{2}(\Omega)
$$

Proof Same as for the "classical" Saint-Venant lemma:

$$
\left(e_{i j}\right) \in \mathcal{C}^{2}\left(\Omega ; \mathbb{S}^{N}\right) \Rightarrow \boldsymbol{v} \in \mathcal{C}^{3}\left(\Omega ; \mathbb{R}^{N}\right)
$$

but with the "classical" Poincaré lemma replaced by the weak Poincaré lemma. \square

2. AN EQUIVALENCE THEOREM

C. Amrouche, P.G. Ciarlet \& C. Mardare: JMPA 104 (2015), 207-226.
Ω : domain in \mathbb{R}^{N}
$C(\Omega), C_{0}(\Omega), C_{1}(\Omega), \ldots$ designate various constants only dependent on Ω
Proofs of $(\mathrm{a}) \Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{c}) \Rightarrow(\mathrm{d}) \Rightarrow(\mathrm{e})$: see also P.G. CiARLET [2013]:
Linear and Nonlinear Functional Analysis with Applications, SIAM.

2.1 CLASSICAL J.L. LIONS LEMMA \Rightarrow J. NEČAS INEQUALITY

```
(a) Classical J.L. Lions lemma:
\(f \in H^{-1}(\Omega)\) and \(\operatorname{grad} f \in \boldsymbol{H}^{-1}(\Omega) \Rightarrow f \in L^{2}(\Omega)\)
```

implies
(b) J. Nečas inequality:

$$
\|f\|_{L^{2}(\Omega)} \leq C_{0}(\Omega)\left(\|f\|_{H^{-1}(\Omega)}+\|\operatorname{grad} f\|_{\boldsymbol{H}^{-1}(\Omega)}\right) \text { for all } f \in L^{2}(\Omega)
$$

Sketch of proof The space

$$
V(\Omega):=\left\{f \in H^{-1}(\Omega) ; \operatorname{grad} f \in \boldsymbol{H}^{-1}(\Omega)\right\},
$$

equipped with the norm

$$
f \in V(\Omega) \rightarrow\left(\|f\|_{H^{-1}(\Omega)}+\|\operatorname{grad} f\|_{\boldsymbol{H}^{-1}(\Omega)}\right),
$$

is complete. The canonical injection

$$
\iota: L^{2}(\Omega) \rightarrow V(\Omega)
$$

is one-to-one, (clearly) continuous, and onto by the classical J.L. Lions lemma. Therefore, by Banach open mapping theorem, ι^{-1} is also continuous. There thus exists a constant $C_{0}(\Omega)$ such that J. Nečas inequality holds:

$$
\|f\|_{L^{2}(\Omega)} \leq C_{0}(\Omega)\left(\|f\|_{H^{-1}(\Omega)}+\|\operatorname{grad} f\|_{\boldsymbol{H}^{-1}(\Omega)}\right) \text { for all } f \in L^{2}(\Omega)
$$

2.2 J. NEČAS INEQUALITY $\Rightarrow \operatorname{grad}$ HAS CLOSED RANGE

(b) J. Nečas inequality:

$$
\|f\|_{L^{2}(\Omega)} \leq C_{0}(\Omega)\left(\|f\|_{H^{-1}(\Omega)}+\|\boldsymbol{g r a d} f\|_{\boldsymbol{H}^{-1}(\Omega)}\right) \text { for all } f \in L^{2}(\Omega)
$$

implies
(c) grad : $L_{0}^{2}(\Omega) \rightarrow \boldsymbol{H}^{-1}(\Omega)$ has closed range

Sketch of proof To show that grad : $L_{0}^{2}(\Omega) \rightarrow \boldsymbol{H}^{-1}(\Omega)$ has closed range, it suffices to show that

$$
\|f\|_{L^{2}(\Omega)} \leq C(\Omega)\|\boldsymbol{g r a d} f\|_{\boldsymbol{H}^{-1}(\Omega)} \text { for all } f \in L_{0}^{2}(\Omega) .
$$

If not, there exists $\left(f_{k}\right)_{k=1}^{\infty}$ with $f_{k} \in L_{0}^{2}(\Omega)$ such that

$$
\left\|f_{k}\right\|_{L^{2}(\Omega)}=1 \text { for all } k, \text { and }\left\|\boldsymbol{g r a d} f_{k}\right\|_{\boldsymbol{H}^{-1}(\Omega)} \rightarrow 0 \text { as } k \rightarrow \infty .
$$

Hence a subsequence $\left(f_{\ell}\right)_{\ell=1}^{\infty}$ converges in $H^{-1}(\Omega)$ (the canonical injection from $L^{2}(\Omega)$ into $H^{-1}(\Omega)$ is compact) and thus ($\left.f_{\ell}\right)_{\ell=1}^{\infty}$ is a Cauchy sequence for the norm

$$
f \in L^{2}(\Omega) \rightarrow\|f\|_{H^{-1}(\Omega)}+\|\operatorname{grad} f\|_{\boldsymbol{H}^{-1}(\Omega)} .
$$

By Nečas inequality, $\left(f_{\ell}\right)_{\ell=1}^{\infty}$ is a Cauchy sequence in $L^{2}(\Omega)$. So

$$
f_{\ell} \rightarrow f \text { in } L^{2}(\Omega) \text { as } \ell \rightarrow \infty .
$$

Since the mapping $f \in L^{2}(\Omega) \rightarrow \operatorname{grad} f \in \boldsymbol{H}^{-1}(\Omega)$ is continuous,

$$
\boldsymbol{g r a d} f_{\ell} \rightarrow \boldsymbol{g r a d} f=\mathbf{0} \text { in } \boldsymbol{H}^{-1}(\Omega) \text { as } \ell \rightarrow \infty .
$$

So $f=0$ since $f \in L_{0}^{2}(\Omega)$, in contradiction with $\left\|f_{\ell}\right\|_{L^{2}(\Omega)}=1$ for all ℓ.
2.3 grad HAS CLOSED RANGE \Rightarrow de RHAM THEOREM IN $H^{-1}(\Omega)$
(c) grad : $L_{0}^{2}(\Omega) \rightarrow \boldsymbol{H}^{-1}(\Omega)$ has closed range
implies
(d) de Rham theorem in $\boldsymbol{H}^{-1}(\Omega)$: Given $\boldsymbol{h} \in \boldsymbol{H}^{-1}(\Omega)$, there exists $p \in L_{0}^{2}(\Omega)$ such that $\operatorname{grad} p=\boldsymbol{h}$ in $\boldsymbol{H}^{-1}(\Omega)$ if (and clearly only if) $\boldsymbol{H}^{-1}(\Omega)\langle\boldsymbol{h}, \boldsymbol{v}\rangle_{\boldsymbol{H}_{0}^{1}(\Omega)}=0$ for all $\boldsymbol{v} \in \boldsymbol{H}_{0}^{1}(\Omega)$ that satisfy $\operatorname{div} \boldsymbol{v}=0$ in Ω

Proof By definition of grad f for $f \in L_{0}^{2}(\Omega)$,

$$
\boldsymbol{H}^{-1}(\Omega)\langle\boldsymbol{g r a d} f, \boldsymbol{v}\rangle_{\boldsymbol{H}_{0}^{1}(\Omega)}=-\int_{\Omega} f \operatorname{div} \boldsymbol{v} \mathrm{~d} x \text { for all } f \in L_{0}^{2}(\Omega) \text { and all } \boldsymbol{v} \in \boldsymbol{H}_{0}^{1}(\Omega)
$$

Hence grad : $L_{0}^{2}(\Omega) \rightarrow \boldsymbol{H}^{-1}(\Omega)$ is the dual of - div : $\boldsymbol{H}_{0}^{1}(\Omega) \rightarrow L_{0}^{2}(\Omega)$.
Therefore, by Banach closed range theorem:

$$
\operatorname{Im} \boldsymbol{g r a d}=(\operatorname{Ker}(-\operatorname{div}))^{0}=\left\{\boldsymbol{h} \in \boldsymbol{H}^{-1}(\Omega) ; \boldsymbol{H}^{-1}(\Omega)\langle\boldsymbol{h}, \boldsymbol{v}\rangle_{\boldsymbol{H}_{0}^{1}(\Omega)}=0\right.
$$

for all $\boldsymbol{v} \in \boldsymbol{H}_{0}^{1}(\Omega)$ that satisfy $\operatorname{div} \boldsymbol{v}=0$ in $\left.\Omega\right\}$.

2.4 de RHAM THEOREM IN $H^{-1}(\Omega) \Rightarrow$ div IS ONTO

(d) de Rham theorem in $\boldsymbol{H}^{-1}(\Omega)$: Given $\boldsymbol{h} \in \boldsymbol{H}^{-1}(\Omega)$, there exists $p \in L_{0}^{2}(\Omega)$ such that $\operatorname{grad} p=\boldsymbol{h}$ in $\boldsymbol{H}^{-1}(\Omega)$ if (and clearly only if) $\boldsymbol{H}^{-1}(\Omega)\langle\boldsymbol{h}, \boldsymbol{v}\rangle_{\boldsymbol{H}_{0}^{1}(\Omega)}=0$ for all $\boldsymbol{v} \in \boldsymbol{H}_{0}^{1}(\Omega)$ that satisfy $\operatorname{div} \boldsymbol{v}=0$ in Ω
implies
(e) div: $\boldsymbol{H}_{0}^{1}(\Omega) \rightarrow L_{0}^{2}(\Omega)$ is onto

Consequently, for each $f \in L_{0}^{2}(\Omega)$, there exists a unique $\boldsymbol{u}_{f} \in(\text { Ker div })^{\perp} \subset \boldsymbol{H}_{0}^{1}(\Omega)$ such that

$$
\operatorname{div} \boldsymbol{u}_{f}=f
$$

and, by Banach open mapping theorem,

$$
\left\|\boldsymbol{u}_{f}\right\|_{\boldsymbol{H}^{1}(\Omega)} \leq C_{1}(\Omega)\|f\|_{L^{2}(\Omega)} \text { for all } f \in L_{0}^{2}(\Omega)
$$

Proof Again by Banach closed range theorem,

$$
\text { Im div }=(\text { Ker grad })^{0}
$$

and Kergrad $=\{0\}$ since grad $f=0$ and $f \in L_{0}^{2}(\Omega)$ implies $f=0$. Therefore

$$
\text { Im div }=L_{0}^{2}(\Omega)
$$

2.5 div IS ONTO \Rightarrow "APPROXIMATION LEMMA"

A domain Ω is starlike with respect to a ball $B(x ; r)$ if, for each $z \in \Omega$,

$$
\operatorname{co}(\{z\} \cup B(x ; r)) \subset \Omega .
$$

(e) div: $\boldsymbol{H}_{0}^{1}(\Omega) \rightarrow L_{0}^{2}(\Omega)$ is onto
implies
(f) Approximation lemma: Assume the domain Ω is starlike with respect to a ball. Then, given any

$$
\varphi \in \mathcal{D}(\Omega) \text { such that } \int_{\Omega} \varphi \mathrm{d} x=0
$$

there exist $\boldsymbol{v}_{n}=\boldsymbol{v}_{n}(\varphi) \in \mathcal{D}(\Omega), n \geq 1$, such that

$$
\begin{aligned}
& \left\|\boldsymbol{v}_{n}\right\|_{\boldsymbol{H}^{1}(\Omega)} \leq C_{2}(\Omega)\|\varphi\|_{L^{2}(\Omega)} \text { for all } n \geq 1, \text { and } \\
& \operatorname{div} \boldsymbol{v}_{n} \rightarrow \varphi \text { in } \mathcal{D}(\Omega) \text { as } n \rightarrow \infty
\end{aligned}
$$

Sketch of proof Without loss of generality, assume Ω is starlike with respect to a ball $B(0 ; r)$ centered at the origin. Let

$$
\mathcal{D}_{0}(\Omega):=\left\{\varphi \in \mathcal{D}(\Omega) ; \int_{\Omega} \varphi \mathrm{d} x=0\right\} \subset L_{0}^{2}(\Omega),
$$

and let $\varphi \in \mathcal{D}_{0}(\Omega)$ be given.
(i) Definition of auxiliary fields $\boldsymbol{u}_{n}=\boldsymbol{u}_{n}(\varphi)$. By assumption, there exists a unique $\boldsymbol{u}=\boldsymbol{u}(\varphi) \in(\text { Ker div })^{\perp} \subset \boldsymbol{H}_{0}^{1}(\Omega)$ such that

$$
\operatorname{div} \boldsymbol{u}=\varphi \text { in } \Omega \text { and }\|\boldsymbol{u}\|_{\boldsymbol{H}^{1}(\Omega)} \leq C_{1}(\Omega)\|\varphi\|_{L^{2}(\Omega)} .
$$

Let $\boldsymbol{w}=\boldsymbol{w}(\varphi):=\boldsymbol{u}$ in Ω and $\boldsymbol{w}:=\mathbf{0}$ in $\mathbb{R}^{N}-\Omega$, so that

$$
\begin{aligned}
& \boldsymbol{w} \in \boldsymbol{H}^{1}\left(\mathbb{R}^{N}\right),\|\boldsymbol{w}\|_{\boldsymbol{H}^{1}\left(\mathbb{R}^{N}\right)}=\|\boldsymbol{u}\|_{\boldsymbol{H}^{1}(\Omega)} \leq C_{1}(\Omega)\|\varphi\|_{L^{2}(\Omega)} \text {, and } \\
& \operatorname{div} \boldsymbol{w}=\varphi \text { in } \Omega \text { and } \operatorname{div} \boldsymbol{w}=0 \text { in } \mathbb{R}^{N}-\Omega
\end{aligned}
$$

Let $n_{0} \geq 1$ be such that $n_{0}>\frac{2}{r}$, and let, for each $n \geq n_{0}$,

$$
\lambda_{n}:=1-\frac{2}{n r} \text { and } \Omega_{n}:=\left\{\lambda_{n} x \in \mathbb{R}^{N} ; x \in \Omega\right\} \subset \Omega .
$$

Because Ω is starlike with respect to $B(0 ; r)$, Thales theorem gives:

$$
\text { for each } n \geq n_{0}, \operatorname{dist}(x, \partial \Omega)>\frac{2}{n} \text { for all } x \in \Omega_{n}
$$

For each $n \geq n_{0}$, let

$$
\boldsymbol{u}_{n}: y \in \mathbb{R}^{N} \rightarrow \boldsymbol{u}_{n}(y):=\lambda_{n} \boldsymbol{w}\left(\frac{y}{\lambda_{n}}\right)
$$

so that, for each $n \geq n_{0}$,

$$
\boldsymbol{u}_{n} \in \boldsymbol{H}^{1}\left(\mathbb{R}^{N}\right), \boldsymbol{u}_{n}=\mathbf{0} \text { in } \mathbb{R}^{N}-\Omega_{n} \text { and } \operatorname{div} \boldsymbol{u}_{n}=\varphi\left(\frac{\cdot}{\lambda_{n}}\right) \text { in } \mathbb{R}^{N}
$$

where the same notation φ designates the extension of φ by 0 in $\mathbb{R}^{N}-\Omega$.

(ii) Definition of the fields $\boldsymbol{v}_{n}=\boldsymbol{v}_{n}(\varphi) \in \mathcal{D}(\Omega)$. Let $\left(\rho_{n}\right)_{n=1}^{\infty}$ be a family of mollifiers:

$$
\rho_{n} \in \mathcal{C}^{\infty}\left(\mathbb{R}^{N}\right), \text { supp } \rho_{n} \subset \overline{B\left(0 ; \frac{1}{n}\right)}, \rho_{n} \geq 0, \text { and } \int_{\mathbb{R}^{N}} \rho_{n}(x) \mathrm{d} x=1
$$

and let, for each $n \geq n_{0}$,

$$
\boldsymbol{w}_{n}:=\boldsymbol{u}_{n} * \rho_{n}, \text { i.e., } \boldsymbol{w}_{n}(x):=\int_{B\left(x ; \frac{1}{n}\right)} \rho_{n}(x-y) \boldsymbol{u}_{n}(y) \mathrm{d} y, x \in \mathbb{R}^{N}
$$

Then

$$
\operatorname{supp} \boldsymbol{w}_{n} \subset \overline{\left\{x \in \Omega ; \operatorname{dist}(x, \partial \Omega)>\frac{1}{n}\right\}}
$$

and thus

$$
\boldsymbol{v}_{n}:=\left.\boldsymbol{w}_{n}\right|_{\Omega} \in \mathcal{D}(\Omega)
$$

Besides, by a well-known property of convolution operators,

$$
\left\|\boldsymbol{v}_{n}\right\|_{\boldsymbol{H}^{1}(\Omega)}=\left\|\boldsymbol{w}_{n}\right\|_{\boldsymbol{H}^{1}\left(\mathbb{R}^{N}\right)}=\left\|\boldsymbol{u}_{n} * \rho_{n}\right\|_{\boldsymbol{H}^{1}\left(\mathbb{R}^{N}\right)} \leq\left\|\boldsymbol{u}_{n}\right\|_{\boldsymbol{H}^{1}\left(\mathbb{R}^{N}\right)}, n \geq n_{0}
$$

(iii) The vector fields $\boldsymbol{v}_{n} \in \mathcal{D}(\Omega)$ satisfy

$$
\left\|\boldsymbol{v}_{n}\right\|_{\boldsymbol{H}^{1}(\Omega)} \leq C_{1}(\Omega)\|\varphi\|_{L^{2}(\Omega)} \text { for all } n \geq n_{0}
$$

Taking $y:=\frac{x}{\lambda_{n}}$ as the new variable in the integrals below shows that

$$
\begin{aligned}
\left\|\boldsymbol{u}_{n}\right\|_{\boldsymbol{H}^{1}\left(\mathbb{R}^{N}\right)}^{2} & =\int_{\mathbb{R}^{N}}\left|\lambda_{n} \boldsymbol{w}\left(\frac{x}{\lambda_{n}}\right)\right|^{2} \mathrm{~d} x+\sum_{i, j} \int_{\mathbb{R}^{N}}\left|\partial_{i} w_{j}\left(\frac{x}{\lambda_{n}}\right)\right|^{2} \mathrm{~d} x \\
& =\lambda_{n}^{N+2} \int_{\mathbb{R}^{N}}|\boldsymbol{w}(y)|^{2} \mathrm{~d} y+\sum_{i, j} \lambda_{n}^{N} \int_{\mathbb{R}^{N}}\left|\partial_{i} w_{j}(y)\right|^{2} \mathrm{~d} y \\
& \leq\|\boldsymbol{w}\|_{\boldsymbol{H}^{1}\left(\mathbb{R}^{N}\right)}^{2}=\|\boldsymbol{u}\|_{\boldsymbol{H}^{1}(\Omega)}^{2}
\end{aligned}
$$

so that, by (i) and (ii),

$$
\left\|\boldsymbol{v}_{n}\right\|_{\boldsymbol{H}^{1}(\Omega)} \leq\left\|\boldsymbol{u}_{n}\right\|_{\boldsymbol{H}^{1}\left(\mathbb{R}^{N}\right)} \leq\|\boldsymbol{u}\|_{\boldsymbol{H}^{1}(\Omega)} \leq C_{1}(\Omega)\|\varphi\|_{L^{2}(\Omega)} \text { for all } n \geq n_{0}
$$

(iv) The vector fields $\boldsymbol{v}_{n} \in \mathcal{D}(\Omega), n \geq n_{0}$, satisfy

$$
\operatorname{div} \boldsymbol{v}_{n} \rightarrow \varphi \text { in } \mathcal{D}(\Omega) \text { as } n \rightarrow \infty
$$

By definition of the convergence in $\mathcal{D}(\Omega)$, we have to find a compact subset K of Ω such that
$\operatorname{supp} \varphi \subset K$ and $\operatorname{supp}\left(\operatorname{div} \boldsymbol{v}_{n}\right) \subset K$ for all n large enough, and for each multi-index $\boldsymbol{\alpha}, \sup _{x \in K}\left|\partial^{\boldsymbol{\alpha}}\left(\operatorname{div} \boldsymbol{v}_{n}\right)(x)-\partial^{\boldsymbol{\alpha}} \varphi(x)\right| \rightarrow 0$ as $n \rightarrow \infty$.

Since $\boldsymbol{u}_{n}=\mathbf{0}$ in $\mathbb{R}^{N}-\Omega_{n}, \boldsymbol{w}_{n}=\boldsymbol{u}_{n} * \rho_{n}$ with supp $\rho_{n} \subset \overline{B\left(0 ; \frac{1}{n}\right)}$, and $\boldsymbol{v}_{n}=\left.\boldsymbol{w}_{n}\right|_{\Omega}$, there exists $\beta>0$ and $n_{1} \geq n_{0}$ such that

$$
\operatorname{supp}\left(\operatorname{div} \boldsymbol{v}_{n}\right) \cup \operatorname{supp} \varphi \subset K:=\{x \in \Omega ; \operatorname{dist}(x, \partial \Omega) \geq \beta\} \text { for all } n \geq n_{1}
$$

That $\sup _{x \in K}\left|\partial^{\alpha}\left(\operatorname{div} \boldsymbol{v}_{n}\right)(x)-\partial^{\alpha} \varphi(x)\right| \rightarrow 0$ as $n \rightarrow \infty$ follows by noting that

$$
\begin{aligned}
\partial^{\alpha}\left(\operatorname{div} \boldsymbol{v}_{n}\right) & =\partial^{\alpha} \operatorname{div}\left(\boldsymbol{w}_{n}\right)=\partial^{\alpha}\left(\operatorname{div}\left(\boldsymbol{u}_{n} * \rho_{n}\right)\right) \\
& =\left(\partial^{\alpha}\left(\operatorname{div} \boldsymbol{u}_{n}\right)\right) * \rho_{n}=\left(\partial^{\alpha} \varphi\left(\frac{\dot{\lambda}}{\lambda_{n}}\right)\right) * \rho_{n} \text { in } \Omega,
\end{aligned}
$$

so that, for each $n \geq n_{1}$,

$$
\begin{aligned}
& \partial^{\boldsymbol{\alpha}}\left(\operatorname{div} \boldsymbol{v}_{n}\right)(x)-\partial^{\boldsymbol{\alpha}} \varphi(x)=\left(\partial^{\boldsymbol{\alpha}} \varphi\left(\frac{\cdot}{\lambda_{n}}\right)\right) * \rho_{n}(x)-\partial^{\boldsymbol{\alpha}} \varphi(x) \\
&=\int_{\mathbb{R}^{N}}\left(\frac{1}{\lambda_{n}^{|\boldsymbol{\alpha}|}} \partial^{\boldsymbol{\alpha}} \varphi\left(\frac{x-y}{\lambda_{n}}\right)-\partial^{\boldsymbol{\alpha}} \varphi(x)\right) \rho_{n}(y) \text { d } y \text { at each } x \in \Omega,
\end{aligned}
$$

which in turn implies that
$\sup _{x \in K}\left|\partial^{\boldsymbol{\alpha}}\left(\operatorname{div} \boldsymbol{v}_{n}\right)(x)-\partial^{\boldsymbol{\alpha}} \varphi(x)\right|$
$=\sup _{x \in K}\left|\int_{\mathbb{R}^{N}}\left[\left(\frac{1}{\lambda_{n}^{|\boldsymbol{\alpha}|}}-1\right) \partial^{\boldsymbol{\alpha}} \varphi\left(\frac{x-y}{\lambda_{n}}\right) \rho_{n}(y)+\left(\partial^{\boldsymbol{\alpha}} \varphi\left(\frac{x-y}{\lambda_{n}}\right)-\partial^{\boldsymbol{\alpha}} \varphi(x)\right) \rho_{n}(y)\right] \mathrm{d} y\right|$
$\leq \sup _{z \in \mathbb{R}^{N}}\left|\partial^{\boldsymbol{\alpha}} \varphi(z)\right|\left(\frac{1}{\lambda_{n}^{|\boldsymbol{\alpha}|}}-1\right)+\sup _{x \in K}\left|\int_{B\left(0 ; \frac{1}{n}\right)}\left(\partial^{\boldsymbol{\alpha}} \varphi\left(x+\delta_{n}(x, y)\right)-\partial^{\boldsymbol{\alpha}} \varphi(x)\right) \rho_{n}(y) \mathrm{d} y\right|$,
where $\delta_{n}(x, y):=\left(\frac{1-\lambda_{n}}{\lambda_{n}}\right) x-\frac{y}{\lambda_{n}}$. Since then $\sup _{x \in K} \sup _{y \in B\left(0 ; \frac{1}{n}\right)}\left|\delta_{n}(x, y)\right|$
can be made arbitrarily small if n is large enough, it follows that, for each multi-index $\boldsymbol{\alpha}$,

$$
\sup _{x \in K}\left|\partial^{\boldsymbol{\alpha}}\left(\operatorname{div} \boldsymbol{v}_{n}\right)(x)-\partial^{\boldsymbol{\alpha}} \varphi(x)\right| \rightarrow 0 \text { as } n \rightarrow \infty
$$

since the function $\partial^{\boldsymbol{\alpha}} \varphi$ is uniformly continuous and bounded.

2.6 "APPROXIMATION LEMMA" \Rightarrow J.L. LIONS LEMMA

(f) Approximation lemma: Assume the domain Ω is starlike with respect to a ball. Then, given any

$$
\varphi \in \mathcal{D}(\Omega) \text { such that } \int_{\Omega} \varphi \mathrm{d} x=0
$$

there exist $\boldsymbol{v}_{n}=\boldsymbol{v}_{n}(\varphi) \in \mathcal{D}(\Omega), n \geq 1$, such that

$$
\begin{aligned}
& \left\|\boldsymbol{v}_{n}\right\|_{\boldsymbol{H}^{1}(\Omega)} \leq C_{2}(\Omega)\|\varphi\|_{L^{2}(\Omega)} \text { for all } n \geq 1, \text { and } \\
& \operatorname{div} \boldsymbol{v}_{n} \rightarrow \varphi \text { in } \mathcal{D}(\Omega) \text { as } n \rightarrow \infty
\end{aligned}
$$

implies
(g) J.L. Lions lemma : Ω : domain in \mathbb{R}^{N}

$$
f \in \mathcal{D}^{\prime}(\Omega) \text { and } \operatorname{grad} f \in \boldsymbol{H}^{-1}(\Omega) \Rightarrow f \in L^{2}(\Omega)
$$

Sketch of proof

(i) Assume first that Ω is starlike with respect to an open ball, and let $f \in \mathcal{D}^{\prime}(\Omega)$ be such that grad $f \in \boldsymbol{H}^{-1}(\Omega)$. To show that $f \in L^{2}(\Omega)$, it suffices to show that there exists a constant $C_{0}(f, \Omega)$ such that

$$
\left|\left.\right|_{\mathcal{D}^{\prime}(\Omega)}\langle f, \varphi\rangle_{\mathcal{D}(\Omega)}\right| \leq C_{0}(f, \Omega)\|\varphi\|_{L^{2}(\Omega)} \text { for all } \varphi \in \mathcal{D}(\Omega)
$$

Let $\varphi_{1} \in \mathcal{D}(\Omega)$ such that $\int_{\Omega} \varphi_{1} \mathrm{~d} x=1$. Given any $\varphi \in \mathcal{D}(\Omega)$,

$$
\varphi_{0}=\varphi_{0}(\varphi):=\varphi-\left(\int_{\Omega} \varphi \mathrm{d} x\right) \varphi_{1} \in \mathcal{D}_{0}(\Omega)
$$

and there exists a constant $C\left(\Omega, \varphi_{1}\right)$ independent of φ such that

$$
\left\|\varphi_{0}\right\|_{L^{2}(\Omega)} \leq C\left(\Omega, \varphi_{1}\right)\|\varphi\|_{L^{2}(\Omega)}
$$

By assumption,

$$
\begin{array}{r}
\left|\left.\right|_{\mathcal{D}^{\prime}(\Omega)}\langle f, \operatorname{div} \boldsymbol{\psi}\rangle_{\mathcal{D}(\Omega)}\right|=\left|{ }_{\mathcal{D}^{\prime}(\Omega)}\langle\boldsymbol{g r a d} f, \boldsymbol{\psi}\rangle_{\mathcal{D}(\Omega)}\right| \leq C_{1}(f, \Omega)\|\boldsymbol{\psi}\|_{\boldsymbol{H}^{1}(\Omega)} \\
\text { for all } \boldsymbol{\psi} \in \mathcal{D}(\Omega)
\end{array}
$$

By the approximation lemma, there exist vector fields $\boldsymbol{v}_{n}=\boldsymbol{v}_{n}\left(\varphi_{0}\right)=\boldsymbol{v}_{n}(\varphi) \in \mathcal{D}(\Omega), n \geq 1$, such that
$\operatorname{div} \boldsymbol{v}_{n} \rightarrow \varphi_{0}$ in $\mathcal{D}(\Omega)$ as $n \rightarrow \infty$ and $\left\|\boldsymbol{v}_{n}\right\|_{\boldsymbol{H}^{1}(\Omega)} \leq C_{2}(\Omega)\left\|\varphi_{0}\right\|_{L^{2}(\Omega)}$ for all $n \geq 1$.
The relations

$$
\begin{aligned}
\mathcal{D}^{\prime}(\Omega)
\end{aligned}\langle f, \varphi\rangle_{\mathcal{D}(\Omega)}=\mathcal{D}^{\prime}(\Omega)\left\langle f, \varphi_{0}\right\rangle_{\mathcal{D}(\Omega)}+\left(\int_{\Omega} \varphi \mathrm{d} x\right)_{\mathcal{D}^{\prime}(\Omega)}\left\langle f, \varphi_{1}\right\rangle_{\mathcal{D}(\Omega)},
$$

together imply that

$$
\begin{gathered}
\mid \mathcal{D}^{\prime}(\Omega) \\
C_{0}(f, \Omega):=C(\Omega,\rangle_{\mathcal{D}(\Omega)} \mid \leq C_{0}(f, \Omega)\|\varphi\|_{L^{2}(\Omega)} \text { for all } \varphi \in \mathcal{D}(\Omega) \text {, where } \\
C_{1}(f, \Omega) C_{2}(\Omega)+\left.(\text { meas } \Omega)^{1 / 2}\right|_{\mathcal{D}^{\prime}(\Omega)}\left\langle f, \varphi_{1}\right\rangle_{\mathcal{D}(\Omega)} \mid
\end{gathered}
$$

(ii) Assume next that Ω is a general domain. Then, there exists a finite number of domains $\Omega_{i}, i \in I$, each one contained in Ω and starlike with respect to an open ball, such that (use ideas from V. MAZ'ya [1985] or M. Costabel \& McIntosh [2010])

$$
\Omega=\bigcup_{i \in I} \Omega_{i} .
$$

Given any $\varphi \in \mathcal{D}(\Omega)$, let $\left(\alpha_{i}\right)_{i \in \prime}$ be a partition of unity associated with the open cover $\bigcup_{i \in I} \Omega_{i}$ of the compact set

$$
K:=\operatorname{supp} \varphi,
$$

i.e., $\alpha_{i} \in \mathcal{D}(\Omega)$, supp $\alpha_{i} \subset \Omega_{i}$, and $\sum_{i \in I} \alpha_{i}(x)=1$ for all $x \in K$. Then J.L.Lions lemma on Ω follows from the application of J.L. Lions lemma on each $\Omega_{i}, i \in I$.

2.7 AN EQUIVALENCE THEOREM

Clearly, (g): J.L. Lions lemma \Rightarrow (a): classical J.L. Lions lemma. So:
EQUIVALENCE THEOREM Ω : domain in \mathbb{R}^{N}. The following statements are equivalent:
(a) Classical J.L. Lions lemma:

$$
f \in H^{-1}(\Omega) \text { and } \operatorname{grad} f \in \boldsymbol{H}^{-1}(\Omega) \Rightarrow f \in L^{2}(\Omega)
$$

(b) J. Nečas inequality:

$$
\|f\|_{L^{2}(\Omega)} \leq C_{0}(\Omega)\left(\|f\|_{H^{-1}(\Omega)}+\|\operatorname{grad} f\|_{\boldsymbol{H}^{-1}(\Omega)}\right) \text { for all } f \in L^{2}(\Omega)
$$

(c) grad : $L_{0}^{2}(\Omega) \rightarrow \boldsymbol{H}^{-1}(\Omega)$ has closed range
(d) de Rham theorem in $\boldsymbol{H}^{-1}(\Omega)$
(e) div: $\boldsymbol{H}_{0}^{1}(\Omega) \rightarrow L_{0}^{2}(\Omega)$ is onto
(f) "Approximation lemma"
(g) J.L. Lions lemma: $f \in \mathcal{D}^{\prime}(\Omega)$ and grad $f \in \boldsymbol{H}^{-1}(\Omega) \Rightarrow f \in L^{2}(\Omega)$

Conclusion: Any "independent" proof of (a), or (b), or (c), or (d), or (e), or (f), provides a proof of J.L. Lions lemma.

2.8 TWO PROOFS OF J.L. LIONS LEMMA

One proof of J.L. Lions lemma follows from the equivalence theorem together with:

THEOREM Ω : domain in \mathbb{R}^{N}. Then the operator

$$
\operatorname{div}: \boldsymbol{H}_{0}^{1}(\Omega) \rightarrow L_{0}^{2}(\Omega):=\left\{f \in L^{2}(\Omega) ; \int_{\Omega} f \mathrm{~d} x=0\right\} .
$$

is onto.
M.E. BogovskiI; Soviet Math. Dokl. 20 (1979), 1094-1098.

Note that this surjectivity holds as well for the operator div: $W_{0}^{1, p}(\Omega) \rightarrow L_{0}^{p}(\Omega)=\left\{f \in L^{p}(\Omega) ; \int_{\Omega} f \mathrm{~d} x=0\right\}, 1<p<\infty$.
Brief idea of the proof: One shows that, given any $f \in L_{0}^{2}(\Omega)$, there exist a vector field $\boldsymbol{u}_{f}=\boldsymbol{R} f \in \boldsymbol{H}_{0}^{1}(\Omega)$ with $\boldsymbol{R}: L_{0}^{2}(\Omega) \rightarrow \boldsymbol{H}_{0}^{1}(\Omega)$ linear and a constant $C(\Omega)$ independent of f such that

$$
\operatorname{div} \boldsymbol{u}_{f}=f \text { in } \Omega \text { and }\left\|\boldsymbol{u}_{f}\right\|_{\boldsymbol{H}^{1}(\Omega)} \leq C(\Omega)\|f\|_{L^{2}(\Omega)}
$$

Assume that Ω is starlike with respect to a ball B and let $\theta \in \mathcal{D}\left(\mathbb{R}^{N}\right)$ be such that $0 \leq \theta \leq 1$, supp $\theta \subset B$, and $\int_{B} \theta \mathrm{~d} x=1$. Then M.E. Bogovskii gives a remarkable explicit formula for such a vector field \boldsymbol{u}_{f} in this case in the following form:

$$
\begin{aligned}
\boldsymbol{u}_{f}(x) & :=\int_{\Omega} f(y) \boldsymbol{K}(x, y) \mathrm{d} y, x \in \Omega, \text { where } \\
\boldsymbol{K}(x, y) & :=\left(\int_{1}^{\infty} t^{N-1} \theta(y+t(x-y)) \mathrm{d} t\right)(\boldsymbol{x}-\boldsymbol{y})
\end{aligned}
$$

Note that $K(x, y)$ is not defined if $x=y$ and that establishing the estimate $\left\|\boldsymbol{u}_{f}\right\|_{\boldsymbol{H}^{1}(\Omega)} \leq C(\Omega)\|f\|_{L^{2}(\Omega)}$ is delicate, as it relies in particular on the theory of Calderón-Zygmund singular integrals.

Assume next that Ω is a general domain. The rest of the proof then follows like that of the implication $(\mathrm{f}) \Rightarrow(\mathrm{g})$ in the equivalence theorem.

Remark: As already noted, W. Borchers \& H. Sohr [1990] showed that J.L. Lions lemma can be established as a consequence of the surjectivity of div: $\boldsymbol{H}_{0}^{1}(\Omega) \rightarrow L_{0}^{2}(\Omega)$. However, our proof is shorter and simpler, thanks to the approximation lemma.

Another proof of J.L. Lions lemma follows from the equivalence theorem together with:

THEOREM: J. NEČAS INEQUALITY: Ω : domain in \mathbb{R}^{n}.
There exists a constant $C_{0}(\Omega)$ such that

$$
\|f\|_{L^{2}(\Omega)} \leq C_{0}(\Omega)\left(\|f\|_{H^{-1}(\Omega)}+\|\operatorname{grad} f\|_{\boldsymbol{H}^{-1}(\Omega)}\right) \text { for all } f \in L^{2}(\Omega)
$$

See J. Nečas [1967], op.cit., or J.H. Bramble, Math. Models Appl. Sci. 13 (2003), 361-371.

Remark: As already noted, G. Geymonat \& P. Suquet [1986] showed that the classical J.L. Lions lemma can be established as a consequence of J. Nečas inequality. However, our proof is shorter and simpler, again thanks to the approximation lemma.

3. TWO FURTHER EQUIVALENCES

3.1 J.L. LIONS LEMMA \Leftrightarrow WEAK POINCARÉ LEMMA

We saw in Sect. 1.5 that the classical J.L. Lions lemma implies the weak Poincaré lemma. Conversely:

THEOREM

Weak Poincaré lemma: Ω : simply-connected domain in \mathbb{R}^{N}.
Given $\boldsymbol{h} \in \boldsymbol{H}^{-1}(\Omega)$ such that

$$
\text { curl } \boldsymbol{h}=\mathbf{0} \text { in } \boldsymbol{H}^{-2}(\Omega)
$$

there exists $p \in L^{2}(\Omega)$ such that

$$
\boldsymbol{g r a d} p=\boldsymbol{h} \text { in } H^{-1}(\Omega)
$$

implies
J.L. Lions lemma

$$
f \in \mathcal{D}^{\prime}(\Omega) \text { and } \operatorname{grad} f \in \boldsymbol{H}^{-1}(\Omega) \Rightarrow f \in L^{2}(\Omega)
$$

Proof (i) Assume first that the domain Ω is simply-connected, and let $f \in \mathcal{D}^{\prime}(\Omega)$ be such that grad $f \in \boldsymbol{H}^{-1}(\Omega)$. Since then

$$
\text { curl grad } f=0,
$$

the weak Poincaré lemma implies that there exists $p \in L^{2}(\Omega)$ such that

$$
\operatorname{grad} p=\boldsymbol{\operatorname { g r a d }} f
$$

Hence there exists a constant C such that

$$
f=p+C \text { in } \mathcal{D}^{\prime}(\Omega),
$$

which shows that $f \in L^{2}(\Omega)$, i.e., that J.L. Lions lemma holds in this case.
(ii) Assume next that Ω is a general domain, and let $f \in \mathcal{D}^{\prime}(\Omega)$ be such that $\operatorname{grad} f \in \boldsymbol{H}^{-1}(\Omega)$. There exist a finite number of simply-connected domains $\Omega_{i}, i \in I$, such that $\Omega=\bigcup_{i \in I} \Omega_{i}$. Then, given any $\varphi \in \mathcal{D}(\Omega)$, use a partition of unity associated with the open cover $\bigcup_{i \in I} \Omega_{i}$ of the compact set $\operatorname{supp} \varphi$ and use J.L. Lions lemma on each $\Omega_{i}, i \in I$.
3.2 J.L. LIONS LEMMA \Leftrightarrow de RHAM THEOREM IN $\boldsymbol{H}^{-1}(\Omega) \Leftrightarrow$ "REFINED" de RHAM THEOREM IN $\boldsymbol{H}^{-1}(\Omega)$

We saw in the equivalence theorem that J.L. Lions lemma is equivalent to
(d) "Coarse" de Rham theorem: Given $\boldsymbol{h} \in \boldsymbol{H}^{-1}(\Omega)$, there exists $p \in L_{0}^{2}(\Omega)$ such that grad $p=\boldsymbol{h}$ in $\boldsymbol{H}^{-1}(\Omega)$ if (and clearly only if) $\boldsymbol{H}^{-1}(\Omega)\langle\boldsymbol{h}, \boldsymbol{v}\rangle_{\boldsymbol{H}_{0}^{1}(\Omega)}=0$ for all $\boldsymbol{v} \in \boldsymbol{H}_{0}^{1}(\Omega)$ that satisfy $\operatorname{div} \boldsymbol{v}=0$ in Ω

THEOREM: "Coarse" de Rham theorem implies
"Refined" de Rham theorem: Given $\boldsymbol{h} \in \boldsymbol{H}^{-1}(\Omega)$, there exists $p \in L_{0}^{2}(\Omega)$ such that $\operatorname{grad} p=\boldsymbol{h}$ in $\boldsymbol{H}^{-1}(\Omega)$ if (and clearly only if) $\boldsymbol{H}^{-1}(\Omega)\langle\boldsymbol{h}, \boldsymbol{\varphi}\rangle_{\boldsymbol{H}_{0}^{1}(\Omega)}=0$ for all $\varphi \in \mathcal{D}(\Omega)$ that satisfy $\operatorname{div} \varphi=0$ in Ω

Sketch of proof Follows same idea as in V. Girault \& P.A. Raviart [1986] (see also F. Boyer \& P. Fabrie [2013]), with a significant simplification because the "general" J.L. Lions lemma can be used.

4. EXTENSIONS

4.1 VECTOR VERSION DE J.L. LIONS LEMMA

Capital Roman letters denote spaces of symmetric $N \times N$ matrix fields.

$$
\begin{aligned}
& \Omega \text { : domain in } \mathbb{R}^{N} \\
& \qquad \boldsymbol{v} \in \mathcal{D}^{\prime}(\Omega) \text { and } \nabla_{s} \boldsymbol{v}:=\frac{1}{2}\left(\nabla \boldsymbol{v}^{T}+\nabla \boldsymbol{v}\right) \in \mathbb{H}^{-1}(\Omega) \Rightarrow \boldsymbol{v} \in \mathbf{L}^{2}(\Omega)
\end{aligned}
$$

C. Amrouche, P.G. Ciarlet, L. Gratie \& S. Kesavan [2006]. Proof based on the "scalar" version of J.L. Lions lemma (cf. supra).

The following "equivalence theorem" is due to P.G. Ciarlet, M. Malin \& C. Mardare [2018]. For brevity, the corresponding "approximation lemma" is not mentioned.

EQUIVALENCE THEOREM Ω : domain in \mathbb{R}^{N}. The following statements are equivalent:
(a) $\boldsymbol{v} \in \boldsymbol{H}^{-1}(\Omega)$ and $\nabla_{s} \boldsymbol{v} \in \mathbb{H}^{-1}(\Omega) \Rightarrow \boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega)$
(b) Vector version of J. Nečas inequality:

$$
\|\boldsymbol{v}\|_{L^{2}(\Omega)} \leq C_{0}(\Omega)\left(\|\boldsymbol{v}\|_{H^{-1}(\Omega)}+\left\|\nabla_{s} \boldsymbol{v}\right\|_{\mathbb{H}^{-1}(\Omega)}\right) \text { for all } \boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega)
$$

(c) $\nabla_{s}: L_{0}^{2}(\Omega) \rightarrow \mathbb{H}^{-1}(\Omega)$ has closed range, where
$\boldsymbol{L}_{0}^{2}(\Omega):=\left\{\boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega) ; \int_{\Omega} \boldsymbol{v} \cdot \boldsymbol{r} \mathrm{d} x=0\right\}$ for all $\boldsymbol{r} \in \operatorname{Ker} \nabla_{s}$
(d) Donati compatibility conditions:

Given $\boldsymbol{e} \in \mathbb{H}^{-1}(\Omega)$, there exists $\boldsymbol{v} \in \mathbf{L}_{0}^{2}(\Omega)$ such that
$\nabla_{s} \boldsymbol{v}=\boldsymbol{e}$ if (and clearly only if) $\mathbb{H}^{-1}(\Omega)\langle\boldsymbol{e}, \boldsymbol{s}\rangle_{\mathbb{H}_{0}^{1}(\Omega)}=0$
for all $\boldsymbol{s} \in \mathbb{H}_{0}^{1}(\Omega)$ that satisfy $\operatorname{div} \boldsymbol{s}=\mathbf{0}$ in Ω
(e) div : $\mathbb{H}_{0}^{1}(\Omega) \rightarrow \boldsymbol{L}_{0}^{2}(\Omega)$ is onto.
(f) Vector version of J.L. Lions lemma:

$$
\boldsymbol{v} \in \mathcal{D}^{\prime}(\Omega) \text { and } \nabla_{s} \boldsymbol{v} \in \mathbb{H}^{-1}(\Omega) \Rightarrow \boldsymbol{v} \in L^{2}(\Omega)
$$

4.2 J.L. LIONS LEMMA IN $W^{-m, p}(\Omega)$

EQUIVALENCE THEOREM $\quad \Omega$: domain in \mathbb{R}^{N}. Let $m \geq 1$, $1<p<\infty$, and $\frac{1}{p}+\frac{1}{q}=1$. The following statements are equivalent:
(a) $f \in W^{-m, p}(\Omega)$ and $\operatorname{grad} f \in \boldsymbol{W}^{-m, p}(\Omega) \Rightarrow f \in W^{-m+1, p}(\Omega)$
(b) J. Nečas inequality in $W^{-m, p}(\Omega)$:

$$
\begin{array}{r}
\|f\|_{W^{-m+1, p}(\Omega)} \leq C_{0}(\Omega, m, p)\left(\|f\|_{W^{-m, p}(\Omega)}+\|\operatorname{grad} f\|_{W^{-m, p}(\Omega)}\right) \\
\text { for all } f \in W^{-m+1, p}(\Omega)
\end{array}
$$

(c) grad: $\boldsymbol{W}^{-m+1, p}(\Omega) \rightarrow \boldsymbol{W}^{-m, p}(\Omega)$ has closed range
(d) de Rham theorem in $W^{-m, p}(\Omega)$: Given $\boldsymbol{h} \in \boldsymbol{W}^{-m, p}(\Omega)$, there exists $p \in W^{-m+1, p}(\Omega)$ such that grad $p=\boldsymbol{h}$ if (and clearly only if) $\boldsymbol{w}-m, p(\Omega)\langle\boldsymbol{h}, \boldsymbol{v}\rangle_{\boldsymbol{W}_{0}^{m, q}(\Omega)}=0$ for all $\boldsymbol{v} \in \boldsymbol{W}_{0}^{m, q}(\Omega)$ that satisfy $\operatorname{div} \boldsymbol{v}=0$ in Ω
(e) div: $\boldsymbol{W}_{0}^{m, q}(\Omega) \rightarrow\left\{f \in W_{0}^{m-1, q}(\Omega) ; \int_{\Omega} f \mathrm{~d} x=0\right\}$ is onto
(f) J.L. Lions lemma in $W^{-m, p}(\Omega)$:
$f \in \mathcal{D}^{\prime}(\Omega)$ and $\operatorname{grad} f \in \boldsymbol{W}^{-m, p}(\Omega) \Rightarrow f \in \mathcal{W}^{-m+1, p}(\Omega)$

[^0]: (") I numeri tra [] si riferiscono alla bibliografia finale.

