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’ Phenotypic distribution
selection

Vs.
diversity

Darwin’s On the origin of species, personal
copy of A.R. Wallace (Cambridge Library).
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Darwin's original drawing (Cambridge Li-
brary).
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Quantitative genetics models

An individual is indexed by its phenotypical trait x € R

The phenotypical distribution is denoted by f(t, x)

O¢f(t, x) = birth — death
(+ migration / aging...)

® birth: various modes of reproduction;
mutation/ recombination — phenotypic diversity

¢ death: both trait-dependent and density dependent
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Selection only: concentration effect
Example: pure clonal reproduction (no diversity at birth)

Oef (t,x) = b(x, p(t))f(t,x) — m(x, p(t))f(t, x),
p(t) = Jf(tjx) dx

Under certain assumptions on b, m:
® p converges to a constant p (self—regulation)

® f converges to a Dirac mass at X such that

b(x,p) = m(x, p)

(all the population is concentrated around a common trait)

An important assumption is the monotonicity of b — m with respect
to p: competition decreases fertility and increases mortality.

Perthame: Transport equations in biology (2007); Barles-Mirrahimi-Perthame (2009); Lorz-Mirrahimi-Perthame
(2011)
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Various modes of reproduction (2 options so far)

Two modes of reproduction are considered here: (' parental trait)

® Asexual: clonal + mutations
x'— x=x"4+0Y, Y random number (any distribution)

* Sexual: mating + recombination (Fisher's infinitesimal
model):

/ /
X1 +X2

> +0Y, Y normally distributed

(lelaxé) — X =

Asymptotic analysis in the case of small deviation o:

o
E= —— k1
selection unit

Fisher (1918); Bulmer (1980); Mirrahimi and Raoul (2013); Barton, Etheridge and Véber (2017)
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Integro-differential equations

Asexual reproduction

x —x'

Ot eox)mix )0 = % [ K ( ) b, pe(£)) £ (£, X) 0.

3

Sexual reproduction (Fisher’s infinitesimal model)

£ 6#( x) + (m(x) + pe(t)) (£, x) =

e )
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Objectives:

® Comparison between various modes of reproduction.

* Quantification of (mal-)adaptation of a population to a

changing environment

Tools:

Asymptotic analysis as € — 0

Asexual Reproduction

Standard deviation:

~ VE

Phenoty pical trait

Sexual Reproduction

Standard deviation:

Phenotypical trait
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Asexual mode of reproduction: singular limit
Main observation: the density f¢ is expected to converge to a
singular measure as € — 0, but

ua(tax) = ¢ |Og f:f(tax)

converges to a non-singular object
(as for a Gaussian with variance O(¢)).

Rk. This fits in the framework of Large Deviations theory.

Diekmann-Jabin-Mischler-Perthame (2005); Barles-Perthame (2008); Barles-Mirrahimi-Perthame (2009)
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Hamilton-Jacobi equation

£OE (£, X) - mix, po(£)) (£, %) = glde p <x - x’) b(x', po ()£ (£, X') dx’

On the left hand side:
5atf—€(tvx) =+ m(vaE(t))fE(t7X)
f-(t, x)

On the right hand side:

SR () o B a2

= —0rue(t,x) + m(x, pe(t))

Diekmann-Jabin-Mischler-Perthame (2005); Barles-Perthame (2008); Barles-Mirrahimi-Perthame (2009)
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Convergence result
Theorem (Barles-Mirrahimi-Perthame)

Under suitable assumptions on (b, m), p:(t) is locally uniformly
BV, and, after extraction of a subsequence, u. converges locally
uniformly towards u solution of the following constrained
Hamilton-Jacobi problem in the viscosity sense:

Oru(t,x) + H(p(t),x, Veu(t,x)) =0, t>0, xeR
(Vt>0) minu(t,x) =0,
xeRd

u(0,x) = g(x).

® The Hamiltonian is given by:

Hipox,p) = blx.p) | €P2K(2) dz — m(x.p).

® There is no equation for p!, but see the constraint minu = 0.
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Uniqueness of the limit problem?

Lack of uniqueness prevents from passing to the full limit ¢ — 0.

Uniqueness results were available under stringent assumptions:

® Competition on reproduction or mortality (but not both) &
multiplicative form (Barles-Perthame 2008)

* Particular regime of mutations: H(p,x, p) = |p|®> + R(p,x) &
convexity of the initial data & concavity with respect to x
(Mirrahimi-Roquejoffre 2016)
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Theorem (C-Lam (2018))

Assume that H is C?, convex with respect to p and monotonic
with respect to p. Under some technical assumptions on the
Lagrangian, there is a unique p in the class of BV functions such
that the constrained Hamilton-Jacobi admits a viscosity solution.

Method: By convexity, reformulation as a variational solution:

0= [/ o106 3(6) s + g6(0) |

(Vt >0) minu(t,x) =0,

xeRd

we=0 it [ 10692650 85+ g0 | ~0.

Then, compare p; and ps.



Introduction
Asexual mode
Sexual mode

Maladaptation



Introduction Asexual mode Sexual mode Maladaptation
0000000 000000 08000000 000000000000000000000

Sexual mode of reproduction: similar singular limit

So far, we restrict to equilibrium solutions in dimension d = 1:

(()+ps (x) =

v ﬂexp( = (X—X1§X2>2>F DL e 20

Main observation: the density F¢ is expected to converge to a
singular measure as € — 0, but

U.(x) = —€? log F-(x)

converges to a non-singular object.
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Main differences with the asexual problem

* Non-linear operator, but one-homogeneous (amenable to
exponential change of unknown)

* No maximum principle (no theory of viscosity solutions)

® Reproduction is the dominant part of the problem: The
operator

JG2< —X1+X2>F(X)SFF(X) dxy dxz

admits a family of fixed points: AG.2(x — xp). These are
equilibria without selection.
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Formal computations

(x — x0)?
2
Suppose that p. — pg, and V. — V then formally we get:

Expand U:(x) = + &2V, (x).

X + Xo

log(m(x) + po) = Vo(x) —2Wy ( > + Vo(x0) -

The values of xg and pg follow directly from solvability conditions:

po + m(Xo) =1.
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What are the most likely parental traits?
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Gaussian at the leading order + correction

1.2 _ 100+
selection
=1 - - -simulation =
E ——analysis Oth E
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208 2
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Rigorous construction: perturbative result

Assume that m is smooth, uniformly convex with minimum at the
origin, with polynomial growth at most.

Theorem (C-Garnier-Patout (2018))

There exists a compact subset K of C3 with uniformly decaying
third derivatives, and €y > 0 such that for all ¢ < ¢ there exists a
unique (pz, V) € R x K. Moreover, p. — 1 — m(0), and V. — Vj:

Vo(x) = <m) X+ kijof‘ log <1 —m(0) +m (2*kx)>

Method: Decompose V.(x) = vy.x + W.(x): the linear part should
be dealt with separately.

Derive contraction estimates on the third derivative W5(3).

The number . is derived using a solvability condition within the

fixed point operator.
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Alternative scaling

Raoul (2018) analyzed a different scaling:

Oefe(t,x) + (m(x) + p=(t)) £(t, x) = é(Bl(fa(t, ) = £(t,0)) -

with an additional space variable. He uses strongly contraction in
the quadratic Wasserstein distance.
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Application: mal-adaptation to a changing environment

Assume that selection acts on mortality only (for simplicity), but it
gradually changes in time:

m(x — ct) + p(t)

where m is a uniform convex function.

Optimal trait (moving)
lag c
R mm— —_—

mortality
rate

Review paper by Kopp and Matuszewski (2013)
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Aim: Compute the equilibrium distribution F as o « selection unit
which is stationary in the moving frame:

zZ=X—Cct, at—>0t—caz

= simulation = simulation
nalysis —analysis

distribution F(z)
o
distribution F(z)
o
13
1
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Integro-differential equations

Asexual reproduction

—eciF(z)+ (p+ m(z2)) F(z) = J K (
R
Sexual reproduction (Fisher’s infinitesimal model)

—e%2c0,F(z) + (p+ m(2)) F(z) =

G ff exp < < 7 er 22>2> ,:(zl)SRI;_((jf))d)/ dz1dz, .
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Asexual case (formal results)
The stationary Hamilton-Jacobi equation is:
coUp(z) + po + m(z) =1+ H(0,Up(2)) -

The Hamiltonian function H depends only on the effects of
mutations:

Hp) = [ K(y)e dy -1,

H comes with the Lagrangian function (convex conjugate):

L(v) = max (p v H(p))

Fathi, Lecture notes on weak KAM theory (2010); Barles and Roquejoffre (2006)
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Explicit formula
The number pg is obtained explicitly:
po=1—m(0)— L(c).

L(c) comes as an additional cost due to mutations (lag load).

1.2 o 1.2 4

selection selection
- ion mulation
——analysis 7 7N —— analysis

o
®
I

0.6 -

Phenotype distribution F(z)

0.2 ' - Mutation kernel K .2 N Mutation kernel K

Phenotype 2 Phenotype z

As a by-product, we obtain the value of the lag z:

po+m(z) =1 <= m(z)— m(0)=L(c)
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Sexual case (formal results)

(z — 20)?
2
where V is solution of a difference equation:

U(z) = +e2V(z) +...

zZ+ 29

log (c(z —2p) + po + m(z)) =Ui(z) -2, < ) + Ui(z) .

Again, the values of zy and pg follow directly from solvability
conditions:

m'(z) = —c,

po+ m(z) =1.

Joint work with Bouin, Bourgeron, Cotto, Garnier, Lepoutre, Ronce.
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The loads and the lags
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Evolution of aging
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Age-dependent selection

Suppose selection acts at a given age (or after some age threshold)

Hamilton (1966); Charlesworth (1994, 2001).
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@P} MALADAPTATION AS A SOURCE OF
SENESCENCE IN HABITATS VARIABLE IN
SPACE AND TIME

Olivier Cotto' and Ophélie Ronce'?

In this study, we use a quantitative genetics model of structured populations to investigate the evolution of senescence in a

variable envi ion to local envi depends on phenotypic traits whose optimal values vary with age and

— a changing environment can have a
different impact on different age classes. —

results highlight the need to study age-specific ion, as a changing envi can have a different impact on different

age dlasses.
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A quantitative genetics model of aging populations

(adapted from Cotto and Ronce 2014 to a continous setting)

Oef(t,a,z) + 0af (t,a,z) + (u(a,m(z)) + p(t)) f(t,a,z) =0

f(t,O,z)zf (z—7 <J B(a)f(t,a,z")d )dz’.

Ex. p(a,m) = u(a) + mds—aw, m(z) = a|z|?.

Rk. Here, asexual reproduction, but similar framework in the case
of sexual reproduction.

Goal: Investigate the mutation/selection balance as a function of
the age class ax .
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A quantitative genetics model of aging populations

(adapted from Cotto and Ronce 2014 to a continous setting)

Ocf(t,a,z) + 0af (t,a,2) + (u(a,m(z — ct)) + p(t)) f(t,a,z) =0

f(t,O,z)—J (z—2 (J B(a ta,z’)da) dz’ .

Ex. u(a,m) = u(a) + mis—aw, m(z) = a|z|?.

Rk. Here, asexual reproduction, but similar framework in the case
of sexual reproduction.

Goal: Investigate the mutation/selection balance as a function of
the age class a* in a changing environment.
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Maladaptation under age structure (1)

—ec0zF(a,z) + 0:F(a,z) + (u(a,m(2)) + p) F(a,z) =0

Fo.2) - [ k(-2 (j B0)F (2. ) ds ) o'

Dynamics of an isolated trait (without mutations) are encoded in
the spectral problem:

{r(m)G(a, m) + 0,G(a, m) + p(a,m)G(a,m) = 0
m) = Sgo B(a)G(a, m) da,

where the eigenvalue r(m) is given by:

JOOO B(a) exp <—f(m)a - La w(a, m) da’) da—1.
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Maladaptation under age structure (I1)

The logarithmic density

U*(a,2) = —clog (cm> '

converges towards a viscosity solution of the Hamilton-Jacobi
equation
po + cd,U(z) = R(m(z),0,U(z)).

where the hamiltonian R(m, p) is defined by

1
K(p)

LOO B(a) exp <_3R(m7 p) — fa w(a', m) da’) da —

0

For a rigorous derivation, see recent work with Gabriel and Mateos Gonzalez in the context of anomalous diffusion,
and also Nordmann, Perthame and Taing.
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(Severe) maladaptation

In the age-free model, the lag zy increases gradually with c.
It can be more singular in the age-structured model. It can even

diverge for some critical speed c#x:

Cﬂrgﬂ** ZO(C) -

It means that the population in the age classes a > a* goes extinct
if cx < ¢ < cx* (the critical speed for population extinction)

More precisely, we find,
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Numerical vs. analytical results (asexual mode)
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Severe maladaptation
Similar analysis in the case of sexual reproduction.

In this case, the lag is given by the simple formula:

<= critical point for the

modified fitness r(m(z)) — cz

— Bistability!
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Numerical vs. analytical results (sexual mode)

analytical
formula
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Speed of change ¢
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Thank your attention!
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