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Phenotypic distribution
=

selection
vs.

diversity

Darwin’s On the origin of species, personal
copy of A.R. Wallace (Cambridge Library).
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Darwin’s original drawing (Cambridge Li-
brary).
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Quantitative genetics models

An individual is indexed by its phenotypical trait x P R

The phenotypical distribution is denoted by f pt, xq

Bt f pt, xq “ birth´ death

p` migration { aging . . . q

‚ birth: various modes of reproduction;
mutation/ recombination Ñ phenotypic diversity

‚ death: both trait-dependent and density dependent
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Selection only: concentration effect
Example: pure clonal reproduction (no diversity at birth)

$

’

&

’

%

Bt f pt, xq “ bpx , ρptqqf pt, xq ´mpx , ρptqqf pt, xq ,

ρptq “

ż

f pt, xq dx

Under certain assumptions on b,m:

‚ ρ converges to a constant ρ (self-regulation)

‚ f converges to a Dirac mass at x such that

bpx , ρq “ mpx , ρq

(all the population is concentrated around a common trait)

An important assumption is the monotonicity of b´m with respect
to ρ: competition decreases fertility and increases mortality.

Perthame: Transport equations in biology (2007); Barles-Mirrahimi-Perthame (2009); Lorz-Mirrahimi-Perthame
(2011)
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Various modes of reproduction (2 options so far)
Two modes of reproduction are considered here: (1 parental trait)

‚ Asexual: clonal + mutations

x 1 ÝÑ x “ x 1 ` σY , Y random number (any distribution)

‚ Sexual: mating + recombination (Fisher’s infinitesimal
model):

px 11, x
1
2q ÝÑ x “

x 11 ` x 12
2

` σY , Y normally distributed

Asymptotic analysis in the case of small deviation σ:

ε “
σ

selection unit
! 1

Fisher (1918); Bulmer (1980); Mirrahimi and Raoul (2013); Barton, Etheridge and Véber (2017)
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Integro-differential equations

Asexual reproduction

εBt fεpt, xq`mpx , ρεptqqfεpt, xq “
1

εd

ż

R
K

ˆ

x ´ x 1

ε

˙

bpx 1, ρεptqqfεpt, x
1q dx 1 .

Sexual reproduction (Fisher’s infinitesimal model)

ε2Bt fεpt, xq ` pmpxq ` ρεptqq fεpt, xq “

1

pε
?
πqd

ĳ

R2

exp

˜

´
1

ε2

ˆ

x ´
x1 ` x2

2

˙2
¸

fεpt, x1q
fεpt, x2q

ş

R fεpt, yq dy
dx1dx2 .
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Objectives:

‚ Comparison between various modes of reproduction.

‚ Quantification of (mal-)adaptation of a population to a
changing environment

Tools:

Asymptotic analysis as εÑ 0
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Asexual mode of reproduction: singular limit

Main observation: the density f ε is expected to converge to a
singular measure as εÑ 0, but

uεpt, xq “ ´ε log fεpt, xq

converges to a non-singular object
(as for a Gaussian with variance Opεq).

Rk. This fits in the framework of Large Deviations theory.

Diekmann-Jabin-Mischler-Perthame (2005); Barles-Perthame (2008); Barles-Mirrahimi-Perthame (2009)
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Hamilton-Jacobi equation

εBt fεpt, xq`mpx , ρεptqqfεpt, xq “
1

εd

ż

R
K

ˆ

x ´ x 1

ε

˙

bpx 1, ρεptqqfεpt, x
1q dx 1 .

On the left hand side:

εBt fεpt, xq `mpx , ρεptqqfεpt, xq

fεpt, xq
“ ´Btuεpt, xq `mpx , ρεptqq

On the right hand side:

1

εd

ż

R
K

ˆ

x ´ x 1

ε

˙

bpx 1, ρεptqq
fεpt, x

1q

fεpt, xq
dx 1 Ñ ?

Diekmann-Jabin-Mischler-Perthame (2005); Barles-Perthame (2008); Barles-Mirrahimi-Perthame (2009)
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Convergence result

Theorem (Barles-Mirrahimi-Perthame)

Under suitable assumptions on pb,mq, ρεptq is locally uniformly
BV , and, after extraction of a subsequence, uε converges locally
uniformly towards u solution of the following constrained
Hamilton-Jacobi problem in the viscosity sense:

$

’

’

’

&

’

’

’

%

Btupt, xq ` Hpρptq, x ,∇xupt, xqq “ 0 , t ą 0 , x P Rd

p@t ą 0q min
xPRd

upt, xq “ 0 ,

up0, xq “ gpxq .

‚ The Hamiltonian is given by:

Hpρ, x , pq “ bpx , ρq

ż

epzK pzq dz ´mpx , ρq .

‚ There is no equation for ρ!, but see the constraint min u “ 0.
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Uniqueness of the limit problem?

Lack of uniqueness prevents from passing to the full limit εÑ 0.

Uniqueness results were available under stringent assumptions:

‚ Competition on reproduction or mortality (but not both) &
multiplicative form (Barles-Perthame 2008)

‚ Particular regime of mutations: Hpρ, x , pq “ |p|2 ` Rpρ, xq &
convexity of the initial data & concavity with respect to x
(Mirrahimi-Roquejoffre 2016)
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Theorem (C-Lam (2018))

Assume that H is C2, convex with respect to p and monotonic
with respect to ρ. Under some technical assumptions on the
Lagrangian, there is a unique ρ in the class of BV functions such
that the constrained Hamilton-Jacobi admits a viscosity solution.

Method: By convexity, reformulation as a variational solution:

$

’

’

’

&

’

’

’

%

upt, xq “ inf
"

γPACp0,tq
γptq“x

*

"
ż t

0
Lpρpsq, γpsq, 9γpsqq ds ` gpγp0qq

*

,

p@t ą 0q min
xPRd

upt, xq “ 0 ,

p@t ą 0q inf
γPACp0,tq

"
ż t

0
Lpρpsq, γpsq, 9γpsqq ds ` gpγp0qq

*

“ 0 .

Then, compare ρ1 and ρ2.
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Sexual mode of reproduction: similar singular limit

So far, we restrict to equilibrium solutions in dimension d “ 1:

pmpxq ` ρεqFεpxq “

1

pε
?
πqd

ĳ

R2

exp

˜

´
1

ε2

ˆ

x ´
x1 ` x2

2

˙2
¸

Fεpx1q
Fεpx2q

ş

R Fεpyq dy
dx1dx2 .

Main observation: the density F ε is expected to converge to a
singular measure as εÑ 0, but

Uεpxq “ ´ε
2 log Fεpxq

converges to a non-singular object.
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Main differences with the asexual problem

‚ Non-linear operator, but one-homogeneous (amenable to
exponential change of unknown)

‚ No maximum principle (no theory of viscosity solutions)

‚ Reproduction is the dominant part of the problem: The
operator

Bε2pF q “

ĳ

G ε2

2

ˆ

x ´
x1 ` x2

2

˙

F px1q
F px2q

ş

F pyq dy
dx1dx2

admits a family of fixed points: λGε2px ´ x0q. These are
equilibria without selection.
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Formal computations

Expand Uεpxq “
px ´ x0q

2

2
` ε2Vεpxq.

Suppose that ρε Ñ ρ0, and Vε Ñ V0 then formally we get:

logpmpxq ` ρ0q “ V0pxq ´ 2V0

ˆ

x ` x0

2

˙

` V0px0q .

The values of x0 and ρ0 follow directly from solvability conditions:

m1px0q “ 0 ,

ρ0 `mpx0q “ 1 .
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What are the most likely parental traits?

z1 z2z1 z2

z z

z1 z2

A

B

C

z̄z z∗0

z = 1
2 (z1 + z2) + "Y

Y ∼ N
0

@0; 12

1

A

F (z)
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Gaussian at the leading order + correction
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Rigorous construction: perturbative result
Assume that m is smooth, uniformly convex with minimum at the
origin, with polynomial growth at most.

Theorem (C-Garnier-Patout (2018))

There exists a compact subset K of C3 with uniformly decaying
third derivatives, and ε0 ą 0 such that for all ε ă ε0 there exists a
unique pρε,Vεq P Rˆ K . Moreover, ρε Ñ 1´mp0q, and Vε Ñ V0:

V0pxq “

ˆ

B3
xmp0q

2B2
xmp0q

˙

x `
8
ÿ

k“0

2k log
´

1´mp0q `m
´

2´kx
¯¯

Method: Decompose Vεpxq “ γεx `Wεpxq: the linear part should
be dealt with separately.

Derive contraction estimates on the third derivative W
p3q
ε .

The number γε is derived using a solvability condition within the
fixed point operator.
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Alternative scaling

Raoul (2018) analyzed a different scaling:

Bt fεpt, xq ` pmpxq ` ρεptqq fεpt, xq “
1

ε
pB1pfεpt, ¨qq ´ fεpt, ¨qq .

with an additional space variable. He uses strongly contraction in
the quadratic Wasserstein distance.
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Application: mal-adaptation to a changing environment

Assume that selection acts on mortality only (for simplicity), but it
gradually changes in time:

mpx ´ ctq ` ρptq

where m is a uniform convex function.

Optimal trait (moving)

x

mortality
rate

clag

Review paper by Kopp and Matuszewski (2013)
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Aim: Compute the equilibrium distribution F as σ ! selection unit
which is stationary in the moving frame:

z “ x ´ ct , Bt Ñ Bt ´ cBz

2
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Integro-differential equations

Asexual reproduction

´ εcBzF pzq ` pρ`mpzqqF pzq “
1

ε

ż

R
K

ˆ

z ´ z 1

ε

˙

F pz 1q dz 1 .

Sexual reproduction (Fisher’s infinitesimal model)

´ ε2cBzF pzq ` pρ`mpzqqF pzq “

1

ε
?
π

ĳ

R2

exp

˜

´
1

ε2

ˆ

z ´
z1 ` z2

2

˙2
¸

F pz1q
F pz2q

ş

R F pyq dy
dz1dz2 .
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Asexual case (formal results)

The stationary Hamilton-Jacobi equation is:

cBzU0pzq ` ρ0 `mpzq “ 1` H pBzU0pzqq .

The Hamiltonian function H depends only on the effects of
mutations:

Hppq “

ż

K pyqepy dy ´ 1 ,

H comes with the Lagrangian function (convex conjugate):

Lpvq “ max
p

´

p ¨ v ´ Hppq
¯

Fathi, Lecture notes on weak KAM theory (2010); Barles and Roquejoffre (2006)
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Explicit formula
The number ρ0 is obtained explicitly:

ρ0 “ 1´mp0q ´ Lpcq .

Lpcq comes as an additional cost due to mutations (lag load).
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As a by-product, we obtain the value of the lag z0:

ρ0 `mpz0q “ 1 ðñ mpz0q ´mp0q “ Lpcq
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Sexual case (formal results)

Upzq “
pz ´ z0q

2

2
` ε2V pzq ` . . .

where V is solution of a difference equation:

log
´

cpz ´ z0q ` ρ0 `mpzq
¯

“ U1pzq ´ 2U1

ˆ

z ` z0

2

˙

` U1pz0q .

Again, the values of z0 and ρ0 follow directly from solvability
conditions:

m1pz0q “ ´c ,

ρ0 `mpz0q “ 1 .

Joint work with Bouin, Bourgeron, Cotto, Garnier, Lepoutre, Ronce.
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The loads and the lags
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Evolution of aging
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Age-dependent selection

Suppose selection acts at a given age (or after some age threshold)

Hamilton (1966); Charlesworth (1994, 2001).
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Selection acts at a = a
∗

Trait x

A
g
e
a



Introduction Asexual mode Sexual mode Maladaptation

– a changing environment can have a
different impact on different age classes. –
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A quantitative genetics model of aging populations

(adapted from Cotto and Ronce 2014 to a continous setting)

$

’

&

’

%

Bt f pt, a, zq ` Baf pt, a, zq ` pµpa,mpzqq ` ρptqq f pt, a, zq “ 0

f pt, 0, zq “

ż

R
K pz ´ z 1q

ˆ
ż 8

0
βpaqf pt, a, z 1q da

˙

dz 1 .

Ex. µpa,mq “ µpaq `mδa“a˚, mpzq “ α|z |2.

Rk. Here, asexual reproduction, but similar framework in the case
of sexual reproduction.

Goal: Investigate the mutation/selection balance as a function of
the age class a˚ .
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A quantitative genetics model of aging populations

(adapted from Cotto and Ronce 2014 to a continous setting)

$

’

&

’

%

Bt f pt, a, zq ` Baf pt, a, zq ` pµpa,mpz ´ ctqq ` ρptqq f pt, a, zq “ 0

f pt, 0, zq “

ż

R
K pz ´ z 1q

ˆ
ż 8

0
βpaqf pt, a, z 1q da

˙

dz 1 .

Ex. µpa,mq “ µpaq `mδa“a˚, mpzq “ α|z |2.

Rk. Here, asexual reproduction, but similar framework in the case
of sexual reproduction.

Goal: Investigate the mutation/selection balance as a function of
the age class a˚ in a changing environment.
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Maladaptation under age structure (I)

$

’

&

’

%

´εcBzF pa, zq ` BaF pa, zq ` pµpa,mpzqq ` ρqF pa, zq “ 0

F p0, zq “

ż

R
Kεpz ´ z 1q

ˆ
ż 8

0
βpaqF pa, z 1q da

˙

dz 1 .

Dynamics of an isolated trait (without mutations) are encoded in
the spectral problem:

#

rpmqG pa,mq ` BaG pa,mq ` µpa,mqG pa,mq “ 0

G p0,mq “
ş8

0 βpaqG pa,mq da,

where the eigenvalue rpmq is given by:

ż 8

0
βpaq exp

ˆ

´rpmqa´

ż a

0
µpa1,mq da1

˙

da “ 1 .
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Maladaptation under age structure (II)

The logarithmic density

Uεpa, zq “ ´ε log

ˆ

F εpa, zq

G pa,mpzqq

˙

.

converges towards a viscosity solution of the Hamilton-Jacobi
equation

ρ0 ` cBzUpzq “ Rpmpzq, BzUpzqq .

where the hamiltonian Rpm, pq is defined by

ż 8

0
βpaq exp

ˆ

´aRpm, pq ´

ż a

0
µpa1,mq da1

˙

da “
1

pK ppq
.

For a rigorous derivation, see recent work with Gabriel and Mateos González in the context of anomalous diffusion,
and also Nordmann, Perthame and Taing.
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(Severe) maladaptation

In the age-free model, the lag z0 increases gradually with c.

It can be more singular in the age-structured model. It can even
diverge for some critical speed c˚˚:

lim
cÑc˚˚

z0pcq “ 8

It means that the population in the age classes a ą a˚ goes extinct
if c˚˚ ă c ă c˚ (the critical speed for population extinction)

More precisely, we find,

z0 “

˜

´
1

α
log

˜

1´
Lpcqe´Lpcqa

˚

βe´βa˚

¸¸1{2
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Numerical vs. analytical results (asexual mode)
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Severe maladaptation
Similar analysis in the case of sexual reproduction.

In this case, the lag is given by the simple formula:

d

dz
rpmpzqq “ c

R(z)− cz

z
∗

u z
∗

s

ðñ critical point for the

modified fitness rpmpzqq ´ cz

ùñ Bistability!
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Numerical vs. analytical results (sexual mode)
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Thank your attention!
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