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... The Unseen grew visible to student eyes,
Explained was the immense Inconscient’s scheme,

Audacious lines were traced upon the void;
The Infinite was reduced to square and cube.

Sri Aurobindo Savitri. Book 2, Canto XI

FOREWORD.

This book is written from the notes of a course given by the author at the
Université Pierre et Marie Curie (Paris 6) in 1985, 86 and 87 at the Master
level. This course addresses students having a good knowledge of basic nu-
merical analysis, a general idea about variational techniques and finite element
methods for partial differential equations and if possible a little knowledge of
fluid mechanics; its purpose is to prepare them to do research in numerical
analysis applied to problems in fluid mechanics. Such research starts, very
often with practical training in a laboratory; this book is therefore chiefly ori-
ented towards the production of programs; in other words its aim is to give
the reader the basic knowledge about the formulation, the methods to analyze
and to resolve the problems of fluid mechanics with a view to simulating them
numerically on computer; at the same time the most important error estimates
available are given.

Unfortunately, the field of Computational Fluid Dynamics has become a
vast area and each chapter of this book alone could be made a separate Masters
course: so it became necessary to restrict the discussion to the techniques
which are used in the laboratories known to the author, i.e. INRIA, Dassault
Industries, LNH/EDF-Chatou, ONERA...Moreover, the selected methods are
a reflection of his career (and his antiquated notions ?). Briefly, in a word, this
book is not a review of all existing methods.

In spite of this incompleteness the author wishes to thank his close collabo-
rators whose work has been presented in this book and hopes that it would not
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hurt them to have their results appear in so partial a work: MM C. Bernardi,
J.A. Désidéri, F. Eldabaghi, S. Gallic, V. Girault, R. Glowinski, F. Hecht, C.
Parès, J. Périaux, P.A. Raviart, Ph. Rostand, and J.H. Saiac. The author
wishes to thanks his colleagues too, whose figures are reproduced here: Mrs
C. Begue and M.O. Bristeau, MM B. Cardot, J.M. Dupuy, F. Eldabaghi, J.
Hasbani, F. Hecht, B. Mantel, C. Parès, Ph. Rostand, J.H. Saiac,V. Schoen
and B. Stoufflet as well as the following institutions AMD-BA, PSA, SNCF and
STCAN with special thanks to AMD-BA for some of the color pictures. The
author also wishes to thank warmly MM P.G. Ciarlet and J.L. Lions for their
guidance for the publication of this work, G. Arumugam and R. Knowles for
their assistance in the translation into English and finally Mrs C. Demars for
typing the script on MacWriteTM . This book has been typeset with TEX; the
translation from MacWrite to TeXtureTM has been made with EasyTeXTM .

New Delhi Sept 4, 1987



9

NOTATION :

References:
A number in brackets, ex (1), refers to the equation (1) of the current

chapter . The notation (1.1) refers to the equation (1) of the chapter 1.
The numbers in square brackets like [2] indicate a reference in the bibliog-

raphy.

Vectors, matrices, scalar products ...
Unless stated otherwise the repeated indices are summed. Thus,

u.v = uivi

denotes a scalar product of u with v.
For all vectors u, v and for all tensors of order 2 A,B we denote :

(u⊗ v)ij = uivj ; trA = Aii; A : B = tr(ABT ), |A| = (trAAT )
1
2

Differential operators :
The partial derivatives with respect to t or xj are denoted respectively

v,t =
∂v

∂t
vi,j =

∂vi

∂xj
; v,j =

∂v

∂xj

The classical grad, div, curl and laplacian operators are denoted respectively

∇p, ∇.v, ∇× v, ∆v
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The operator ∇ (nabla) applies also to vectors and tensors ... for example

∇.A = Aij,i (∇v)ij = vj,i ( and thus u.∇v = uiv,i )

Little functions:
O(x): Any function obeying ||O(x)|| ≤ c;
o(x): Any function obeying limx→0 ||o(x)||/||x|| =0.

Geometry :
The domain of a PDE is in general denoted by Ω, which is a bounded

open set in Rn (n=2 or 3); its volume element by dx and the boundary by ∂Ω
or often Γ . The domain is, in general sufficiently regular (locally on the one
side of the boundary which is Lipschitz continuous) for us to define a normal
n(x) for almost all x of the boundary Γ, but we admit domains with corners.
The tangents are denoted by τ in 2D and τ1, τ2 in 3D; the curvilinear abscissa
is noted by s and the element length (or area) is denoted by dγ.

|Ω| stands for the area or volume of Ω.
diam(Ω) is its diameter .

Function Spaces
P k = space of polynomials of degree less than or equal to k.
C0(Ω) = space of continuous functions on Ω.
L2(Ω) = space of square integrable functions. We note the scalar product
of L2 by (, ) and the norm by | |0 or | |0,Ω :

(a, b) =
∫

Ω

a(x).b(x); | |0 = (a, a)
1
2

H1(Ω) = Sobolev space of order 1.We note its norm by || ||1 or || ||1,Ω.
H1

0 (Ω) = spaces of H1(Ω) functions with zero trace on Γ.
Hk(Ω)n = Sobolev space of order k with functions having range in Rn.

Finite Elements:
A triangulation of Ω is a covering by disjoint triangles (tetrahedra in 3D)

such that the vertices of ∂Ωh, the boundary of the union of elements, are on
the boundary of Ω. The singular points of ∂Ω must be vertices of ∂Ωh. A
triangulation is regular if no angle tends to 0 or π when the element size h
tends to 0. A triangulation is uniform if all triangles are equal.

An interpolate of a function ϕ in a polynomial space is the polynomial
function ϕh which is equal to ϕ on some points of the domain (called nodes ).

A finite element is conforming if the space of approximation is included in
H1 (in practice continuous functions). The most frequently used finite element
in this book is the P 1 conforming element on triangles (tetrahedra). An
element is said to be lagrangian ( others may be Hermite..) if it uses only
values of functions at nodes and no derivatives.
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INTRODUCTION.

Computational fluid dynamics (CFD) is in a fair way to becoming an im-
portant engineering tool like wind tunnels. For Dassault industries, 1986 was
the year when the numerical budget overtook the budget for experimentation
in wind tunnels. In other domains, like nuclear security and aerospace, exper-
iments are difficult if not impossible to make. Besides, the liquid state being
one of the four fundamental states of matter, it is evident that the practical
applications are uncountable and range from micro-biology to the formation of
stars. At the time of writing, CFD is the privilege of a few but it is not hard to
foresee the days when multipurpose fluid mechanics software will be available
to non-numerical engineers on workstations.

Simulations of fluid flows began in the early 60’s with potential flows,
first incompressible or compressible hypersonic, then compressible transonic (cf.
Ritchmeyer - Morton [1]). The calculations were done using finite difference or
panel methods (cf Brebbia[2]). Aeronautic and nuclear industries have been the
principal users of numerical calculations. The 70’s saw the first implementation
of the finite element method for the potential equation and the Navier-Stokes
equations (Chung[],Temam[3], Thomasset[4]); also during that time the de-
velopment of finite difference methods for complex problems like compressible
Navier-Stokes equations continued (see Peyret-Taylor [5] for example). Recent
years have seen the development of faster algorithms for the treatment of 3D
flows (multigrid, (Brandt[6], Hackbush[7]), domain decomposition (Glowinski
[7]), vectorization (Woodward et al[8]),the development of specialized methods
to reach certain objectives (spectral methods, (Orszag [9]), particle methods
(Chorin [10]) methods of lattice gas (Frisch et al [11]) for example ) and the
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treatment of problems which are more and more complex like the compressible
Navier-Stokes equations with interaction of shock-boundary layers, Knutsen
boundary layers (rarefied gases, see Brun[ ]), free surfaces ...And yet in spite
of the apparent success the day to day problems like flow in a pipe, in a glass
of water with ice, in a river, around a car still remain unsolvable with today’s
computers. Simulation of turbulence, Rayley-Benard instabilities ... lie still
further in the future. Suffice it to say that the subject will have to be studied
for a good number of years yet to come!

Why restrict ourselves only to finite element methods ? many reasons; the
first because one can not explain everything in 200 pages, the next because the
author has more experience with this method than with other methods but
most importantly because if one needs to know only one method then this is
the best one to know ; in fact, this is the only technique (in 1987) which can
be applied to all equations without restriction on the domain occupied by the
fluid.

We have also chosen to study low degree finite elements because practical
flows are often singular (shock, turbulence, boundary layer) and to do better
with higher order elements one has to do a lot more than just doubling the
degree of approximation (Babuska[], Patera[])

The chapters of this book more or less reflect the historical discovery of
the methods. But since this book addresses itself to specialists in numerical
analysis, chapter 1 recalls the main equations of fluid mechanics and their
derivations.

Chapter 2 treats of irrotational flow, i.e. the velocity of the flow is given
by the relation

u = ∇ϕ (1)

where ϕ , the flow potential, is a real valued function .
Incompressible potential flows provide an occasion for us to recall the iter-

ative methods used to solve Neumann problems by the finite element method:

−∆ϕ = 0 in Ω;
∂φ

∂n
= 0 on Γ (2)

The transonic potential equation is also treated in Chapter 1 :

∇.[(1 − |∇ϕ|2) 1
γ−1∇ϕ] = 0 in Ω;

∂φ

∂n
= 0 on Γ (3)

and solved by an optimization method.
This chapter ends with the description of a potential correction method

for weakly irrotational flows. So it deals with a method of solution for Euler ’s
stationary system:

∇.ρu = 0, ∇.[ρu ⊗ u] + ∇p = 0, ∇.[ρu(
γ

γ − 1
p

ρ
+

1
2
u2)] = 0 in Ω, (4)
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where u.n is given on all of Γ and ρ,u and p are given on parts of Γ according
to the signs of u.n ± (γ p

ρ)1/2.

Chapter 3 deals with convection - diffusion phenomena, i.e. equations of
the type :

∂ϕ

∂t
+ ∇.ϕu − k∆ϕ = f in Ω, (5)

with ϕ given on the boundary and at an initial time. The methods of upwinding
and artificial viscosity are introduced.

In chapter 4 we give some finite element methods to solve the generalized
Stokes problem :

αu − ∆u + ∇p = f ,∇.u = 0 in Ω, (6)

with u given on the boundary. This problem which is in itself useful for low
Reynolds number flows is also utilized as an intermediate step for the resolution
of Navier-Stokes equations.

The chapter 5 shows how one solves the Navier-Stokes equations using the
methods given in chapters 3 and 4. Some models of turbulence as well as the
methods for solving them are given.

Finally, in chapter 6 we give a few methods to solve the compressible Euler
equations ((7)-(9) with µ = ξ = κ = 0) and the Navier-Stokes equations :

∂ρ

∂t
+ ∇.ρu = 0 (7)

∂ρu
∂t

+ ∇.(ρu ⊗ u) + ∇p− η∆u − (
η

3
+ ξ)∇(∇.u) = 0 (8)

∂

∂t
[ρ
u2

2
+

p

γ − 1
] + ∇.{ρu[

u2

2
+

γ

γ − 1
p

ρ
]} (9)

= ∇.{ κ
R
∇p

ρ
+ [η(∇u + ∇uT ) + (ξ − 2

3
η)I∇.u]u} + f .u

with u, p given on the boundary, ρ given on part of the boundary and at an
initial time.

In this same chapter, we also consider the case of Saint-Venant’s shallow
water equations because they form an important bidimensional approximation
to the incompressible Navier-Stokes equations and they are of the same type
as the compressible Navier-Stokes equations.

The book ends with an appendix describing a computer program, written
by the author to illustrate the course and used to solve some of the problems
studied. Unfortunately, this software makes extensive use of the ‘Toolbox’ of
the Apple MacintoshTM and it is not portable to other machines.
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CHAPTER 1 :

SOME EQUATIONS OF FLUID MECHANICS

1. ORIENTATION.

The aim of this chapter is to recall the basic equations of fluid mechanics
as well as the approximation principles which we propose for their numerical
simulations. For more details, see for example Anderson [4], Bachelor [10],
Landau-Lifchitz [141], Panton [187].

2. GENERAL EQUATIONS OF NEWTONIAN FLUIDS :

2.1 Equation of conservation of mass .
Let ρ(x, t) be the density of a fluid at a point x at time t ; let u(x, t) be

its velocity.
Let Ω be the domain occupied by the fluid and O a regular subdomain of Ω.

To conserve the mass, the rate of change of mass of the fluid in O, ∂(
∫

O
ρ)/∂t,

has to be equal to the mass flux across the boundary ∂O of O, − ∫
∂O

ρu.n, ( n
denotes the exterior normal at ∂O and the surface element)

Figure 1.1 : A volume element of fluid O.

Using Stokes formula
∫

O

∇.v =
∫

∂O

v.n (1)

and the fact that O is arbitrary, we get immediately the equation of conserva-
tion of mass

ρ,t +∇.(ρu) = 0 (2)

2.2 Equation of conservation of momentum

Now let us write Newton’s equations for a volume element O of the fluid.
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A particle of the fluid at x at an instant t will be at x+ u(x, t)k+ o(k) at
instant t+ k ; its acceleration is therefore

lim
k→0

1
k

[u(x+ u(x, t)k, t+ k) − u(x, t)] = u,t +uju,j (3)

The external forces on O are :

- The external forces on a unit volume (electromagnetism, Coriolis, grav-
ity...):

∫
O

f
- The pressure forces:

∫
∂Opn

-The viscous constraints due to deformation of the fluid (σ′ is a tensor): .

−
∫

∂O

σ′n.

Newton’s laws are, therefore, written
∫

O

ρ(u,t + u∇u) =
∫

O

f −
∫

∂O

(pn− σ′n),

or, by using Stokes formula
∫

O

ρ(u,t + u∇u) =
∫

O

(f −∇p+ ∇.σ′),

which gives :

ρ(u,t + u∇u) + ∇p−∇.σ′ = f.

To proceed further we need a hypothesis to relate the stress tensor σ′ with
the velocity of the fluid. By definition of the word ”fluid”, any force, even
infinitesimal, applied to O should produce a displacement, thus σ′ being the
effect due to the viscosity of the fluid, it must depend on the derivatives of the
velocity and tend to zero with them.

The hypothesis of Newtonian flow is a linear law relating σ′ to ∇u , (I
being the unit tensor) :

σ′ = η(∇u + ∇uT ) + (ξ − 2η
3

)I∇.u (4)

η and ξ are the first and second viscosities of the fluid.

From (1), (3) and (4) we derive the equation of conservation of momentum

ρ(u,t + u∇u) + ∇p−∇.[η(∇u + ∇uT ) + (ξ − 2η
3

)I∇.u] = f. (5)

It is easy to verify that the equations can also be written as
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ρ(u,t +u∇u)− η∆u− (
η

3
+ ξ)∇(∇.u) + ∇p = f (6)

because ∇.∇u = ∆u and ∇.∇uT = ∇(∇.u). Taking into account the continuity
equation (2), we could also rewrite (6) in a conservative form :

∂ρu

∂t
+ ∇.(ρu⊗ u) + ∇p− η∆u− (

η

3
+ ξ)∇(∇.u) = f. (7)

Remark 1 :
One can show (see Ciarlet [55], for example) that one cannot put some

arbitrary relation between σ′ and ∇u or else the equations are no longer in-
variant under changes of reference frame (translation and rotation), that is to
say that they depend on the system of coordinates in which they are written
. Thus, at least in 2D, (4) is relatively general and in fact the only relation
possible when one assumes that σ′ depends on ∇u for an isotropic fluid. Let
us give examples of fluids which do not obey the above law :

- Pasty fluids (near to a state of solidification)
- micro-fibers in fluids (some biomechanics fluids with long molecules),
- Mixture of fluid-particles (blood, for example),
- Rarefied gases.

2.3 Equation of conservation of energy and the state equation .

Lastly, an equation called conservation of energy can be obtained by writ-
ing the total energy of a volume element O(t) moving with the fluid.

We note that the energy E is the sum of the work done by the forces and
the amount of heat received. The energy of a volume element O is the sum of
potential energy ρe and the kinetic energy ρu2/2 ,

∫
O
ρ( u2/2 +e) . The work

done by the forces is :
∫

O u.f +
∫
∂O uσ

′.n − ∫
∂O pn.u .

If there is no source of heat (combustion...) then the amount of heat
received (lost) is proportional to the gradient flux of the temperature θ :∫

∂O
κ∇θ.n. We therefore get the equation :

d

dt

∫
O(t)

[ρ(e+
u2

2
)] =

∫
O

{[ρ(e+
u2

2
)],t + ∇.[uρ(u

2

2
+ e)]}

=
∫

O

u.f −
∫

∂O

[u(σ′ − pI) + κ∇θ)n

With (1) and Stokes’ formula, we obtain :

∂

∂t
[ρ(e+

u2

2
)] + ∇.(u[ρ(

u2

2
+ e) + p]) = ∇.(uσ′ + κ∇θ) + f.u (8)
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For an ideal fluid , Cv and Cp being the physical constants, we have

e = Cvθ (9)

and the equation of state

p

ρ
= Rθ (10)

where R is an ideal gas constant. With γ = Cp/Cv = R/Cv + 1 we can write
(9) as follows :

e =
p

ρ(γ − 1)
. (11)

With (4), (8) becomes :

∂

∂t
[ρ
u2

2
+

p

γ − 1
] + ∇.{u[ρ

u2

2
+

γ

γ − 1
p]} + f.u (12)

= ∇.{κ∇θ + [η(∇u + ∇uT ) + (ξ − 2
3
η)I∇.u]u}

This equation can be rewritten as a function of temperature

θ,t + u∇θ + (γ − 1)θ∇.u− κ

ρCv
∆θ (13)

=
1
ρCv

[|∇.u|2(ξ − 2η/3) + |∇u + ∇uT |2 η
2
].

By introducing entropy :

s =
R

γ − 1
log

p

ργ
(14)

-(12) can be rewritten in the form (Cf. Landau-Lifchitz [141 p. 236]):

ρθ(
∂s

∂t
+ u∇s) =

η

2
|∇u+ ∇uT |2 + (ξ − 2

3
η)|∇.u|2 + κ∆θ (15)

Remark 2 :
Some values of the physical constants

ρ(g/cm3) η(g/cm.s) ξ κ(cm2/s) γ R(cm2/s2.oC)
air 1.210−3 1.810−4 ∼= 0 0.2 1.4 2.87106

water 1 0.01 ∼= 0 1.410−3 1 0.2410

The system (2), (5), (10), (12), is called compressible Navier-Stokes equa-
tions. With suitable boundary and initial conditions, it is complete in the sense
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that we have 6 unknown scalars (ρ, u, p, θ) and 6 scalar equations ; Matsumura
-Nishida[168] and Valli [231] have shown that the system is well posed with
regular initial conditions (ρ0, u0, p0, θ0) satisfying (10) and regular boundary
conditions :

- u, θ given on the boundary, p calculated from (10)
- ρ given on the part of the boundary in which u.n < 0.

A number of numerical simulations have been made (mostly using finite
differences) but they are extremely onerous and limited to quasi non-stationary
laminar flows.

For these reasons and also with a view towards getting partial analytical
solutions, the fluid mechanicists have proposed some approximations to the
complete system ; it is, in general, these approximated systems that we solve
numerically.

3. INVISCID FLOWS.

If we neglect the loss of heat by thermal diffusion (κ = 0) and the viscous
effects (η = ξ = 0) the simplified equations are known as the compressible Euler
equations. So equation (15) becomes :

∂s

∂t
+ u∇s = 0 (16)

hence s is constant on the lines tangent at each point to u (stream lines). In
fact a stream line is a solution of the equation :

x′(τ) = u(x(τ), τ) (17)

and so

d

dt
s(x(t), t) =

∂s

∂xi

∂xi

∂t
+
∂s

∂t
= s,t +u∇s = 0. (18)

If s is constant and equal to s0 constant at time 0 and if s is also equal to s0 on
the part of Γ where u.n < 0, then from (17) we see that (18) has an analytical
solution s = s0. Note however that (18) has no meaning if u has a shock. In
any case, experiments show that s decreases through shocks.

Finally there remains a system of two equations with two unknowns :

ρ,t + ∇.(ρu) = 0 (19)

ρ(u,t +u∇u) + ∇p = f (20)

where

p = Cργ (C = es0 γ−1
R ). (21)
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The problems (2)(5)(12) and (19)-(21) will be studied in chapter 6 but an
algorithm for finding the stationary solutions of (19)-(21) will also be given in
Chapter 2.

4. INCOMPRESSIBLE OR WEAKLY COMPRESSIBLE
FLOWS.

In the case when ρ is practically constant (water for example or air with
low velocity) we can neglect its derivatives. Then (2), (6) become the incom-
pressible Navier Stokes equations :

∇.u = 0 (22)

u,t + u∇u+ ∇p− ν∆u = f (23)

where ν = η/ρ is the reduced viscosity of the fluid and p/ρ and f/ρ have been
replaced by p and f .

The same approximation can be applied to equations (19)-(20) and we
obtain (22)-(23) with ν = 0, known as the incompressible Euler equations.

∇.u = 0 (24)

u,t + u∇u+ ∇p = f (25)

The Navier-Stokes and Euler’s equations will be studied in chapter 5.

Remark 3.
With (22)(23) or (24)(25) one can no longer use (21) because the sys-

tem becomes over determined. This ambiguity can be explained by studying
(19)(21)when the velocity of sound (dp/dρ)1/2 tends to infinity. One can show
(Klainerman -Majda [165]) that if C tends to infinity in (21) then p goes to in-
finity but ∇p remains bounded. Thus the pressure variation continues to have
a physical interpretation in (22)(23) or (24)(25) but p no longer represents the
physical pressure.

An equation for the temperature θ can be obtained from (13) by assuming
ρ constant; if f = 0 we have :

∂θ

∂t
+ u∇θ − κ

ρCv
∆θ =

ν

2Cv
|∇u+ ∇uT |2 (26)

An intermediate approximation, called weakly compressible , in between
the complete system (2), (5), (12) (compressible Navier-Stokes ) and incom-
pressible Navier-Stokes (22)-(23), is interesting because it exhibits the hyper-
bolic character of the underlying acoustics in (2), (5), (12) and (19)(21).

Assume that ξ = η = κ = 0, which implies s constant and so pρ−γ constant;
under the assumption that ρ oscillates around a value ρ0 one gets :
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ρ,t +u∇ρ+ ρ0∇.u = 0

u,t +u∇u+ Cρ0γ−1∇ρ = 0. (27)

If also u and ρ− ρ0 are small, then (27) is close to

ρ,t +ρ0∇.u = 0; u,t +Cρ0γ−1∇ρ = 0 (28)

which gives

ρ,tt −Cρ0γ∆ρ = 0. (29)

Finally, if one is interested in thermal convection problems in the fluid (which
happens as water is heated in a pan, for example) one could assume that ρ is
quasi constant in (7) and could neglect all variations of ρ except of f/ρ in (5)
where f is gravity. Then one obtains the Rayleigh-Benard equations :

∇.u = 0

u,t +u∇u+ ∇p− ν∆u = −gθe3 (30)

θ,t +u∇θ − κ′∆θ =
ν

2Cv
|∇u+ ∇uT |2

where e3 is the unit vector in the vertical direction.

5. IRROTATIONAL FLOWS :

We could try to determine if, for suitable boundary conditions, there exist
solutions of equations satisfying

∇× u = 0; (31)

these solutions are called irrotational.
But as (22) implies the existence of ϕ (x,t) such that

u = ∇ϕ (32)

these solutions are also called potential.
Using the identities :

∆u = −∇×∇× u+ ∇(∇.u) (33)

u∇u = −u× (∇× u) + ∇(
u2

2
) (34)

we say that (24)-(25) have such solutions for f = 0 if ϕ is a solution of the
Laplace equation :

∆ϕ = 0, (35)
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with (32) and

p = k − 1
2
|∇ϕ|2. (36)

This type of flow is the simplest of all. It will be studied in chapter 2.
In the same way, with (32), (27) implies

ρ,t +∇ϕ∇ρ+ ρ0∆ϕ = 0 (37)

∇(ϕ,t +
1
2
|∇ϕ|2 + γCρ0γ−1ρ) = 0 (38)

If we neglect the convection term ∇ϕ∇ρ this system simplifies to a nonlinear
wave equation :

ϕ,tt −c∆ϕ+
1
2
|∇ϕ|2,t = d(t) (39)

where c = γCρ0γ is related to the velocity of the sound in the fluid.

Finally, we show that there exist stationary potential solutions of (19),
(20), (21) with f = 0. Using (34), (19) could be rewritten as follows :

−ρu×∇× u+ ρ∇u2

2
+ ∇p = 0. (40)

Taking the scalar product with u, we obtain

u.[ρ∇u2

2
+ ∇p] = 0 (41)

Also, on taking into account (21)

u.(ρ∇u2

2
+ ργ−1Cγ∇ρ) = 0 (42)

Or

uρ.∇(
u2

2
+ C

γ

γ − 1
ργ−1) = 0 (43)

So, the quantity between the parenthesis is constant along the stream lines,
that is we have

ρ = ρ0(k − u2

2
)

1
γ−1 (44)

Indeed a system like u∇ξ = 0 is integrated exactly like (16) and gives ξ constant
if it is constant on the part of the boundary where u.n < 0. Thus if ρ0 and k are
constant at the entrance boundary of Ω (u.n¡ 0), if all the streamlines intersect
the entrance boundary of Ω and if u is non zero, then (44) holds, then (40)
implies that ∇× u is parallel to u and, at least in 2 dimensions , this implies
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that u derives from a potential (i.e. (31)). From (2) and (44) we deduce the
transonic potential flow equation.

∇.[(k − |∇ϕ|2) 1
γ−1∇ϕ] = 0 (45)

This problem will be studied in chapter 2.

Remark 4:
Equation (35) is consistent with (45) since we can return to it by assuming

ρ constant (Cf (44)).

6. THE STOKES PROBLEM.

Let us come back to the system (19)-(21) and let us rewrite it in non
dimensional form.

Let U be a characteristic velocity of the flow under study (for example one
of the non homogeneous boundary conditions ).

Let L be the characteristic length (for example the diameter of Ω) and T
a characteristic time (which is a priori equal to L/U).Let us put

u′ =
u

U
; x′ =

x

L
; t′ =

t

T
(46)

Then (15) and (16) can be rewritten as

∇x′ .u′ = 0 (47)

(
L

TU
)u′,t′ +u′∇x′u′ + U−2∇x′p− (

ν

LU
)∆x′u′ = f

L

U2
(48)

So, if we put T = L/U , p’ = p/U2

ν′ =
ν

LU
(49)

then (38)-(39) is the same as (15)-(16) with ”prime” variables.The inverse of
ν′ is called Reynolds number. Let us give some examples :

(unitsMKS) U L ν Re = UL
ν

micro− organism 10−4 10−4 10−6 10−2

glider 1 1 0.15 × 10−4 7 × 104

sailboat(shell) 0, 1 1 10−6 105

car 3 3 0.15 × 10−4 6 × 105

airplane 30 10 0.15 × 10−4 2 × 107

tanker 1 200 10−6 2 × 108
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When ν′ >> 1, ν′∆u′ dominates u′∇u′ and u′t′ in (48); it becomes the
Stokes problem :

−ν∆u+ ∇p = f (50)

∇.u = 0 (51)

Experience shows that (50)-(51) is indeed an excellent approximation of (15)-
(16) for ”low Reynolds number flows” in dimension three ; in dimension two the
Stokes problem might not have solution in an unbounded domain. We recall
in this context that a two dimensional flow is not an infinitely thin flow, but
a flow invariant under translation in a spatial direction and whose velocity is
perpendicular to the invariant direction. .

The Stokes problem will be studied in chapter 4.

7. CHOICE OF EQUATIONS.

Given a fluid system to simulate numerically, what equations need to be
chosen? Unfortunately, there is no automatic rule ; one seeks, in general the
simplest system compatible with the phenomenon.

Let us take the case of an aircraft wing. The first thing that an engineer
wishes to know is evidently the resultant of the fluid forces on the wing ; that
is the lift and the drag. The lift being somewhat unrelated to the viscosity
we can integrate the transonic equation to calculate it (cf Chapter 2). But if
there is a lot of vorticity then we have to take the Euler equation, compressible
if the velocity if large, incompressible if not. On the other hand, there is no
chance to calculate the drag with Euler’s equations; we have to integrate the
Navier-Stokes equations (in the boundary layer or in the whole domain). The
problem becomes more complicated if the flow is ”detached”; though the lift
is not a viscous phenomenon, the generation of eddies near the trailing edge
is fundamentally a phenomenon related to the viscosity. The oscillation of
the lift around its average value cannot be approximated correctly unless the
Navier-Stokes equations are solved.

To conclude, the choice of a system to solve is beyond the scope of this
book and this chapter gives only some examples. A thorough discussion with
a physicist or with an engineer is therefore indispensable before embarking on
numerical simulations which are often long and expensive.

8 CONCLUSION:

The compressible Navier Stokes equations describe a large number of phe-
nomena which from the mathematical point of view belong to 3 categories of
PDE’s :

Elliptic: Stokes equations, incompressible potential flow .
Parabolic : Temperature propagation, convection-diffusion. Incompress-

ible Navier-Stokes equation.
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Hyperbolic: Euler’s equations, wave equations of the acoustics of a fluid,
convection.

We state also, that there does not exist a universal scheme to approximate
numerically these three types of equations, which explains why each subsystem
enumerated above and its numerical integration is treated in a separate chapter
of this book.
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CHAPTER 2

IRROTATIONAL AND WEAKLY IRROTATIONAL FLOWS

1. ORIENTATION

We have seen in chapter 1 that it is possible (with suitable boundary con-
ditions) to find irrotational solutions (∇×u = 0) to the general fluid mechanics
equations under the following hypotheses :

- inviscid flow
- no vorticity generated by discontinuities (shocks) or by the boundaries.

In this chapter, we will study finite element approximations of those equa-
tions. The first part deals with the Neumann problem, where we recall also the
finite element method. In the second part, we deal with subsonic compressible
flows, which will be solved by an optimization method. We then extend the
method to transonic flows. Finally in the third and fourth parts we study the
resolution of the problem in terms of stream function and a rotational correc-
tion method based on Helmoltz decomposition of vector fields.

2.INCOMPRESSIBLE POTENTIAL FLOWS

2.1 Generalities.
If the density ρ is constant, the viscosity and thermal diffusion are negligi-

ble and if the flow does not depend on time then the velocity u(x) and pressure
p(x) are given for all points x ∈ Ω of the fluid by

∇.u = 0 (1)

∇× u = 0 (2)

p = k − 1
2
u2 (3)

where k is a constant if the flow is uniform at infinity.
On the boundary Γ = ∂Ω in general the normal component of the velocity,

u.n, is given by :
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u.n = g on Γ (4)

We remark that (2) implies the existence of a potential ϕ such that :

u = ∇ϕ (5)

So the complete system is simply rewritten as a Neumann problem.

∆ϕ = 0 in Ω (6)

∂ϕ

∂n
= g on Γ (7)

Example 1.
Calculation of low velocity laminar flow through a nozzle.

Figure 2.1 . A divergent nozzle

Example 2
Calculation of the flow around a symmetric wing (the non-symmetric i.e.

lifting case will be studied later).

Figure 2.2 A symmetric airfoil
Remark
We could have used (1) to say that there exists ψ such that

u = ∇× ψ (9)

Then, the complete system becomes

∇×∇× ψ = 0 in Ω (10)

∇× ψ.n = g on Γ (11)

If the flow is bidimensional (invariant by translation in one direction) then
(10)-(11) become :

∆ψ = 0 (12)

ψ(x(s)) =
∫ s

g(x(γ)dγ ∀x(s) ∈ Γ (13)

We study this method at the end of the chapter. Note that in 3 dimensions,
the operator in (10)-(11) is not strongly elliptic and that ψ is a vector though
ϕ is a scalar.

2.2. Variational formulation and discretisation of (6)-(7)
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Proposition 1
Let χ ∈ L2(Ω)with non zero average on Ω. If g is regular, (g ∈ H1/2(Γ))and

if
∫

Γ

g = 0 (14)

then problem (6)-(7) is equivalent to the following variational problem :
∫

Ω

∇ϕ∇w =
∫

Γ

gw ∀w ∈W (15)

ϕ ∈W = {w ∈ H1(Ω);
∫

Ω

χw = 0} (16)

Proof :
We see, in multiplying (6) by w, and integrating on Ω with the help of

Green’s formula that :
∫

Ω

−(∆ϕ)w +
∫

Γ

∂ϕ

∂n
w =

∫
Ω

∇ϕ∇w. (17)

If we use (6) and (7) in (17) we get
∫

Ω

∇ϕ∇w =
∫

Γ

gw ∀w ∈ H1(Ω) (18)

Putting w = 1 we get (14). As (18) doesn’t change if we replace ϕ by ϕ +
constant and w by w+ constant, we can restrict ourselves to W . The converse
can be proved in the same way ; from (15) with the assumption that ϕ is regular
(in H2(Ω)) so as to use (17), we get :

∫
Ω

−(∆ϕ)w +
∫

Γ

(
∂ϕ

∂n
− g)w = 0 ∀w ∈W (19)

By taking w to be zero on the boundary, we deduce that :
∫

Ω

−(∆ϕ)w = 0 ∀w such that
∫

Ω

χw = 0,

and so, from the theory of Lagrange multipliers, there exists a constant λ such
that

−∆ϕ = λχ in Ω. (20)

Note also that (19) implies

∂ϕ

∂n
= g on Γ (21)

Finally, (17) with w = 1 (20), (21) and (14) imply that the constant in (20) is
zero.
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Remark
W given by (16) is equivalent to H1(Ω)/R. One could have set up the

problem in H1(Ω)/R at the start but this presentation allows a natural con-
struction for the discretisation of W . Besides, it is interesting to note that if
(14) is not satisfied, ϕ is the solution of (20) instead of (6).

Proposition 2
If Ω is a bounded domain with Lipschitz boundary and if g is in H1/2(Γ)

then (15) has a unique solution.

Proof :
In W and with bounded Ω, Poincaré’s inequality is satisfied:

∫
Ω

ϕ2 ≤ C

∫
Ω

|∇ϕ|2. (22)

So the bilinear form associated with (15) is W − elliptic :
∫

Ω

|∇ϕ|2 ≥ 1
2

min{C−1, 1}||ϕ||21 (23)

As W is a closed subspace of H1(Ω) the linear map

w →
∫

Γ

gwdγ

is continuous. The result follows from Lax-Milgram theorem (cf Ciarlet [55]
Strang-Fix [223 ], Lions-Magenes [155]).

Proposition 3
Let {Wh} be a sequence of internal approximations (Wh ⊂W ) of W, such

that

∀w ∈ W ∃{wh}h, wh ∈Wh such that ||wh − w||1 → 0 when h → 0 (24)

Then the solution ϕh ∈Wh of
∫

Ω

∇ϕh∇wh =
∫

Γ

gwh ∀wh ∈Wh (25)

converges strongly in H1(Ω) to ϕ, the solution of (15)-(16).

Proof :
Using (15) with wh and subtracting from (24), we obtain

∫
Ω

∇(ϕh − ϕ)∇wh = 0 ∀wh ∈ Wh (26)

which shows that ϕh is a solution of the problem



30 FINITE ELEMENT METHODS FOR FLUIDS

min
wh∈Wh

{
∫

Ω

|∇(wh − ϕ)|2} (27)

and so if ψh is an approximation of ϕ in the sense of (24) we have
∫

Ω

|∇(ϕh − ϕ)|2 ≤
∫

Ω

|∇(ψh − ϕ)|2 (28)

and hence the proof (Cf. (22)).

Proposition 4
If there exist α and C(Ω) such that in addition to (24) we have

||wh − w||1 ≤ Chα||w||α+1 (29)

then ||ϕh − ϕ||1 ≤ C′hα||ϕ||α+1 (30)

Remark
If Ω is convex, we have also

|ϕh − ϕ|0 ≤ C′′hα+1||ϕ||α+1. (31)

Proof :
The error estimate (30) can easily be deduced from( 28) (29) and (22). To

prove (31) one has to use the duality argument of Aubin-Nitsche (see Ciarlet
[56])

Lagrangian triangular finite elements (also called P 1 conforming):
Ω is divided into triangles (tetrahedra in 3D) {Tk}1...K such that

- Tk ∩ Tl = �, or 1 vertex, or 1 whole side (resp. side or face) when k = l
- The vertices of the boundary of ∪Tk are on Γ
- The singular points of Γ (corners) are on the boundary Γh of ∪Tk.

We note that Ωh = ∪Tk, Γh = ∂ ∪ Tk , {qi}N
1 are the vertices of the

triangles, and h is the longest side of a triangle :

h = max
{i,j,k:qi,qj∈Tk}

|qi − qj | (32)

Hh = {wh ∈ C0(Ωh) : wh|Th
∈ Pα} (33)

Wh = {wh ∈ Hh :
∫

Ωh

χwh = 0} (34)

where Pα denotes the space of polynomials in n variables of degree less than
or equal to α (Ω ⊂ Rn) and C0 the space of continuous functions.
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If Ω is a polygon then Wh ⊂ W and proposition 3 applies. If moreover, we
assume that all the angles of the triangles are bounded by θ1 > 0 and θ2 < π
when h→ 0 then the proposition 4 can be applied.

With (33) Wh is of finite dimension, say M-1. Let {w′i}1...M−1 be a basis
of Wh ; if we write ϕh in this basis, we have

ϕh(x) =
M−1∑

1

ϕiw
′i(x) (35)

and if we replace w′
h by w′j in (25) we get a (M − 1)× (M − 1) linear system.

AΦ = G (36)

with Φ = {ϕ1..ϕM−1}, Aij =
∫

Ω

∇w′i∇w′j , Gj =
∫

Γ

gw′j (37)

Example 1
With α = 1 a basis of Wh can easily be constructed. Let {λk

i (x)}i=1...n+1

denote the barycentric coordinates of x in Tk with respect to its n+ 1 vertices
then the number of basis functions is N − 1 (i.e. M = N) that is one

less than the total number of vertices {q}i=1...N . Let wi be the canonical basis
function of Lagrangian elements of order 1:

wi(x) = λk
i (x) if k is such that x ∈ Tk, (qi ∈ Tk) (38)

= 0 otherwise

then

w′i(x) = wi(x) −
∫
Ω
χwi(x)∫
Ω
χ

i = 1..N − 1 (39)

is a basis of Wh.

Remark :
As w′i differs from wi only by a constant, thanks to (14), one can use

either wi or w′i in (37). It makes no difference. The effect of this construction
is simply to pull out a function wi to construct a basis. This procedure has the
inconvenience of distinguishing a vertex from others (since we have pulled the
wi associated to it) and sometimes introduces a local numerical error around
the pulled vertex because the linear system is poorly conditioned there. We
will see below that the conjugate gradient method avoids this inconvenience.

Figure 2.3 : Example of numerical singularity obtained by pulling
a basis function ; we remark in the top middle a distortion of isovalue lines .
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Example 2
With α = 2 the number of basis functions is equal to the number of vertices

qi plus the midpoints of the sides (edges) minus one. We can also construct it
by (39) but with λi

k replaced by λi
k(2λi

k − 1) for the basis functions associated
to vertices and by 4λi

kλ
j
k for the basis functions associated to the midpoints of

the sides (edges).

2.3. Resolution of the linear system by the conjugate gradient
method.

The linear system (36) obtained by the finite element method has a peculiar
structure which we must exploit to optimize the resources of the computer. The
conjugate gradient method (cf. Polak [193], Lascaux-Theodor [142], Luenberger
[162] for example) makes use of the sparse structure of the linear system to
speed the solution when properly preconditioned. This algorithm applies also
to positive semi-definite linear systems; thus we can construct the system (36),
(37) with all the basis functions wi. The solution obtained is more regular (cf.
figures 3, 4).

Figure 2.4: Result obtained by the conjugate gradient method
without removing the basis function.

Let us recall the conjugate gradient method briefly.

Notation:
Let x ∈ RN be an unknown such that Ax = b , where A ∈ RN×N , AT = A,

b ∈ RN .

Let C be a positive definite matrix and < , >C the scalar product associ-
ated with C:

< a, b >C= aTCb; ||a||C = (aTCa)
1
2 (40)

Algorithm 1
0. Initialization:
Choose C ∈ RN×N positive definite (preconditioning matrix ), ε small

positive, x0such that Cx0 ∈ ImA (0 for example), and set g0 = h0 =
−C−1(Ax0 − b), n = 0.

1 Calculate :

ρn =
< gn, hn >C

hnTAhn
(41)

xn+1 = xn + ρnhn (42)
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gn+1 = gn − ρnC−1Ahn (43)

γn =
||gn+1||2C
||gn||2C

(44)

hn+1 = gn+1 + γnhn (45)

2 If || gn+1||C < ε , stop else increment n by 1 and go to 1.

Note that C is never inverted and that y = C−1 z is a short hand notation
for ”solve Cy = z”

Remark 1
This algorithm can be viewed as a particular case of a more general algo-

rithm used to find the minimum of a function (see below). Here it is applied
to the computation of the minimum of E(x) = xTAx/2− bTx . One can verify
that

i) ρn given by (1) is also the minimum of E(xn + ρhn)
ii) −gn+1 given by (43) is also the gradient of E with respect to the scalar

product associated with C, that is :

gn+1 = −C−1(Axn+1 − b) (46)

Proof :

xn+1 = xn + ρnhn <=> Axn+1 = Axn + ρnAhn

⇔ C−1(Axn+1 − b) = C−1(Axn − b) + ρnC−1Ahn

Remark 2
The only divisions in the algorithm are by hnTAhn and ||gn||C . The first

one could be zero if the kernel of A is non empty whereas the second is non zero
by construction; so to prove that the algorithm is applicable even if det(A) = 0
we have to prove that hnTAhn is never zero. But before that let us show
convergence.

Lemma

hjTAhk = 0, ∀j < k (47)

< gk, gj >C= 0, ∀j < k (48)

< gk, hj >C= 0, ∀j < k (49)

Proof :
Let us proceed by the method of induction. Assuming that the property is

true for j < k ≤ n, let us prove that (47)(48)(49) are true for all j < k ≤ n+ 1
.
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i) Multiplying (43) by hj and using (47) and (49):

< gn+1, hj >C=< gn, hj >C −ρn < C−1Ahn, hj >C= 0 − hjTAhn = 0, (50)

if j < n ; If j = n then it is zero by (41).

ii) Using (45):

< gn+1, gj >C=< gn+1, hj − γjhj−1 >C= 0 (51)

by i) above.
iii)Finally, again from (45) we have, if j < n :

hn+1TAhj = (gn+1 + γnhn)TAhj = gn+1TAhj + 0 = gn+1TC
(gj+1 − gj)

ρj
= 0

(52)
where we have used (47) to get the second equality and (43) for the last one.

If j = n, we have to use the definition of γn. Let us show that γn is also
equal to −gn+1TAhn/hnTAhn. We have :

gn+1TAhn

hnTAhn
=
< gn+1 − gn, gn+1 >C

< gn+1 − gn, hn >C
=

−||gn+1||2C
< gn, hn >C

(53)

We have used (43) for the first equation and (48) and (49) for the second.
We leave to the reader the task of showing that (47),(49) are true for k = 1.

We end the proof by showing that hnTAhn is never zero.
Indeed if n is the first time it is zero then we have:

0 = hnTAhn, hn ∈ ImA ⇒ hn = 0 ⇒ gn = −γn−1hn−1

= gn−1 − ρn−1C−1Ahn−1

so by (41)

−γn−1|hn|2 =< gn−1hn−1 > −ρn−1hn−1TAhn−1 = 0

but by hypothesis hn−1 is not zero.

Corollary
The algorithm converges in N iterations at the most.

Proof :
Since the gn are orthogonal there cannot be more than N of them non

zero. So at iteration n = N , if not before, the algorithm produces gn = 0 that
is C−1(Axn − b) = 0.
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Choice of C
However it is out of question to do N iterations because N is a very big

number. One can prove the following result :

Proposition 5:
If x∗ is the solution and xkis the computed solution at the kth iteration,

then

< xk − x∗, A(xk − x∗) >C≤ 4(
µC

A − 1
µC

A + 1
)2k < x0 − x∗, A(x0 − x∗) >C

where µC
A is the condition number of A (ratio between the largest and smallest

eigenvalues of Az = λCz ) in the metric introduced by C.

Proof : see Lascaux-Theodor [9], for example.

One can also prove superconvergence results, that is the sequence {xk}
converges faster than all the geometric progressions (faster than rk for all r)
but this result assumes that the number of iterations is large with respect to
N .

We can easily verify that if x0 = 0 and C = A we get the solution in one
iteration. So this is an indication that one should choose C ’near’ to A. When
we do not have any information about A, experience shows that the following
choices are good in increasing order of complexity and performance:

Cij = Aiiδij (54)

Cij = Aij , ∀i, j |i− j| < 2 (55)

Cij = 0, otherwise.

C = incompletetely factorized matrix of A. (56)

We recall the principle of incomplete factorization (Meijerink-VanderVorst
[172], Glowinski et al [97]):

We construct the Choleski factorization L′ of A (= L′L′T ) and put

Lij = 0 if Aij = 0, Lij = L′
ij otherwise.

One can also construct directly L instead of L′by putting to 0 all the elements
of C′ which correspond to a zero element of A, during the factorization (cf [10])
but then the final matrix may not be positive definite.

Proposition 6
If A is positive semi definite, b is in the image of A, and Cx0 is in the

image of A, then the conjugate gradient algorithm converges towards the unique
solution x′ of the linear system Ax = b; which verifies Cx′ ∈ Im A.
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Proof :
From (42) and (45) we see that

Cxn, Cgn, Chn ∈ ImA ⇒ Cxn+1, Cgn+1, Chn+1 ∈ ImA

The property is thus proved by induction.

2.4 Computation of nozzles

If Ω is a nozzle we take, in general, φ zero on the walls of the nozzle and
g = u∞.n, u∞ constant at the entrance and exit of the nozzle.

The engineer is interested in the pressure on the wall and the velocity field.
One sometime solves the same problem with different boundary conditions at
the entrance Γ1 and at the exit Γ2 of the nozzle :

−∆ϕ = 0 in Ω, ϕ|Γ1 = 0, ϕ|Γ2 = constant,
∂ϕ

∂n
|∂Ω−Γ1∪Γ2 = 0. (57)

The same method applies.

Figure 2.5 : Computation of flow in a nozzle . The triangulation
and the level lines of the potential are shown.

2.5. Computation of the lift of a wing profile
The flow around a wing profile S corresponds, in principle, to flow in

an unbounded exterior domain, but we approximate infinity numerically by a
boundary Γ∞ at a finite distance ; so Ω is a two dimensional domain with
boundary Γ = Γ∞ ∪ S.

One often takes u∞ constant and

g|Γ∞ = u∞.n, g|S = 0 (58)

Unfortunately, the numerical results show that with these boundary conditions,
the flow generally goes around the trailing edge P . As P is a singular point of
Γ, |∇ϕ(x)| tends to infinity when x→ P and the viscosity effects (η and ζ) are
no longer negligible in the neighborhood of P (see figure 6). The modeling of
the flow by (1)-(2) is not valid and (2) has to be replaced by (ω constant) :

∇× u = ωδΣ

where δΣ is the Dirac function on the stream line Σ which passes through P .

Figure 2.6 Flow around an airfoil; Σ is the wake.
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One takes then Ω − Σ as the domain of computation. So we have to add
a boundary condition on Σ. Since Σ is a stream line :

∂ϕ

∂n
|Σ = 0. (59)

But as u is continuous along Σ we also have :

∂ϕ

∂σ
|Σ+ =

∂ϕ

∂σ
|Σ− .

by integrating this equation on Σ we obtain :

∂

∂σ
(ϕ|Σ+ − ϕ|Σ−) = 0 i.e. for some constant β ϕ|Σ+ − ϕ|Σ− = β (60)

where β is a constant which is to be determined with the help of (59) written
on P , or better by :

|∇ϕ(P+)|2 = |∇ϕ(P−)|2 (61)

which comes out to be the same but is interpreted as a continuity condition on
the pressure.

It can be proved using conformal mappings that with (60)-(61) the solution
ϕ does not depend on the position of Σ (which is not known a priori) but with
(59) this is not the case: the solution depends on the position of Σ. So we solve

−∆ϕ = 0 in Ω − Σ (62)

ϕ|Σ+ − ϕ|Σ− = β (63)

|∇ϕ(P+)|2 = |∇ϕ(P−)|2 (64)

∂ϕ

∂n
|∂Ω = g; (65)

equation (64) which is called the Joukowski condition . It deals with the con-
tinuity of the velocity and also of the pressure .

To solve (62)-(65) a simple method is to note that the solution of (62)-
(63)-(65) is linear in β :

ϕ(x) = ϕ0(x) + β(ϕ1(x) − ϕ0(x)) (66)

- ϕ0 is the solution of (62),(65) and (53) with β = 0, i.e.

∆ϕ0 = 0,
∂ϕ

∂n
|Γ = g, ϕ continuous across Σ

- ψ = ϕ1 − ϕ0 is the solution of (62),(65) with g = 0 and (63) with β = 1, i.e.
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∆ψ = 0,
∂ψ

∂n
|Γ = 0, ψ|Σ+ − ψ|Σ− = 1, ∇ψ|Σ+ = ∇ψ|Σ−

The variational formulation of this second problem is: find ϕ ∈W p
1 such that

∫
Ω

∇ψ∇w = 0 ∀w ∈ W p
0 ;

W p
β = {ψ ∈ H1(Ω) : ψ|Σ+ − ψ|Σ− = β, ∇ψ|Σ+ = ∇ψ|Σ−}

We find β by solving (64) with (66) : it is an equation in one variable β.
We can show that the lift Cf (the vertical component of the resultant of the
force applied by the fluid on S) is proportional to β :

Cf = βρ|u∞| (67)

where ρ is the density of the fluid.

Practical Implementation :
In practice we can use P 1 finite elements though the Joukowski condition

requires that we know ∇ϕ at the trailing edge ; with P 1, ∇ϕ is piecewise
constant and so the triangles should be sufficiently small near the trailing edge.
In [11] a rule for refining the triangles near the trailing edge (to keep the
error O(h)) :can be found the size of the triangles should decrease to zero
as a geometric progression as they approach P and the rate of the geometric
progression is a function of the angle of the trailing edge. Experience shows
that one can apply the condition (61) by replacing P+ and P− by the triangles
which are on S and have P as a vertex.

Figure 2.7 Configuration of the triangles near the trailing edge.

Figure 2.8 : Example of numerical results : a) equipotentials
b) triangulation around the neighborhood of the profile

c) streamlines with lift d) and without lift.

Another method, which is no doubt better from the theoretical point of
view, but very costly in terms of computer programming time is to include a
special basis function in place of the one associated with P , to represent the
singularity. It can be shown that ϕ(x) is like |x−P |π/(2π−β) in the neighborhood
of the trailing edge, where β is the angle of the trailing edge. One can find the
complete proof in Grisvard [102], and we give here only an intuitive justification.



INTRODUCTION 39

Let us work in polar coordinates with origin at P and θ = 0 corresponding
to one edge of S and θ = 2π− β for the other. Let f be the limit of ϕ(r, θ)/rm

(m not necessarily an integer), i.e.

ϕ(r, θ) = rmf(θ) + o(rm)

The equations for ϕ are:

∂ϕ

∂n
|S− = r−1 ∂ϕ

∂θ
(r, 0) = 0 ⇒ f ′(0) = 0

∂ϕ

∂n
|S+ = r−1 ∂ϕ

∂θ
(r, 2π − β) = 0 ⇒ f ′(2π − β) = 0

∆ϕ = r−1 ∂

∂r
r
∂ϕ

∂r
+ r−2 ∂

2ϕ

∂θ2
= 0 ⇒ m2f(θ) + f ′′(θ) = 0

The general solution of the last equation being f(θ) = a sin(m(θ−θ0)) the
first two conditions give :

θ0 = 0, m(2π − β) = π

that is m = π/(2π − β). We have therefore in the neighborhood of P:

ϕ(r, θ) = ar
π

(2π−β) sin[
π

(2π − β)
θ] + o(r

π
(2π−β) )

which suggests taking a basis function associated with P as

w′′(r, θ) = r
π

(2π−β) sin[
π

(2π − β)
θ]Ip(r)

where Ip(r) is a smooth function which is equal to unity near P and zero far
from P .

Results using this technique can be found in Dupuy [70], for example.

3.POTENTIAL SUBSONIC STATIONARY FLOWS :

3.1 Variational formulation

One still assumes that the effects of viscosity and thermal diffusion are
negligible but does not assume that the fluid is incompressible. If the flow is
stationary, irrotational at the boundary and behind all shocks if any, then one
can solve the transonic potential equation

∇.[(k − 1
2
|∇ϕ|2) 1

γ−1∇ϕ] = 0 in Ω (68)

The velocity is still given by
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u = ∇ϕ (69)

the density by

ρ = ρ0(k − 1
2
|∇ϕ|2) 1

γ−1

and the pressure by

p = p0(
ρ

ρ0
)γ (70)

The constants p0, ρ0 are usually known at the outer boundary. The boundary
conditions are given on the normal flux ρu.n rather than on the normal velocity:

(k − 1
2
|∇ϕ|2) 1

γ−1
∂ϕ

∂n
= g on Γ (71)

To simplify the notation, let us put

ρ(∇ϕ) = ρ0(k − 1
2
|∇ϕ|2) 1

γ−1 (72)

Proposition 7
Problem (44)-(45) is equivalent to a variational equation. Find

ϕ ∈W = {w ∈ H1(Ω);
∫

Ω

χw = 0}

(where χis any given function with non zero mean on Ω ) such that
∫

Ω

(k − 1
2
|∇ϕ|2) 1

γ−1∇ϕ∇w =
∫

Γ

gw ∀w ∈W ; (73)

Moreover, any solution of (49) is a stationary point of the functional

E(ϕ) = −
∫

Ω

(k − 1
2
|∇ϕ|2) γ

γ−1 − γ

γ − 1

∫
Γ

g (74)

Proof :
To prove the equivalence between (68) and (73)-(74) we follow the proce-

dure of proposition 1. Let us consider now

E(ϕ+ λw) =

−
∫

Ω

(k − 1
2
|∇(ϕ+ λw)|2) γ

γ−1 − γ

γ − 1

∫
Γ

g(ϕ+ λw)

We have :

E′,λ (ϕ+ λw) =
γ

γ − 1

∫
Ω

(k− 1
2
|∇(ϕ+ λw|2) 1

γ−1∇(ϕ+ λw)∇w − γ

γ − 1

∫
Γ

gw
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So all the solutions of (49) are such that

E′,λ (ϕ+ λw)|λ=0 = 0

and now the result follows.

Proposition 8
If b < (2k(γ − 1)/(γ + 1) ) 1/2 then E defined by (70) is convex in

W b = {ϕ ∈W : |∇ϕ| ≤ b} (75)

Proof :
Let us use (71) to calculate E,λλ in the direction w :

γ − 1
γ

d2E

dλ2
|λ=0 =

∫
Ω

ρ(∇ϕ)|∇w|2 − 1
(γ − 1)

∫
Ω

ρ(∇ϕ)2−γ(∇ϕ.∇w)2

=
∫

Ω

ρ(∇ϕ)2−γ |∇w|2(k − 1
2
|∇ϕ|2[1 +

2
γ − 1

(
∇ϕ.∇w
|∇ϕ||∇w| )

2]

≥
∫

Ω

ρ(∇ϕ)2−γ |∇w|2(k − 1
2
|∇ϕ|2(1 +

2
γ − 1

))

≥ (k − 1
2
b2)

2−γ
γ−1 (k − b2

2
γ + 1
γ − 1

)||∇w||20

Corollary 1
If b < (2k (γ − 1)/(γ + 1) ) 1/2 the problem

min
ϕ∈W b

−
∫

Ω

(k − 1
2
|∇ϕ|2) γ

γ−1 − γ

γ − 1

∫
Γ

gw (76)

admits a unique solution.

Proof :
W b is closed convex, E is W − elliptic,convex, continuous.

Corollary 2
If the solution of (76) is such that |∇ϕ| = b at all points, then it is also

the solution of (69).

3.2 . Discretisation

Proposition 9
Let b < (2k (γ − 1)/(γ + 1) ) 1/2 and let
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W b
h = {ϕh ∈Wh : |∇ϕh| ≤ b} (77)

Assume that W b
h and W b satisfy (24) with strong convergence in W 1,∞ ; let us

approximate (75) by

min
ϕh∈W b

h

−
∫

Ω

(k − 1
2
|∇ϕh|2)

γ
γ−1 − γ

γ − 1

∫
Γ

gϕ. (78)

If {ϕh}h are solutions in W 1,∞then ϕh → ϕ the solution of (76).

Proof :
As |∇ϕh| is bounded by b, one can extract a subsequence which converges

weakly in W 1,∞(Ω) weak *. Let ψ be its limit.
Let ϕ be the solution of (76) and Πhϕ the interpolate of ϕ in the sense of

(24). Let E be the functional of problem (78). Then since W b
h ⊂W b we have :

E(ϕ) ≤ E(ϕh) ≤ E(Πhϕ).

The weak semi-continuity of E and the fact that ϕh is the solution of (78)
implies that any element w of W b is the limit of {wh}, wh ∈ W b

h in W 1,∞

(limh→0||w − wh||1,∞ = 0)

E(ϕ) ≤ E(ψ) ≤ lim inf E(ϕh) ≤ limE(Πhϕ) = E(ϕ) (79)

but ϕ is the minimum and so

E(ϕ) = E(ψ). (80)

The strong convergence of ϕh towards ϕ in H1(Ω) is proved by using the
convexity and the W b -ellipticity of E.

3.3. Resolution by conjugate gradients :

To treat the constraint ” |∇ϕ| < b ” the simplest method is penalization.
We then solve :

min
ϕh∈Wh

E′(ϕh) (81)

E′(ϕh) = −
∫

Ω

(k − 1
2
|∇ϕh|2)

γ
γ−1 − γ

γ − 1

∫
Γ

gϕ+ µ

∫
Ω

[(b2 − |∇ϕh|2)+]2

where µ is the penalization parameter which should be large. The penalization
is only to avoid the divergence of the algorithm if in an intermediate step the
bound b is violated. If the solution reaches the bound b in a small zone then
Corollary 2 doesn’t apply any more; (experience shows that outside of this zone
the calculated solution is still reasonable); but in this case it is better to use
augmented Lagrangian methods (cf Glowinski [95]).
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Figure 2.9: Computed result of a transonic nozzle
The figure represents the isovalues of |∇ϕ|, obtained by solving (81).

Taking into account the fact that Wh is of finite dimension, (81) is an
optimization problem without constraint with respect to coefficients of ϕh on
a basis of Wh :

ϕh(x) =
N−1∑

1

ϕiw
i(x)

min
{ϕ1..ϕN−1}

E′(ϕh)

To solve (81), we use the conjugate gradient method with a preconditioning
constructed from a Laplace operator with a Neumann condition. Let us re-
call the preconditioned conjugate gradient algorithm for the minimization of a
functional.

Algorithm 2 (Preconditioned Conjugate Gradients) :

Problem to be solved: min
z∈RN

E(z) (82)

0. Choose a preconditioning positive definite matrix C; choose ε > 0 small, M
a large integer. Choose an initial guess z0. Put n = 0.

1. Calculate the gradient of E with respect to the scalar product defined
by C; that is the solution of

Cgn = −∇zE(zn) (83)

If ||gn||C < ε stop
else if n = 0 put h0 = g0 else put

γ =
||gn||2C

||gn−1||2C
(84)

hn = gn + γhn−1 (85)

3 . Calculate the minimizer ρn solution of

min
ρ

{E(zn + ρhn)} (86)

Put

zn+1 = zn + ρnhn (87)

If n < M increment n by 1 and go to 1 otherwise stop.

Proposition 10
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If E is strictly convex and twice differentiable, algorithm 2 generates a
sequence {zn} which converges (ε = 0, M = +∞) towards the solution of
problem (82).

The proof can be found in Lascaux-Theodor [142] or Polak [193] for exam-
ple. Let us recall that convergence is superlinear (the error is squared every N
iterations) and that practical experiments show that

√
N iterations are enough

or even more than adequate when we have found a good preconditioner C.
With a good preconditioner, the number of iterations is independent of N .
This is the case with problem (81) when C is the matrix A constructed in (37).
The linear systems (83) could be solved by algorithm 1. As in the linear case,
the algorithm works even if the constraint on the mean of ϕh is active provided
that the gradient gn is projected in that space.

Gelder’s Algorithm [86]:
The fixed point algorithm, introduced by Gelder [86], when it converges

gives the result very fast :

∇.[(k − 1
2
|∇ϕn|2) 1

γ−1∇ϕn+1] = 0 in Ω (88)

(k − 1
2
|∇ϕn|2) 1

γ−1
∂ϕn+1

∂n
= g on Γ (89)

It is conceptually very simple and easy to program. Once discretised by finite
elements (88), (89) gives a linear system at each iteration, but the convergence
is not guaranteed; however experience shows that it works well when the flow
is everywhere subsonic. The coefficients depend on the iteration number n ; so
one should avoid direct methods of resolution. If one solves (88) by algorithm
1 (conjugate gradient) then it becomes a method which from a practical point
of view is very near to algorithm 2.

4. TRANSONIC POTENTIAL FLOWS :

4.1 Generalities :
If the solution of (75) is such that |∇ϕ| = b almost everywhere on I ⊂ Ω,

measure(I) > 0 then we cannot solve (68) by (75).
From physics, we know that when the modulus of the velocity |∇ϕ| is

superior to [2k(γ − 1)/(γ + 1)] 1/2 the flow is supersonic. If we linearize (68)
in the neighborhood of ϕ, we get :

∇.[ρ∇δϕ− 1
γ − 1

ρ2−γ∇ϕ∇δϕ] = 0 (90)

One can show by the same calculation as (74) that this equation is locally
elliptic in the subsonic zone and locally hyperbolic in the supersonic zone. Fur-
thermore numerical experience shows that (68) has many solutions in general
C0 but not C1 (|∇ϕ| is discontinuous), the discontinuities are where |∇ϕ| is



INTRODUCTION 45

equal to the speed of sound. We have to impose an additional condition to
avoid the jumps in the velocities (shocks) going from subsonic to supersonic in
the flow direction.

We have seen in Chapter 1 that the entropy s is constant if η , ζ, κ are
zero ; but this is no longer valid when the velocities are discontinuous ; when
η is small, for example, η∆u becomes big. It is shown in Landau-Lifchitz [141]
that the entropy created by the shock is proportional to the third power of the
jumps in the velocity across the shock in the flow direction : the entropy being
increased through shocks it can only be produced by supersonic to subsonic
shocks. An original method for imposing this condition (called an entropy
condition) has been proposed by Glowinski [95] and studied by Festauer et al
[77], Necas [180] :

Given 2 positive constants b and M , let

W b
M = {ϕ ∈ H1(Ω) : −

∫
Ω

∇ϕ∇w ≤M

∫
Ω

w ∀w ≥ 0 (91)

w ∈ H1(Ω), |∇ϕ| ≤ b,

∫
Ω

χϕ = 0}

The variational inequality in (91) means that

∆ϕ ≤M in Ω (92)

which effectively avoids all positive jumps of dϕ/dx in the x-direction if φ is
smooth in the y-direction.

Results leading towards the existence of solutions for (68)(71)(92) can be
found in Kohn-Morawetz [135]. The following property is a key to show that
subsequences converge in W b

M .

Proposition 11
The space W b

M is compact convex in H1(Ω).

Proof (Festauer et al [77])
The convexity of W b

M is clear ; let us show that it is compact. Let us
define

Gn(w) =
∫

Ω

(∇ϕn.∇w +Mw) (93)

G(w) =
∫

Ω

(∇ϕ∇w +Mw) (94)

If ϕn → ϕ in H1(Ω) weak* then Gn → G in H1(Ω) weak* and as Gn(w) ≥
0 ∀w we have, from a lemma of Murat [178], Gn → G strongly in W 1,∞(Ω)
weak*

But

|∇(ϕn − ϕ)|2o = (Gn −G)(ϕn − ϕ) → 0 (95)
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The functional used for the computation of subsonic flows is no longer
convex in the supersonic zones; one must find another functional. A possibility
is to minimize the square of the norm of the equation:

min
ϕ−ϕΓ∈H1

0 (Ω)∩W b
M

||∇.[(k − 1
2
|∇ϕ|2) 1

γ−1∇ϕ]||2−1 (96)

The choice of a suitable norm is very important to insure existence of solution
and a fast algorithm. Here H−1 is clearly a good choice but it requires ϕ|Γ
to be known (Dirichlet boundary conditions). With Neumann conditions (also
with mixed conditions) one can solve:

min
ϕ∈W b

M

{
∫

Ω

|∇ε|2dx : (97)

(∇ε,∇w) = (ρ(∇ϕ)∇ϕ,∇w) −
∫

Γ

gw ∀w ∈ H1(Ω}

Indeed if we let ε be defined by

−∆ε = ∇.[(k − 1
2
|∇ϕ|2) 1

γ−1∇ϕ], ε ∈ H1
0 (Ω)

then (96) can be written equivalently as

min
ϕ−ϕΓ∈H1

0 (Ω)∩W b
M

{
∫

Ω

|∇ε|2}.

A finite element discretisation of (97) is

min
ϕh∈W b

hM

{
∫

Ω

|∇εh|2 : (98)

(∇εh,∇wh) = (ρ(∇ϕh)∇ϕh,∇wh) −
∫

Γ

gwh ∀wh ∈Wh}

It should be noted that this problem always has a solution since it is the min-
imization of a positive differentiable function in a finite dimensional bounded
space. But ϕh will be an approximation to the solution of the transonic prob-
lem only if εh ≈ 0; and the set of points on which the constraints of W b

hM are
active must tend to a set of measure zero.

In Glowinski [95] details of the conjugate gradient solutions of this problem
can be found. We refer to Lions [154] for a thorough study of optimal control
problems.

4.2 . Numerical considerations

Practically, experience shows that the constraint (92) is always saturated
and so the calculated solution depends on M (Cf. Bristeau et al [44]) and that
the choice of M is thus critical.
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In the actual computation one may prefer to use ”upwinding” or ”artificial
viscosity” to take care of the entropy condition.

Upwinding will be studied in the following chapter. Let us give a simple
version due to Hughes [115].

Equation (49) is approximated by

∫
Ω

(k − 1
2
|∇ϕn

h |2d)
1

γ−1∇ϕn+1
h ∇wh =

∫
Γ

gwh ∀wh ∈ Wh ϕn+1 ∈Wh (99)

where Wh is, for example, a P 1 conforming triangular finite element approxi-
mation of W and where (∇ϕh)d is calculated on the triangle Tj(k), nearest to
Tk ”upwind” of the flow instead of calculating it on the triangle Tk

(∇ϕn
h)d|Tk

= ∇ϕn|Tj(k)

Numerical results with this method can be found in Hughes [115] or Dupuy
[70] for example.

Artificial viscosity will also be studied in chapter 3 ; one can add viscous
terms to the equation (they were there in the Navier-Stokes equations and
because of them the entropy can only grow). Following Jameson [121] (see also
Bristeau et al.[44]), we consider

∫
Ω

(k − 1
2
|∇ϕn

h|2)
1

γ−1∇ϕn+1
h ∇wh + h

∫
Ω

[
∂

∂s
[(u′n2 − c2)+]∇ϕn+1

h ∇ρ′n
h ]whdx

(100)

=
∫

Γ

gwh

where the u′n is an upwind approximation of |∇ϕn
h |, c is the speed of sound

and ρ′nh is an upwind approximation of (k- (1/2) |∇ϕn
h|2) 1/γ−1 ; ∂f/∂s stands

for (u/|u|)∇f, the derivative in the direction u ; this upwind approximation
can be constructed as above or by

(∇ϕn
h)d|Tk

= (1 − ω)∇ϕn
h |Tk

+ ω∇ϕn
h |Tj(k)

where ω is a relaxation parameter.
Finally, notice that (99) and (100) are Gelder-type algorithms to solve

underlying nonlinear equations; other methods can be used such as the H−1

least-square method presented above ((96)-(98)) or GMRES, a quasi Newton
algorithm which will be studied in chapter 5 ; results for these can be found in
Bristeau et al [44].



48 FINITE ELEMENT METHODS FOR FLUIDS

5. VECTOR POTENTIALS :

Let us return to (1), (2) and study the possibility of calculating u by
u = ∇× ψ. For simplicity, we shall assume that Ω is simply connected. Let Γ
be piecewise twice differentiable and Γi be its simply connected components.

Proposition 12 :
Let u ∈ L2(Ω) such that ∇.u ∈ L2(Ω). Let φ ∈ H1(Ω)/R the solution of

(∇φ,∇w) = (u,∇w) ∀w ∈ H1(Ω)/R (101)

and ψ ∈ [H1(Ω)/R]3 the solution of

(∇× ψ,∇× v) + (∇.ψ,∇.v) = (u,∇× v) ∀v ∈ V (102)

ψ ∈ V = {v ∈ H1(Ω)3 : v × n|Γ = 0,
∫

Γi

v.n = 0}, (103)

then

u = ∇φ+ ∇× ψ (104)

Proof :
The proof being rather long, we shall give only the main ideas and the

details can be seen in Bernardi [30], Dominguez et al [67], Eldabaghi et al [73].
First let us note that (101) et (102) are well posed so that φ and ψ are unique.
Then we see that the solution of (102) satisfies ∇.ψ = 0. In fact, by taking v
= ∇q in (102) with q zero on Γ (because of (103)),we see :

(∇.ψ,∆q) = 0 ∀q ∈ H2(Ω) ∩H1
0 (Ω) such that

∫
Γ

∂q

∂n
= 0 (105)

that is we almost have

(∇.ψ, g) = 0 ∀g ∈ L2(Ω) (106)

Nevertheless, one can prove, without much difficulty, that (105) implies ∇.ψ =
0. Now let

ξ = ∇× ψ + ∇φ− u (107)

we see that (101) implies

∇.ξ = 0 ξ.n = n.∇× ψ (108)

and (102) implies

∇× ξ = 0 (109)



INTRODUCTION 49

because of the following identity :

(a∇× b) = (∇× a, b) +
∫

Γ

a.(n× b) (110)

Besides, if τ1, τ2 are two vectors tangential to Γ and orthogonal to each other
then

ψ × n = 0 ⇒ ψ.τi = 0 ⇒ (ψ.τj),τj = 0 (111)

so that

n.∇× ψ = −(ψ.τ1),τ2 + (ψ.τ2),τ1 = 0; (112)

the proof is completed by using the following property :

∇× ξ = 0, ∇.ξ = 0, ξ.n|Γ = 0 ⇒ ξ = 0. (113)

Proposition 13 :
With the same conditions as in proposition 12, we can also use the follow-

ing decomposition :
Let φ be the solution in H1(Ω)/R of

(∇φ,∇w) = −(∇.u, w) ∀w ∈ H1(Ω)/R (114)

and ψ ∈ H1(Ω)3 the solution of

(∇× ψ,∇× v) + (∇.ψ,∇.v) = (u,∇× v) ∀v ∈ V (115)

ψ × n = ∇q on Γ,
∫

Γi

ψ.n = 0 (116)

where q is the solution of the Beltrami equation on Γ.

∑
i=1,2

∫
Γ

∂q

∂τi

∂w

∂τi
=

∫
Γ

u.nw ∀w ∈ H1(Γ) (117)

where τi are two orthogonal tangents to Γ. Then

u = ∇× ψ + ∇ϕ

Proof :
The proof is the same as that of proposition 12, except for (111) onward.

Instead of (112), we have:

n.∇× ψ = −(
∂2q

∂τ2
1

+
∂2q

∂τ2
2

) = u.n (118)

where the last equality is due to (117). Finally, we also have ξ.n = 0 and so
ξ = 0.
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We have therefore two decompositions of u. In the first one, ∂φ/∂n = u.n
whereas in the second n.∇ × ψ = u.n and ∂φ/∂n = 0.

If ∇.u = 0 in order that φ ≡ 0, one has to use the second decomposition. So
we see that the potential vector resolution of incompressible 3D flow requires,
in general,

- the solution of a Beltrami equation on the boundary (117),
- the solution of a vectorial elliptic equation (115).

Remark
An alternative form for (117) is

∫
Γ

∇q∇w − ∂q

∂n

∂w

∂n
=

∫
Γ

u.nw, ∀w ∈ H1(Γ)

6. ROTATIONAL CORRECTIONS:

We can use proposition 12 and the transonic equation (64) to construct a
method of solving the stationary Euler equations :

∇.(ρu) = 0 (119)

∇.(ρu ⊗ u) + ∇p = 0 (120)

∇.[ρu(
1
2
u2 +

γ

γ − 1
p

ρ
)] = 0 (121)

As in chapter 1, we deduce from (121) that pρ−1γ/(γ − 1) + u2/2 is constant
on the streamlines, that is, if x∞ is the upstream intersection of the stream
line with Γ, we have

γ

γ − 1
p

ρ
+
u2

2
= H(x∞) on {x : x′ = u(x), x(0) = x∞} (122)

By definition of the reduced entropy S, we have

p

ργ
= S (123)

and S is constant on the streamlines, except across the shocks. In fact, ω = ∇×
u satisfies

0 = ∇.(ρu⊗ u) + ∇p = −ρu×∇× u+ ∇p+ ρ∇u2

2
(124)

= −ρu× ω + ρ∇H − ργ

γ − 1
∇S.

and so ρu ∇S = 0, but this calculation is not valid if u is discontinuous.
However we can deduce from (124) that
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ω = (u×∇H − ργ−1

γ − 1
u×∇S)|u|−2 + λρu (125)

where λ is adjusted in such a way that ∇.ω = 0, i.e.

ρu∇λ = −∇.[(u−2)(u ×∇H − ργ−1u× ∇S
γ − 1

)] (126)

Let us now use proposition 12 ; we get the following algorithm :

Algorithm
O. Choose u continuous and calculate the streamlines
1. Calculate a new H by transporting H(x∞) on the streamlines and a

new S by transporting S(x∞) on the streamlines and if necessary adding a
jump [S] calculated from the Rankine Hugoniot conditions across the shocks
(conservation of [ρu], [ρu2 + p], [u2/2 + γp/(γ − 1)ρ]).

2. Calculate ω by (125)with ρ calculated by (122) and (123), i.e.

ρ(u) =
γ − 1
γS

(H − 1
2
u2)]

1
γ−1 (127)

and λ calculated by (126).
3 . Calculate ψ by resolving (102) (we shall apply (110) to calculate the

right hand side).
4 . Calculate φ by solving (119), i.e. with (127) :

∇.[ρ(∇φ + ∇× ψ)] = 0 ρ
∂φ

∂n
|Γ = g (128)

5 . Put u = ∇φ + ∇ × ψ and return to 1.

We remark that when ω << 1, ψ is small so all that remains is (128) i.e.
the transonic equation. This algorithm is therefore a rotational correction to
the transonic equation. The convergence of the algorithm is an open problem
but it seems to be quite stable (see El Dabaghi et al [73]) and it gives good
results when ω is not too large. From a practical point of view, the main
difficulty remains in the identification of shocks and applying the Rankine-
Hugoniot condition in step 1 (see Hafez et al [105] or Luo [161] for an alternative
method).

Finally, we see that it requires the integration of 3 equations of the type :

u∇ξ = f, ξ|Σ given; (129)

this will be treated in the next chapter.

Other decompositions have been used to solve the Euler equations. An
example is the Clebsch decomposition used by Aker et al. [ 71] and Zijl [242]
u = ∇ϕ + s∇ψ where ϕ, s, ψ are scalar valued functions. Extension of these
methods to the Navier-Stokes equations can be found in El Dabaghi et al [73],
Ecer et. al. [71], Zijl [242 ].
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CHAPTER 3 :

CONVECTION DIFFUSION EQUATIONS

1. INTRODUCTION
The following PDE for φ is called a linear convection-diffusion equation:

φ,t + aφ+ ∇.(uφ) −∇.(ν∇φ) = f (1)

where a(x, t) is the dissipation coefficient (positive), u(x, t) is the convection
velocity and ν(x, t) is the diffusion coefficient (positive).

For simplicity we assume that a = 0, as is often the case in practice. All
that follows, however, applies to the case a > 0; for one thing when a is constant
we have:

(eatφ),t = eat(φ,t + aφ)

so with such a change of function one can come back to the case a = 0; secondly
the diffusion terms and the dissipative terms have similar effects physically.

These equations arise often in fluid mechanics. Here are some examples :
- Temperature equation for θ for incompressible flows,
- Equations for the concentration of pollutants in fluids,
- Equation of conservation of matter for ρ and the momentum equation in

the Navier-Stokes equations with φ = u although these equations are coupled
with other equations in which one could observe other phenomena than that
of convection-diffusion.

In general, ν is small compared to UL ( characteristic velocity × charac-
teristic length ) so we must face two difficulties:

- boundary layers,
- instability of centered schemes.

On equation (1) in the stationary regime when ν = 0 we shall study first
three types of methods:

- characteristic methods,
- streamline upwinding methods,
- upwinding-by-discontinuity.
Then we will study the full equation (1) beginning with the centered

schemes and finally for the full equation, the three above mentioned methods
plus the Taylor-Galerkin / Lax-Wendroff scheme.
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1.1. Boundary layers

To demonstrate the boundary layer problem, let us consider a one dimen-
sional stationary version of (1) :

uφ,x − νφ,xx = 1 (2)

φ(0) = φ(L) = 0 (3)

where u and ν are constants. The analytic solution is

φ(x) = (
L

u
)[
x

L
− e[(uL/ν)(x/L)] − 1

e(uL/ν) − 1
] (4)

When ν/uL → 0,

φ→ (x− L)
u

if u < 0, except in x = 0,

φ→ x

u
if u > 0, except in x = L.

But the solution of (2) with ν =0 is

φ =
(x− L)

u
(5)

if we take the second boundary condition in (3) and

φ =
x

u
(6)

if we take the first one.
We see that when ν/uL → 0, the solution of (2) tends to the solution

with ν = 0 and one boundary condition is lost; at that boundary, for ν << 1,
there is a boundary layer and the solution is very steep and so it is difficult to
calculate with a few discretisation points.

Figure 3.1 : According to the sign of u, the solution is given by (5) or (6)
with a boundary layer to catch the violated boundary condition.

1.2. Instability of centered schemes :

Finite element methods correspond to centered finite difference schemes
when the mesh is uniform and these schemes do not distinguish the direction
of flow.

Let us approximate equation (2) by P 1 conforming finite elements. The
variational formulation of (2)
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∫ L

0

uφ,xw + ν

∫ L

0

φ,xw,x =
∫ L

0

w, ∀w ∈ H1
0 (]0, L[) (7)

is approximated by

∫ L

0

(uφh,xwh + νφh,xwh,x − wh) = 0 ∀wh continuous P 1 piecewise (8)

and zero on the boundary.
If ]0,L[ is divided into intervals of length h, it is easy to verify that (8) can

be written as

u

2h
(φj+1 − φj−1) − ν

h2
(φj+1 − 2φj + φj−1) = 1, j = 1, ..., N − 1 (9)

where φj = φh(jh), j = 0,...,N = L/h ; φo = φN = 0.
Let us find the eigenvalues of the linear system associated with (9), that

is, let us solve

In(λ) = det




2α− λ 1 − α 0 ...
−1 − α 2α− λ 1 − α ...
... ... ... ...
... −1 − α 2α− λ 1 − α
... 0 −1 − α 2α− λ


 = 0

where we have put α = 2ν/(hu). One can easily find the recurrence relation
for In :

In = (2α− λ)In−1 + (1 − α2)In−2

and so when λ = 2α then I2p+1 = 0 ∀p. This eigenvalue is proportional to ν,
and tends to 0 when ν → 0. So one could foresee that the system is unstable
when ν/hu is very small.

There are several solutions to there difficulties :
1. One can try to remove the spurious modes corresponding to null or

very small eigenvalues by putting constraints on the finite element space (see
Stenberg [220] for example).

2. One can solve the linear systems by methods which work even for non-
definite systems. For example Wornom- Hafez [239] have shown that a block
relaxation method with a sweep in the direction of the flow allows (9) to be
solved without upwinding.

3. Finally one can modify the equation or the numerical scheme so as to
obtain non-singular well posed linear systems: This is the purpose of upwinding
and artificial diffusion.

Many upwinding schemes have been proposed (Lesaint-Raviart [149], Hen-
rich et al. [110], Fortin-Thomasset [83], Baba-Tabata [7], Hughes [115], Benque
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et al. [20], Pironneau [190] ... see Thomasset [229] for example). We shall study
some of them. For clarity we begin with the stationary version of (1).

2. STATIONARY CONVECTION:

2.1. Generalities :

In this section, we shall study the problem

∇.(uφ) = f in Ω φ|Σ = φΓ (10)

where u is given in W 1,∞(Ω), f is given in L1(Ω) and

Σ = {x ∈ Γ : n(x).u(x) < 0} (11)

Figure 3.2 : Σis the part of Γ where the fluid enters ( u.n < 0 ).

A variational formulation for this problem is to search for φ ∈ L2(Ω) such
that

(φ, u∇w) =
∫

Σ

wφΓu.n−
∫

Ω

fw ∀w ∈ H1(Ω) with wΓ−Σ = 0.

Here φΓ ∈ H1/2(Σ), u,∇.u ∈ L2(Ω), f ∈ L2(Ω) is enough but with more regu-
larity there is an explicit solution:

Proposition 1 :
Let X(x;s) be the solution of

X ′ = u(X), X(0) = x. (12)

Let XΓ(x) = X(x; sΓ) be the intersection of {X(x; s) : s < 0} with Σ.
Then

φ(x) = φΓ(XΓ(x))e
−

∫ 0

sΓ
∇.u(X(x;s))ds

+
∫ 0

sΓ

f(X(x; s))e
∫ 0

s
−∇.u(X(x;τ))dτ

ds

(13)
is solution of (10).

Proof :

u.∇φ = X ′∇φ =
d

ds
φ(X(x; s)) = f(X(x; s)) − φ∇.u
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on integration this equation gives (13).

Corollary 1 :
If all the streamlines intersect Σ, then (10) has a unique solution.

Remark :
The solution of (10) evidently has the following properties :
- positivity : f ≥ 0, φΓ ≥ 0 ⇒ φ ≥ 0
- conservativity : ∇.u = 0, f = 0 ⇒ ∫

S
u.nφds = 0 ∀S closed contour ⊂ Ω

− stability : |uφ| (x) ≤ |f | L1(Ω) - u.n(XΓ(x))|φΓ(XΓ(x))|
We seek, if possible, numerical schemes which preserve the above proper-

ties.
A priori the simple P 1 triangular conforming finite elements and

(wh,∇.(uφh)) = (f, wh) ∀wh ∈Wh wh|Σ = 0; φh ∈ Wh φh|Σ = 0 (14)

do not preserve the above properties. In fact, if Ω is a square divided into trian-
gles with the sides parallel to the axes and if u = (1, 0) we obtain the centered
finite difference scheme, which we know is unstable, when φ is irregular:

2(φi+1,j − φi−1,j) + φi+1,j+1 − φi,j+1 + φi,j−1 − φi−1,j−1 = 6hfi,j

where φi,j is the value of φ at vertex ij. The solution of (14) cannot be unique
when ∇.u = 0 since it is a skew symmetric linear system .

Figure 3.3:A uniform triangulation and the corresponding numbering.

2.2. Scheme 1 (characteristics) :

One could propose the following scheme :
1) u is approximated by uh , P 1 conforming, from the values of u at the

vertices qi.
2) The characteristics {X(qi; .)} originating from the nodes {qi} are ap-

proximated by polygonal lines ∪k[ξk ξk+1], ξ0 = qi, where ξk+1 is the inter-
section of the line {ξk − µuh(ξk)}µ>0 with the boundary ∂Tl of the triangle Tl

which contains ξk and ξk − εuh(ξk), ε positive, small (see figure 3.4).
3) (13) is evaluated at x = qi and this defines φ(qi)
4) φh(x) is defined from φ(qi) by a P 1 interpolation.

Proposition 2 :

|φ− φh|∞ ≤ hC (15)

where C depends on |φΓ|1,∞, |f |1,∞, |u|1,∞, |f |∞ and on diam(Ω).
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Proof :
To simplify, let us assume that ∇.u = 0; the reader can build a similar

proof in the general case.
Let us evaluate the error along the characteristics; let Xh(x; .) be the

solution of

X ′ = uh(X), X(0) = x,

approximated as in step 2 above ; then

|X ′
h −X ′| = |uh(Xh) − u(X)| ≤ |(uh − u)(Xh)| + |u(Xh) − u(X)|

≤ |uh − u|∞ + |∇u|∞|Xh −X |
Using the Belman-Gronwall lemma :

|Xh −X | ≤ |uh − u|∞(e|∇u|∞L − 1) (16)

where L is the length of the longest characteristic. Finally,

|φh(qi)−φ(qi)| ≤ |φΓ(XΓh(qi))−φΓ(XΓ(qi))|+ |
∫ sΓh

0

f(Xh)ds−
∫ sΓ

0

f(X)ds|

≤ |∇φΓ|∞|(XΓh −XΓ)(qi)| + L|∇f |∞|Xh −X |∞ + |sΓh
− sΓ||f |∞ (17)

As |sΓh
−sΓ| is the difference in length between the discrete and the continuous

characteristics , so long as the boundary is regular enough with the help of (16)
we obtain the result:

|φh(qi) − φ(qi)|∞ ≤ C|u− uh|∞

Numerical considerations :
This scheme is accurate but rather costly because one has to calculate

all the characteristics starting from all the vertices. For example for a square
domain with N2 vertices, one must cross N2(N −1) triangles in total when the
velocity is horizontal, so the cost of this computation is 0(N3/2

s ) if Ns denotes
the total number of vertices.

One could reduce the cost by first calculating them for the qi which are far
from Σ in the direction u then using a linear interpolation for all the nodes
for which there exists two opposite triangles already crossed by previously
computed characteristics.

Remark (Saiac)
If u = ∇×ψ and ψ is known then XΓh can be computed from the equation

ψ(XΓh(qi)) = ψ(qi), XΓh(qi) ∈ Γ; so there is no need to cross the domain
starting from qi.
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Figure 3.4:The characteristics are broken lines joining vertices ξi. If two
characteristics go around a vertex q, then the characteristic which starts from
q may be skipped.

To calculate the {ξk}k a good algorithm is to use the barycentric coordi-
nates {λk+1

j }j=1..m+1 of ξk and decompose uh(ξk) in µk
j such that

∑
j

µk
j q

j = uh(ξk) (18)

∑
j

µk
j = 0 (19)

then ξk+1 =
∑

j=1..n λ
k+1
j qj (n = 2 or 3) with

λk+1
j = ρµk

j + λk
j where ρ is such that

λk+1
j ≥ 0, ∃l such that λk+1

l = 0.

This calculation is explained in detail in (120).

2.3. Scheme 2 (upwinding by discretisation of the total deriva-
tive)

A weak formulation of (10) is written as:
Find φ in L2(Ω) such that

−(φ, u∇w) +
∫

Σ

φΓwu.n = (f, w) ∀w ∈ H1(Ω), such that w|Γ−Σ = 0.

Let T±
δ (Ω) be a translation of Ω by δ in the direction ±u

T±
δ (Ω) = {x± u(x)δ : x ∈ Ω}

To construct the scheme, we consider the following two approximations :

u∇w(x) ∼= 1
δ
[w(x + u(x)δ) − w(x)]

∫
Ω−Ω∩T−

δ
(Ω)

g = δ

∫
Γ−Σ

gu.n+ o(δ)

With these approximations (20) can be approximated in the space Wh of P 1

functions continuous on the triangulation Ω by the following problem :
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(φh, wh) −
∫

Ω∩T−
δ

(Ω)

φh(x)wh(x+ u(x)δ) = δ(f, wh) − δ

∫
Σ

φΓwhu.n,

∀wh ∈ Wh;wh|Γ−Σ = 0

or, with the convention that wh(x) = 0 if x ∈ Ω :

Find φh ∈ Wh such that for all wh ∈Wh with wh|Γ−Σ = 0 :

(φh, wh) −
∫

Ω

φh(x)wh(x+ u(x)δ)dx = δ(f, wh) − δ

∫
Σ

φΓwhu.n,

One may prefer schemes where the boundary conditions are satisfied in
the strong sense. For this one should start with the following variational for-
mulation of (10):

Find φ such that φ|Σ = φΓ and

−(φ, u∇w) +
∫

Γ−Σ

φwu.n = (f, w) ∀w ∈ H1(Ω), w|Σ = 0. (20)

Then by the same argument one finds the following discrete problem:

Find φh with φh − φΓh
∈Wh and

(φh, wh) −
∫

Ω∩T−
δ

(Ω)

φh(x)wh(x+ u(x)δ)dx = δ(f, wh), ∀wh ∈ Wh (21)

with Wh = {wh ∈ C0(Ω) : wh|Tk
∈ P 1 ∀k, wh|Σ = 0 }.

Comments :
1. We could have performed the same construction by using the formula :

∇.(uφ) = u∇φ+ φ∇.u ∼= 1
δ
(φ(x) − φ(x − u(x)δ)) + φ(x − u(x)δ)∇.u(x)

and could have obtained, instead of (21),

(φh, wh) =
∫

Ω

φh(x− u(x)δ)wh(x)(1 − δ∇.u(x))dx + δ(f, wh), ∀wh ∈Wh.

(22)
This is also a good scheme, but as will become clearer the scheme (21) is
conservative whereas (22) is not.
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2. If we use mass lumping ( a special quadrature formula with the Gauss
points at the vertices), that is, {qi}i being the vertices of T :

∫
T

f ∼= |T |
(n+ 1)

∑
1..n+1

f(qi) (23)

where n = 2 (resp.3), |T | the area (resp. volume) of a triangle (resp. tetrahe-
dron) (this formula is exact if f is affine) then the linear system from (21) and
(22) becomes quasi-tridiagonal, in particular (22) becomes :

φh(qi) = φh(qi − u(qi)δ)(1 − δ∇.u(qi)) + f(qi)δ (24)

On a uniform grid when u is constant, this is Lax’s scheme [144] ; it is a positive
but of order 1; however, the finite element scheme (21) is somewhat better (the
dissipation comes mostly from the mass lumping in the second integral) but it
is more complicated because it requires the solution of a non-symmetric linear
system and calculation of the integral of a product of two P 1 functions on
different grids (an analysis of these methods can be found in Bermudez et al
[28]).

We also see how one can construct schemes of higher order by using a
better approximation of u∇w.

Proposition 3 :
If u is constant, and if all the streamlines cut Σ, problem (21) has a unique

solution

Proof :
If there were 2 solutions, their difference εh would be zero on Σ and would

satisfy:
∫

Ω

εhwh −
∫

Ω∩T−
δ

(Ω)

εhwho(I + uδ) = 0 (25)

Taking wh = εh, we would obtain :

|εh|20,Ω ≤ |εh|0,Ω|εho(I + uδ)|0,Ω∩T−
δ

(Ω) (26)

but

|εho(I + uδ)|2
0,Ω∩T−

δ
(Ω)

=
∫

Ω∩T+
δ

(Ω)

εh(y)2det|∇(x+ uδ)−1|dy (27)

= |εh|20,Ω∩T+
δ

(Ω)

So

|εh|0,Ω−Ω∩T+
δ

(Ω) = 0 (28)
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which means that εh is zero on all the vertices of the triangles which have a
non-empty intersection with Ω − Ω ∩ T+

δ (Ω) .
Applying similar reasoning to Ω∩ T+

δ (Ω) and proceeding step by step, we
can show that εh is zero everywhere.

Remark on the convergence :
At least for the case u constant, using the same technique ,we would get

an error estimate of the type

|φh − φ|0,Ω−Ω∩T+
δ

(Ω) ≤ C(δ2 + h2)

and so the final error is 0(δ+h2/δ) . The diffusivity of the schemes is a problem;
Bristeau-Dervieux [40] have studied a 2nd order interpolation of u∇w which
gives better results, i.e. less dissipations, (but which is less stable).

Generalization of the previous schemes :
The first scheme corresponds to an integration along the whole length

of the characteristics whereas the previous scheme corresponds to a repeated
integration on a length δ. If one wants an intermediate method, one could
proceed as follows (Benque et al. [20]) :

Let D be a subset of Ω and ψw(x) the solution of

u∇ψw = 0 in D, ψw|∂−D = w

where

∂−D = {x ∈ ∂D : u(x).n(x) < 0}
As for (13), it is easy to see that

ψw(x) = w(X∂D(x))

where X is the solution of (12) and X∂D the intersection with ∂−D. From (10)
we deduce

∫
D

fψw =
∫

D

∇.(uφ)ψw =
∫

∂−D

wφu.n+
∫

∂+D

ψwφu.n

where ∂D+ is the part of ∂D where u.n ≥ 0. By choosing an approximation
space Wh, a method to calculate X∂D and a quadrature formula, one could
define a family of schemes of the type :

∫
∂+D

φhu.nwhoXh∂D +
∫

∂−D

whφhu.n =
∫

D

f(x)w(Xh∂D(x))dx ∀wh ∈ Wh

and this family contains the above two schemes.

2.4. Scheme 3 (Streamline upwinding SUPG) :
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The streamline upwinding scheme (also called SUPG=Streamline Upwind-
ing Petrov Galerkin) was proposed by Hughes [116] and studied by Johnson et
al. [125]. On the space Wh of P 1 functions continuous on the triangulation of
Ω and zero on Σ, for example, one searches φh such that φh − φΓh ∈ Wh with

(∇.(uφh) − f, wh + h∇.(uwh)) = 0 ∀wh ∈Wh (29)

Comments :
The idea is the following :
The finite element method leads to centered finite difference schemes be-

cause the usual basis functions wi (the ”hat function”) are symmetric (on a
uniform triangulation) with respect to vertices qi. So replacing the Galerkin
formulation

(∇.(uφh), wi) = (f, wi) ∀i, φh = φΓh +
∑

φiw
i (30)

by a nonsymmetric ”Petrov-Galerkin” formulation (cf. Christie et al. [54])

(∇.(uφh), w′i) = (f, w′i) (31)

where the w′i have more weight upstream than downstream ; that is the case
of the function x → wi + h∇.(uwi) (see figure 3.5). We note also that one
could work either with w′i or wi in the second member.

Figure 3.5 :
The P 1 basis functions and the Petrov-Galerkin functions of Hughes.[ ]

Another interpretation could also be given ;
Equation (29) is also an approximation of

∇.(uφ) − hu∇(∇.(uφ)) = f − hu∇f (32)

that is, when u is constant

∇.(uφ) − h∇.[(u⊗ u)∇φ] = f − hu∇f (33)

So we have in fact added a tensorial viscosity hu ⊗ u; now this tensor has its
principal axis in the direction u, that is we have added viscosity only in the
direction of the flow. Furthermore what is added on the left is also added on
the right because (10) differentiated gives u∇(∇.[uφ]) = u∇f.

Proposition 4 :
i) The scheme (29) has a unique solution
ii) If u ∈ W 1,∞ the solution satisfies the following inequality :

|φh − φ|0,Ω ≤ ch
3
2 |φ|2,Ω (34)
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Proof when ∇.u ≥ α > 0 :
If (29) has two solutions, their difference εh satisfies

h|∇.(uεh)|20 +
1
2

∫
Ω

(∇.u)ε2h +
1
2

∫
Γ−Σ

u.nε2hdγ = 0 (35)

because

(∇.(uεh), εh) =
1
2
((∇.u)εh, εh) +

1
2

∫
Γ

u.nε2h (36)

So εh is zero.
Let us find an error estimate :
Subtracting the exact equation from the approximated equation, we ob-

tain:

(∇.(u(φ − φh)), wh + h∇.(uwh)) = 0 ∀wh ∈Wh (37)

By taking wh = ψh − φh where ψh is the interpolation function of φ, we get :

(∇.(uwh), wh + h∇.(uwh)) = (∇.(u(ψh − φ)), wh + h∇.(uwh)) (38)

= ((∇.u)(ψh − φ), wh) − (∇.(uwh), ψh − φ− h∇.(u(ψh − φ)))

+
∫

Γ−Σ

u.nwh(ψh − φ)

or using (36) and the error estimate of interpolation (|φ−ψh|α ≤ ch2−α, α = 0, 1
and |φ− ψh|0,Γ ≤ ch3/2 ):

1
2

∫
Ω

(∇.u)w2
h +

1
2

∫
Γ−Σ

u.nw2
h + h|∇.(uwh)|20

≤ Ch2|∇.(uwh)|0 + h
3
2 |u.nwh|0,Γ−Σ + Ch2|(∇.u)wh|0;

from which we deduce that : |u∇wh|0,Ω < Ch, |(u.n)1/2wh|0,Γ−Σ ≤ Ch3/2 and
|(∇.u)1/2wh|0 ≤ Ch3/2, which in turn gives

|wh|0,Ω = |φh − ψh|0,Ω ≤ Ch
3
2 (39)

from which the result follows since

|φ− φh| ≤ Ch
3
2 + |ψh − φ| ≤ C′h

3
2 (40)

Remark:
If ∇.u is not positive the proof uses the following argument:
Let ψ = e−k(x)ϕ(x) where k(x) is any smooth function. Then with v =

ek(x)u, ψ is a solution of
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∇.(vψ) = f,

but ∇.v = ek(∇.u + u∇k), so one can choose k so has to have ∇.v > 0.

2.5. Scheme 4 (Upwinding by discontinuity) :

If φ is approximated by polynomial functions which are discontinuous on
the sides (faces) of the elements, one can introduce an upwinding scheme via
the integrals on the sides (faces), using the values of φh at the right or the left
of the sides depending on the flow direction.

Lesaint [148] has introduced one of the first methods of this type and has
given error estimates for Friedrich systems. In the case of equation (10) let us
search φh in the space of functions which are piecewise polynomials but not
necessarily continuous on a triangulation ∪Tj of Ω :

Wh = {wh : wh|T ∈ P k} (41)

We approximate (10) by

∫
T

wh∇.(uφh) −
∫

∂−T

u.n[φh]wh =
∫

T

fwh ∀wh ∈Wh ∀T (42)

where φh is taken in Wh, n is the external normal to ∂T, [φh] denotes the jump
of φh across ∂T from upstream of ∂T :

[φh](x) = limε→0+(φh(x + εu(x)) − φh(x− εu(x))), ∀x ∈ ∂T (43)

and ∂−T is the part of ∂T where u.n < 0.If T intersects Γ− the convention is
that φh = φΓ on the other side of Γ− i.e. φh(x− εu(x)) = φΓ(x) when x ∈ Γ−.

Remark 1:
If ∇.u = 0 and k = 0 (φh piecewise constant ) (42) becomes

−
∫

∂−T

u.n[φh] =
∫

T

f ∀T i.e.

φh|T = [
∑

j

φh|Tj

∫
∂−T∩∂Tj

|u.n| +
∫

T

f ]/
∫

∂−T

|u.n| (44)

where Tj is the triangle upstream of T which shares ∂−T. In one dimension
with u = 1 and diam(T ) = h it reduces to φi = φi−1 + hf, for all i.

One can prove that the scheme is positive if all the streamlines cut Σ :

f ≥ 0, φΓ ≥ 0 ⇒ φh ≥ 0 (45)
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Remark 2 :
If the solution φ is continuous, we expect that φh will tend to a continuous

function also in (42) ; so we have added to the standard weak formulation a
term which is small (the integral on ∂−T ).

Proposition 5 :
If ∇.u = 0, if all the streamlines cut Σ and if h is small, (42) defines φh

in a unique manner

Proof :
We suppose for simplicity that φΓ ∈ Wh .
Let εh be the difference between the 2 solutions. Let T be a triangle such

that ∂−T is in Σ. Then (42) with wh = εh|T on T , 0 otherwise, gives
∫

T

u∇εhεh −
∫

∂−T

u.n[εh]εh = 0 (46)

= −1
2

∫
∂−T

u.nε2h +
∫

∂T−∂−T

u.n
ε2h
2

+
∫

∂−T

u.nεh|T εh|T−

where T− is the triangle upstream of T tangent to ∂T−. If ∂T− is in Σ then
(46) becomes:

∫
∂T−∂−T

u.n
ε2h
2

= 0.

So εh = 0 on ∂T − ∂−T. Thus step by step we can cover the domain Ω.

Convergence :
Johnson -Pitkäranta [127] have shown that this scheme is of 0(hk+1/2) for

the error in L2 −norm and 0(hk+1) if the triangulation is uniform ; this result
was extended by Ritcher [24] who showed that the scheme is of 0(hk+1) if the
triangulation is uniform in the direction of the flow only. The proofs are rather
involved so we give only the general argument used in [127] and we shall only
show the following partial result:

Proposition 6
If k = 0 (piecewise constant elements), ϕ is regular, ∇.u = 0, and f=0

then

||ϕ− ϕh||u ≤ C
√
h

where

||a||u = (
∑
T

∫
∂T

|u.n|(a+ − a−)2 +
∫

Γ

|u.n|a2)1/2

As in [127], we define Γ+ = Γ−Σ and we introduce the following notation:
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< a, b >h=
∑
T

∫
∂T−Γ∩∂T

|u.n|a.b,

< a, b >S=
∫

S

|u.n|a.b.

With this notation the discrete problem can be written in two ways:

< ϕ+
h − ϕ−

h , w
−
h >h + < ϕh, wh >Σ=< ϕΓ, wh >Σ ∀wh ∈ Wh

− < w+
h − w−

h , ϕ
+
h >h + < ϕh, wh >Γ+=< ϕΓ, wh >Σ ∀wh ∈ Wh

So if we add the two forms we see that ϕh is also a solution of:

< ϕ+
h − ϕ−

h , w
−
h >h − < w+

h − w−
h , ϕ

+
h >h + < ϕh, wh >Γ

= 2 < ϕΓ, wh >Σ ∀wh ∈Wh

By taking wh = ϕh we find that the scheme is stable:

||ϕh||u ≤ C|ϕΓ|0,Γ.

The reader can establish the consistency of the scheme in the same way and
obtain :

< ϕ+ − ϕ−, w−
h >h − < w+

h − w−
h , ϕ

− >h + < ϕ,wh >Γ= 2 < ϕΓ, wh >Σ

So for all ψh in Wh

||ϕh − ϕ||u ≤ ||ψh − ϕ||u
If ψh is a piecewise constant interpolation of ϕ one has |ϕ − ψh| = ||ϕ||1O(h),
so

(
∑ ∫

∂T

|u.n|O(h)2)
1
2 ≤ C

√
h

and the result follows.

2.6 Scheme 5 (Upwinding by cell)

The drawback of the previous method is that there are many degrees of
freedom in discontinuous finite elements (in 3D there are on the average 5 times
more tetrahedra, at least, than nodes).

To rectify this, Baba-Tabata [7] associated to all conforming P 1 function
a function P o on cells centered around the vertices and covering Ω.
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To each node qi we associate a cell σi defined by the medians not origi-
nating from qi, of the triangles having qi as one of the vertices.

Figure 3.6:The cell σiassociated to vertex qi .

Let φh be a function P 1 − piecewise on a triangulation and continuous.
To φh we associate a function φ′h, piecewise P 0 on the cells σi by the formula

φ′h|σi =
1
|σi|

∫
σi

φh(x) (47)

Conversely, knowing ψ′
h, P

0 on the σi, one could associate to it a function ψh

in P 1 by

ψh(qi) = ψ′
h|σi (48)

Then we apply the scheme 4 to φ′h but we store in the computer memory only
φh :

This means that our problem is now to find φh, P
1 continuous on a trian-

gulation, equal to φΓh on Σ and satisfying (in the case where ∇.u = 0 )

−
∫

∂−σi

u.n[φ′h] =
∫

σi

f ∀i (49)

where

φ′h|σi =
1
|σi|

∫
σi

φh(x) (50)

To show that this scheme is well posed (i.e. that φh is uniquely defined) one
must show that (50) has a unique solution when φ′h is known because we have
already shown that (49) has a unique solution when all the streamlines cut Σ.
This is difficult in general but easy to show if all the triangles are equilateral.
Then an elementary computation of integrals gives

∫
σi

φh =
7
9

∫
Ω

φhw
i +

2
9
|σi|φi (51)

and multiplying by φi and summing, we see that

∑
i

φi

∫
σi

φh = 0 ⇒ 7
9

∫
Ω

φ2
h +

2
9

∑
|σi|(φi)2 = 0 ⇒ φh = 0 (52)

2.7 Comparison of the schemes

So far we have presented three classes of methods for the stationary con-
vection diffusion equation. It is not possible to rank the methods since each
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has its advantages and drawbacks: for instance, upwinding by characteristics
gives good results but is conceptually more difficult and harder to program
while SUPG is conceptually simple but perhaps too diffusive if an adjustment
parameter is not added. Experience has shown to the author that personal pref-
erences (such as scientific background or previous experience with one method)
are the determining factors in the choice of a particular method; beyond that
we can only make the following broad remarks:

1. Upwinding by the discretisation of total derivatives has been very suc-
cessful with the incompressible Navier-Stokes equations where conservativity
is not critical.

2. Streamline diffusion (SUPG) has been very successful in the engineering
environment because it is conceptually simple.

3. Upwinding by discontinuity has been remarkably successful with the
compressible Euler equations because it is the right framework to generalize
finite difference upwinding schemes into finite elements. (It has even received
the name of Finite Volumes in this context when used with quadrangles).

3. CONVECTION-DIFFUSION 1 :

3.1. Generalities :
In this section, we consider the equation

φ,t + ∇.(uφ) − ν∆φ = f in Ω×]0, T [ (53)

φ(x, 0) = φo(x) in Ω; (54)

φ|Γ = φΓ (55)

and knowing that in general for fluid applications ν is small, we search for
schemes which work even with ν = 0. Evidently, if ν = 0, (55) should be
relaxed to

φ|Σ = φΓ (56)

If ν = 0, (53), (54), (55) is a particular case of stationary convection (eq (10))
for the variables {x, t} on Ω×]0, T [ with velocity {u, 1}.

Thus one could simply add a diffusion term to the previous schemes and
get a satisfying theory. But if we use the ”cylindrical” structure of Ω×]0, T [,
we can devise two new methods, one implicit in time without upwinding and
the other semi-implicit but unconditionally stable. We begin by recalling an
existence and uniqueness result for (53) and a good test problem to compare
the numerical schemes: the rotating hump.

Test Problem.
Consider the case where Ω is the square ]− 1, 1[2 and where u is a velocity

field of rotation around the origin
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u(x, t) = {y,−x}.
We take φΓ = 0, f = 0 and

φ0(x) = e(|x−x0|2−r2)−2 ∀x such that |x− x0| < r,

φ0(x) = 0 elsewhere.

When ν = 0, φ0 is convected by u so if we look at t→ {x, y, φ(x, y, t)} we will
see the region {x, y : φ(x, y) = 0} rotate without deformation; the solution is
periodic in time and we can overlap φ and φ0 after a time corresponding to
one turn. If ν = 0 the phenomenon is similar but the hump flattens due to
diffusion; we may also get boundary layers near the boundary

3.2.Some theoretical results on the convection-diffusion equation.

Proposition 7:
Let Ω be an open bounded set with boundary Γ Lipschitz; we denote by n

its exterior normal ; the system

φ,t + u∇φ+ aφ = f in Q = Ω×]0, T [ (57)

φ(x, 0) = φ0(x) ∀x ∈ Ω (58)

φ(x, t) = g(x, t) ∀(x, t) ∈ Σ = ((x, t) : u(x, t).n(x) < 0) (59)

has a unique solution in C0(0, T ;L2(Ω)) when φ0 ∈ L2(Ω), g ∈ C0(0, T ;L2(Γ))
and a, u ∈ L∞(Q), Lipschitz in x, f ∈ L2(Q).

Proof :
We complete the proof by constructing the solution. Let X(τ) the solution

of

d

dτ
X(τ) = u(X(τ), τ) if X(τ) ∈ Ω (60)

= 0 otherwise

with the boundary condition

X(t) = x. (61)

If u is the velocity of the fluid, then X is the trajectory of the fluid particle that
passes x at time t. With u ∈ L∞(Q) problem (60)-(61) has a unique solution.
As X depends on the parameters x, t, we denote the solution X(x, t; τ) ; it is
also the ”characteristic” of the hyperbolic equation (57).

We remark that :

d

dτ
φ(X(x, t; τ), τ), τ)|τ=t = φ,t(x, t) + u∇φ(x, t) (62)
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So (57) can be rewritten as :

φ,τ + aφ = f (63)

and integrating

φ(x, t) = e
−

∫ t

0
a(X(τ),τ)dτ [λ+

∫ t

0

f(X(σ), σ)e
∫ σ

0
a(X(τ),τ)dτ

dσ] (64)

we determine λ from (58) and (59).
If X(x, t; 0) ∈ Γ, then

λ = g(X(x, t; 0), τ(x)) (65)

where τ(x) is the time (< t) for X(x, t; τ) to reach Γ.
If X(x, t; 0) ∈ Ω, then

λ = φo(X(x, t; 0)) (66)

Corollary (a = ∇.u) :
With the hypothesis of the proposition 7 and if u ∈ L2(0, T ;H(div,Ω)) ∩

L∞(Q), Lipschitz in x,problem (53), (58), (59) with ν = 0 has a unique solution
in C0(0, T ;L2(Ω)).

-(we recall that H(div,Ω) = {u ∈ L2(Ω)n : ∇.u ∈ L2(Ω)}).

Proposition 8 :
Let Ω be a bounded open set in Rn with Γ Lipschitz . Then problem

φ,t + ∇.(uφ) −∇.(κ∇φ) = f in Q = Ω×]0, T [ (67)

φ(x, 0) = φ0(x) in Ω (68)

φ = g on Γ×]0, T [ (69)

has a unique solution in L2(0, T ;H1(Ω)) if κi,j , uj ∈ L∞(Ω), ui,j ∈ L∞(Ω),
f ∈ L2(Q), φo ∈ L2(Ω), g ∈ L2(0, T ;H1/2(Γ)), and if there exists a > 0 such
that

κijZiZj ≥ a|Z|2 ∀Z ∈ Rn. (70)

Proof :
See Ladyzhenskaya [138].

3.3. Approximation of the Convection-Diffusion
equation by discretisation first in time then in space.
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In this paragraph we shall analyze some schemes obtained by using finite
difference methods to discretise ∂φ/∂t and the usual variational methods for
the remainder of the equation. Let us consider equation (67) with (70) and
assume, for simplicity from now on and throughout the chapter that κij =
νδij , ν > 0, u ∈ L∞(Q) and

∇.u = 0 in Q u.n = 0 on Γ×]0, T [ (71)

φ = 0 on Γ×]0, T [ (72)

As before, Ω is also assumed regular.
The reader can extend the results with no difficulty to the case u.n = 0,

with the help of paragraph 2.
As usual, we divide ]0,T[ into equal intervals of length k and denote by

φn(x) an approximation of φ(x, nk).

3.3.1. Implicit Euler scheme :
We search φn+1

h ∈ Hoh, the space of polynomial functions of degree p on
a triangulation of Ω, continuous and zero on Γ such that for all wh ∈ H0h we
have

1
k
(φn+1

h − φn
h , wh) + (un+1∇φn+1

h , wh) + ν(∇φn+1
h ,∇wh) = (fn+1, wh) (73)

This problem has a unique solution because this is an N ×N linear system, N
being the dimension of H0h :

(A+ kB)Φn+1 = kF + IΦ (74)

where Aij = (wi, wj) + νk(∇wi,∇wj), Bij = (un+1∇wi, wj), Fi = (f, wi),
I = (wi, wj) and where {wi} is a basis of H0h and φi the coefficients of φh on
this basis. This system has a unique solution because the kernel of A + kB is
empty :

0 = ψT (A+ kB)ψ = ψTAψ ⇒ ψ = 0. (75)

Proposition 9 :
If φ ∈ L2(0, T ;Hp+1(Ω)) and φ,t ∈ L2(0, T ;Hp(Ω)), we have

(|φn
h − φ(nk, .)|20 + νk|∇(φn

h − φ(nk, .))|20)
1
2 ≤ C(hp + k) (76)

where p is the degree of the polynomial approximation for φn
h .

Proof :
a) Estimate of the error in time
Let φn+1 be the solution of the problem discretised in time only :
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1
k

(φn+1 − φn) + un+1∇φn+1 − ν∆φn+1 = fn+1;φn+1|Γ = 0;φo = 0 (77)

the error εn(x) = φn(x) - φ(nk, x) satisfies εn|Γ = 0, εo = 0 and

1
k

(εn+1 − εn) + un+1∇εn+1 − ν∆εn+1 = k

∫ 1

0

(1 − θ)
∂2φ

∂t2
(x, (n+ θ)k)dθ (78)

where the right hand side is the result of a Taylor expansion of φ(nk + k, x).
Multiplying (78) by εn+1 and integrating on Ω makes the convection term
disappear and we deduce that

||εn+1||ν ≡ (|εn+1|20 + kν|∇εn+1|20)
1
2 ≤ k2T |φ′′tt|0,Ω×]0,T [ + ||εn||ν . (79)

So we have, for all n:

||εn||ν ≤ k
√
T |φ′′,tt|0,Q (80)

b) Estimation of the error in space
Let ξn = φn

h − φn ; by subtracting (77) from (73) we see

1
k
(ξn+1 − ξn, wh) + (un+1∇ξn+1, wh) + ν(∇ξn+1,∇wh) = 0 (81)

Let ψn
h be the interpolation of φn ; then ξn = ξn

h + ψn
h − φn and ξn

h satisfies
(we take wh = ξn+1

h )

||ξn+1
h ||2ν ≤ |ξn

h |o|ξn+1
h |o − (ψn+1

h − φn+1 − ψn
h + φn, ξn+1

h )− (82)

−k(un+1∇(ψn+1
h − φn+1), ξn+1

h ) − νk(∇(ψn+1
h − φn+1),∇ξn+1

h )

so

||ξn+1
h ||ν ≤ ||ξn

h ||ν + Ck[hp||φ′,t||p,Ω + hp(||u||∞,Q + ν)||φ||p+1,Ω] (83)

because |.|o ≤ ||.||ν , ψn+1
h - ψn

h is the interpolation of φn+1 − φn which is an
approximation of kφ′,t.

Finally we obtain (76) by noting that

||φn
h − φ(nk)||ν ≤ ||ξn

h ||ν + ||ψn
h − φn||ν + ||φ(nk) − φn||ν (84)

Comments :
We note that the error estimate (76) is valid even with ν = 0. Thus, we

do not need any upwinding in space. This is because the Euler scheme itself
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is upwinded in time (it is not symmetric in n and n + 1). The constant c in
(76) depends on ||φ||p+1,Ω and that if ν is small (67) has a boundary layer and
||φ||p+1,Ω tends to infinity (if φΓ is arbitrary ) as ν−p+1/2. This requires the
modification of φΓ or the imposition of: h << ν1−1/2p.

A third method consists of replacing ν by νh in such a way that h <<
ν1−1/2p is always satisfied. This is the artificial viscosity method.

3.3.2. Leap frog scheme :
The previous scheme requires the solution of a non-symmetric matrix for

each iteration. This is a scheme which does not require that kind of operation
but which works only when k is O(h).

1
2k

(φn+1
h − φn−1

h , wh) + (un∇φn
h , wh) +

ν

2
(∇[φn+1

h + φn−1
h ],∇wh) (85)

= (fn+1, wh) ∀wh ∈ H0h, φn+1
h ∈ H0h

To start (85), we could use the previous scheme.

Proposition 10 :
The scheme (85) is marginally stable , i.e. there exists a C such that

|φn
h |o ≤ C|f |0,Q(1 − C|u|∞ k

h
)−

1
2 (86)

for all k such that

k <
h

C|u|∞ . (87)

Proof in the case where u is independent of t and f = 0.
We use the energy method (Ritchmeyer-Morton [197], Saiac [211] for ex-

ample).
Let

Sn = |φn+1
h |20 + |φn

h |20 + 2k(u∇φn
h, φ

n+1
h ) (88)

then

Sn − Sn−1 = |φn+1
h |20 − |φn−1

h |20 + 2k(u∇φn
h, φ

n+1
h + φn−1

h ) (89)

but from (85), with wh = φn+1
h + φn−1

h and if f = 0

|φn+1
h |20 − |φn−1

h |20 + 2k(u∇φn
h, φ

n+1
h + φn−1

h ) + kν|∇(φn+1
h + φn−1

h )|20 = 0; (90)

so Sn ≤ Sn−1 ≤ ... ≤ So. On the other hand, using an inverse inequality
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(u∇φn
h, φ

n+1
h ) ≥ −C

h
|u|∞|φn+1

h |0|φn
h|0 ≥ −|u|∞ C

2h
(|φn+1

h |20 + |φn
h |20) (91)

we get

Sn ≥ (1 − C
k|u|∞
h

)[|φn+1
h |20 + |φn

h |20] (92)

Convergence :
As for the Euler scheme, one can show using (86) that (85) is 0(hp + k2)

for the L2 norm error .

3.3.3. Adams-Bashforth scheme :
It is important to make the dissipation terms implicit as we have done for

∆φ because the leap-frog scheme is only marginally stable (cf. Richtmeyer-
Morton [197]). In the same way, if Σ = � (u.n = 0), it is necessary to make
implicit the integral on Γ−Σ. For this reason, we consider the Adams-Bashforth
scheme of order 3 which is explicit when we use mass lumping and which has
a better stability than the leap-frog scheme.

1
k

(φn+1
h − φn

h , wh) =
23
12
b(φn

h , wh) − 16
12
b(φn−1

h , wh) +
5
12
b(φn−2

h , wh)

∀wh ∈ H0h where

b(φh, wh) = −[(u∇φh, wh) + ν(∇φh,∇wh) − (f, wh)]

The stability and convergence of the scheme can be analysed as in §3.3.5.

3.3.4 The θ− schemes :

In a general way, let A and B be two operators and the equation in time
be

u,t +Au+Bu = f ;u(0) = u0

We consider a scheme with three steps

1
kθ

(un+θ − un) +Aun+θ +Bun = fn+θ

1
(1 − 2θ)k

(un+1−θ − un+θ) +Aun+θ +Bun+1−θ = fn+1−θ

1
kθ

(un+1 − un+1−θ) +Aun+1 +Bun+1−θ = fn+1
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An analysis of this scheme in the finite element context can be found in Glowin-
ski [96]. One can show easily that with A = αC, B = (1 − α)C, where C is an
matrix N × N with strictly positive eigenvalues, then the scheme is uncondi-
tionally stable and of order 2 in k if α = 1/2 and θ = 1 −√

2/2.
In the case of the convection-diffusion equation, we could take A = −αν∆

and B = u∇− (1 − α)ν∆ (α = 1 being admissible). Chorin [53], Beale-Majda
[17] have studied methods of this type where A = −ν∆ and steps 1 and 3 are
carried out by a Monte-Carlo method, and where step 2 is integrated by a finite
element method, a finite difference method or by the method of characteristics.
We will use these for the Navier-Stokes equations.

3.3.5. Adaptation of the finite difference techniques :

All the methods presented up to now in this section have been largely
studied on regular grids in a finite difference framework. The same techniques
can be used in a finite element context to estimate stability and errors, with
the following restrictions :

- constant coefficients (u and ν constants),
- uniform triangulation
- influence of boundary conditions is difficult to take into account
The analysis of finite difference schemes is based on the following funda-

mental property:
Stability + consistency ⇒ convergence.

To give an example, let us study the Crank-Nicolson scheme for (67) in
the case where u is constant :

1
k

(φn+1
h − φn

h, wh) +
1
2
(u∇(φn+1

h + φn
h), wh) +

ν

2
(∇(φn+1

h + φn
h),∇wh)

= (fn+ 1
2 , wh) ∀wh ∈ H0h

Although the L2 stability is simple to prove by taking wh = φn+1
h + φn

h , we will
consider the other methods at our disposal.

By choosing a basis {wi} of H0h we could write explicitly the linear system
corresponding to the case f = 0 and φh|Γ = 0.

B(Φn+1 − Φn) +
k

2
A(Φn+1 + Φn) = 0

where Bij = (wi, wj) Aij = ν(∇wi,∇wj) + (u∇wi, wj)

If we know the eigenvalues and eigenvectors of A in the metric B, i.e. the
solutions {λi, ψ

i} of λBψ = Aψ, then by decomposing Φn on this basis, we get

(BΦ)n+1
i = (BΦ)n

i

(1 − k
2λi)

(1 + k
2λi)
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By asking the amplification factor F = (1-k λi/2)/(1 + k λi/2) to be smaller
than 1 , we can deduce an interval of stability of the method.

Evidently, the smallest real part of the eigenvalues is not known but could
be numerically determined in the beginning of the calculation (as in Maday et
al. [164] for the Stokes problem).

On the other hand, when H0h is constructed with P 1 − continuous func-
tions, the Crank-Nicolson scheme on a uniform triangulation is identical to the
following finite difference scheme (exercise) :

h2

12
[6φn+1

i,j + φn+1
i+1,j+1 + φn+1

i+1,j + φn+1
i,j−1 + φn+1

i−1,j−1 + φn+1
i−1,j + φn+1

i,j+1]

+
kh

12
[(φn+1

i+1,j+1 − φn+1
i−1,j−1)(u1 + u2) + (2u1 − u2)(φn+1

i+1,j − φn+1
i−1,j)

+(2u2 − u1)(φn+1
i,j+1 − φn+1

i,j−1)] + νk[4φn+1
i,j − φn+1

i+1,j − φn+1
i,j+1 − φn+1

i−1,j − φn+1
i,j−1]

= idem in φn by changing k to −k.
If there exists solutions of the form :

φn
lm = ψne2iπ(lx+my)

they have to satisfy

ψn+1[
h2

6
[3 + cos((l +m)h) + cos(lh) + cos(mh)]

+i
kh

6
[sin((l +m)h)(u1 + u2) + sin(lh)(2u1 − u2) + sin(mh)

(2u2 − u1)] + 2νk[2 − cos(lh) − cos(mh)]]

= ψn[ same factor but k → −k]
So we have a formula for the amplification factor.

Finally, it is easy to see that the above finite difference scheme is consistent
to order 2. So we have a presumption of convergence of 0(h2 + k2) for the
method on a general triangulation .

4.CONVECTION DIFFUSION 2.

In this section we analyze schemes for the convection-diffusion equation
(53)-(55) which still converge when ν = 0 without generating oscillations.

This classification is somewhat arbitrary because the previous schemes can
be made to work when ν = 0 or when ϕ is irregular. But we have put in this
section schemes which have been generalized to nonlinear equations (Navier-
Stokes and Euler equations for example). Let us list the desirable properties
for a scheme to work on nonsmooth functions φ :
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- convergence in L∞ norm,
- positivity: ϕ > 0 ⇒ ϕh > 0,
- convergence to the stationary solution when t → ∞,
- localization of the solution if ν = 0 ( that is to say that the solution

should not depend upon whatever is downstream of the characteristic when
ν = 0).

4.1. Discretisation of the total derivative:

4.1.1 Discretisation in time.
We have seen that if X(x, t; τ) denotes the solution of

dX

dτ
(τ) = u(X(τ), τ); X(t) = x (93)

then

φ,t + u∇φ =
∂

∂τ
φ(X(x, t; τ), τ)|τ=t (94)

Thus, taking into account the fact that X(x, (n + 1)k; (n + 1)k) = x, we
can write:

(φ,t + u∇φ)n+1 ∼= 1
k

[φn+1(x) − φn(Xn(x))] (95)

where Xn(x) is an approximation of X(x, (n+ 1)k;nk).
We shall denote by Xn

1 an approximation 0(k2) of Xn(x) and by Xn
2 an

approximation 0(k3) (the differences between the indices ofXand the exponents
of k are due to the fact that Xn is an approximation of X obtained by an
integration over a time k ; thus a scheme 0(kα) gives a precision 0(kα+1)).

For example

Xn
1 (x) = x− un(x)k (Euler scheme for (93)) (96)

Xn
2 (x) = x− un+ 1

2 (x− un(x)
k

2
)k ( Second order Runge-Kutta) (97)

modified near the boundary so as to get Xn
i (Ω) ⊂ Ω. To obtain this inclusion

one can use (96) or (97) inside the elements so that one passes from xto Xn(x)
by a broken line rather than a straight line (see (18)(19)).

This yields two schemes for (53) :

1
k

(φn+1 − φnoXn
1 ) − ν∆φn+1 = fn+1 (98)

1
k

(φn+1 − φnoXn
2 ) − ν

2
∆(φn+1 + φn) = fn+ 1

2 (99)
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Lemma 1 :
If u is regular and if Xn

i (Ω) ⊂ Ω, the schemes (98) and (99) are L2−stable
and converge in 0(k) and 0(k2) respectively.

Proof :
Let us show consider (98). We multiply by φn+1 :

|φn+1|2 + νk|∇φn+1|2 ≤ (|fn+1|k + |φnoX1|)|φn+1| (100)

But the map x→ X preserves the volume when un is solenoidal (∇.u = 0). So
from (96) :

|φnoXn
1 |20 =

∫
Xn

1 (Ω)

φn(y)2det[∇Xn
1 ]−1dy ≤ |φn|20,Ω(1 + ck2) (101)

Hence φn verifies

||φn||ν ≤ c[|f |0,Q + |φo|0,Ω] (102)

To get an error estimate one proceeds as in the beginning of the proof of
proposition 9 by using (95).

Remark :
Xn

i (Ω) ⊂ Ω is necessary because u.n = 0. Otherwise one only needs
Xn

i (Ω) ∩ ∂Ω ⊂ Σ.

4.1.2 Approximation in space.
Now if we use the previous schemes to approximate the total derivative

(scheme (98) of order 1 , scheme (99) of order 2) and if we discretise in space
by a conforming polynomial finite element we obtain a family of methods for
which no additional upwinding is necessary and for which the linear systems
are symmetric and time independent .

Take for example the case of (98) :

∫
Ω

φn+1
h wh + kν

∫
Ω

∇φn+1
h ∇wh = k

∫
Ω

fn+1wh +
∫

Ω

φn
h(Xn

1 (x))wh(x)

∀wh ∈ H0h φn+1
h ∈ H0h (103)

where H0h is the space of continuous polynomial approximation of order 1 on
a triangulation of Ω, and zero on the boundaries.

Proposition 11 :
If X1(Ω) ⊂ Ω, the scheme (103) is L2(Ω) stable even if ν = 0.

Proof :
One simply replaces wh by φn+1

h in (103) and derives upper bounds :
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|φn+1
h |20 ≤

∫
Ω

|φn+1
h |2 + k

∫
Ω

ν∇φn+1
h ∇φn+1

h (104)

= k

∫
Ω

fn+1φn+1
h +

∫
Ω

φn
h(Xn

1 (x))φn+1
h (x)

≤ (k|fn+1|0 + |φn
hoX

n
1 (.)|0)|φn+1

h |0
≤ (|φn

h |0(1 +
c

2
k2) + k|fn+1|0)|φn+1

h |0
The last inequality is a consequence of(101).

Finally by induction one obtains

|φn
h |0,Ω ≤ (1 +

c

2
k2)n(|φo

h|0,Ω +
∑

k|fn|0,Ω) (105)

Remark :
By the same technique similar estimates can be found for (105) but the

norms on φn
h et φo

h will be ||.||ν (cf. (79)).

Proposition 12 .
If H0h is a P 1 conforming approximation of H1

0 (Ω) then the L2(Ω) norm
of the error between φn

h solution of (103) and φn solution of (98) is 0(h2/k +
h).Thus the scheme is 0(h2/k + k + h) .

Proof :
One subtracts (98) from (103) to obtain an equation for the projected

error:

εn+1
h = φn+1

h − Πhφ
n+1, (106)

where Πh φ
n+1 is an interpolation in H0h of φn+1. One gets

∫
Ω

εn+1
h wh + kν

∫
Ω

∇εn+1
h ∇wh −

∫
Ω

εnhoX
n
1 wh = (107)

∫
Ω

(φn+1 − Πhφ
n+1)wh + νk

∫
Ω

∇(φn+1 − Πhφ
n+1)∇wh

−
∫

Ω

(φn − Πhφ
n)oXn

1 wh

From (107), with wh = εn+1
h we obtain

||εn+1
h ||2ν ≤ (||εnh||ν + ||φn+1 − Πhφ

n+1||ν + |φn − Πhφ
n|0)||εn+1

h ||ν
therefore

||εn+1
h ||ν ≤ ||εnh||ν + C(h2 + νkh)
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Remark :
By comparing with (103), we see that εh and φh are solutions of the same

problem but for εh, f is replaced by :

1
k

(φn+1 − Πhφ
n+1) − ν∆h(φn+1 − Πhφ

n+1) − 1
k

(φn − Πhφ
n)oXn

1 ,

where ∆h is an approximation of ∆. We can bound independently the first and
the last terms. By working a little harder (Douglas-Russell [69]) one can shown
that the error is, in fact, 0(h+ k + min(h2/k, h)).

Proposition 13 :
With the second order scheme in time (99) and a similar approximation

in space one can build schemes 0(h2 + k2 + min(h3/k, h2)) with respect to the
L2 norm:

(φn+1
h , wh) +

νk

2
(∇(φn+1

h + φn),∇wh) = (φn
hoX

n
2 , wh) + k(fn+ 1

2 , wh) (108)

∀wh ∈ H0h;φn+1
h ∈ H0h

where H0h is a P 2 conforming approximation of H1
0 (Ω).

Proof :
The proof is left as an exercise.

The case ν = 0 :
We notice that (103) becomes

∫
φn+1

h wh =
∫

Ω

φn
hoX

n
2 wh + k

∫
Ω

fn+1wh ∀wh ∈ H0h (109)

φn+1
h ∈ H0h

That is to say

φn+1
h = Πh(φn

hoX
n
1 ) + kΠhf

n+1 (110)

where Πh is a L2 projection operator in W0h. Scheme (108) becomes :

φn+1
h = Πh(φn

hoX
n
2 ) +

k

2
Πh(fn+1 + fn) (111)

If f = 0 the only difference between the schemes are in the integration formula
for the characteristics. Notice also that the numerical diffusion comes from the
L2 projection at each time step. Thus it is better to use a precise integration
scheme for the characteristics and use larger time steps. Experience shows that
k ≈ 1.5h/u is a good choice.

Notice that when ν and f are zero one solves
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φ,t + u∇φ = 0 φ(x, 0) = φ0(x) (112)

-(since we have assumed u.n = 0, no other boundary condition is needed).
Since ∇.u = 0, we deduce from (112) that (conservativity)

∫
Ω

φ(t, x) =
∫

Ω

φ0(x) ∀t (113)

On the other hand, from (109), with wh = 1
∫

Ω

φn+1
h (x) =

∫
Ω

φn
hoX

n
1 =

∫
Xn

1 (Ω)

φn
h(y)det|∇Xn

1 |−1dy (114)

So if det|∇Xn
1 | = 1 (which requires Xn

1 (Ω) = Ω), one has
∫

Ω

φn+1
h (x)dx =

∫
Ω

φn
h(y)dy =

∫
Ω

φ0(x)dx (115)

We say then that the scheme is conservative. It is an important property in
practice.

4.1.3. Numerical implementation problems :

Two points need to be discussed further.
- How to compute Xn(x),
- How to compute In :

In =
∫

Ω

φhoX
n
hwh (116)

Computation of (116) :
As in the stationary case one uses a quadrature formula:

In ∼=
∑

ωkφh(Xh(ξk))wh(ξk) (117)

For example with P 1 elements one can take
a) {ξk} = the middles of the sides, ωk = σk/3 in 2D, σk/4 in 3D, where

σk is the area (volume) of the elements which contain ξk.
b) The 3 (4 in 3D) point quadrature formula (Zienkiewicz [241], Stroud

[224]) or any other more sophisticated formula ; but experiments show that
quadrature formula with negative weights ωk should not be chosen. Numerical
tests with a 4 points quadrature formulae can be found in Bercovier et al. [27].

Finally, another method (referred as dual because it seems that the basis
functions are convected forward) is found by introducing the following change
of variable:

∫
Ω

φhoXhwh =
∫

Xh(Ω)

φh(y)wh(X−1
h (y))det|∇X−1

h |dy (118)
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Then the quadrature formula are used on the new integral. If ∇.u is zero one
can even take

I ∼=
∑

ωkφh(ξk)wh(X−1
h (ξk))wk

h (119)

It is easy to check that this method, (109), (119), is conservative while (109),
(117) is not. Numerical tests for this method can be found in Benque et al.
[20].

The stability and error estimate when a quadrature formula is used is an
important open problem ; it seems that they have a bad effect in the zones
where u is small (Suli [226], Morton et al.[177]).

Computation of Xn(x) :
Formula (96) and (97) can be used directly. However it should be pointed

out that in order to apply (117), (same problem with (119)) one needs to know
the number l of the element such that

Xn(ξk) ∈ Tl (120)

This problem is far from being simple. A good method is to store all the
numbers of the neighboring (by a side) elements of each element and compute
the intersections {ξk, Xn(ξk)} with all the edges (faces in 3D) between ξk and
Xn(ξk); but then one can immediately improve the scheme for Xh by updating
u with its local value on each element when the next intersection is searched;
then a similar computation for (18)-(19) is made:

Let {ui} be such that u =
∑

i uiq
i,

∑
ui = 0, where {qi} are the vertices

of the triangle (tetrahedron):
Find ρ such that

λ′i = λi + ρui ⇒
∏

i

λ′i = 0, λ′i ≥ 0. (121)

This is done by trial and error; we assume that it is λm which is zero, so:

ρ = −λm

µm
, (122)

and we check that λi ≥ 0, ∀i . If it is not so we change m until it works.
Most of the work goes into the determination of the ui. Notice that it may

be practically difficult to find which is the next triangle to cross when Xn(ξk)
is a vertex, for example. This requires careful programming.

When |u − uh|∞ is 0(hp) the scheme is 0(hp). If uh is piecewise constant
one must check that uh.n is continuous across the sides (faces) of the elements
(when ∇.u = 0) otherwise (121) may not have solutions other than ρ = 0. If
uh = ∇ × ψh and ψh is P 1 and continuous then uh.n is continuous.

4.2. The Lax-Wendroff/ Taylor-Galerkin scheme[25]

Consider again the convection equation
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φ,t + ∇.(uφ) = f in Ω×]0, T [ (123)

For simplicity assume that u.n|Γ = 0 and that u and f are independent of t.
A Taylor expansion in time of φ gives:

φn+1 = φn + kφn
,t +

k2

2
φn

,tt + 0(k3) (124)

If one computes φ,t and φ,tt from (123), one finds

φn+1 = φn + k[f −∇.(uφn)] − k2

2
∇.(u[f −∇.(uφn)]) + 0(k3) (125)

or again

φn+1 = φn + k[f −∇.(uφn)] +
k2

2
[−∇.(uf) + ∇.[u∇.(uφn)]] + 0(k3) (126)

This is the scheme of Lax-Wendroff [144]. In the finite element world this
scheme is known as the Taylor-Galerkin method (Donea [68]). Note that the
last term is a numerical diffusion 0(k) in the direction un because it is the
tensor un ⊗ un.

Let us discretise (126) with Hh , the space of P 1 continuous function on a
triangulation of Ω :

(φn+1
h , wh) = ((φn

h , wh) + k(f −∇.(uφn
h), wh) (127)

−k
2

2
(∇.(uf), wh) − k2

2
(u∇wh,∇.(uφn

h)) ∀wh ∈ Hh

The scheme should be O(h2 + k2) in the L2 norm but it has a CFL stability
condition (Courant-Friedrischs-Lewy) (see Angrand-Dervieux [2] for a result of
this type on an O(h)-regular triangulation for scheme (127) with mass lumping)

k < C
h

|u|∞ (128)

An implicit version can also be obtain by changing n into n+ 1 and k into −k
in (126)

(φn+1
h , wh) + k(∇.(uφn+1

h ), wh) +
k2

2
(∇.(uφn+1

h ), u∇wh) (129)

= k(f, wh) + (φn
h , wh) +

k2

2
(∇.(uf), wh), ∀wh ∈ Hh

In the particular case when ∇.u = 0 and u.n|Γ = 0,we have the following
result :
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Proposition 14 :
If u and f are independent of t and ∇.u = 0, u.n|Γ = 0, then scheme (129)

has a unique solution which satisfies

|φn
h |0 ≤ |φo

h|0 + T |f |0 +
T

2
k|∇.(uf)|0 (stability) (130)

|φn
h − φ(nk)|0 ≤ C(h2 + k2) (convergence) (131)

Proof :
The symmetric part of the linear system yielded by (129) multiplied left

and right by ψh gives |ψh|2o + k2/2 |u∇ψh|2 which is always positive ; thus the
linear systems being square, they have one and only one solution.

By taking wh = φn+1
h in (129), one finds

|φn+1
h |20 +

k2

2
|u∇φn+1

h |2 ≤ |φn
h|0|φn+1

h |0 + k|f |0|φn+1|0 +
k2

2
|∇.(uf)|0|φn+1

h |0
(132)

thus if one divides by |φn+1
h |o and adds all the inequalities, (130) is found.

To obtain (131) one should subtract (126) from (129) :

(εn+1, wh) +
k2

2
(u∇εn+1, u∇wh) + k(u∇εn+1, wh) = (εn + 0(k3), wh) (133)

where ε = φh −φ. Let εh = φh− ψh where ψh is the projection of φ in Hh with
the norm ||.||k = (|.|20 + k2/2|u∇.|20)|1/2. Then εh = ε + 0(h2) and from (133),
we get

||εn+1
h ||k ≤ ||εnh|| + C(kh2 + k3) (134)

The result follows.

Remarks :
1. The previous results can be extended without difficulty to the case ν =

0 with the scheme:

(φn+1
h , wh) + k(∇.(uφn+1

h ), wh) +
k2

2
(∇.(uφn+1

h ), u∇wh) + ν(∇φn+1
h ,∇wh)

(135)

= k(f, wh) + (φn
h , wh) +

k2

2
(∇.(uf), wh), ∀wh ∈ Hoh

Higher order schemes :
Donea also report that very good higher order schemes can obtained easily

by pushing the Taylor expansion further; for instance a third order scheme
would be (f = 0):
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φn+1 − [φn − k∇.(uφn) +
k2

2
∇.[u∇.(uφn)] +

k2

6
∇.[u∇.(u(φn+1 − φn))]] = 0

4.3.The streamline upwinding method (SUPG).

The streamline upwinding method studied in §2.4 can be applied to (123)
without distinction between t and x but it would then yield very large linear
systems. But there are other ways to introduce streamline diffusion in a time
dependent convection-diffusion equation.

The simplest (Hughes [116]) is to do it in space only; so consider

(φn+1
h , wh + τ∇.(uwh)) +

k

2
(∇.(u[φn

h + φn+1
h ]), wh + τ∇.(uwh))

+
kν

2
(∇(φn+1

h + φn
h),∇wh) − kν

2

∑
l

∫
Tl

(∆(φn+1
h + φn

h)τ∇.(uwh))

= k(fn+ 1
2 , wh + τ∇.(uwh)) + (φn

h , wh + τ∇.(uwh)), ∀wh ∈ Hoh

where Tl is an element of the triangulation and u is evaluated at time (n+1/2)k
if it is time dependant; τ is a parameter which should be of order h but has
the dimension of a time.

With first order elements, ∆φh = 0 and it was noticed by Tezduyar [227]
that τ could be chosen so as to get symmetric linear systems when ∇.u = 0;
an elementary computation shows that the right choice is τ = k/2. Thus in
that case the method is quite competitive, even though the matrix of the linear
system has to be rebuilt at each time step when u is time dependant.

The error analysis of Johnson [125] suggests the use of elements discontin-
uous in time, continuous in space and a mixture upwinding by discontinuity in
time and streamline upwinding in space.

To this end space-time is triangulated with prisms. Let Qn = Ω×]nk, (n+
1)k[, let Wn

oh be the space of functions in{x, t} which are zero on Γ×]nk, (n+
1)k[ continuous and piecewise affine in x and in t separately on a triangulation
by prisms of Qn ;

We search φn
h with φn

h − φΓh ∈Wn
oh solution of

∫
Qn

[φn
h,t + ∇(uφn

h)][wh + h(wh,t + ∇(uwh)]dxdt+
∫

Qn

ν∇φn
h .∇whdxdt (136)

+
∫

Ω

φn
h(x, (n−1)k+0)wh(x, (n−1)k)dx =

∫
Qn

f(wh +h(wh,t +∇.(uwh))dxdt
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+
∫

Ω

φn−1
h (x, (n − 1)k − 0)wh(x, (n− 1)k)dx, ∀wh ∈ Wn

oh

Note that ifN is the number of vertices in the triangulation ofQn, equation
(136) is an N ×N linear system, positive definite but non symmetric.

One can show (Johnson et al. [127]) the following :

(
∫ T

0

|φn
h − φ|20,Ωdt)

1
2 ≤ C(h

3
2 + k

3
2 )||φ||H2(Q). (137)

4.4. Upwinding by discontinuity on cells:

The method of §2.5 can be extended to the nonstationary case but there
is an approximation problem for ∆φ when φh is discontinuous in space. One
way is to use the upwinding by cells as in §2.6 ; since the scheme will be 0(h)
one can use a piecewise constant approximation in time, which is similar to a
discretisation of (53) ( see (49) for the notation) by

(φn+1
h , wi) − k

|σi|
∫

∂−σi

u.n[
∫

σi

φn+1
h dx]dγ + νk(∇φn+1

h ∇wi) =

= (φn
h , w

i) + k(f, wi), ∀i, φn+1
h − φΓh ∈ Hoh

where wi is the continuous piecewise affine function associated with the ith

vertex of the triangulation of Ω.
This scheme is used in Dervieux et al [64][65] for the Euler equations (see

Chapter 6).
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CHAPTER 4

THE STOKES PROBLEM

1. POSITION OF THE PROBLEM

The generalized Stokes problem is to find u(x) ∈ Rn and p(x) ∈ R such
that

αu− ν∆u+ ∇p = f ∇.u = 0 in Ω, (1)

u = uΓ on Γ = ∂Ω. (1′)

where α, ν are given positive constants and f is a function from Ω into Rn.
It can come from at least two sources :
1) an approximation of the fluid mechanics equations such as that seen in

Chapter 1, that is when the Reynolds number is small (microscopic flow, for
example), then α = 0, and in general f = 0;

2) a time discretisation of the Navier-Stokes equations. Then α is the
inverse of the time step size and f an approximation of −u∇u.

In this chapter, we shall deal with some finite element approximations of
(1). More details regarding the properties of existence, unicity and regularity
can be found in Ladyzhenskaya [138], Lions [153] and Temam [228] and regard-
ing the numerical approximations in Girault-Raviart [93], Thomasset [229],
Girault-Raviart [93], Glowinski [95], Hughes [116] .

Test Problem :
The most classic test problem is the cavity problem :
The domain Ω is a square ]0, 1[2 , α = 0, ν = 1, f = 0 and the boundary

condition:
u = 0 on all the boundary except the upper boundary ]0, 1[×{1} where

u = (1., 0).
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Figure 4.1 : Stokes flow in a cavity

This problem does not have much physical signifigance but it is easy to
compare with solutions computed by finite differences. We note that the solu-
tion has singularities at the two corners where u is discontinuous (the solution
is not in H1).We can regularize this test problem by considering on the upper
boundary ]0, 1[×{1} :

u = x(1 − x)

2. FUNCTIONAL SETTING.

Let n be the dimension of the physical space (Ω ⊂ Rn) and

J(Ω) = {u ∈ H1(Ω)n : ∇.u = 0} (2)

Jo(Ω) = {u ∈ J(Ω) : u|Γ = 0} (3)

Let us put

(a, b) =
∫

Ω

aibi a, b ∈ L2(Ω)n (4)

(A,B) =
∫

Ω

AijBij A,B ∈ L2(Ω)n×n (5)

and consider the problem

α(u, v) + ν(∇u,∇v) = (f, v) ∀v ∈ Jo(Ω) (6a)

u− u′Γ ∈ Jo(Ω) (6b)

where u′Γ is an extension in J(Ω) of uΓ.

Lemma 1
If uΓ ∈ H1/2 (Γ)n and if

∫
Γ uΓ.n =0 then there exists an extension u′Γ ∈

J(Ω) of uΓ.

Remarks
1. For notational convenience we assume that uΓ always admits an exten-

sion with zero divergence and we identify uΓ and u′Γ .
2. Taking account of this condition and without loss of generality, we

arrive by translation (v = u− u′Γ) at the case uΓ = 0 .

Theorem 1
If f ∈ L2(Ω)n and u′Γ ∈ J(Ω), problem (6) has a unique solution.

Proof :
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Jo(Ω) is a non empty closed subspace of H1(Ω)n and the bilinear form

{u, v} → α(u, v) + ν(∇u,∇v)
is H1

0 (Ω) elliptic. With the hypothesis v → (f, v) continuous, the theorem is a
direct consequence of the Lax-Milgram theorem.

Remark
We also have a variational principle : (6) is equivalent to

min
u−u′

Γ∈Jo(Ω)

1
2
α(u, u) +

1
2
ν(∇u,∇u) − (f, u) (7)

Theorem 2
If the solution of (6) is C2 then it satisfies (1). Conversely, under the

hypothesis of theorem 1, if {u, p} ∈ H1(Ω)n ×L2(Ω) is a solution of (1) then u
is a solution of (6).

Proof :
We apply Green’s formula to (6) :

∫
Ω

(αu − ν∆u).v =
∫

Ω

fv ∀v ∈ Jo(Ω) (8)

Now we use the following theorem (Cf Girault-Raviart [92] for example)
∫

Ω

g.v = 0 ∀v ∈ L2(Ω) with ∇.v = 0 v.n|Γ = 0 ⇒ (9)

There exists q ∈ L2(Ω) such that g = ∇q (10)

- We recall that (∇p, v) = 0 for all v ∈ Jo(Ω).
So (8) implies the existence of p ∈ L2(Ω) such that

αu− ν∆u = f −∇p (11)

and the result follows. Conversely, by multiplying (1) with v ∈ Jo(Ω) and
integrating we obtain (6) since vΓ = 0 :

−
∫

Ω

∆uv =
∫

Ω

∇u∇v and −
∫

Ω

p∇.v =
∫

Ω

v∇p

Remark
1. It is not necessary that u be C2 for p to exist, but then the proof is

based on a more abstract version of (9)(10). Indeed it is enough to notice that
the linear map :

L(v) : v → (f, v) − α(u, v) − ν(∇u,∇v)
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is zero on J0(Ω) because the space orthogonal to J(Ω) is the space of gradients,
thus there exists a q in L2(Ω) such that L(v) = (∇q, v) for all v in H1

0 (Ω)n ;
hence (1) is true in the distribution sense.

2. Problem (1) can also be directly studied in the form of a saddle point
problem (Cf. Girault-Raviart [92] for example),

α(u, v) + ν(∇u,∇v) − (∇.v, p) = (f, v) ∀v ∈ H1
0 (Ω)n

(∇.u, q) = 0 ∀q ∈ L2(Ω)/R

We shall use later this formulation in the error analysis of the methods.
3. The uniqueness of the pressure, p (up to a constant) is not given by

theorem 1 but it can be shown by studying the saddle point problem.

3. DISCRETISATION

Let {Jh}h be a sequence in a finite dimensional space, J0h = Jh ∩H1
0 (Ω)n,

such that

∀v ∈ Jo(Ω) there exists vh ∈ Joh such that ||vh − v||1 → 0 when h→ 0 (12)

We consider the approximated problem :

Find uh such that

α(uh, vh) + ν(∇uh,∇vh) = (f, vh) ∀vh ∈ Joh; uh − u′Γh
∈ Joh. (13)

where u′Γh
is an approximation of u′Γ in Jh.

Theorem 3
If Joh is non empty the problem (13) has a unique solution.

Proof
Let us consider the problem

min
uh−u′

Γh
∈Joh

1
2
{α(uh, uh) + ν(∇uh∇uh) − (f, uh)} (14)

Since Joh is of finite dimension N , (14) is an optimization of a strictly quadratic
function in N variables ; thus it admits a unique solution. By writing the first
order optimality conditions for (14), we find (13).

A counter example .
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Let Ω be a quadrilateral and Th be the triangulation of 4 triangles formed
with the diagonals of Ω. Let

J0h = {vh ∈ C0(Ω) : vh|Tk
∈ P 1 vh|Γ h = 0,

(∇.vh, q) = 0 ∀q continuous, piecewise affine on Th}
There are only two degrees of freedom for vh (its values at the center) but there
are 4 constraints of which 3 are independent, so J0h is reduced to {0, 0}.

Figure 4.2 :values of the velocity at the vertices
of the first counterexample and the pressure for the second.

Remarks
1. One might think that the problem with the above counter example

stems from the fact that there are not enough vertices. Although Joh would
not, in general, be empty when there are more vertices, this approximation is
not good, as we shall see, because there are too many independent constraints.
For example, let Ω be a square triangulated into 2(N − 1)2 triangles formed by
the straight lines parallel to the x and y axis and the lines at 45o (figure 4.2).
We have also 2N2 constraints and 2(N2−4N) ∼= 2N2 degrees of freedom when
N is large.

2. The pressure cannot be unique in that case. Indeed with J0h defined
as above there exists {ph} piecewise affine continuous such that

(∇.vh, ph) = 0 ∀vh P 1 continuous on Th

These are the functions ph which have values alternatively 0, 1 and -1 on the
vertices of each triangle (each triangle having exactly these three values at the
three vertices.) Then (∇.vh, ph) is zero because

(∇.vh, ph) =
∑
Ti

(∇.vh)|Ti(
1
3

∑
j=1,2,3

ph(qij ))

So the constraints in Joh are not independent and the numerical pressure asso-
ciated with the solution of (14) (the Lagrangian multiplier of the constraints)
cannot be unique.

To solve numerically (13) (or (14)) we can try to construct a basis of Joh.
Let {vi}N

i be a basis of Joh. By writing uh on this basis,

uh(x) =
∑
1..N

uivi(x) + u′Γh
(x), (15)
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it is easy to see by putting (15) in (13) with vh = vi that (13) reduces to a
linear system

AU = G (16)

with

Aij = α(vi, vj) + ν(∇vi,∇vj), (17)

Gj = (f, vj) − α(u′Γh
, vj) − ν(∇u′Γh

,∇vj). (18)

However there are two problems

1) It is not easy to find an internal approximation of J(Ω) ; that is in
general we don’t have Joh ⊂ J0(Ω), which leads to considerable complications
in the study of convergence.

2) Even if we succeed in constructing a non empty Joh which satisfies (12)
and for which we could show convergence, the construction of the basis {vi} is
in general difficult or unfeasible which makes (15)(16) inapplicable in practice.

Before solving these problems, let us give some examples of discretisation
for Joh in increasing order of difficulty. These examples are all convergent and
feasible as we shall see later. They are all of the type

Jh = {vh ∈ Vh : (∇.vh, q)h = 0 ∀q ∈ Qh}
J0h = {vh ∈ Jh : vh|Γ = 0}

Thus J0h is determined by the choice of two spaces
1o) Vh which approximate H1(Ω),
2o) Qh which approximate L2(Ω) or L2(Ω)/R
3o) and the choice of a quadrature formula. (., .)h.

As usual, {Tk} denotes a triangulation of Ω, Ωh the union of Tk, {qj}j=1..Ns

the vertices of the triangulation, λk
j (x) the j − th barycentric coordinate of x

with respect to vertices {qkj}j=1.,n+1 of the element Tk. We denote respectively
by

Ns, the number of vertices,
Ne, the number of elements,
Nb, the number of vertices on Γ,
Na, the number of sides of the triangulation, and
Nf , the number of faces of the tetrahedra in 3D.

Pm denotes the space of polynomials (of degree ≤ m) in n variables. We
recall Euler’s geometric identity :



INTRODUCTION 93

Ne−Na+Ns = 1 in 2D , Ne−Nf +Na−Ns = −1 in 3D

3.1. P1 bubble/P1 element (Arnold-Brezzi-Fortin [5])

Let µk(x) be the bubble function associated with an element Tk defined
by :

µk(x) =
∏

j=1..n+1

λk
j (x) on Tk and 0 otherwise

The function µk is zero outside of Tk and on the boundary and positive in the
interior of Tk. Let wi(x) be a function defined by

wi(x) = λk
i (x) on all the Tk which contain the vertex i and 0 otherwise

Let us put :

Vh = {
∑

j

vjwj(x) +
∑

k

bkµk(x) : ∀vj , bk ∈ Rn} (19)

that is the set of (continuous) functions having values in Rn and being the sum
of a continuous piecewise affine function and a linear combination of bubbles.
We shall remark that dimVh = (Ns+Ne)n.

Let

Qh = {
∑

j

pjwj(x) : ∀pj ∈ R} (20)

that is a set of piecewise affine and continuous functions (usual P 1 element).
We have : dim Qh = Ns

Figure 4.3:Position of the degrees of freedom in the P 1 − bubble/P 1element

Let us put

Jh = {vh ∈ Vh : (∇.vh, qh) = 0 ∀qh ∈ Qh} (21)

Joh = {vh ∈ Jh : vh|Γh
= 0}. (22)

It is easy to show that all the constraints (except one) in (21) are independent.
In fact if N is the dimension of Vh the constraints which define Jh are of the
form BV = 0 where V are the values of vh at the nodes. So if we show that
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(vh,∇qh) = 0 ∀vh ∈ Vh ⇒ qh = constant

that proves that Ker BT is of dimension 1 and so the ImB is of dimensionN−1,
i.e.B is of rank N − 1 which is to say that all the constraints are independent
except one (the pressure is defined up to a constant).

Let ei be the ith vector in the cartesian system. Let us take bk = δk,ie
i,

vj = 0 and vh in (19). Then

0 = (vh,∇qh) =
∂qh
∂xi

|Ti

area(Ti)
(n+ 1)

⇒ qh = constant

So we have (n = 2 or 3):

dimJh = (n− 1)(Ns+Ne)n−Ns+ 1 = Ns+ nNe+ 1 (23)

We shall prove that this element leads to an error of 0(h) in the H1norm for
the velocity. Whereas, without knowing a basis (local in x) one cannot solve
(13) and one has to use duality for the constraints. A basis, local in x, for Jh

is not known (by local in x, we mean that each basis function vi has a support
around qi and it is zero far from qi).

Remark
We can replace the bubble by a function zero on ∂Tk piecewise affine on

3 internal triangles of each triangle obtained by dividing it at its center ; we
obtain the same convergence result.

Figure 4.4:Position of the degrees of freedom in the element P 1
h′/P 1.

3.2. P1 iso P2/P1 element (Bercovier-Pironneau [26])
We construct a triangulation Th/2 from the triangle Th in the following

manner :
Each element is subdivided into s sub-elements (s = 4 for triangles and 8

for tetrahedra) by the midpoints of the sides.
We put

Vh = {vh ∈ C0(Ωh)n : vh|Tk ∈ (P 1)n ∀Tk ∈ T h
2
} (24)

Qh = {qh ∈ C0(Ωh) : qh|Tk ∈ P 1 ∀Tk ∈ Th}. (25)

We construct Joh by (21)-(22)
Knowing that the number of sides of a triangulation is equal to Ne+Ns−1

if n=2 (Ns+Nf-Ne-1 if n=3) we get, in 2-D :

dimJh = 2Ns+ 2(Ns+Ne− 1) −Ns+ 1 = 3Ns+ 2Ne− 1 (26)
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Figure 4.5 : Degrees of freedom in the P 1isoP 2/P 1 element .

The independence of the constraints is shown in the following way :
We take vh ∈ Vh with 0 on all nodes (vertices and midpoints of sides)

except at the middle node ql of the side al, intersection of the triangles Tk1 and
Tk2 . Then :

0 = (vh,∇qh) = vh(ql)[
∑

j=1,2

∇qh|Tkj
area(Tkj )]

Let ql1 and ql2 be the values of qh at the two ends of al; if we take vh(ql) =
ql1 − ql2 then the above constraint gives ql1 = ql2 . So the qh which satisfy the
constraints for all vh are constant.

This element also gives an error of 0(h) for the H1norm. We know how to
construct a basis with zero divergence usable for this element (Hecht [109]).

3.3. P2/P1 element (Hood-Taylor [113])

Vh = {vh ∈ C0(Ωh)n : vh|Tk
∈ (P 2)n ∀k} (27)

Qh = {qh ∈ C0(Ωh) : qh|Tk
∈ P 1 ∀k} (28)

and of course (21)-(22).

Figure 4.6 : Position of the degrees of freedom in the P 2/P 1element .

This element is 0(h2) for the H1 error and has the same dimension (26)
but it gives matrices with bandwidth larger than (24)-(25). The proof of the
independence constraints is the same as above. The dimension of Jh is there-
fore:

dimJh = 2(Ns+Ne− 1) + 2Ns−Ns+ 1 = 3Ns+ 2Ne− 1

Construction of a zero divergence basis :

We know how to construct a basis with zero divergence usable for this
element (Hecht [109]) ; figure 4.7 gives the non zero directions at the nodes of
each basis function with zero divergence, as well as its support (set of points
where it is non zero).
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Figure 4.7: Basis with zero divergence for the P 2/P 1element .

For the 3 families of functions, the notations are the following : a denotes
a side, T a triangle and q a vertex. We have drawn the triangles on which the
function is non zero and the directions of the vectors, values of these functions
at the nodes, when they are non zero.

Since all constraints but one in Jh are independent ; the dimension of Jh

is

dimJh = dimVh − dimQh = 2Ns+ 2Na−Ns+ 1 = 2Ns+Ne+Na

the last equality being a consequence of Euler’s identity.
We shall define three families of vectors :
- 2Ns vectors, each with 0 on all the nodes (middle of the sides and vertices)

except a vertex q where the vector is arbitrary .
- Ne vectors vk, each having value 0 on all the nodes except on the 3

mid-points of the sides of a triangle where vk =
∑

1..3 λja
j
t with, for example :

λ1 = 1, λ2 =
(∇w3, a1

t )
(∇w3, a2

t )
, λ3 =

(∇w2, a1
t )

(∇w3, a3
t )

where at denotes a unitary vector tangent to the side a and wi the basis function
P 2 associated to the vertex qi.

- Na vectors v non-zero only on a side a and on a side a1 and a2 of the
2 triangles which contain a. If an denotes the unitary vector normal to a we
could take, for example v = λan + µa1

t + νa2
t with :

λ = − (∇w1, an)
(∇w2, at)

, µ = − (∇w3, an)
(∇w3, a1

t )
, ν = − (∇w4, an)

(∇w4, a2
t )

We leave it to the reader to verify that the vectors are independent and with
zero divergence in the sense of (21)(27)(28).

3.4. P1 nonconforming/P0 element (Crouzeix-Raviart [60])

Vh = {vh continuous at the middle of the sides (faces) vh|Tk
∈ (P 1)n} (29)

Qh = {qh : qh|Tk
∈ P 0} (30)

and (21)-(22).
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Figure 4.8:Position of degrees of freedom for the element P 1 nonconform-
ing /P 0.

This element is 0(h) in the H1norm ; it is nonconforming because vh is
discontinuous at the interfaces of the elements. The dimension of Vh is equal
to twice the number of sides (resp. faces). We prove the independence of the
constraints by taking vh perpendicular to a side and zero at all the other nodes:

0 = (∇.vh, qh) =
∑ ∫

side

qhvh.ndγ =
∑

length(side) (qh|Tk1
− qh|Tk2

)

⇒ qh = constant.

In R2 we have

dimJh = Ne+ 2Ns− 1 (31)

We know how to construct a local basis with zero divergence for this element.
In dimension 2 we define two families of basis vectors of Jh, one with indices
on the middle of the sides qij :

v′ij(qkl) = (qi − qj)
δikδjl

|qi − qj | ∀qkl middle of the side {qk, ql} ∈ Γ (32)

and the other with indices on the internal vertices ql

v′l(qij) = δli
n(qij)
|qi − qj | ∀qij middle of {qiqj} (33)

where n is normal to qiqj in the direct sense.

Figure 4.9: Zero divergence basis for the P 1 nonconforming P 0 element .

We remark that for the two families we have :

(∇.v′, qh) =
∑

k

qh|Tk

∫
Tk

v′.ndx = 0 ∀qh ∈ Qh (34)

because each integral is zero. Moreover if Na denotes the number of sides there
are Na + Ns basis functions in this construction ; that number is also equal
to 2Ns+Ne− 1 which is exactly the dimension of Jh (cf . (31)); so we have a
basis of Jh.
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In 3-D a similar construction is possible (Hecht [109]) with the middle
of the faces and the vertices but the functions thus obtained are no longer
independent; one must remove all the functions v′l of a maximal tree without
cycle made of edges.

3.5. P2bubble/P1 discontinuous element . (Fortin [80])

Vh = {vh ∈ C0(Ωh)n : vh(x) = wh +
∑

l

blµ
l(x), wh|Tl

∈ (P k+1)n, bl ∈ Rn}
(35)

Qh = {qh : qh|Tk ∈ P k} (qh is not continuous), (36)

k =0 or 1. With (21)-(22) this element is 0(h2) in norm H1 if k = 1 and
0(h) if k = 0. Since the constraints are independent (except one as usual) we
can easily deduce the dimension of J0h. The construction of a basis with zero
divergence for this element can also be found in [15]. We note that if we remove
the bubbles and if k = 1 the element becomes 0(h).

Figure 4.10: Position of degrees of freedom for the element
P 2bubble/P 1discontinuous .

Remark
One can construct without difficulty a family of elements with quadrilater-

als by replacing in the formulae Pm by Qm, the space of polynomials of degree
≤ m with respect to each of its variables.

3.6 Comparison of elements:
The list below is only a small subset of possible elements tfor the solution

of the Stokes problem. We have only given the elements which are most often
used. The choice of an element is based on the three usual criteria :

- memory capacity,
- precision,
- programming facility.
Even with recent developments in computer technology the memory ca-

pacity is still the determining factor and so we have given the elements in the
order of increasing memory requirement in 3D for the tetrahedra ; but that
could change for computers with 256 Mwords like the CRAY 2 which could
handle elements which are now considered to be too costly !

4. RESOLUTION OF THE LINEAR SYSTEMS

If we know a basis of Joh and of Jh it is enough to write uh in that basis,
construct A and G by (17)-(18) and solve (16). This is a simple and efficient
method but relatively costly in memory because A is a big band matrix.
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To optimize the memory we store only the non zero elements of A in a one
dimensional array again denoted by A. I and J are integer arrays where the
indices of rows and columns of non zero elements are stored.

m = 0
Loop on i and j
If aij = 0 , do m = m +1, A(m) = aij ,I(m) = i , J(m) = j
end of loop .
mMax = m.

This method is well suited particularly to the solution of the linear system

AU = G

by the conjugate gradient method (see Chapter 2) because it needs only the
following operations :

given U calculate V ≡ AU ;

now this operation is done easily with array A, I and J :
To get V (i) one proceeds as follows :

Initialize V = 0.
For m = 1.. mMax do

V (I(m)) = A(m) ∗ U(J(m)) + V (I(m))

4.1. Resolution of a saddle point problem by the conjugate gra-
dient method.

All the examples given for Joh are of the type

Joh = {vh ∈ Voh : (∇.vh, qh) = 0 ∀qh ∈ Qh} (36)

where Voh is the space of functions of Vh zero on the boundaries. An equivalent
saddle point problem associated with (14) is

min
uh−u′

Γh
∈Voh

max
pi

{1
2
α(uh, uh)+

1
2
ν(∇uh,∇uh)−(f, uh)+

∑
1..M

pi(∇.uh, q
i)} (37)

where {qi}M is a basis of Qh.

Theorem 4
When Joh is given by (36) and is non empty with dimVh = N ,
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dimQh = M and Voh ⊂ H1
0 (Ω)n ( Ω is polygonal), the discretised Stokes

problem (13) is equivalent to (37). In addition, (37) is equivalent to

α(uh, vh) + ν(∇uh,∇vh) + (∇ph, vh) = (f, vh) ∀vh ∈ Voh (38)

(∇.uh, qh) = 0 ∀qh ∈ Qh (39)

uh − u′Γh
∈ Voh, ph ∈ Qh

These are the necessary and sufficient conditions for uh to be a solution of
(13) because they are the first order optimality conditions for (14).

Proof
Problem (13) is equivalent to (14) which is a problem with quadratic cri-

teria and linear constraints. The min-max theorem applies and the conditions
for the qualification of the constraints are verified (Cf. Ciarlet [56], Luenberger
[162] Polak [193] for example). The qi are the M Lagrangian multipliers with
M constraints in (36). The equivalence of (37) with (38)-(39) follows from the
argument that if L is the criteria in (37)

∂L
∂ui

= 0,
∂L
∂pi

= 0 (40)

at the optimum, where ui are the components of uh expressed in the basis of
Voh. These are the necessary and sufficient conditions for {uh, ph} to be the
solution of (37) because L is strictly convex on Voh in uh and linear in pi .

Remarks .
1. (37)(38) can be found easily from (1); this formulation was used in

engineering well before it was justified.
2. Without the inf-sup condition (79), there is no unicity of {pi}i.

Proposition 1
If {vi}N is a basis of Vohand {qj}Ma basis of Qh, problem (38)-(39) is

equivalent to a linear system
(
A B
BT 0

) (
U
P

)
=

(
G
0

)
(41)

with U being the coefficient of uh expressed on the basis {ui} and P being the
coefficients of phexpressed on the basis {qi}.

Aij = α(vi, vj) + ν(∇vi,∇vj), i, j = 1..N (42)

Bij = (∇qi, vj) i = 1..M, j = 1..N (43)

Gj = (f, vj) − α(uΓh
, vj) − ν(∇uΓh

,∇vj) j = 1..N (44)

Proof
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We note that if uh is zero on Γh we have

(∇.uh, qh) = −(uh,∇qh) (46)

Then we decompose uh and ph on their basis and take vh = vj and qh = qi in
(38) and (39).

Proposition 2
Problem (41) is equivalent to

(BtA−1B)P = BtA−1G, U = −A−1BP +A−1G (47)

Proof
It is sufficient to eliminate U from (41) with the first equations. This can

be done because A is invertible as shown in (48) :

U tAU = α(uh, uh) + ν(∇uh,∇uh) = 0 ⇒ uh = 0 ⇒ U = 0 (48)

Algorithm 2 (solving (47) by the Conjugate Gradient Method)
0 . Initialisation: choose p0 (=0 if no initial guess known). Choose C ∈

RN×Npositive definite, choose ε << 1, nMax >> 1; (pn, qn, z, gn are in the
pressure space while un, v are in the velocity space)

solve Au0 = G−Bp0 (49)

put g0 = Btu0 (= BtA−1G) n = 0. (50)

1 . Solve

Av = Bqn (51)

and Cz = Btv (= BtA−1Bqn) (52)

set ρ =
|gn|2C

< qn, z >C
(53)

2. Put

pn+1 = pn − ρqn (54)

un+1 = un − ρv (so that Aun+1 = −Bpn+1 +G) (55)

gn+1 = gn + ρz (56)

3. IF (|gn+1| < ε)or(n > nMax) THEN stop ELSEPut

γ =
|gn+1|2c
|gn|2c

(57)
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qn+1 = gn+1 + γqn (58)

and Return to 1 with n:=n+1 .

Choice of the preconditioning.
Evidently the steps (51) and (56) are costly. We note that (51) can be

decomposed into n Dirichlet sub-problems for each of the n components of uh.
This is a fundamental advantage of the algorithm because all the manipulation
is done only on a matrix not bigger than a scalar Laplacian matrix.

(56) is also a discrete linear system. A good choice for C (Benque and al
[20]) can be obtained from the Neumann problem on Ω for the operator −∆ ,
when we use for Qh an admissible approximation of H1(Ω) (Cf. 3.3, 3.2 and
3.1):

(∇φh,∇qh) = (l, qh) ∀qh ∈ Qh/R ⇒ (59)

Cij = −∆hij ≡ (∇qi,∇qj) ∀i, j (boundary points included) . (60)

This choice is based on the following observation : from (1) we deduce

−∆p = ∇.f in Ω,
∂p

∂n
= f.n+ ν∆u.n

So in the case ν � 1 there underlies a Neumann problem.
This preconditioning can be improved as shown by Cahouet-Chabard [47]

by taking instead of −∆h :

C ≡ (νI−1
h − α∆−1

h )−1 with Neumann conditions on the boundary

where Ih is the operator associated with the matrix (wi, wj) where wi is the
canonical basis function associated with the vertex qi. In fact, the operator
BTA−1B is a discretisation of ∇.(αI−ν∆)−1∇. Now if α = 0, it is the identity
and if ν = 0, it is −∆h.

4.2. Resolution of the saddle point problem by penalization
The matrix of problem (41) is not positive definite.
Rather let us consider

(
A B
Bt −εI

) (
U
P

)
=

(
G
0

)
(62)

We can eliminate P with the last equations and there remains :

(A+
1
ε
BBt)U = G (63)
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We solve this system by a standard method since the matrix A + ε−1BBt is
symmetric positive definite, (but is still a big matrix). This method is easy to
program because it can be shown that (63) is equivalent to

α(uh, vh) + ν(∇uh,∇vh) +
1
ε

∑
1..M

(∇.uh, q
i)(∇.vh, q

i) = (f, vh) (64)

∀vh ∈ Voh uh − u′Γh ∈ Voh

It is useful to replace ε by ε/βi, βi being the area of the support of qi; this
corresponds to a penalization with the coefficients βi in the diagonal of I in
(62). Other penalizations have been proposed. A clever one (Hughes et al
[118]) is to penalize by the equation for u with v = ∇q :

(∇.uh, qh) = 0

is replaced by

(∇.uh, qh) + ε[(∇ph,∇qh) − (∆uh,∇qh) − (f,∇qh)] = 0

but the term (∆uh,∇qh) can be dropped because ∇.uh = 0 (see (129) below).

5. ERROR ESTIMATION

(The presentation of this part follows closely Girault-Raviart [93] to which
the reader is referred for a more detailed description of the convergence of finite
element schemes for the Stokes problem.)

5.1. The abstract set up
Let us consider the following abstract problem

Find uh ∈ Jh where

Jh = {uh ∈ Vh : b(uh, qh) = 0 ∀qh ∈ Qh} (65)

such that

a(uh, vh) = (f, vh) ∀vh ∈ Jh (66)

with the following notations :
- Vh sub-space of V , V Hilbert space, dim Vh < +∞
- Qh sub-space of Q, Q Hilbert space, dim Qh < +∞
- a( , ) continuous bilinear of V × V → R with

a(v, v) ≥ λ||v||2V ∀v ∈ V (V-ellipticity) (67)

- b( , ) continuous bilinear of V × Q → R such that
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0 < β ≤ inf
q∈Q

sup
v∈V

b(v, q)
||v||V ||q||Q (68)

- ( , ) duality product between V and (its dual) V ′.
We remark that these conditions are satisfied by the Stokes problem with

a(u, v) = α(u, v) + ν(∇u,∇v)
b(v, q) = −(∇.v, q)

V = H1
0 (Ω)n Q = L2(Ω)/R

λ = inf{α, ν}.
(, ) = scalar product of L2(Ω).

β = 1/C where C is such that for all q there is a u such that ∇.u = q and
|∇u|0 ≤ C|q|0

Remark:
The notation in this formulation is somewhat misleading ; in fact Joh and

Voh are now denoted Jh and Vh!

The following proposition compares (66) with the continuous problem :

a(u, v) = (f, v) ∀v ∈ J (69)

u ∈ J = {v ∈ V : b(v, q) = 0 ∀q ∈ Q} (70)

5.2. General theorems

Proposition 3
If uh and u are solutions of (65)-(66) and (69)-(70) respectively, and if Vh

is non empty, then

||u− uh||V ≤ C(λ)[ inf
vh∈Jh

||u− vh||V + inf
qh∈Qh

||p− qh||Q] (71)

Proof
We can show (Brezzi [39]) thanks to (68) that (69)-(70) is equivalent to

the following problem : find {u, p} ∈ V ×Q such that

a(u, v) + b(v, p) = (f, v) ∀v ∈ V (72)

b(u, q) = 0 ∀q ∈ Q (73)

By replacing v by vh ∈ Jh in (72) and by subtracting (66) from (72) we get
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a(u − uh, vh) = −b(vh, p− ph) ∀vh ∈ Jh (74)

Or, by taking into account (65)

a(u− uh, vh) = −b(vh, p− qh) ∀vh ∈ Jh ∀qh ∈ Qh (75)

and for all wh ∈ Jh

a(wh − uh, vh) = a(wh − u, vh) − b(vh, p− qh) (76)

So (cf (67) and the continuity of a and b)

λ||wh − uh||V ≤ ||a||||wh − u||V + ||b||||p− qh||Q (77)

which implies

||u− uh||V ≤ ||u− wh||V + ||wh − uh||V ≤
(1 + ||a||λ−1)||wh − u||V + λ−1||b||||p− qh||Q ∀wh ∈ Jh ∀qh ∈ Q (78)

Proposition 4 (Brezzi [39])

if inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)
||vh||V ||qh||Q ≥ β′ > 0 (79)

then inf
vh∈Jh

||u− vh||V ≤ (1 +
||b||
β′ ) inf

vh∈Vh

||u− vh||V (80)

Proof
Let us show first that if zh is in the orthogonal space of Jh in Vh (denoted

J⊥
h ) we have

β′ ≤ b(zh, qh)
||zh||||qh|| ∀qh ∈ Qh ∀zh ∈ J⊥

h . (81)

This will be a direct consequence of (79) if we show the following :

zh ∈ J⊥
h ⇒ ∃qh such that zh solution of sup

zh∈Vh

{ b(zh, qh)
||zh||||qh|| }

In fact, the optimality conditions of the problem”Sup”are :

b(yh, qh) + λ(zh, yh) = 0 ∀yh ∈ Vh

with λ = −||zh||−3; since the conditions are necessary and sufficient for zh to
be a solution, it is sufficient to define qh as a solution of

b(yh, qh) = (zh, yh) ∀yh ∈ Vh
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which is possible because if B the operator defined by the above equation is
not of maximal rank then by taking qh in the kernel, we see that β′ = 0 in (79).

Now let vh ∈ Vh be arbitrary. We can write vh = zh + wh where wh ∈ Jh

and zh ∈ J⊥
h . Let us show that ||zh|| ≤ C||u − vh|| for all u in J :

Since zh ∈ J⊥
h we have

b(zh, qh) = b(vh, qh) = −b(u− vh, qh) ∀qh ∈ Qh

Then we have from(81)

||zh||V ≤ 1
β′
b(zh, qh)
||qh||Q ≤ ||b||β′−1||u− vh||V (82)

so ∀ wh ∈ Jh , ∃ vh ∈ Vh such that

||u− wh||V ≤ ||u− vh||V + ||zh||V ≤ (1 +
||b||
β′ )||u − vh||V (83)

Theorem 5
Let uh and u be the solutions of (65)-(66) and (69)-(70)
If we have (67), (68) and (79) then

||u− uh||V ≤ C[ inf
vh∈Vh

||u− vh||V + inf
qh∈Qh

||p− qh||Q] (84)

Proof
The proof follows directly from the 2 previous propositions.

Theorem 6
If p and ph are the pressures associated with u and uh (Lagrange multiplier
of the constraints),we also have

||p− ph||Q ≤ C(λ)[ inf
vh∈Vh

||u− vh||V + inf
qh∈Qh

||p− qh||Q] (85)

Proof :
From (74) and its corresponding discrete equation, we deduce that

b(vh, ph − qh) = a(u− uh, vh) + b(vh, p− qh) ∀vh ∈ Vh ∀qh ∈ Qh (86)

So from (79)
||ph − qh||Q ≤ β′−1 supvh∈Vh

{ [a(u− uh, vh) + b(vh, p− qh)]/||vh||V }

≤ β′−1(||a||||u− uh||V + ||b||||p− qh||Q).

We obtain :
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||p− ph||Q ≤ β′−1||a||||u − uh||V + (||b||β′−1 + 1)||p− qh||Q (87)

To study the generalized problem (64), we consider the following abstract
problem where c(p, q) = (Cp, q) is a symmetric Q− elliptic continuous bilinear
form :

Find uε
h ∈ Vh such that

a(uε
h, vh) + ε−1(C−1

h BT
h u

ε
h, B

T
h vh) = (f, vh) (88)

where Ch and Bh are defined by the relations

(Chph, qh) = c(ph, qh) ∀ph, qh ∈ Qh (89)

(BT
h uh, qh) = b(uh, qh) ∀uh ∈ Vh, ∀qh ∈ Qh (90)

Theorem 7
Under the hypothesis of theorem 5 and if β is independent of h, we have

||uε
h − uh||V + ||pε

h − ph||Q ≤ εC||f ||0 (91)

Proof
We create an asymptotic expansion of uε

h and of pε
h

uε
h = u0

h + εu1
h + ... (92)

pε
h = p0

h + εp1
h + ...

So (88) implies that

(C−1
h BT

h u
0
h, B

T
h vh) = 0 (93)

a(u0
h, vh) + (C−1

h BT
h u

1
h, B

T
h vh) = (f, vh), (94)

a(u1
h, vh) + (C−1

h BT
h u

2
h, B

T
h vh) = 0...∀vh ∈ Vh (95)

By putting qh = C−1
h BT

h vh, p
0
h = C−1

h BT
h u

1
h, we see that u0

h is solution of the
nonpenalized problem (66). We easily show that the ui

h are bounded indepen-
dently of h, and hence the theorem holds.

Remark:
If the inf sup condition is not verified (88) is still sensibles but the error

due to penalization is 0(
√
ε) (cf. Bercovier [25]).

5.3. Verification of the inf-sup condition (79).

Finally for all the examples in section 3 if remains only to show the suffi-
cient condition (79); we follow Nicolaides et al [181].
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We shall do this for the element P 1bubble/P 1. We recall the notation :

V represents H1
0 (Ω)n, Q = L2(Ω)/R, Vh and Qh are approximations of

the spaces (P 1bubble, zero on the boundary, for Vh and P 1 for Qh, both are
assumed conforming). The lemma 1 below does not depend on the particular
form of Vh and Qh :

Lemma 1
The inf-sup condition (79) is equivalent to the existence of a Πh

Πh : V → Vh (96)

such that (C is independent of h):

(v − Πhv,∇qh) = 0 ∀qh ∈ Qh, ∀v ∈ V (97)

||Πhv||1 ≤ C||v||1 (98)

Proof
If Πh exists, we have

sup
vh∈Vh

(vh,∇qh)
||vh||1 ≥ sup

v∈V

(Πhv,∇qh)
||Πhv||1 = sup

v∈V

(v,∇qh)
||Πhv||1 (99)

≥ C−1 sup
v∈V

(v,∇qh)
||v||1 ≥ C−1β|qh|o (β′ = C−1β) (100)

Conversely, let Πh be an element in the orthogonal of Jh which satisfies

(Πhv,∇qh) = (v,∇qh) ∀qh ∈ Qh (101)

then (cf. (81))

||Πhv||1 ≤ β′−1 |(v,∇qh)|
|qh|0 ≤ β′−1||v||1 (102)

because

|(v,∇q)| = |(∇.v, q)| ≤ |∇.v|0|q|0 ≤ C||v||1|q|0. (103)

Theorem 8
If the triangulation is regular (no angle tends to 0 or π when h tends to

0), then the P 1 − bubble/P 1 element satisfies the inf-sup condition with β′

independent of h. So we have the following error estimate :

||u− uh||1 + |p− ph|o ≤ Ch||u||2. (104)

Proof
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To simplify we assume n = 2. and we shall apply lemma 1. Let v be
arbitrary in H1

0 (Ω)n .
Let Πhv be the interpolate defined by its values of the vertices qi of the

triangulation.

Πhv(qi) = v(qi) (106)

- Here there is a technical difficulty because v may not be continuous and one
must give a meaning to v(qi). We refer the reader to [12, lemma II.4.1] .

Nevertheless the values at the centre of the elements are chosen such that
∫

Tk

Πhvdx =
∫

Tk

vdx ∀Tk (107)

Then we have

(Πhv − v,∇qh) =
∑

k

[
∫

Tk

(Πhv − v)dx]∇qh|Tk
= 0 (108)

and we easily show that

||Πhv||1 ≤ C||v||1. (109)

Remark
1. This proof can be applied immediately to the case where the bubble is

replaced by the element cut into three by the centre of a triangle.
2. It is not always easy to find a Πh with (96)(98); another method is to

prove (79) directly on a small domain made of a few elements and then show
(Boland-Nicolaides [33]) that it implies (79) on the whole domain.

6. OTHER BOUNDARY CONDITIONS

6.1 Boundary Conditions without friction
The friction on the surface is given by ν(∇u + ∇uT )n− pn. A no-friction

condition on Γ1 is written as

ν(∇u+ ∇uT )n− pn = 0 on Γ1 ⊂ ∂Ω; (110)

This condition may be useful if Γ1 is an artificial boundary (such as the exit of
a canal) or a free surface.

Let us consider the Stokes problem with (110) and

u = 0 on ∂Ω − Γ1 (111)

To include (110) in the variational formulation of the Stokes problem, we have
to consider :

α(u, v) +
ν

2
(∇u+ ∇uT ,∇v + ∇vT ) = (f, v) ∀v ∈ J01(Ω) (112)
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u− uΓ ∈ J01(Ω) = {v ∈ J(Ω) : v = 0 on ∂Ω − Γ1} (113)

When ∇.u = 0 we have :

(∇.∇uT )i = uj,ij = 0 (114)

and

(∇u + ∇uT ,∇vT ) = (∇u + ∇uT ,∇v) (115)

So (112) implies

α(u, v) − ν(∆u, v) +
∫

Γ1

ν(∇u + ∇uT )nv = (f, v) ∀v ∈ J01(Ω) (116)

One can prove without difficulty that (116) implies (1) and (111).
The finite element approximation of (112)-(113) and the solution of the

linear system is done as before. However in the saddle point algorithm the
knowledge of the pressure does not decouple the velocity components (cf (51)
in Algorithm 2).

6.2 Slipping Boundary Conditions.

It is also interesting to solve the Stokes problem without tangential friction
and a slip condition on the velocity :

τ.[ν(∇u+∇uT )n−pn] = 0, u.n = 0 on Γ1 ⊂ ∂Ω; u = uΓ on ∂Ω−Γ1 (117)

where τ is a vector tangential to ∂Ω (in 3D there are 2 conditions and 2 tangent
vectors). We treat the problem in the same manner by solving .

α(u, v) +
ν

2
(∇u + ∇uT ,∇v + ∇vT ) = (f, v) ∀v ∈ J0n1(Ω) (118)

u− uΓ ∈ J0n1(Ω) = {v ∈ J(Ω) : v = 0 on ∂Ω − Γ1; v.n|Γ1 = 0} (119)

Here also the previous techniques can be applied ; however there are some
additional problems in the approximation of the normal (cf. Verfürth [233]).

Some turbulence models replace the physical no slip condition on the sur-
face of a solid by the slip condition :

au.τ + (
∂u

∂n
).τ = b, u.n = 0 on Γ1 ⊂ ∂Ω (120)

where τ is a tangent vector to Γ1 (two vectors in 3D).
We can either work with the standard variational formulation, that is :
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α(u, v) + ν(∇u,∇v) +
∫

Γ1

au.v = (f, v) +
∫

Γ1

bτ.v ∀v ∈ J0n1(Ω) (121)

u− uΓ ∈ J0n1(Ω) = {v ∈ J(Ω) : v = 0 on ∂Ω − Γ1; v.n|Γ1 = 0} (122)

or we can also reduce it to the previous case by noting that n.∂u/∂τ = −u.τ/R,
so that (120) is equivalent to : (a′ = a+1/R where R is the radius of curvature):

a′u.τ + τ(∇u + ∇uT )n = b, u.n = 0 on Γ1 ⊂ ∂Ω

a condition which can be obtained with the variational formulation

α(u, v) +
ν

2
(∇u + ∇uT ,∇v + ∇vT ) +

∫
Γ1

au.v = (f, v) +
∫

Γ1

bv.τ (123)

∀v ∈ J0n1(Ω) u− uΓ ∈ J0n1(Ω).

Finally, we note that

(∇q, v) = 0 ∀q ∈ H1(Ω) ⇔ ∇.v = 0 and v.n|Γ = 0

and so rather than working with J0n1 which is difficult to discretise, we can
work with :

J ′
0n1(Ω) = {v ∈ H1(Ω) : (∇q, v) = 0 ∀q ∈ L2(Ω); v|∂Ω−Γ1 = 0}

where the normals do not appear explicitly; but condition (120) is satisfied in
the weak sense only. Parès [188] has shown that this is nevertheless a good
method.

6.3. Boundary Conditions on the pressure and on the vorticity

To simplify the presentation, let us assume that Ω and ∂Ω are simply
connected. Let us consider the Stokes problem with velocity equal to uΓ on a
part of the boundary Γ2 and with prescribed pressure p0 on the complementary
part Γ1 of ∂Ω. If the tangential components of the velocity are prescribed on
Γ1 (u × n = uΓ × n) then the problem is well posed and we can solve it by
considering the following variational formulation :

α(u, v) + ν(∇× u,∇× v) + ν(∇.u,∇.v) = (f, v) +
∫

Γ1

p0v.n ∀v ∈ J0×n1(Ω)

(124)
u−uΓ ∈ J0×n1(Ω) = {v ∈ J(Ω) : v = 0 on Γ2 = ∂Ω−Γ1; v×n|Γ1 = 0} (125)
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The finite element approximation of this space is carried out exactly as in
chapter 2,§5

If we solve

α(u, v)+ν(∇×u,∇×v)+ν(∇.u,∇.v) = (f, v)+
∫

Γ1

d.v ∀v ∈ J0n1(Ω) (126)

u− uΓ ∈ J0n1(Ω) = {v ∈ J(Ω) : v = 0 on Γ2 = ∂Ω − Γ1; v.n|Γ1 = 0} (127)

then we compute the solution of the Stokes problem with, on Γ1 :

u.n = uΓ.n, n×∇× u = d,
∂p

∂n
= f.n−∇.d, (128)

where uΓ and d are arbitrary but such that d.n = 0.
Finally, V. Girault [91] has shown that the following problem

α(u, v) + ν(∇× u,∇× v) + ν(∇.u,∇.v) = (f, v) ∀v ∈ J ′
0n(Ω)

u− uΓ ∈ J ′
0n(Ω) = {v ∈ J(Ω) : v.n|Γ = 0;n.∇× v|Γ = 0},

yields

u.n = uΓ.n, n.∇× u = 0,
∂p

∂n
= f.n on Γ

Naturally, we can ’mix’ (125),(127) and the above condition on parts of Γ.
To sum up, we can treat a large number of boundary conditions but there

are certain compatibilities needed. Thus it does not seem possible to have on
the same boundary u.n and p prescribed. Also it is not clear whether it is
permissible to give all the components of ∇× u on a part of the boundary in
3D. For more details, see Begue et al.[18].

6.4 Mixing different boundary conditions.

If we want to mix the boundary condition studied in §6.2 with those of
§6.3 we are confronted with the choice of the variational formulation:

we have to use (∇u,∇v) near to a boundary and (∇× u,∇× v) on other
parts of the boundary!

The following formulae are satisfied for all regular u, v and all Ω having a
polygonal boundary :

(∇.u,∇.v) + (∇× u,∇× v) = (∇u,∇v) −
∫

Γ

[v∇u.n− v.n∇.u] (129)

1
2
(∇u+∇uT ,∇v+∇vT ) = (∇.u,∇.v)+(∇u,∇v)+

∫
Γ

[v∇u.n−v.n∇.u] (130)
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We note that these formulae are still true if u, v are continuous and piecewise
polygonal on a triangulation because the boundary integrals contain only the
tangential derivatives of u and v or the jump of the tangential derivatives of
piecewise continuous polynomial functions and those are zero at the discontin-
uous interfaces. Thus, (126) , for example, is identical to

α(u, v) + ν(∇u,∇v) − ν

2

∫
Γ

[v∇u.n− v.n∇.u+ u∇v.n− u.n∇.v] (131)

= (f, v) +
∫

Γ1

d.v ∀v ∈ J0n1(Ω) u− uΓ ∈ J0n1(Ω)

But the replacement of (∇u + ∇uT ,∇v + ∇vT ) by (∇u,∇v) produces an ad-
ditional term (∇.u,∇.v), which is zero in the continuous case and non zero in
the discrete case.

There are further simplifications. Suppose, for example, that we have
to solve the following problem in Ω with the simply connected polynomial
boundary Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4.

αu− ν∆u + ∇p = f, ∇.u = 0 in Ω (132)

u|Γ1 = uΓ (133)

u.n = uΓ.n; au.τ + τ.
∂u

∂n
= b on Γ2 (134)

u× n = uΓ × n; p = p0 on Γ3 (135)

u.n = uΓ.n; n×∇× u = d on Γ4 (136)

Then we could solve :

α(uh, vh) + ν(∇uh,∇vh) + a

∫
Γ2

uh.vh (137)

= (f, vh) +
∫

Γ2

bvh.τ +
∫

Γ3

p0vh.n−
∫

Γ4

d.vh

+
∫

Γ3∪Γ4

(vh∇uΓ.n− vh.n∇.uΓ) ∀vh ∈ J ′
h

uh − uΓh ∈ J ′
h = {vh ∈ Jh : vh|Γ1 = 0, vh × n|Γ3 = 0, vh.n|Γ2∪Γ4 = 0}

In fact, the extra integral is a function of uΓ and not of u because it contains
only tangential derivatives of u.n on Γ4 and on Γ3 it contains only tangential
derivatives of tangential components of u (in fact ∇.u− n∂u/∂n ).

Remark
Since these formulations apply only to polygonal domains one should be

cautious of the ”Babuska paradox” for curved boundaries;
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the solutions obtained on polygonal domains may not converge to the right
solution when the polygon converges to the curved boundary.

Figure 4.11 : Iso values of pressure on a sphere in a Stokes flow.
On the first figure (left) the computation was done with the P1/P1 invalid

element (oscillations can be seen) on the second figure (right) the P1isoP2/P1
element was used (Courtesy of AMD-BA).
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CHAPTER 5

INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

1. INTRODUCTION

The Navier-Stokes equations :

u,t +u∇u+ ∇p− ν∆u = f (1)

∇.u = 0 (2)

govern Newtonian incompressible flows ; u and p are the velocity and pressure.
These equations are to be integrated over a domain Ω occupied by the fluid,
during an interval of time ]0,T[. The data are :

- the external forces f ,
- the viscosity ν (or the Reynolds number Re),
- the initial conditions at t = 0: u0,
- the boundary conditions : uΓ, for example.

These equations are particularly difficult to integrate for typical applica-
tion (high Reynolds numbers) (small ν here) because of boundary layers and
turbulence. Even the mathematical study of (1)-(2) is not complete ; the
uniqueness of the solution is still an open problem in 3-dimensions.

There any many applications of the incompressible Navier-Stokes equa-
tions ; for example :

- heat transfer problems (reactors,boilers...)
- aerodynamics of vehicles (cars, trains, airplanes)
- aerodynamics inside motors (nozzles, combustion chamber...)
- meteorology, marine currents and hydrology.
Many tests problems have been devised to evaluate and compare numerical

methods. Let us mention a few:

a ) The cavity problem
The fluid is driven horizontally with velocity u by the upper surface of a

cavity of size a (cf. figure 1). The Reynolds number is defined by : R = ua/ν.
(cf. Thomasset [229]). The domain of computation Ω is bidimensional.
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Figure 5.1

b ) The backward step :
The parabolic velocity profile (Poiseuille flow) at the entrance and at the

exit section are given, such that the flux at the entrance is equal to the flux at
the exit. The domain is bidimensional and the Reynolds number is defined as
u∞l′/ν where l’ is the height of the step and u∞ the velocity at the entrance
at the centre of the parabolic profile (cf. Morgan et al [174]):

l = 3 L = 22 a = 1 b = 1.5.

Figure 5.2 The backward step problem (l’=1).

c ) The cylinder problem.
The problem is two dimensional until the Reynolds number rises above

approximately 200 at which point it becomes tridimensional. The domain Ω is
a periodic system of parallel cylinders of infinite length (for 3D computations
one could take a cylinder length equal to 10 times their diameter ). The integral,
Q, of u.n at the entrance of the domain is given and is equal to the total flux
of the flow. The Reynolds number is defined by 3Q/2ν (cf. Ronquist-Patera
[202]).

Figure 5.3

In this chapter, we give some finite element methods for the Navier-Stokes
equations which are a synthesis of the methods in chapters 3 and 4. We begin
by recalling the known main theoretical results. More mathematical details can
be found in Lions [153], Ladyzhenskaya [138], Temam [228] ; details related to
numerical questions can be found in Thomasset [229], Girault-Raviart [93],
Temam [228] and Glowinski [95].

2. EXISTENCE, UNIQUENESS, REGULARITY.
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2.1. The variational problem

We consider the equations (1)-(2), in Q = Ω×]0, T [ where Ω is a regular
open bounded set in Rn, n = 2 or 3, with the following boundary conditions :

u(x, 0) = u0(x) x ∈ Ω (3)

u(x, t) = uΓ(x) x ∈ Γ, t ∈]0, T [ (4)

We embed the variational form, as in the Stokes problem, in the space Jo(Ω) :

J(Ω) = {v ∈ H1(Ω)n : ∇.v = 0} : (5)

Jo(Ω) = {u ∈ J(Ω) : u|Γ = 0}. (6)

The problem is to find u ∈ L2(O, T, J(Ω)) ∩ L∞(O, T, L2(Ω)) such that

(u,t , v) + ν(∇u,∇v) + (u∇u, v) = (f, v), ∀v ∈ Jo(Ω) (7)

u(0) = u0 (8)

u− uΓ ∈ L2(O, T, Jo(Ω)) (9)

In (7) (, ) denotes the scalar product in L2 in x as in chapter 4 ; the equality
is in the L2 sense in t. We take f in L2 (Q) and u0, uΓ in J(Ω).

We search for u in L∞ in order to ensure that the integrals containing u∇u
exist.

2.2. Existence of a solution.

Theorem 1
The problem (7)-(9) has at least one solution.

Proof (outline)
We follow Lions [153]; the outline of the proof only is given. To simplify,

let us assume uΓ = 0. Let {wi}i be a dense basis Vs of {v ∈ D(Ω)n : ∇.v =
0} in Hs with s = n/2; this basis is defined by :

< wi, v >= λi(wi, v) ∀v ∈ Vs. (10)

-(the λ are arranged in increasing order, the notation < > represents a scalar
product in Vs and D(Ω) the set of C∞ functions with compact support ; if
n = 2 , {wi}i are the eigenvectors of the Stokes problem with α = ν = 1).

Let um be the approximated solution of (7)-(9) in the space generated by
the first m solutions of (10) :

(um
t , w

j) + (um∇um, wj) = (f, wj) j = 1..m (11)

um =
∑

i=1..m

viwi (12)
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um(0) = u0m the component of uo on wm . (13)

On multiplying (11) by vj and summing we get

∂t
1
2
|um|2o + ν|∇um|2o = (f, um) because (v∇v, v) = 0 ∀v ∈ Jo(Ω). (14)

From (14) we deduce easily that

|um|2o + 2ν
∫ t

o

|∇um(σ)|2dσ ≤ |uom|2o + C|f |0,Q (15)

which allows us to assert that the differential system in {vi} (11) has a so-
lution on [O,T] and that solution is in a bounded set of L2(0, T, Jo(Ω)) ∩
L∞(O, T, L2(Ω)).

Let Pm be the projection from Jo(Ω)′ into the sub-space generated by
{w1, ..wm}. From (1) we deduce that

um
t = Pmf − νPm∆um − Pm(um∇um) (16)

Pm being a self-adjoint projector, its norm in time as an operator from V ′
s in

V ′
s , is less than or equal to 1. The mapping ϕ → ∆ϕ being continuous from
J0(Ω) into J0(Ω)′, ∆u is bounded in L2(O, T, J0(Ω)′). Finally, by Sobolev
embeddings, one shows that

||u∇u||(J0)′ ≤ C||u||Lp(Ω)n with p =
2

(1 − 1
n )

(17)

Which demonstrates that

um
t bounded in L2(O, T, J0(Ω)′) ∀m. (18)

By taking a subsequence such that um converges to u in L2(O, T, Jo(Ω))
weakly, L∞(O, T, L2(Ω)) weakly* , L2(Q) strongly and such that um

t → ut

in L2(O, T ; J0(Ω)′) weakly, one can pass to the limit in (11).

2.3. Uniqueness

Theorem 2
In two dimensions problem (7)-(9) has a unique solution.

Proof
The following relies on an inequality which holds if Ω is an open bounded

set in R2 : (|φ|1 denotes the semi norm in H1
0 : φ→ (∇φ,∇φ)1/2 ).

||ϕ||L4(Ω) ≤ C|ϕ|0,Ω
1
2 |ϕ|1,Ω

1
2 ∀v ∈ H1

0 (Ω) (19)

because (w∇u,w) is then bounded by |w|o |w|1 |u|1.
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Let there be two solutions for (7)-(9) and let w be their difference.
We deduce from (7) with v = w :

1
2
|w(t)|2 + ν

∫ t

o

|∇w|2dt = −
∫ t

o

(w∇u)wdt (20)

≤ C

∫ t

o

|w|o|w|1|u|1dt ≤ ν

∫ t

o

|w|21dt+ C

∫ t

o

|w|2o|u|21dσ

So w is zero.

Theorem 3
If |u0|1 is small or if u is smooth (u ∈ L∞(O, T ; L4(Ω)) then the solution

of (7)-(9) is unique in three dimensions.

Proof : See Lions [153].

Remark
It should be emphasized that theorem 3 says that if u is smooth, it is

unique ; but one cannot in general prove this type of regularity for the solution
constructed in theorem 1 ; so its uniqueness is an open problem. There are
important reports which deal with the study of the possible singularities of the
solutions. For instance, it is known that the singularities are ”local ” (Cafarelli
et al. [46], Constantin et al. [59]) and we know their Hausdorff dimension is
less than 1.

2.4. Regularity of the solution.

There are two important reasons for studying the regularity of the solutions
of (7)-(9) :

1. As we have seen, the study of uniqueness is based on this regularity
2. The error estimates between the calculated solution and exact solution

depend on the Hp norm of the latter. Unfortunately it is not unusual to have
u ∈ H2 but it is rather difficult to find initial conditions which give u ∈ H3

(Heywood-Ranacher [111]) so it would appear useless from the point of view
of classical error analysis, to approximate the Navier-Stokes equations with
finite elements of degree 2 because they will not be more accurate than finite
elements of degree 1; however even if there is some truth to what was said, this
conclusion is too hasty and in fact one can show, on linear problems, that the
error decreases with higher order elements even when there are singularities
(but it does not decrease as much as it would if there were no singularities)..

In the case of two dimensions, there exists general theorems on regularity,
for example :

Theorem 4 (Lions [153])
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If f and f,t are in L2(Q)2,f(.,0) in L2(Ω)2, uo in J0(Ω) ∩H2(Ω)2 then the
solution u of (7)-(9) is in L2(0, T ;H2(Ω)2).

As in 3 dimensions, as one cannot show uniqueness, the theorems are more
delicate. Let us give an example of a result which, together with theorem 3
illustrates point 1.

The Hausdorff dimension d of a set O is defined as a limit (if it exists) of
log N(ε)/log(1/ε) when ε → 0, where N(ε) is the minimum number of cubes
having the length of their sides less than or equal to ε and which cover O.
(d = 0 if O is a point, d = 1 if O is a curve of finite length, d = 2 for a surface...
non integer numbers can be found in fractals (Feder [76])

Theorem 5 .(Cafarelli et al.[46])
Suppose that f is in Lq(Q)3, q > 5/2 , that ∇.f = 0 and that uo.n and

uΓ are zero. Let u be a solution of (7)-(9) and S be the set of {x, t} such that
u ∈ L∞

loc(D) for all neighborhoods D of {x, t}. Then the Hausdorff dimension
in space-time of S is less than 1.

2.5. Behavior at infinity.

In general we are interested in the solution of (1)-(4) for large time because
in practice the flow does not seem highly dependent upon initial conditions :
the flow around a car for instance does not really depend on its acceleration
history.

There are many ways ”to forget” these initial conditions for a flow ; here
are two examples :

1. the flow converges to a steady state independent of t ;
2. the flow becomes periodic in time.

Moreover, the possibility is not excluded that a little ”memory” of initial
conditions still remains ; thus in 1 the attained stationary state could change
according to initial conditions since the stationary Navier-Stokes equations has
many solutions when the Reynolds number is large (there is no theorem on
uniqueness for ν large [28]). We distinguish other limiting states:

3. quasi-periodic flow : the Fourier transform t → |u(x, t)| (where x is an
arbitrary point of the domain) has a discrete spectrum.

4. Chaotic flows with strange attractors: t → |u(x, t)| has a
continuous spectrum and the Poincaré sections (for example the points
{u1(x, nk), u2(x, nk)}n for a given x ) have dense regions of points filling a
complete zone of space (in case 1, the Poincaré sections are reduced to a point
when n is large, in cases of 2 and 3, the points are on a curve).
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In fact, experience shows that the flows pass through the 4 regimes in the
order 1 to 4 when the Reynolds number Re increases and the change of regime
takes place at the bifurcation points of the mapping ν → u, where u is the
stationary solution of (1)-(4). As in practice Re is very large (for us ν is small),
4 dominates. The following points are under study :

a) Whether there exists attractors, and if so, can we characterize any of
their properties ? (Hausdorff dimension, inertial manifold,...cf. Ghidaglia [89],
Foias et al.[79] or Bergé et al [29] and the bibliography therein).

b) Does u(x, t) behave in a stochastic way and if so, by which law ? Can
we deduce some equations for average quantities such as u, |u|2, |∇ × u|2...
this is the problem of turbulence modeling and we shall cover it in a little
more detail at the end of the chapter . (cf Lesieur [150], for example and the
bibliography for more details).

Here are the main results relating to point a).
Consider (7)-(9)with uΓ = 0, f independent of t, and Ω a subset of R2.

This system has an attractor whose Hausdorff dimension is between cRe4/3

and CRe2 where Re =
√
f diam(Ω)/ν (cf. Constantin and al.[59], Ruelle

[206][207]). These results are interesting because they give an upper bound for
the number of points needed to calculate such flows (this number is proportional
to ν−9/4).

In three dimensions, we do not know how to prove that (7)-(9) with the
same boundary conditions has an attractor but we know that if an attractor
exists and is (roughly) bounded by M in W 1,∞ then its dimension is less than
CM3/4ν−9/4 (cf.[10]).

2.6. Euler Equations (ν = 0)

As ν is small in practical applications, it is important to study the limit
ν → 0. If ν = 0 the equations (7)-(9) become Euler’s equations. For the problem
to be meaningful we have to change the boundary conditions ; so we consider
the following problem :

u,t +u∇u+ ∇p = f, ∇.u = 0 (21)

u(0) = u0 (22)

u.n|Γ = g (23)

u(x) = uΓ(x), ∀x ∈ Σ = {x ∈ Γ : u(x).n(x) < 0}. (24)

Proposition 1
If Ω is bidimensional and simply connected, if f ∈ L2(Q), u0 ∈ H1(Ω)2,

g = uΓ.n and (uΓ)i are in H1/2 (Γ) and the integral of g on Γ is zero, then (21)
- (24) has a unique solution in L2(O, T ; H1(Ω)2)∩ L∞(O, T, L2(Ω)2).
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Proof (sketch )
To simplify, we assume f = 0, g = 0. Since ∇.u = 0 there exists a ψ such

that :

u1 = ψ,2 , u2 = −ψ,1 . (25)

By taking the curl of (21)-(22) and by putting

ω = u1,2 −u2,1 = −∆ψ (26)

We see that

ωt + u∇ω = 0 (27)

ω(0) = u0
1,2 −u0

2,1 = ∇× u0 (28)

ω(x) = ωΓ(x) (derived from g and uΣ ; here ωΓ is zero) if x ∈ Σ. (29)

If u is continuous, Lipschitz and g is zero, (27)-(28) can be integrated by the
method of characteristics (Cf. Chapter 3) and ω has the same smoothness as
that of ∇ × u0. So we have an estimate which relates ||ω||s to the Holderian
norm C0 of u (Kato [129])

||ω|| ≤ C(||u|| + ||∇ × u0||) (30)

Moreover, from (25)-(26), (23) with g = 0 gives

ψ|Γ = 0, (31)

Thus from (26), we have

||u||1+s ≤ C||ω||s. (32)

So it is sufficient to construct a sequence in the following way :
un given ⇒ ωn+1 calculated by (27)-(29)

ωn+1 given ⇒ un+1 calculated by (25),(26),(30)
and to use the estimates (30) and (32) to pass to the limit.
A complete proof can be seen in Kato [129], McGrath[170], Bardos[16].

Remark 1
In three dimensions we only have an existence theorem in the interval

]O, τ [ , τ small. In fact, equation (27) becomes

ω,t +u∇ω − ω∇u = 0

which can give terms in eλt where λ are the eigenvalues of ∇u.
A number of numerical experiments have shown the formation of singular-

ities after a finite time but the results have not yet been confirmed theoretically
(Frisch [84], Chorin [52], Sulem [225]).

Remark 2
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We know little about convergence of the solution of the Navier-Stokes
equation towards the solution of Euler’s equation when ν → 0. In station-
ary ”laminar” cases, one can prove existence of boundary layers of the form
e−y/

√
ν (y being the distance to the boundary) in the neighborhood of the walls

(Landau-Lifschitz [141], Rosenhead [203]) ; so convergence is in L2 at most in
those cases.

3. SPATIAL DISCRETISATION

3.1. Generalities.

The idea is simple: we discretise in space by replacing Jo(Ω) by Joh in
(7)-(9):

Find uh ∈ Jh such that

(uh,t , vh) + (uh∇uh, vh) + ν(∇uh,∇vh) = (f, vh) ∀vh ∈ Joh (33)

uh(0) = u0
h uh − uΓh

∈ Joh (34)

If Joh is of dimension N and if we construct a basis for Joh then (33)-(34)
becomes a nonlinear differential system of N equations:

AU ′ +B(U,U) + νCU = G. (35)

One could use existing library programs (LINPAK[152] for example) to solve
(35) but they are not efficient, in general, because the special structure of the
matrices is not used. This method is known as the ”Method of Lines”

So we shall give two appropriate methods, taking into account the following
two remarks :

1
o

) If ν >> 1 (33)-(34) tends towards the Stokes problem studied in Chap-
ter 4.

2
o

) If ν = 0 (33)-(34) is a non-linear convection problem in Joh. In par-
ticular in 2-D the convection equation (27) is underlying the system so the
techniques of chapter 3 are relevant.

As we need a method which could adapt to all the values of ν we shallto
take the finite elements in the family studied in the Chapter 4 and the method
for time discretisation adapted to convection studied in Chapter 3. But before
that, let us see a convergence theorem for the approximation (33), (35).

3.2. Error Estimate .

Let us take the framework of Chapter 4: J(Ω) is approximated by
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Jh = {vh ∈ Vh : (∇.vh, qh) = 0 ∀qh ∈ Qh} (36)

and Jo(Ω) is approximated by Joh = Jh ∩H1
0 (Ω)n. We put :

Voh = {vh ∈ Vh : vh|Γh
= 0}. (37)

Assume that {Voh, Qh} is such that
- there exists Πh : V 2

o = H2(Ω)n ∩H1
0 (Ω)n → Voh such that

(qh,∇.(v − Πhv)) = 0 ∀qh ∈ Qh ||v − Πhv|| ≤ Ch||v||2,Ω. (38)

- there exists πh : H1(Ω) → Qh such that

|q − πhq|0,Ω ≤ Ch||q||1,Ω (39)

inf
qh∈Qh

sup
vh∈Voh

(∇.vh, qh)
|qhπ |o||vh||1 ≥ β

||vh||1 ≤ C

h
|vh|0 ∀vh ∈ V0h (inverse inequality)

Remark :
These conditions are satisfied by the P 1 + bubble/P 1element and among

others, the element P 1iso P 2/P 1.

To simplify, let us assume that

uo = 0 and uΓ = 0. (40)

Theorem 5. (Bernardi-Raugel [31])
a)n=2. If the solution of (7)-(9) is in L2(0, T ;H1

0 (Ω)2)∩C0(0, T ;Lq(Ω)2),
q > 2, then problem (33)-(34) has only one solution for h small satisfying

||u− uh||L2(o,T ;H1
0(Ω)) ≤ C(ν)h||u∇u||0,Q (41)

b) n=3. If the norm of ν−1u in Co(0, T ;L3(Ω)3) is small and if u ∈
L2(0, T ;H2(Ω)3) ∩H1(0, T ;L2(Ω)3) then (34)-(36) has a unique solution with
the same error estimate as in a).

Proof (sketch)
The proof is technical, but it is based on a very interesting idea (introduced

in Brezzi et al [38]).
We define the operator

G : u→ G(u) = u∇u− f. (42)
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We observe that the non stationary Stokes problem

u,t −ν∆u+ ∇p = g, ∇.u = 0, u(0) = 0, uΓ = 0 (43)

defines a linear map L : g → u and that the solution of (7)-(9) is nothing but
the zero of u→ u+ LG(u) :

u solution of (7)-(9) ⇔ F (u) = u+ LG(u) = 0. (44)

Similarly, for the discrete problem if Lh is the nonstationary discrete Stokes
operator underlying (33)-(34):

u solution of (33)-(34) ⇔ Fh(u) = uh + LhG(uh) = 0. (45)

To prove the existence of a solution for the discrete problem, we note that
the derivative of Fh with respect to u, F ′

h(uh), is a linear map (because Fh is
quadratic) and that it is an isomorphism if vh is near to u. Then we see that
the solution is also a fixed point of

v → ϕh(v) = v − F ′
h(vh)−1Fh(v) (46)

for all vh near to u. For ϕ′
h = I − F ′(vh)−1F ′(v) in the neighborhood of 0

is a contraction and from a fixed point theorem we have the existence and
uniqueness of the solution.

To obtain an estimate, we calculate the following identity :

||u− uh|| = ||F ′−1
h [F ′

h.(u− uh) − (Fh(u) − Fh(uh)) + Fh(u)]|| (47)

≤ ||F ′−1
h [

∫ 1

0

[F ′
h(uh) − F ′

h(uh + θ(u− uh))].(u − uh)dθ] + Fh(u)||

≤ ||F ′−1
h ||[sup

v
||F ′

h(uh) − F ′
h(v)||||u − uh|| + ||Fh(u)||]

So, for small h we have :

||u− uh|| ≤ C||Fh(u)|| (48)

Moreover

Fh(u) = u+ LhG(u) = u+ LG(u) + (Lh − L)G(u) = (Lh − L)G(u) (49)

but ||(Lh−L)G(u)|| is precisely the error in the resolution of the non-stationary
Stokes problem with g = G(u). Hence the result. For more details, see [4][5]
[16,IV§3]

Remark 1
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The proof of theorem 5 suggests that the usual inf sup condition on the
conforming finite elements in the error estimate for the non-stationary Stokes
problem is necessary for Navier-Stokes equations.

Remark 2 .
The error estimate of theorem 5 shows that h should be small when ν is

small. We note that ||u∇u|| depends also on ν. For example in a boundary
layer in e−y/

√
ν ,

|u∇u|0 ≈ (
∫ 1

0

ν−1e−
4y√

ν dy)
1
2 = O(ν−

1
4 ) (50)

Since C(ν) ≈ 0(ν), we should take h << ν5/4. The same reasoning leads to
h << ν5/8 if we want |u−uh|1,Q << 1. We note that the numbers are less pes-
simistic than those given by the attractor argument. This is not contradictory
as there must exist attractor modes of modulus less than ν−5/8.

4. TIME DISCRETISATION

4.1 Semi-explicit discretisation in t

Let us take the simplest explicit scheme studied in Chapter 3, that is the
Euler scheme.

Scheme 1:
Find un+1

h with un+1
h − uΓh ∈ J0h such that

1
k

(un+1
h , vh) = g(vh) ∀vh ∈ J0h, (51)

g(vh) = −ν(∇un
h,∇vh) + (fn, vh) +

1
k

(un
h, vh) − (un

h∇un
h, vh) (52)

Evidently, k has to satisfy a stability condition of the type

k < C(u, h, ν) (53)

As for the Stokes problem (51) is equivalent to

1
k

(un+1
h , vh) + (∇ph, vh) = g(vh) ∀vh ∈ V0h (54)

(∇.un+1
h , qh) = 0 ∀qh ∈ Qh; (55)

it is still necessary to solve a linear system to get un+1
h ; we use a mass-lumping

formula and the P 1isoP 2/P 1element, with quadrature points at the nodes
{qi}i of the finer triangulation; σi denotes the area of support of the P 1 con-
tinuous basis functions, vi, associated to node qi; we replace (54) by
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σi

3k
un+1

i + (∇ph, v
i) = g(vi) +

σi

3k
un

i − 1
k

(un
h, v

i) ∀i (56)

(∇.un+1
h , qh) = 0 ∀qh ∈ Qh un+1

h (x) =
∑

i

uiv
i(x). (57)

We can now substitute uh in (57) and we obtain

∑
i

3k
σi

(∇ph, v
i)(∇qh, vi) = G(qh) ∀i. (58)

that is a linear system of a Laplacian type.
The main drawback of these types of methods is the stability (53).
There exist schemes which are almost unconditionally stable such as the

rational Runge-Kutta used by Satofuka [212]:

To integrate

V,t = F (V ) (59)

we use

Scheme 2

V n+1 = V n + [2g1(g1, g3) − g3(g1, g1)](g3, g3)−1 (60)

where (.,.) represents the scalar product in the space of V (t) and

g1 = kF (V n)

g2 = kF (V n − cg1)

g3 = bg1 + (1 − b)g2

This method is of order 2 if 2bc = −1 and of order 1 if it is not. For a linear
equation with constant coefficients, the method is stable when 2bc ≤ −1 (for the
proof, it is sufficient to calculate the amplification coefficient when it is applied
to (59) and F (V ) = FV where F is a diagonal matrix). For our problem, we
must add a step of spatial projection on zero divergence functions of J0h. That
is, we solve :

σi

3k
un+1

i + (∇ph, v
i) =

σi

3k
vn+1

i ∀vh ∈ V0h (61)

(∇.un+1
h , qh) = 0 ∀qh ∈ Qh (62)

Numerical experiments using this method for the Navier-Stokes equations dis-
cretised with the P 1isoP 2/P 1 finite elements can be found in Singh [215].

4.2. Semi-Implicit and Implicit discretisations
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A semi-implicit discretisation of O(k) for (34)-(36) is

Scheme 3:

1
k

(un+1
h , vh) + ν(∇un+1

h ,∇vh) + (un
h∇un+1

h , vh) = (fn+1, vh) +
1
k

(un
h, vh) (63)

A version O(k2) is easy to construct from the Crank-Nicolson scheme. This
scheme is very popular because it is conceptually simple and almost fully im-
plicit : yet it is not unconditionally stable and each iteration requires the
solution of a non symmetric linear system. Thus on the cavity problem with
10×10 mesh and k = 0.1 the method works well until ν ≈ 1/500, beyond which
oscillations develop in the flow.

Let us consider the following implicit Euler scheme of order O(k)

Scheme 4:

1
k

(un+1
h , vh)+ν(∇un+1

h ,∇vh)+(un+1
h ∇un+1

h , vh) = (fn+1, vh)+
1
k

(un
h, vh) (64)

∀vh ∈ J0h. This scheme is unconditionally stable but we must solve a non-linear
system.

4.3 Solution of the non-linear system (59) .

This non-linear system can be solved by Newton’s method, by a least
square method in H−1 or by the GMRES algorithm :

4.3.1 Newton’s Method

The main loop of the algorithm is as follows :
For p = 1..pMax do:
1. Find δuh with

(δuh, vh)
1
k

+ ν(∇δuh,∇vh) + (un+1,p
h ∇δuh + δuh∇un+1,p

h , vh) = (65)

−{(un+1,p
h , vh)

1
k

+ ν(∇un+1,p
h ,∇vh) + (un+1,p

h ∇un+1,p
h , vh)

−(fn+1, vh) − (un
h, vh)

1
k
} ∀vh ∈ Joh δuh ∈ Joh (66)

2. Put
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un+1,p+1
h = un+1,p

h + δuh (67)

But here also, experience shows that a condition between k, h and ν is neces-
sary for the stability of the scheme because if ν is very small with respect to
h, problem (59) has many branch of solutions or because the convergence con-
ditions for Newton’s method (hessien > 0) are not verified. Again for a cavity
with a 10×10 and k = 0.1 we can use this scheme till Re=1000 approximately.
If the term u∇u is upwinded , one can get a method which is unconditionally
stable for all mesh k ; this is the object of a few methods studied below.

4.3.2 Abstract least-squares and θ scheme.

This method has been introduced in Chapter 2, Paragraph 4.2. It consists
here of taking for un+1

h the solution of the problem

min
wh−uΓ∈Joh

{
∫

Ω

|uh − wh|2dx : uh − uΓ ∈ J0h, (68)

1
k
(uh, vh) + ν(∇uh,∇vh)+ (wh∇wh, vh) = (fn+1, vh) +

1
k

(un
h, vh) ∀vh ∈ J0h}

The solution of this problem by a preconditioned conjugate gradient method,
solving three Stokes problems per iteration (calculation of the step size in the
descent directions is analytic because the optimized quantity is of degree 4).
This method has good stability qualities. Only symmetric linear systems are
solved but it is more costly than other methods ; in Bristeau et al [44] a set of
numerical experiments can be found.

To decrease the cost Glowinski [96] suggested the use of a θ scheme because
it is second order accurate for some values of the parameters and because it
allows a decoupling between the convection and the diffusion operators.

If B is the convection operator uh∇ and A is the Stokes operator the θ
scheme is:

1
kθ

(un+θ − un) +Aun+θ +Bun = fn+θ

1
(1 − 2θ)k

(un+1−θ − un+θ) +Aun+θ +Bun+1−θ = fn+1−θ

1
kθ

(un+1 − un+1−θ) +Aun+1 +Bun+1−θ = fn+1

So the least square method will be used only for the central step while the two
other steps are generalized Stokes problems. Alternatively, the convection step
can be solved by other methods such as GMRES.

4.3.3 The GMRES algorithm.
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The GMRES algorithm (Generalized Minimal RESidual method) is a
quasi-Newtonian method deviced by Saad [210]. The aim of quasi-Newtonian
methods is to solve non-linear systems of equations :

F (u) = 0, u ∈ RN

The iterative procedure used is of the type :

un+1 = un − (Jn)−1F (un)

where Jn is an approximation of F ′(un). To avoid the calculation of F ′ the
following approximation may be used:

DδF (u; v)
≡ F (u+ δv) − F (u)

δ
∼= F ′(u)v. (69)

As in the conjugate gradient method to find the solution v of Jv = −F one
considers the Krilov spaces :

Kn = Sp{r0, Jr0..., Jn−1r0}
where r0 = −F − Jv0, v0 is an approximation of the solution to find. In
GMRES the approximated solution vn used in (69) is the solution of

min
v∈Kn

||r0 − J(v − v0)||.

The algorithm below generates a quasi-Newton sequence which {un} hopefully
(it is only certain in the linear case) will converge to the solution of F (u) = 0
in RN :

Algorithm (GMRES) :

0 . Initialisation: Choose the dimension k of the Krylov space; choose
u0. Choose a tolerance ε and an increment δ , choose a preconditioning matrix
S ∈ RN×N . Put n = 0.

1. a. Compute with (69) r1n = −S−1(Fn + Jnun), w1
n = r1n/ ||r1n||, where

Fn = F (un) and Jnv = DδF (un; v).
b. For j = 2..., k compute rj

n and wj
n from

rj
n = S−1[DδF (un;wj−1

n ) −
j−1∑
i=1

hn
i,j−1w

i
n]

wj
n =

rj
n

||rj
n||
.

where hn
i,j = wiT

n S−1 DδF (un;wj
n)

2. Find un+1 the solution of
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min
v=un+

∑
k

0
ajwn

j

||S−1F (v)||2

∼= min
a1,a2,...ak

||S−1[F (un) +
k∑

j=1

ajDδF (un;wj
n)]||2

3. If ||F (un+1)|| < ε stop else change n into n+1.

The implementation of Y. Saad also includes a back-tracking procedure for
the case where un departs too far away from the solution. The result is a black
box for the solution of system of equations which needs only a subprogram to
calculate F (u) given u; there is no need to calculate F ′. Experiments have
shown that this implementation is very efficient and robust.

5. DISCRETISATION OF THE TOTAL DERIVATIVE.

5.1. Generalities

Let us apply the techniques developed in chapter 3:

u,t +u∇u ≈ 1
k

(un+1 − unoXn)

we obtain the following scheme :

Scheme 5:

1
k

(un+1
h , vh) + ν(∇un+1

h ,∇vh) = (fn, vh) +
1
k

(un
hoX

n
h , vh) ∀vh ∈ J0h (70)

where Xn
h (x) is an approximation of the foot of the characteristic at time nk

which passes through x at time (n+ 1)k (Xn
h (x) ≈ x− un

hk).
We note that the linear system in (70) is still symmetric and independent

of n. If Xn
h is well chosen, this scheme is unconditionally stable, and convergent

in 0(k + h).

Theorem 6 :
If

Xn
h (Ω) ⊂ Ω, |det(∇Xn

h )−1| ≤ 1 + Ck, (71)

then scheme 5 is unconditionally stable.

Proof :
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This depends upon the change of variable y = Xn
h (x) in the integral

∫
Ω

φ(Xn
h (x))dx =

∫
Xn

h
(Ω)

φ(y)det(∇Xn
h )−1dy (72)

From this we obtain

|un
hoX

n
h |0,Ω ≤ |det(∇Xn

h )−1|∞,Ω|un
h|0,Ω (73)

In getting a bound from (70) with vh = un+1
h and by using (73) and hypothesis

(71), we obtain

||un+1
h ||2ν ≡ |un+1

h |20 + kν|∇un+1
h |20 ≤ (k|fn|0 + (1 + Ck)|un

h|0)|un+1
h |0 (74)

Since |uh|0 ≤ ||uh||ν , we obtain

||un+1
h ||ν ≤ k|fn|0 + (1 + Ck)||un

h ||ν ; (75)

or, after summation,

||un+1
h ||ν ≤ k

∑
i≤n

|f i|0(1 + Ck)n−i + ||u0
h||ν(1 + Ck)n (76)

and hence the result follows with n ≤ T/k.

Remark :
If un

h = ∇ × ψh, with ψh P 1 piecewise and continuous and if Xn
h is the

exact solution of

d

dτ
Xh(τ) = un

h(Xh(τ)) (77)

then (71) is satisfied with C = 0. It is theoretically possible to integrate (77)
exactly since Xh is then a piecewise straight line but, in practice, the exact
calculation of the integral (un

ho X
n
h , vh) is unnecessarily costly ; we use a direct

Gauss formula (Pironneau [190])

(un
hoXh, vh) ∼=

∑
i

uh(Xn
h (ξi))vh(ξi)πi (78)

or a dual formula (Benqué et al. [22])

(un
hoXh, vh) ∼=

∑
i

uh(ξi)vh(Xn−1
h (ξi))πi (79)

5.2. Error analysis with P1 bubble/P1 .

Definition of the method :
To simplify, we assume that uΓ = 0 ; we choose
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Joh = {vh ∈ Voh : (∇.vh, qh) = 0, ∀qh ∈ Qh} (80)

Voh = {vh ∈ Co(Ω) : vh|T ∈ P 1, ∀T ∈ T h
2
} (81)

Qh = {qh ∈ Co(Ω) : qh|T ∈ P 1, ∀T ∈ Th}. (82)

where Th is a regular triangulation of Ω ( assumed to be polygonal) and Th/2

is the triangulation obtained by dividing each triangle (resp. tetrahedron) in 3
(resp. 4) by joining the center of gravity to the vertices (fig. 4.2).

We define Xn
h (x) as the extremity of the broken line [χo = x, χ1, ..., χm+1

= Xn
h (x)] such that the χj are the intersections with the sides (faces), χj−1 is

calculated from χj in the direction −um
h (χj) and the time covered from x to

χm+1 is k :

For each j ∃ρ > 0 such that χj+1 = χj + ρun
h(χj)|Tj ∈ ∂Tj, (83)

∑
j=0..m

|χj+1 − χj |
|un

h(χj)|Tj

= k (84)

In practice, we use (78) or (79) with the 3 (resp. 4) Gauss points inside the
triangles, but with this integral approximation, the error estimation is an open
problem; furthermore (71.b) is not easily satisfied, so we shall define another
Xn

h .

Definition of Xn
h satisfying (71) :

Let ψn
h be the solution of

(∇× ψn
h ,∇× wh) + (∇.ψn

h ,∇.wh) = (un
h,∇× wh), ∀wh ∈Wh, (86)

ψn
h ∈ Wh = {wh ∈ Vh : wh × n|Γ = 0,

∫
Γi

wh.ndγ = 0} (87)

where Γi are the connected components of Γ. Let us assume for simplicity that
Ω is simply connected. This problem has already been studied in paragraph
5 of chapter 2 (here however wh × n is zero on Γ instead of wh × nh ; Wh is
non empty because Γ is a polygon . We have seen that (86)-(87) has one and
only one solution and that ∇ × ψn

h
∼= un

h. Since ∇ × ψn
h is piecewise constant

and with zero divergence in the sense of distributions, (83)(84) enables us to
compute an analytic solution of (77) if we replace un

h by ∇× ψh ; then (71) is
satisfied.

So we shall define X ′n
h as a solution of (77) with ∇× ψn

h , and we will
assume that (un

h o X ′n
h , vh) is calculated exactly.

Theorem 7 :
Assume Ω convex, bounded, polygonal and u ∈ W 1,∞(Ω×]0, T [)3 ∩

Co(0, T ;H2(Ω)3), p ∈ Co(0, T ;H2(Ω)). Let {un
h(x)}n be the solutions in Voh

of
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1
k

(un+1h, vh) + ν(∇un+1
h ,∇vh) = (fn, vh) +

1
k

(un
hoX

′n
h , vh), ∀vh ∈ Voh (88)

where X ′n
h is calculated by (77) with un

h replaced by ∇ × ψn
h and ψn

h solution of
(86), (87).

Then if u is the exact solution of the incompressible Navier-Stokes equa-
tions, (1)(4) with uΓ = 0,we have

(|un
h − u(., nk)|20 + νk|∇(un

h − u(., nk)|20)
1
2 ≤ C[

h2

k
+ h+ k] (89)

where the constant C is independent of ν, affine in ||u||2, ||p||2 and exponential
in ||u||1,∞.

Remark 1 :
Note that (89) is true even with ν → 0 (Euler’s equation) but it is necessary

that the solution of (1)-(4) remain in W 1,∞ when ν → 0 (which assumes that
f depends on ν). Numerically, we observe that the method remains stable even
with ν = 0 so long as the solution of the continuous problem is regular.

Remark 2 :
The hypothesis ′Ω convex’ can be relaxed. It is only necessary in order

that (ψ → |∇ × ψ|2 + |∇.ψ|2)1/2 be a norm.

To prove (89), we shall follow these three steps :
- estimate ∇ × ψn

h - un
h

- estimate Xn
h - Xn

- estimate un
h - un where un is the value of the exact solution at time nk.

Before starting, we note that from (1)-(4), we can deduce

1
k
un+1−ν∆un+1+∇pn+1 = fn+

1
k
unoXn+k|u,tt |∞0(1), ∇.un+1 = 0 (90)

u0 given, un+1|Γ = 0 (91)

where 0(1) is a function bounded independently of k and ν.

Lemma 1:

|Xn
h −Xn|0 ≤ kek|∇un|∞|∇ × ψn

h − un|0 (92)

Proof :
From the definitions of Xh and X , we have

d

dτ
(Xh−X) = ∇×ψh(Xh)−u(x) = ∇×ψh(Xh)−u(xh)+u(xh)−u(x) (93)
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and so

d

dτ
|Xh −X |o(τ) ≤ |(∇× ψh − u)oXh|o + |u(xh) − u(x)|o (94)

≤ |∇× ψh − u|o + |∇u|∞|Xh −X |o(τ)
Since Xh(t) = X(t) = x, we deduce (92) from the Bellman-Gronwall inequality
(by the integration of (94) on the interval ]nk,(n+1)k[.

Lemma 2 :

|∇ × ψh − u|0 ≤ C|un
h − un|0 + h|∇un|0 (95)

Proof:
Let ψn be a solution of

(∇× ψn,∇× w) + (∇.ψn,∇.w) = (un,∇× w), ∀w ∈ W (96)

ψn ∈W = {w ∈ H1(Ω)n : w × n|Γ = 0,
∫

Γi

w.ndγ = 0} (97)

By subtracting (96) from (86), we see

(∇× (ψn
h − ψn),∇× wh) + (∇.(ψn

h − ψn),∇.wh) = (un
h − un,∇× wh) (98)

Let ξh be a projection of ψn in Wh, that is, the solution in Wh of

(∇×ξh,∇×wh)+(∇.ξh,∇.wh) = (∇×ψn,∇×wh)+(∇.ψn,∇.wh), ∀wh ∈ Wh

(99)
By taking wh = ξh − ψn

h in (99) and by subtracting (86), we see that

|∇ × (ξh − ψn
h |0 ≤ C|uh − un|0 (100)

Finally, we obtain the result because u is equal to ∇ × ψ and

|∇× (ψn
h −ψ)|0 ≤ |∇× (ψn

h − ξh)|0 + |∇× (ξh −ψ)|0 ≤ C(|uh − u|0 + h|∇un|0)
(101)

the last inequality comes from (100) and from the error estimate between ξh
and ψ (the error of projection is smaller than the interpolation error).

To have existence and uniqueness for (86)+(99), the bilinear form should
be coercive, which we can prove only for convex polygonal domains (Girault et
al [93]).

Corollary 1 :
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|Xn
h −Xn|0 ≤ kC(|∇u|∞)[|un

h − un|0 + h] (102)

Proof of Theorem 7 :
We subtract (90) from the variational form of (88) :

(un+1
h − un+1, vh) + νk(∇(un+1

h − un+1),∇vh) + k(∇(pn+1
h − pn+1), vh) (103)

= (un
hoX

n
h − unoXn, vh) + k2|u,t|∞(0(1), vh)

Then we proceed as for the error analysis of the Stokes problem (cf. (4.74)-
(4.78)). From (103), we deduce that for all wh ∈ Joh and all qh ∈ Qh, we
have

(un+1
h − wh, vh) + νk(∇(un+1

h − wh),∇vh) + k(∇(pn+1
h − qh), vh) (104)

= (un+1 − wh, vh) + νk(∇(un+1 − wh),∇vh) + k(∇(pn+1 − qh), vh)

+(un
hoX

n
h − unoXn, vh) + k2|u,t|∞(0(1), vh), ∀vh ∈ Joh

So (see (74) for the definition of ||.||ν)

||un+1
h −wh||ν ≤ ||un+1−wh||ν+k|∇(pn+1−qh)|0+|un

hoX
n
h −unoXn|0+k2|u,t|∞

(105)
which gives if we choose qh equal to the interpolation of pn+1

||un+1
h −un+1||ν ≤ ||un+1

h −wh||ν + ||wh−un+1||ν ≤ 2||un+1−wh||ν +k||pn+1||2
(106)

+|un
hoXh − unoXn|0 + k2|u,t|∞

Taking wh as equal to the interpolation of un+1, we see that

||un+1
h − un+1||ν ≤ C[(h2 + νhk)||un+1||2 (107)

+hk||pn+1||2 + k2|u,t|∞ + |un
hoX

n
h − unoXn|0

it remains to estimate the last term ;

|un
hoX

n
h − unoXn|0 ≤ |un

hoX
n
h − unoXn

h |0 + uno(Xn
h −Xn)|0 (108)

≤ |un
h − un|o0 + |∇un|∞|Xn

h −Xn|0 ≤ (1 + Ck)||un
h − un||ν + C′kh

where C and C′ depend upon |∇u|∞ (cf. (102)). By using a recurrence argu-
ment, the proof is completed because (107) and (108) give
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||un+1
h − un+1||ν ≤ (1 + C1k)||un

h − un||ν + C2(h2 + hk + k2) (109)

6. OTHER METHODS.

In practice, all the methods given in chapter 3 for the convection-diffusion
equation can be extended to the Navier-Stokes equations. Paragraph 5 is an
example of such an extension. One can also use the following :

- Lax-Wendroff artificial viscosity method : however it cannot be com-
pletely explicit (same problem as in §4.1) unless one adds pt in the divergence
equation (Temam [228], Kawahara [131]);

- the upwinding method by discontinuity ; this could be superimposed with
the other methods of §4.1 and of §4.2. In this way we can obtain methods which
converge for all ν (cf. Fortin-Thomasset [83], for an example of this type);

- streamline upwinding method (SUPG).

6.1 SUPG and AIE (Adaptive Implicit/Explicit scheme)

As in paragraph 4.3 in chapter 3 a Petrov-Galerkin variational formulation
for the Navier-Stokes is used with the test functions vh + τuh∇vh instead of
vh :

(uh,t + uh∇uh + ∇ph, vh + τuh∇vh) + ν(∇uh,∇vh) − ν
∑

l

∫
Tl

τuh∇vh∆uh

= (f, vh + τuh∇vh) ∀vh ∈ V0h(∇.uh, qh) = 0 ∀qh ∈ Qh.

Here τ is a parameter of order h, Tl is an element; we have used the simplest
SUPG method where the viscosity is added in space only. Johnson [125] rightly
suggest in their error analysis the use of space-time discretisation (see 3.4.3) .

A semi-implicit time discretisation gives the following scheme:

(
un+1

h − un
h

k
+ un

h∇un+1
h , vh + τun

h∇vh) + (∇pn+1
h , vh) + (∇pn

h, τu
n
h∇vh)

+ν(∇un+1
h ,∇vh) − ν

∑
l

∫
Tl

τun
h∇vh∆un

h = (fn+1, vh + τun
h∇vh) ∀vh ∈ V0h

(∇.un+1
h , qh) = 0 ∀qh ∈ Qh.
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As noted in Tezduyar [227], it is possible to choose τ so as to have symmetric
linear systems because the non-symmetric part comes from:

(
un+1

h

k
, τun

h∇vh) + (un
h∇un+1

h , vh)

Now this would be zero if τ = k and if un
h∇un+1

h was equal to ∇.(un
h ⊗ un+1

h ).
So this suggests the following modified scheme:

Find un+1
h − uΓ ∈ V0h and pn+1

h ∈ Qh such that

(
un+1

h − un
h

k
+ un

h∇un+1
h , vh + kun

h∇vh) + (∇.un
h, u

n+1
h .vh)

+(∇pn+1
h , vh) + (∇pn

h , ku
n
h∇vh) + ν(∇un+1

h ,∇vh) − ν
∑

l

∫
Tl

kun
h∇vh∆un

h

= (fn+1, vh + kun
h∇vh) ∀vh ∈ V0h

(∇.un+1
h , qh) = 0 ∀qh ∈ Qh.

Naturally a Crank-Nicolson O(k2) scheme can be derived in the same way.
Similarly a semi-explicit first order scheme could be:

(
un+1

h − un
h

k
+ un

h∇un
h, vh + kun

h∇vh) + (∇pn+1
h , vh) + (∇pn

h, ku
n
h∇vh)

+ν(∇un
h,∇vh) − ν

∑
l

∫
Tl

kun
h∇vh∆un

h = (fn, vh + kun
h∇vh) ∀vh ∈ V0h

(∇.un+1
h , qh) = 0 ∀qh ∈ Qh.

Still following Tezduyar [227] to improve the computing time we can use
the explicit scheme in regions where the local Courant number is large and
the implicit scheme when it is small; the decision is made element by element
based on the local Courant number for convection, |un

h |Tl
k/hl and for diffusion

νk/h2
l , and on a measure of the gradient per element size of un

h; here hl is the
average size of element l. So we define n numbers by

βl
i(c) = max{|un

h|Tl

k

hl
− 1, (

U l
i − ul

i

UΩ
i − uΩ

i

)
∑

j

|∂uhi

∂xj
| − c}

where U l
i (resp ul

i) is the maximum (resp minimum) of uhi(x) on element Tl

and similarly for UΩ
i , u

Ω
i on Ω instead of Tl.

The constant c is chosen for each geometry; then if βl
i(c) > 0 the contri-

bution to the linear system of the convection terms on element l in the i− th
momentum equation is taken explicit (with un

h instead of un+1
h ) and otherwise

implicit. Similarly if νk/h2
l is less than one, the contribution to the matrix
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of the linear system from ν
∫

Tl
∇uh,∇vh is taken with uh = un

h (explicit) and
with un+1

h otherwise.

7. TURBULENT FLOW SIMULATIONS.

7.1. Reynolds’ Stress Tensor.

As we have said in the beginning of the chapter, there are reasons to
believe that when t→ ∞, the solution of (1)-(4) evolves in a space of dimension
proportional to ν−9/4.

For practical applications ν (= 1/Re) is extremely small and so it is nec-
essary to have a large number of points to capture the limiting solutions in
time.

We formulate the following problem (the Reynolds problem) :
Let uν

w be a (random) solution of

u,t + u∇u+ ∇p− ν∆u = 0, ∇.u = 0 in Ω×]0, T [ (110)

u(x, 0) = uo(x) + w(x, ω), u|Γ = uΓ (111)

where w(x, .) is a random variable having zero average.
Let < > be the average operator with respect to the law of u introduced

by w. Can we calculate < u >, < u⊗ u > ... ?
This problem corresponds closely to the goals of numerical simulation of

the Navier-Stokes equations at large Reynolds number because, when ν << 1,
u is unstable with respect to initial conditions and so the details of the flow
cannot be reproduced from one trial to the next. Thus, it is more interesting
to find < u > . One may also be interested in < u2 > and ν < |∇u|2 > .

Only heuristic solutions of the Reynolds problem are known (see Lesieur
[150] for example) but let us do the following reasoning :

If we continue to denote by u the average < uν
w > and by u′ the difference

uν
w− < uν

w >, then (110) becomes :

u,t +u∇u+∇p−ν∆u+∇.u′⊗u′ = −(u′,t +u′∇u+u∇u′+∇p′−ν∆u′) (112)

∇.u′ + ∇.u = 0 (113)

because u∇u = ∇.(u⊗ u) when ∇.u = 0.
If we apply the operator < > to (112) and (113), we see that

u,t + u∇u+ ∇p− ν∆u+ ∇. < u′ ⊗ u′ >= 0,∇.u = 0 (114)

which is the Reynolds equation and

R =< u′ ⊗ u′ > (115)



140 FINITE ELEMENT METHODS FOR FLUIDS

is the Reynolds tensor. As it is not possible to find an equation for R as a
function of u, we will use an hypothesis (called a closure assumption) to relate
R to ∇u.

It is quite reasonable to relate R to ∇u because the turbulent zones are
often in the strong gradient zones of the flow. But then R(∇u) cannot be
arbitrary chosen because we must keep (114) invariant under changes of coor-
dinate systems. In fact, it would be absurd to propose an equation for u which
is independent upon the reference frame. One can prove (Chacon-Pironneau
[50]) that in this case the only form possible for R is (see also Speziale [218]).

R = a(|∇u+ ∇uT |2)I + b(|∇u+ ∇uT |2)(∇u + ∇uT ). (116)

in 2D. In 3D

R = aI + b(∇u+ ∇uT ) + c(∇u + ∇uT )2 (117)

where a, b and c are functions of the 2 nontrivial invariants of (∇u + ∇uT ).
So we get

∇.R = ∇a+ ∇.[b(∇u + ∇uT )] + ∇.[c(∇u + ∇uT )2] (118)

but ∇a is absorbed by the pressure (we change p to p+ a) and so a law of the
type

R = b(∇u+ ∇uT ) + c(∇u+ ∇uT )2 (119)

has the same effect. In 2D, it is enough to specify a function in one variable
b(s) and in 3D two functions in two variables b(s, s′), c(s, s′) where s and s′ are
the two invariants of ∇u+ ∇uT .

7.2. The Smagorinsky hypothesis [216] :

Smagorinsky proposes that b = ch2|∇u+ ∇uT |, that is

R = −ch2|∇u+ ∇uT |(∇u + ∇uT ), c ∼= 0.01 (120)

where h is the average mesh size used for (114). This hypothesis is compatible
with the symmetry and a bidimensional analysis of R ; it is reasonable in 2D but
not sufficient in 3D (Speziale [219]). The fact that h is involved is justified by an
ergodic hypothesis which amounts to the identification of < > with an average
operator in a space on a ball of radius h. Numerical experiments show that
we obtain satisfying results (Moin-Kim [173]) when we have sufficient points to
cause u′ to correspond to the beginning of the inertial range of Kolmogorov.

7.3. The k − ε hypothesis (Launder-Spalding [143]):

The so-called k−ε model was introduced and studied by Launder-Spalding
[143], Rodi [200] among others.
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Define the kinetic energy of the turbulence k and average rate of dissipation
of energy of the turbulence ε by:

k =
1
2
< |u′|2 > (121)

ε =
ν

2
< |∇u′ + ∇u′T |2 >; (122)

then R, k, ε are modeled by

R =
2
3
kI − cµ

k2

ε
(∇u + ∇uT ), (cµ = 0.09) (123)

k,t + u∇k − cµ
2
k2

ε
|∇u+ ∇uT |2 −∇.(cµ k

2

ε
∇k) + ε = 0 (124)

ε,t + u∇ε− c1
2k

|∇u + ∇uT |2 −∇.(cε k
2

ε
∇ε) + c2

ε2

k
= 0 (125)

with c1 = 0.1256, c2 = 1.92, cε = 0.07.
A rough justification for this set of equations is as follows. First one notes

that k2/ε has the dimension of a length square so it makes sense to use (123).
To obtain an equation for k, (112) is multiplied by u′ and averaged (we

recall that A : B = AijBij) :

1
2
< u′2 >,t + < u′ ⊗ u′ >: ∇u+

1
2
u∇ < u′2 > +∇. < p′u′ > −ν < u′∆u′ >

+
1
2
∇. < u′2u′ >= 0;

That is to say with (123)

k,t−cµ k
2

ε
(∇u+∇uT ) : ∇u+u∇k−ν < u′∆u′ >= − < u′∇u′2

2
> −∇. < p′u′ >

The last 3 terms cannot be expressed in terms of u, k and ε, so they must be
modelled. For the first we use an ergodicity hypothesis and replace an ensemble
average by a space average on a ball of centre x and radius r, B(x, r):

− < u′∆u′ >=< |∇u′|2 > +
∫

∂B(x,r)

u′.
∂u′

∂n
dγ.

By symmetry (quasi-homogeneous turbulence) the boundary integral is small.
The second term is modelled by a diffusion:

< u′∇u′2

2
>∼= −∇. < u′ ⊗ u′ > ∇k;

If u′2 and u′ were stochastically independent and if the equation for u′2 was
linear, it would be exact up to a multiplicative constant, the characteristic time
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of u′. The third term is treated by a similar argument as the first one so it is
conjectured to be small. So the equation for k is found to be :

k,t + u∇k − cµ
2
k2

ε
|∇u+ ∇uT |2 −∇.(cµ k

2

ε
∇k) + ε = 0 (126)

To obtain an equation for ε one may take the curl of (112),multiply it by ∇×u′
and use an identity for homogeneous turbulence:

ε = ν < |∇ × u′|2 >
Letting ω′ = ∇× u′, one obtains:

0 = 2ν < ω′.(ω′
,t + (u+ u′)∇(ω + ω′) − (ω + ω′)∇(u+ u′) − ν∆ω′) >

∼= ε,t + u∇ε+ < u′∇νω′2 > −2ν < ω′∇× (u′ × ω) >

−2ν(< ω′ ⊗ ω′ >: ∇u+ ∇. < (ω′ ⊗ ω′)u′ >) + 2ν2 < |∇ω′|2 >
because

∇× (u′ × ω) = ω∇u′ − u′∇ω.
the term < ω′∇× (u′ × ω) > is neglected for symmetry reasons; < u′∇νω′2 >
is modelled by a diffusion just as in the k equation; by frame invariance, <
ω′⊗ω′ > should also depend only on ∇u+∇uT , k and ε therefore in 2D it can
only be proportional to ∇u + ∇uT and by a dimension argument it must be
proportional to k. The third term is neglected because it has a small spatial
mean and the last term is modelled by reasons of dimension by a quantity
proportional to ε2/k. Finally one obtains :

ε,t + u∇ε− c1
2k

|∇u + ∇uT |2 −∇.(cε k
2

ε
∇ε) + c2

ε2

k
= 0 (127)

The constants are adjusted so that the model makes good predictions for
a few simple flows such as turbulence decay behind a grid.

Natural boundary conditions could be

k, ε given at t = 0 ; k|Γ = 0, ε|Γ = εΓ. (128)

however an attempt can be made to remove the boundary layers from the
computational domain by considering ”wall conditions” (see Viollet [235] for
further details)

k|Γ = u∗2c−
1
2

µ , ε|Γ =
u∗3

Kδ
(129)
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u.n = 0, αu.τ + β
∂u.τ

∂n
= γ (130)

where K is the Von Karman constant (K = 0.41), δ the boundary layer thick-
ness, u∗ the friction velocity, β = cµ k

2/ε, α = cµk
2/[εδ(B + log(δ/D))] where

D is a roughness constant and B is a constant such that u.τ matches approx-
imately the viscous sublayer. To compute u∗, Reichard’s law may be inverted
(by Newton’s method for example) :

u∗[2.5log(1 + 0.4
δu∗

ν
) + 7.8(1 − e−

δu∗
11ν − δu∗

11ν
e−0.33 δu∗

ν )] = u.τ

So in reality α and β in (3a) are nonlinear functions of u.τ, ε, k.

Positiveness of ε and k.

For physical and mathematical reasons it is essential that the system yields
positive values for k and ε. At least in some cases it is possible to argue that
if the system has a smooth solution for given positive initial data and positive
Dirichlet conditions on the boundaries then k and ε must stay positive at later
times.

For this purpose we looks at

θ =
k

ε
.

IfDt denotes the total derivative operator, ∂/∂t+u∇ and E denotes (1/2)|∇u+
∇uT |2, then

Dtθ =
1
ε
Dtk− k

ε2
Dtε = θ2E(cµ − c1) +

cµ
ε
∇.(k

2

ε
∇k)− cε

k

ε2
∇.(k

2

ε
∇ε)− 1 + c2

= θ2E(cµ − c1) − 1 + c2 + cµ∇.kθ∇θ + 2cµ∇θ.∇(
θ

k
) + (cµ − cε)

θ2

k
∇.kθ∇ε

Because cµ < c1 and c2 > 1 , θ will stay positive and bounded when there are
no diffusion terms because θ is a solution of a stable autonomous ODE along
the streamlines:

Dtθ = θ2E(cµ − c1) − 1 + c2

Also θ cannot become negative when cµ = cε because the moment the minimum
of θ is zero at (x, t) we will have:

∇θ = 0, θ = 0

By writing the θ equation at this point, we obtain :
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θ,t = c2 − 1 > 0

which is impossible because θ cannot become negative unless θ,t ≤ 0.
Similarly we may rewrite the equation for k in terms of θ :

Dtk − cµ
2
kθ|∇u+ ∇uT |2 −∇.(cµkθ∇k) +

k

θ
= 0

Here it is seen that a minimum of k with k = 0 is possible only if Dtk = 0 at
that point, which means that k will not become negative.

Note however that k may have an exponential growth if cµθ2 |∇u+∇uT |2 >
2; this will be a valuable criterion to reduce the time step size when it happens.

7.4. Numerical Methods.

Let us consider the following model :

u,t + u∇u+ ∇p−∇.[ν(|∇u + ∇uT |)(∇u + ∇uT )] = 0, ∇.u = 0 (131)

u.n = 0, au.τ + ν
∂u.τ

∂n
= b (132)

where a, b are given and ν is an increasing positive function of |∇u + ∇uT | .
This problem is well posed ( there is even a uniqueness of solution in 3D

under reasonable hypotheses on ν (cf. Lions [153])).
The variational formulation can be written in the space of functions having

zero divergence and having normal trace zero :

(u,t, v) + (u∇u, v) +
1
2
(ν(|∇u + ∇uT |)(∇u+ ∇uT ),∇v + ∇vT ) (133)

+
∫

Γ

[au.v − bv]dγ = 0

∀v ∈ Jon(Ω); u ∈ Jon(Ω) = {v ∈ H1(Ω)3 : ∇.u = 0, v.n|Γ = 0} (134)

By discretising the total derivative, we can consider a semi-implicit scheme,

1
k

(un+1
h − un

hoX
n
h , vh) +

1
2
(νn

h (∇un+1
h + (∇un+1

h )T ),∇vh + (∇vh)T ) (135)

+
∫

Γ

(aun
h − b)vhdγ = 0, ∀vh ∈ Jonh

un+1
h ∈ Jonh = {vh ∈ Vh : (∇.vh, qh) = 0 ∀qh ∈ Qh; vh.nh|Γ = 0} (136)

where Vh and Qh are as in chapter 4 and where :
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νn
h = ν(|∇un

h + (∇un
h)T |) (137)

There is a difficulty with Jonh and the choice of the approximated normal nh,
especially if Ω has corners.

We can also replace Jonh by

J ′
onh = {vh ∈ Vh : (vh,∇qh) = 0 ∀qh ∈ Qh} (138)

because

0 = (u,∇q) = −(∇.u, q) +
∫

Γ

u.nqdγ, ∀q ⇒ ∇.u = 0, u.n|Γ = 0.

(139)
With J ′

onh the slip boundary conditions are satisfied in a weak sense only but
the normal nh does not now appear .

The techniques developed for Navier-Stokes equations can be adapted to
this framework, in particular the solution of the linear system (134) can be car-
ried out with the conjugate gradient algorithm developed in chapter 4. However
we note that the matrices would have to be reconstructed at each iteration be-
cause ν depends on n.

To solve (114), (123) (the equations k− ε), we can use the same method ;
we add to (133)-(134) (k is replaced by q)

(qn+1
h − qn

hoX
n
h , wh) + kcµ(

qn2

h

εnh
∇qn+1

h ,∇wh) (141)

+(
∫ (n+1)k

nk

[εnh − cµ
qn2

h

2εnh
|∇un+1

h + ∇un+1
h |2](X(t))dt, wh) = 0, ∀wh ∈Woh

(εn+1
h − εnhoX

n
h , wh) + kcε(

qn2

h

εnh
∇εn+1

h ,∇wn
h) (142)

+(
∫ (n+1)k

nk

−[
c1
2
qn
h |∇un+1

h +∇un+1T
h |2 + c2

εnh
qn
h

](X(t))dt, wh) = 0, ∀wh ∈Woh

The integrals from nk to (n+1)k are carried out along the streamlines in order
to stabilize the numerical method (Goussebaile-Jacomy [99]).

So, at each iteration, we must
- solve a Reichard’s law at each point on the walls,
- solve (134),
- solve the linear systems (141)-(142).
The algorithm is not very stable and converges slowly in some cases but

it may be modified as follows.
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As in Goussebaile et al.[99] the equations for q−ε are solved by a multistep
algorithm involving one step of convection and one step of diffusion. However
in this case the convection step is performed on q, θ rather than on q, ε.

The equation for q is integrated as follows:

(qn+1
h , wh)−(qn

hoX
n
h , wh)+(qn+1

h

∫ (n+1)k

nk

(
cµ
2
qn
h

εnh
|∇un

h+∇un
h|2−

εnh
qn
h

), wh) (143)

+kcµ(
qn2
h

εnh
∇qn+1

h ,∇wh) = 0 ∀wh ∈ Qoh = {wh ∈ Qh : wh|Γ = 0}

qh − kΓh ∈ Qoh (144)

But the equation for ε is treated in two steps via a convection of θ = q/ε that
does not include the viscous terms

(θn+ 1
2

h , wh) + (θn+ 1
2

h

∫ (n+1)k

nk

1
2
θn

h |∇un
h + ∇unT

h |2(c1 − cµ), wh) (145)

= (θn
hoX

n
h , wh) + (c2 − 1, wh)k

where θn
h = qn

h/ε
n
h. Then εn+1/2

h is found as

ε
n+ 1

2
h =

qn+1
h

θn+
h

1
2

(146)

and a diffusion step can be applied to find εn+1
h :

(εn+1
h , wh) + kcε(

qn2
h

εnh
∇εn+1

h ,∇wh) = (εn+ 1
2

h , wh) (147)

∀wh ∈ Qoh; εn+1
h − εΓh ∈ Qoh

Notice that this scheme cannot produce negative values for qn+1
h and εn+1

h when
∫

]x,Xn
h

(x)[

(
cµ
2
θn

h |∇un
h + ∇un

h|2 −
1
θn

h

) > −1 (148)

because c1 > cµ and c2 > 1 so (145) generates only positive θ while in (143)
the coefficient of qn+1

h is positive. Note that (148) is a stability condition when
the production terms are greater than the dissipation terms.
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CHAPTER 6

EULER, NAVIER-STOKES
AND THE SHALLOW WATER EQUATIONS

1. ORIENTATION

In this chapter, we have grouped together the three principal problems of
fluids mechanics where the nonlinear hyperbolic tendency dominates.

First, we shall recall some general results on nonlinear hyperbolic equa-
tions. Then we shall give some finite element methods for the Euler equations
and finally we shall extend the results to the compressible Navier-Stokes equa-
tions.

In the second part of this chapter, we shall present the necessary modifica-
tions needed to apply the previous schemes to the incompressible Navier-Stokes
equations averaged in x3 : Saint-Venant’s shallow water equations.

2. COMPRESSIBLE EULER EQUATIONS

2.1. Position of the problem

The general equations of a perfect fluid in 3 dimensions can be written as
(cf. (1.2), (1.7), (1.12))

W,t + ∇.F (W ) = 0 (1)

and, in relation to (1.12)

E = ρ(e+
1
2
|u|2)

and

W = [ρ, ρu1, ρu2, ρu3, E]T (2)

F (W ) = [F1(W ), F2(W ), F3(W )]T (3)
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Fi(W ) = [ρui, ρu1ui + δ1ip, ρu2ui + δ2ip, ρu3ui + δ3ip, ui(E + p)]T (4)

p = (γ − 1)(E − 1
2
ρ|u|2) (5)

The determination of a set of Dirichlet boundary conditions for (1) to be well
defined is a difficult problem. Evidently we need initial conditions

W (x, 0) = W o(x) ∀x ∈ Ω (6)

and to determine the boundary conditions, we write (1) as :

W,t +
∑

Ai(W )
∂W

∂xi
= 0 (7)

where Ai(W ) is the 5 × 5 matrix whose elements are the derivative of Fi with
respect to Wj .

Let ni(x) be a component of the external normal to Γ at x. One can show
that

B(W,n) =
∑

Ai(W )ni (8)

is diagonalizable with eigenvalues

λ1(n) = u.n− c, λ2(n) = λ3(n) = λ4(n) = u.n, λ5(n) = u.n+ c (9)

where c = (γp/ρ)1/2 is the velocity of sound. Finally, by analogy with the linear
problem, we see that it is necessary to give Dirichlet conditions at each point
x of Γ with negative eigenvalues. We will then have 0, 1, 4 or 5 conditions on
the components of W according to different cases. The important cases are:

- supersonic entering flow ( u.n < 0, |u.n| > c) : 5 conditions for example,
ρ, ρui, p

- supersonic exit flow : 0 conditions.
- subsonic entering flow : 4 conditions, independent combinations of W.li

where li is the left eigenvector associated to the eigenvalue λi < 0.
- subsonic exit flow : 1 condition (in general, on pressure)
- flow slipping at the surface (u.n = 0): 1 condition, i.e.: u.n = 0.

2.2. Bidimensional test problems
a) Flow through a canal with an obstacle in the form of an arc of circle

(Rizzi-Viviand[199])

Figure 6.1 :Stationary flow around an obstacle in the form of an arc of
circle. The picture shows the geometry, the type of boundary conditions and
the position of shocks.
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The height of the hump is 8% of its length. The flow is uniform and
subsonic at the entrance of the canal, such that the Mach number is 0.85. We
have slipping flow along the horizontal boundary and along the arc (u.n = 0);
the quality of the result can be seen, for example, from the distribution of
entropy created by the shocks.

b) Flow in a backward step canal (Woodward-Colella[238])

Figure 6.2 :Shock waves configuration in the flow over a step.

This flow is supersonic at the exit and we give only conditions at the
entrance p = 1, ρ = 1.4, u = (3, 0). The quality of the results can be seen in the
position of the shocks and of the L contact discontinuity lines.

c)Symmetric flow with Mach 8 around a cylinder . (Angrand-Dervieux[2])

Figure 6.3:Positions of shocks at Mach 8.

In this example, the difficulties arise because the Mach number is large,
the domain is unbounded and because there is a quasi rarefaction zone behind
the cylinder.

2.3. Existence

One should interpret (1) in the distribution sense because there could be
discontinuities : to have uniqueness for the problem, one must add an entropy
condition. The physical (reduced) entropy, s,

S = log
p

ργ
(10)

should decrease in time when we follow the fluid particles (t→ S(X(t), t))). In
certain cases, (Kruzkov[136], Lions[153]) one can show that if the solution of
(1) is perturbed by adding a viscosity −ε∆W then when ε→ 0 it converges to
the entropy solution of (1). So the existence and uniqueness of the solution of
(1) can be studied as a limit of the viscosity solution.

For system (1) with the above prescribed conditions there exists the fol-
lowing partial results :

- an existence theorem for a local solution by a Cauchy-Kowalevska argu-
ment (cf. Lax [145])
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- a global existence theorem in one dimension (cf. Majda [165])
- a global existence theorem in the case where W has only one component

(scalar equation) and in arbitrary dimension (Kruzkov [136],Glimm [94], Lions
[153]).

2.4. Some centered schemes

To obtain finite element methods for equations (1), we can use the method
developed in chapter 3:

- artificial viscosity methods,
- semi-Lagrangian methods,
- streamline viscosity methods.

a) Artificial viscosity methods (Jameson [121])
We take for (1) an explicit discretisation in time and a P 1 conforming

finite element method for space :

1
k

(Wn+1
h −Wn

h , Vh) − (F (Wn
h ),∇Vh) +

∫
Γ

Vh.F (Wn
Γh).nh (11)

−(∇.[G(Wn
h )∇Wn

h ], Vh) = 0 ∀Vh ∈ Uh; Wn+1
h −Wn

Γh ∈ U0h

where G is a viscosity tensor chosen carefully [15] and where U0h is the space of
vector valued functions, piecewise− P 1 continuous, on the triangulation and
whose components corresponding to those where WΓ is known, are zero on Γ;
Wn

Γh is obtained by replacing in Wn
h the known values of WΓ .

As viscous and convection terms are taken into account explicitly in time,
there is a stability condition on k; if one is interested only in stationary solu-
tions, mass lumping can be used to make the scheme really explicit; in addition
a preconditioner can be added to accelerate it. The viscosity chosen by Jameson
is approximately :

∇.(G(W )∇W ) = −h
2

k
(
∑ ∂

∂xi
)[ah3 |∆p|

|p|
∂W

∂z
− |b− ah2 |∆p|

|p| |+ ∂
3W

∂z3
] (12)

where z is the flow direction and a and b are constants of O(1); however it is
written as a nodal scheme in the sense that mass lumping is applied to the first
term of (11) and the contribution of the diffusion term is something like

∑
j,k∈T (i)

(
∑

m∈N(j)

(W.j −W.m) −
∑

l∈N(k)

(W.k −W.l))

where N(i) is the set of neighbor nodes of node i and T (i) the triangles which
contain the ith vertex.
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b) Lax-Wendroff/Taylor-Galerkin Method (Donea [68], Lohner et
al. [160])

We start with a Taylor expansion

Wn+1 = Wn + kWn
,t +

k2

2
Wn

,tt + o(k2) (13)

From (1), we deduce that

W,tt = −∇.(∂F (W )
∂t

) = −∇.(F ′
w(W )W,t ) = ∇.(F ′

w(W )∇.F (W )) (14)

So (13) can be discretised as

(Wn+1
h , Vh) = (Wn

h , Vh)+k(F (Wn
h ),∇Vh)− k2

2
(F ′

w(Wn
h )∇.F (Wn

h ),∇Vh) (15)

−
∫

Γ

[kF (Wn
Γh).n− k2

2
F ′

w(Wn
h )∇.F (Wn

h )n].Vh, ∀Vh ∈ Uoh

where Uoh is as in a).
Here also, one could accelerate the computation by mass lumping. In

Lohner [158][160] spectacular results obtained using this method can be found.
An FCT correction (Boris-Book [34]) can be added to make the scheme

more robust; if W pn+1 denotes the vector of values at the nodes of the solution
of (15) with mass lumping in the first two terms, then the vector of values at
the nodes of Wn+1

h is constructed from

Wn+1 = W pn+1 + cD∗M−1
l (M −Ml)Wn,

where c is a constant, M is the mass matrix, Ml is the lumped mass matrix
and D∗ is a flux limiter built by limiting the element contribution to M−1

l (M−
Ml)Wn in such a way as to attempt to ensure that Wn+1 is free from extrema
not found in Wn or W pn+1.

c) Predictor-corrector viscosity method ( Dervieux [64].)
This is another form of method b. We start with a step (predictor) in

which W p
h is piecewise constant on each element T and calculated from

W p
h |T = |T |−1[

∫
T

Wn
h − αk

∫
∂T

F (Wn
h )nh] (16)

with α = (1+
√

5)/2 (cf. Lerat and Peyret [189]). Then, we compute Wn+1
h

by solving

1
k

(Wn+1
h −Wn

h , Vh)h + ((1 − β)F (Wn
h ) + βF (W p

h ),∇Vh) (17)
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−
∫

Γ

Vh.F (Wn
Γh)n+ (G(Wn

h )∇Wn
h ,∇Vh) = 0, ∀Vh ∈ Uh

where β = 1/2α and where (, )h denotes the mass lumping quadrature formula;
G is chosen to be proportional to h2 and to the first derivatives of Wn

h (to give
more viscosity where W is nonsmooth).

d) Streamline upwinding methods (SUPG). (Hughes-Mallet [119],
Johnson-Szepessy [128])

The basic idea is to add the equations of the problem to the basis functions;
we consider the scheme

∫ (n+1)k

nk

(Wh,t + ∇.F (Wh), Vh + h(Vh,t +Ai(Wh)Vh,i))dt (18)

+(Wn+
h −Wn−

h , V n−
h ) = 0

where Un± is the left or right limit of U(t) when t→ nk. We discretise in time
and in space in a coupled manner, (cf Chapter 3) for example with continuous
P 1 approximation in space and P 1 discontinuous in time. Though the method
is efficient numerically, (Mallet [166]) the convergence study of the algorithm
suggests 3 modifications (Johnson-Szepessy [128]):

- use of entropy formulation of Euler’s equations,
- replacing h by hM in (18), where M is a matrix function of Wh,
- adding another viscosity called ”shock capturing” .
The final scheme is

∫ (n+1)k

nk

(A′
oWh,t+

∑
i

A′
iWh,xi , Vh+h(

∑
i≥0

Ai)−
1
2 [A′

oVh,t+
∑

i

A′
iVh,xi ])dt (19)

+(Wn+
h −Wn−

h , V n+
h ) = hd ∀Vh ∈ V n

h

where

V n
h = {Uh, P

1 continuous in x, P 1 discontinuous in t, (20)

such that Uhi = 0 on the parts of Γ where Whi is given }
We choose a ∼= 1, b << 1, c ∼= 1, we put ∇U = [U,t, U,xi]T and we take

d =
∫

Ω×]nk,(n+1)k[

a(A′
oWh,t +

∑
i

A′
iWh,xi)

∇Wh.∇Vh

(b+ |∇Wh|) (21)

+c
∫

Ω

|Wn+
h −Wn−

h |(
∑

i

Wh,xiVh,xi)

The matrices A′
i are computed from the entropy function S(W ) (cf (10)) by

A′
o = (S,ww)−1, A′

i = AiA
′
o.
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The scheme is implicit in time like the Crank-Nicolson scheme. For
Burger’s equation, (F (W ) = W 2/2, W having only one component) on Ω
= R, result which converges towards the continuous solution when h → 0 can
be found in [17] ; also if W has only one component Johnson and Szepessy have
shown that the method converges to the entropy solution.

In the general case one can also show that if Wh converges to W , then W
satisfies the entropy condition

S(W ),t +
∑

i

S,w Fi(W ),xi ≤ 0

e) General Remarks on the above schemes

Due to the complexity of the problem, we still do not know how to prove
convergence of the scheme in a general case (except maybe SUPG). So the
analysis often reduces to the study of finite difference schemes on regular grids
and of a linear equation (like that of chapter 3).

The schemes with artificial viscosity have the advantage of being simple but
to be efficient, the regions where the viscosity plays a role must be small: this
is possible with an adaptative mesh where we subdivide the elements if |∇W | is
large (Lohner [158], Palmério and al. [186], Bank [12], Kikuchi et al. [133]). But
the stability condition forces us to reduce k if h diminishes so more iterations
are needed than with implicit schemes; this requires a careful vectorization
of the program and/or the use of fast quadrature formulae (Jameson [121]).
Finally, the main drawback as the choice of viscosity coefficient and the time
step size, one may prefer the schemes which use upwinding methods, is not
being more robust (but not necessarily more accurate). On the theoretical
side, it is sometimes possible to show that the schemes satisify the entropy
conditions in the case of convergence (Leroux [147]).

2.5. Upwinding by discontinuity

As in chapter 3, upwinding is introduced through the discontinuities of
F (Wh) at the inter-element boundaries, either because Wh is a discontinuous
approximation of W , or because for all Wh continuous, we know how to asso-
ciate a discontinuous value at right and at left, at the inter-element boundary.

a) General Framework (Dervieux [64], Fezoui [78], Stoufflet et al. [222]).
As in chapter 3, for a given triangulation, we associate to each vertex qi

a cell σi obtained by dividing triangles (tetraedra) by the medians (by median
planes). Thus we could associate to each piecewise continuous function in a
triangulation a function P o (piecewise constant ) in σi by the formula

W p
h |σi =

1
|σi|

∫
σi

Whdx (22)
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By multiplying (1) by a characteristic function of σi and by integration (Petrov-
Galerkin weak formulation) we obtain, after an explicit time discretisation, the
following scheme :

Wn+1
h (qi) = Wn

h (qi) +
k

|σi|
∫

∂σi

Fd(W
p
h ).n ∀i (23)

On σi ∩ Γ, we take Fd(W ) = F (W ) and we take into account the known
components ofWΓ ; and elsewhere Fd(W ) is a piecewise constant approximation
of F (W ) verifying

∫
∂σi

Fd(W
p
h ).n =

∑
j =i

Φ(W p
h|σi ,W

p
h|σj )

∫
∂σi∩σj

n (24)

where Φ will be defined as a function of F (W p
h|σi) and F (W p

h|σj ); Φ(u, v) is the
numerical flux function chosen according to the qualities sought for the scheme
(robustness precision ease of programming). In all cases this function should
satisfy the consistency relation :

Φ(V, V ) = F (V ), for all V . (25)

b) Definition of the flux Φ :
Let B(W,n) ∈ R5×5 (4 × 4 in 2D) be such that

F (W ).n = B(W,n).W ∀W ∀n (26)

Note that B is the same in (8) because F is homogeneous of degree 1 in W
(F (λW ) = λF (W )) and so B is nothing but F ′

i (W )ni. As we have seen that
B is diagonalizable, there exists T ∈ R5×5 such that

B = T−1ΛT (27)

where Λ is the diagonal matrix of eigenvalues.
We denote

Λ± = diag(±max(±λi, 0)), B± = T−1Λ±T (28)

|B| = B+ −B−, B = B+ +B− (29)

We can choose for Φ one of the following formulae :

ΦSW (V i, V j) = B+(V i)V i +B−(V j)V j (Steger-Warming) (30)

ΦV S(V i, V j) = B+(
V i + V j

2
)V i +B−(

V i + V j

2
)V j (Vijayasundaram) (31)

ΦV L(V i, V j) =
1
2
[F (V i)+F (V j)+ |B(

V i + V j

2
)|(V j −V i)] (Van Leer) (32)
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ΦOS(V i, V j) =
1
2
[F (V i) + F (V j) −

∫ V j

Vi

|B(W )|dN ] (0sher) (33)

the guiding idea being to get Φl(V i, V j) ∼= F (V i)l if λl is positive and F (V j)l

if λl < 0.
So ΦSW , for instance, can be rewritten as follows :

ΦSW (V i, V j) =
1
2
[F (V i) + F (V j)] +

1
2
[|B(V i)|V i − |B(V j)|V j ],

because

F (V i) + F (V j) = (B+(V i) +B−(V i))V i + (B+(V j) +B−(V j))V j ;

The first term, if alone, would yield an upwind approximation. The second,
after summation on all the neighbors of i, is an artificial viscosity term. The
Van Leer and Osher schemes rely also on such an identification ; the flux of
Osher is built from an integral so that it is C1 continuous ; the path in R5

from V i to V j is chosen in a precise manner along the characteristics so as to
capture exactly singularities like the sonic points.

c) Integration in time.
The previous schemes are stable up to CFL of order 1 (c|w|k/h < 1 where c

depends on the geometry); if one wants only the stationary solution, the scheme
can be speeded up by a preconditioning in front of ∂W/∂t ; these schemes are
quite robust ; 3D flows at up to Mach 20 can be computed ; but they are not
precise. Schemes of order 2 are being studied.

d) Spatial approximations of order 2.
A clever way (due to Van Leer) to make the previous schemes second order

is to replace V i and V j by the interpolates V i− and V j+ defined on the edges
where they must be computed by :

V i− = V i + (∇V )i (q
j − qi)

2

V j+ = V j − (∇V )j (qj − qi)
2

An upwinding is also introduced to compute the gradients (cf. Stoufflet et al.
[222]). An alternative is to use discontinuous elements of order 2 or higher
(Chavent-Jaffré [51]).

2.6. Convergence : the scalar conservation equation case

The convergence of the above scheme is an open problem except perhaps
in 1D or when W has only one component (instead of 5!); this is the case of
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the nonlinear scalar conservation equations which govern the water-oil concen-
tration in a porous media; let us take this as an example. Let f be in C1(R)
and φ(x, t) ∈ R be a solution of

φ,t + ∇.f(φ) = 0 in Q =]0, T [×Rn, φ(0) = φo in Rn (34)

with φo having compact support.
One can show (Kruzkov [136]) that for φo ∈ L∞(Rn) there exists a unique

solution (34) satisfying the entropy inequalities

Φc,t + ∇.Fc ≤ 0 in Q for all c (35)

where

Φc(φ) = |φ− c|, Fc(φ) = (f(φ) − f(c))sgn(φ− c) (36)

Moreover, φ is also the limit of φε, ε → 0, the only solution of

φε
,t + ∇.(f(φε)) − ε∆φε = 0 in Q, φε(0) = φo (37)

Finally, if BV (Rn) denotes the space of functions of bounded variations, we
have :

φo ∈ L1(Rn) ∩BV (Rn) ⇒ φ ∈ L∞(0, T ;L1(Rn)) ∩BV (Rn) (38)

In the finite difference world, the following definitions are introduced :
Let {φn

i } be the values at the vertices of φn
h(x) (φn

i = φn
h(qi)); an explicit

scheme

φn+1
i = H({φn

j })i (39)

is monotone if H is a non-decreasing function in each of its arguments. A
scheme is TVD (Total Variation Diminishing) if

||φn+1
h ||BV ≤ ||φn

h ||BV where ||φn
h||BV =

∑
qi,qjneighbors

|φi − φj |
|qi − qj | (40)

These notations can be generalized to finite element schemes at least in the
case of uniform meshes. In [10] a quasi-monotone finite element scheme is
constructed with upwinded fluxes and a viscosity of O(h), and one gets a class
of methods for which the convergence is proven.

Implicit methods with viscosity have the advantage of being automatically
stable and in the case of convergence (where all the difficulties lie) convergence
occurs towards an entropy solution.

For example, let us consider the following scheme :
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1
k

(φn+1
h −φn

h , wh)+(∇.f(φn+1
h ), wh)+εhα(∇φn+1

h ,∇wh) = 0, ∀wh ∈ Vh (41)

where Vh is a space of conforming finite elements.
By taking wh = φn+1

h , we get the stability

|φn+1
h |2o ≤ |φn

h|o|φn+1
h |o (42)

because (∇.f(φh), φh) is equal to a boundary integral on Σ which is positive
plus c|∇φh|2o

Under rather strong convergence hypotheses, by taking wh equal to the
interpolation of sgn(φ− c) one can show in the limit of (41)

(φ,tsgn(φ− c)) + (∇.f(φ), sgn(φ− c)) + ε limhα(∇φh,∇sgn(φ− c)) = 0 (43)

but

(∇φ,∇sgn(φ − c)) =
∫
{x|φ−c=0}

∂φ

∂n
dγ > 0

so (43) implies ultimately (35).
As mentionned above, SUPG+shock capturing is one case where conver-

gence can be proved by a similar argument (and many more ingredients [128])

3. COMPRESSIBLE NAVIER-STOKES EQUATIONS

3.1. Generalities

The equations (1.2), (1.7), (1.12) can also be written as a vectorial system
in W . With the notations (2)-(5), we have

W,t + ∇.F (W ) −∇.K(W,∇W ) = 0 (44)

where K(W,∇W ) is a linear 2nd order tensor in ∇W such that

Ki,1 = 0, K.,2,3,4 = η∇u+ (ζ +
η

3
)I∇.u, (45)

K.,5 = η(∇u + ∇uT )u+ (ζ − 2
3
η)u∇.u+ κ∇(

E

ρ
− |u|2

2
) (46)

The term ∇.K(W,∇W ) is seemingly a diffusion term if ρ, θ > 0 since it cor-
responds to η∆u + (η/3 + ζ)∇(∇.u) in the 2nd, 3rd and 4th equations of (44)
and to κ(Cv/ρ)∆θ + 1/ρCv[|∇.u|2(ζ − 2η/3)+ |∇u+∇uT |η/2] in the last one
(cf. (1.13)):
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−
∫

R3
W∇.K(W,∇W ) = −

∫
R3

[η∆u + (
η

3
+ ζ)∇(∇.u)]u (47)

−
∫

R3
(κCv

θ

ρ
∆θ +

θ

ρ
Cv[|∇.u|2(ζ − 2

η

3
) + |∇u+ ∇uT |η

2
])

≥
∫

R3
(η|∇u|2 + (

η

3
+ ζ)|∇.u|2) + κ

Cv

ρmax

∫
R3

|∇θ|2

+
θmin

ρmax
Cv

∫
R3

[|∇.u|2(ζ − 2
η

3
) +

η

2
|∇u+ ∇uT |2] ≥ 0

So we can think that the explicit schemes in step 1 to integrate (1) can be
applied to (44) if the stability condition on the time step k is modified :

k ≤ Cmin[
h

|w| ,
h2

|K| ] (48)

where K is a function of κ, η, ζ. This modification is favorable to the schemes
obtained by artificial viscosity but still when the boundary conditions are dif-
ferent boundary layers arise boundary layers in the neighborhood of the walls.

The boundary conditions can be treated in the strong sense (they appear
in the variational space Voh instead of Vh) or in the weak sense (they appear
as a boundary term in the variational formulation).

Flow around a NACA0012 airfoil
A test problem is given in Bristeau et al.[43] which concerns a 2D flow

around a wing profile NACA0012. Taking the origin of the reference frame at
the leading edge the equation of the upper surface of the profile is :

y = 0.17735
√
x−0.075597x−0.212836x2+0.17363x3−0.06254x4, 0 ≤ x ≤ 1

The boundary conditions at infinity are such that the Mach number is 0.85,
the Reynolds number (uρ/η) is 500 and the angle of attack is 00 or 100. The
temperatures at infinity and on the surface are given.

Figure 6.5: Flow around a NACA0012. The figure shows the
position of shocks and the boundary layers.

3.2. An example

As an example, we present the results obtained by Angrand et al. [2] and
Rostand [204].

The algorithm used is a modification of (16)-(17) and the boundary con-
ditions are treated in the weak sense. The problem treated was the modeling
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of rarefied gas layers in the neighborhood of the surface ( Knudsen layers) and
so a Robin type boundary condition is applied:

A(W )W +K(W,∇W )n = g on Γ (49)

where A is a 2nd order tensor and g ∈ R5. (If A→ +∞ we obtain the Dirichlet
conditions and if A→ 0, the Neumann conditions).

Let Uh be the space of functions having range in R5 continuous and piece-
wise P 1 on a triangulation of Ω. Problem (44) is approximated by

1
k

(Wn+1
h −Wn

h , Vh)h − (Fh(Wn
h ),∇Vh) + (Kh(Wn

h ,∇Wn
h ),∇Vh) (50)

+
∫

Γ

[F (Wn
h )Vhn+ (A(Wn

h )Wn
h − g)Vh] = 0 ∀Vh ∈ Uh

Kh possibly contains also the artificial viscosity if needed, Fh the upwinded flux
and (, )h the mass lumping. This scheme is mostly used to calculate stationary
states.

In Rostand [204], the flow around a wing profile (2D) NACA0012 has been
calculated with the following boundary conditions :

u.n = 0, n.D(u).τ +Aρu.τ = 0 u.D(u).n+
γ

Pr

∂θ

∂n
= 0 (51)

where D(u) = ∇u+∇uT− 2/3 ∇.u I, A is a coefficient to be chosen and Pr is
the Prandtl number.

We point out the following problems which are yet to be solved :
- find non reflecting boundary conditions at infinity towards downstream
- find a fast scheme (implicit ?) and more accurate (order 2 ?)
- remove the pressure oscillations near the walls and the leading edges in

particular; it seems that one has to use a different approximation for p and u
when u << c, which makes sense from what we know about incompressible the
Navier-Stokes equations.

- make the scheme a feasible approximation for small Mach number also,
(something which does not exist at the moment).

3.3 An extension of incompressible methods to
the compressible case.

Since the incompressible Navier-Stokes equations studied in Chapter 5 are
an approximation of the compressible equations when ρ tends to a constant, it
should be possible to use the first one as an auxiliary solver for the second one.

So we shall try to associate the continuity equation and the pressure. The
complete system (44) can be written as a function of σ = logρ as shown below,
Bristeau et al.[41]. Here the method is presented with ζ = 0) :

σ,t +u∇σ + ∇.u = 0
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u,t +u∇u+ (γ − 1)(θ∇σ + ∇θ) = ηe−σ(∆u +
1
3
∇(∇.u)) (52)

θ,t + u∇θ + (γ − 1)θ∇.u = e−σ(κ∆θ + F (∇u)) (53)

where F (∇u) = η|∇u + ∇uT |2/2 − 2η|∇.u|2/3 (and where θ and κ have been
normalized).

An implicit time discretisation of total derivatives gives rise to a general-
ized Stokes system if we treat the temperature explicitly :

1
k
σn+1 + ∇.un+1 =

1
k
σnoXn, (54)

1
k
un+1 − ηe−σn

(∆un+1 +
1
3
∇(∇.un+1)) + (γ − 1)θn∇σn+1

=
1
k
unoXn − (γ − 1)∇θn,

(1 +
1
k

(γ − 1)∇.un)θn+1 − e−σn

κ∆θn+1 =
1
k
θnoXn + e−σn

F (∇un)

A method for solving this system is to multiply the last two equations by eσ

so as to obtain

ασ + ∇.u = g (55)

βu− a∆u+ b∇σ = f

δθ − c∆θ = h

where a and c are constant. So following the method of chapter 4, we take the
divergence of the second equation, substitute it in the first and obtain :

ασ + ∇.[(β − a∆)−1(f − b∇σ)] = 0

an equation that we solve by using the conjugate gradient method.
This method has the advantage of leading back to the methods studied

in chapter 5 when the flow is quasi-incompressible, but has the drawback of
giving a method which is non-conservative for Euler’s equations when η and κ
tend to 0.

4. SAINT-VENANT’S SHALLOW WATER EQUATIONS

4.1. Generalities

Let us go back to the incompressible Navier-Stokes equations with gravity
(g = −9.81)

u,t + ∇.u⊗ u+ ∇p− ν∆u = ge3 ∇.u = 0 (56)

and assume that the domain occupied by the fluid has a small thickness, which
is true in the case of lakes and seas .
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Figure 6.8 : Vertical section through the fluid domain showing
the bed of a lake and the water surface.

Let zs(x1, x2, t) be the height of the surface and zf (x1, x2, t) the height of
the bed. The continuity equation integrated in x3 = z gives

∫ zs

zf

∇.udz = u3(zs) − u3(zf ) + ∇12.(
∫ zs

zf

udz) = 0 (57)

but by the definition of u3 we have dzs/dt = u3(zs) so, taking into account the
no-slip condition at the bottom and defining v, z by

∫ zs

zf

udz = (zs − zf)v(x1, x2, t), z = zs − zf (58)

one can rewrite (57) as

z,t + ∇.(zv) = 0 (59)

In (56)(a) we neglect all the terms in u3, so the third equation gives

∂p

∂z
= g (60)

By putting p calculated from (60) in the two first equations of (56)(a) integrated
in x3 we see

(zv),t + ∇.(zv ⊗ v) + gz∇z − ν∆(zv) ∼= 0 (61)

The system (59), (61) constitutes the shallow water equations of Saint-Venant
(for more details, see Benqué et al. [22], for example). For large regions of
water (seas), the Coriolis forces, proportional to ω × v where ω is the rotation
vector of the earth must be added. Other source terms, f , in the right hand
side of (61) could come from

- the modeling of the wind effect (f constant)
- the modeling of the friction at the bottom zf (f = c|v|v/z).

If we change scales in (59), (61) as in (1.39),we obtain

z′,t′ + ∇′.(z′v′) = 0 (62)

(z′v′),t′ + ∇′.(z′v′ ⊗ v′) + F−2z′∇′z′ −R−1∆′(z′v′) = 0 (63)

with R = |v|L/ν and the Froude number

F =
|v|√
gz

(64)
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If we expand (61) and divide by z,we get

v,t + v∇v + g∇z − νz−1∆(zv) = 0 (65)

If F << 1 and R << 1, then g∇z dominates the convection term v∇v and the
diffusion term νz−1∆zv ; we can approximate (65) (59) by,

z,t + ∇.(zv) = 0 v,t + g∇z = 0 (66)

which is a nonlinear hyperbolic system with a propagation velocity equal to√
gz.

If R >> 1 so that we can neglect the viscosity term, we remark that (59),
(61) is similar to the Euler equations with γ = 2, ρ = z and an adiabatic
approximation p/ργ = constant ; on the other hand if in (65) we set u = zv
then it becomes similar to the incompressible Navier-Stokes equations with an
artificial compressibility such as studied by Temam [228]:

u,t + ∇.(z−1u⊗ u) +
g

2
∇z2 − ν∆(u) = 0 z,t + ∇.u = 0;

this problem is well posed with initial data on u, z and Dirichlet boundary data
on u only.

But if we make the following approximation:

z−1∆(zv) ∼= ∆v,

then (59)(61) becomes similar to the compressible Navier-Stokes equations with
γ = 1 :

v,t + v∇v + g∇z − ν∆v = 0

z,t + ∇.(zv) = 0;

An existence theorem of the type found by Matsumura-Nishida [169] may be
obtained for these equations ; this means that the problem (59), (61) is well
posed with the following boundary conditions :

z, v given at t = 0 (67a)

v|Γ given Γ and z given on all points of Γ where v.n < 0 (67b)

with the condition that z stays strictly positive. This fact is confirmed by an
analysis of the following problem (Pironneau et al [192]):

g∇z − ν∆v = 0 ∇.(zv) = 0;

with (67b). This reminds us that certain seemingly innocent approximations
have a dramatic effect on the mathematical properties of such systems.

Boundary conditions for these shallow water equations is a serious problem;
here are some difficult examples found in practical problems:

- on the banks where z → 0
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− in deep sea where one needs non reflecting boundary conditions if the
computational domain is not to be the wholesurface of the earth.

- if the water level goes down and islands appear ( z ≡ 0).

Test Problem :
A simple non stationary test problem is to study a wave which is axisym-

metric and Gaussian in form with 2m height in a square of 5m depth and 10m
side returning to rest.

Figure 6.9 :Computational domain (left) and vertical section through the
physical domain .

4.2. Numerical scheme in height-velocity formulation

When the Froude number is small, we shall use the methods applicable
to incompressible Navier-Stokes equations rather than the methods related to
Euler’s equations.

We shall neglect the product term ∇z ∇v (small compared to v∇v) in the
development of ∆(zv) in the formulation (59), (65), that is we shall consider
the system

z,t + v∇z + z∇.v = 0 (68)

v,t + v∇v + g∇z − ν∆v = 0 (69)

z(0) = zo, v(0) = vo in Ω; v|Γ = vΓ, z|Σ = zΓ (70)

For clarity, we assume that vΓ = 0. Recall that Σ is that part of Γ where the
flux enters (v.n < 0). If D/Dt is the total derivative, (68)-(69) can also be
written

Dz

Dt
+ z∇.v = 0 (71)

Dv

Dt
+ g∇z − ν∆v = 0. (72)

With the notation of chapter 3, we can discretise the system with the semi-
implicit Euler scheme

1
k

(zm+1 − zmoXm) + zm∇.vm+1 = 0 (73)

1
k

(vm+1 − vmoXm) + g∇zm+1 − ν∆vm+1 = 0 (74)

For spatial discretisation, we shall use the methods given in chapter 4 for the
Stokes problem : we choose Qh

∼= L2(Ω) and Voh
∼= H1

o (Ω)n and we find
[zm+1

h , vm+1
h ] solution of
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1
k

(zm+1
h ,

qh
zm

h

) + (∇.vm+1
h , qh) =

1
k

(zm
h oX

m
h ,

qh
zm

h

) ∀qh ∈ Qh (75)

1
k
(vm+1

h , wh)+ν(∇vm+1
h ,∇wh)+g(∇zm+1

h , wh) =
1
k

(vm
h oX

m
h , wh) ∀wh ∈ Voh

(76)
We recall that Xm

h (x) is an approximation of X(mk, x), which is a solution of

dX

dτ
= vm

h (X(τ), τ), X((m+ 1)k) = x, (77)

thus the boundary condition on zh|Σ appears in (75) in the calculation of
zm

h oX
m
h (x), x ∈ Σ.

At each iteration in time, we have to solve a linear system of the type
(
A B
BT −D

)(
V
Z

)
=

(
F
G

)
(78)

where

Dij =
1
k

∫
Ω

qiqj

zm
h

, Bij = (∇qi, wj), Gj = −1
k
(zm

h oX
m
h ,

qj

zm
h

)

Fj =
1
g
(vm

h oX
m
h , w

j), Aij =
1
kg

(wi, wj) +
ν

g
(∇wi,∇wj) (79)

As with the Stokes problem, the matrix of the linear systems is symmetric but
here it is nonsingular whatever may be the chosen element {Vh, Qh}. In fact,
by using (76), to eliminate vm+1

h , we find an equation for zm+1
h :

(BTA−1B +D)Z = BTA−1F −G (80)

the matrix of this linear system is always positive definite (cf. (79)). It can
be solved by the conjugate gradient method exactly as in the Stokes problem.
A preconditioner can also be constructed in the same manner ; Goutal [100]
suggests :

C =
D

kg
− ∆h (81)

where D is given in (79) and −∆h is a Laplacian matrix with Neumann condi-
tion (this preconditioning corresponds to a discretisation of the operator on z
in the continuous case when ν = 0).

Stability and convergence are open problems but the numerical perfor-
mance of the method is good[13].

4.3. A numerical scheme in height-flux formulation

We put D = zv so that (59)-(61) can be rewritten as
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z,t + ∇.D = 0 (82)

D,t + ∇.(1
z
D ⊗D) + gz∇z − ν∆D = 0 (83)

Let us take as a model problem the case where

z(0) = zo, D(0) = Do in Ω (84)

D = DΓ on Γ×]0, T [ (85)

In [13] the following scheme is studied : with the same finite element space V0h

and Q0h, the functions in the space Qh which are zero on Γ, one solves

1
k
(zm+1

h − zm
h , qh) + (∇.Dm+1

h , qh) = 0 ∀qh ∈ Qh (86)

1
kg

(
Dm+1

h

zm
h

− vm
h oX

m
h , wh) + (∇zm+1

h , wh) +
ν

g
(∇Dm+1

h ,∇wh

zm
h

) (87)

+
1
g
(vm

h ∇.vm
h , wh) = 0 ∀wh ∈ Voh

where vm = Dm
h /z

m
h and where Xm

h is as in the previous paragraph, that is, it
is calculated with vh : Xm

h (x) ∼= x− vm
h (x)k .

Each iteration requires the resolution of a linear system of the type (78)
but with

Dij =
1
k

(qi, qj) Aij =
1
kg

∫
Ω

[
wiwj

zm
h

+ ν∇wi∇wj

zm
h

] (88)

We note that A is no longer symmetric except when ν = 0. The uniqueness
of the solution of (86)-(87) is no longer guaranteed except when ν << 1 which
makes it symmetric again. When ν = 0, we can also use the following approx-
imation

(∇Dm+1
h

zm
h

,∇wh) ∼=
∫

Ω

1
zm

h

∇Dm+1
h ∇wh −

∫
Ω

Dm
h

(zm
h )2

∇zm
h ∇wh (89)

Another method can be devised by working with z∗ = z2 instead of z and by
replacing (zm+1

h −zm
h , qh) in (86) by (z∗m+1

h −z∗m
h , qh/(2zm

h )). The convergence
of this algorithm is also an open problem.

4.4. Comparison of the two schemes

The main difference between the height-velocity and height-flux formula-
tions is in the treatment of the convection term in the continuity equation and
in the boundary conditions. We expect the first formulation to be more stable
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for flows with high velocity. The other factors which should be considered in
selecting a method are :

- the boundary conditions,
- the choice of variable to be conserved
- the presence of shocks (torrential regime, ν = 0) ; (86) is in conservative

form whereas (75) is not.

5. CONCLUSION

In this chapter we have briefly surveyed some recent developments in the
field of compressible fluid dynamics and the shallow water equations. We have
omitted reacting flows (fluid mechanics + chemistry), the Rayleigh Benard
problem and flows with free surfaces because a whole book would have been
necessary in place of just one short chapter; these subjects are also evolving
quite rapidly so it is difficult to write on them without becoming rapidly ob-
solete; even for compressible flows interactions between the viscous terms and
the hyperbolic terms is not well understood at the time of writing.

The architectures of computers are also changing fast; dedicated hardware
for fluid mechanic problems is already appearing on the market and this are
likely to influence deeply the numerical algorithms.

Finally compressible turbulence is, with hypersonic combustion, one of the
challenge for the 90’s.
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par des méthodes d’éléments finis. Thèse de doctorat d’état, Univ. Paris
6 1975.

[149] P. Lesaint, P.A. Raviart: On a finite element method for solving the neu-
tron transport equation. In Mathematical aspect of finite elements in PDE
. C. de Boor ed. Academic Press, 89-123, 1974.

[150] M. Lesieur: Turbulence in fluids . Martinus Nijhoff publishers, 1987.
[151] J. Lighthill: Waves in fluids Cambridge University Press,1978.
[152] LINPACK, User’s guide . J.J. Dongara C.B. Moler, J.R. Bunch, G.W.

Steward. SIAM Monograph, 1979.
[153] J.L. Lions: Quelques Methodes de Resolution des Problèmes aux limites
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Séminaire au Collège de France. Pitman 1989.

[158] R. Lohner: 3D grid generation by the advancing front method. In Laminar
and turbulent flows . C. Taylor, W.G. Habashi, H. Hafez eds. Pinneridge
press, 1987.

[159] R. Lohner, K. Morgan, J. Peraire, O.C. Zienkiewicz: Finite element meth-
ods for high speed flows. AIAA paper . 85 1531.

[160] R. Lohner, K. Morgan, J. Peraire, M. Vahdati: Finite element flux-
corrected transport (FEM-FCT) for the Euler and Navier-Stokes equa-
tions. in Finite Elements in Fluids 7 . R. Gallager et al ed. Wiley 1988.
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