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Abstract

Parallel computers are increasingly used in scientific computing. They enable one
to perform large scale computations. New algorithms which are well suited to such
architectures have to be designed. Domain decomposition methods are a very natural
way to exploit the possibilities of multiprocessor computers, but such algorithms are very
useful when used on monoprocessor computers as well.

The idea is to decompose the computational domain into smaller subdomains. The
equations are solved on each subdomain. In order to enforce the matching of the local
solutions, interface conditions have to be written on the boundary between subdomains.
These conditions are imposed iteratively. The convergence rate is very sensitive to these
interface conditions. Theoretical and numerical results are given.

1 Introduction

1.1 Why domain decomposition methods?

Domain decomposition is a tool introduced artificially to ease large scale computations or
that is natural in some situations. These methods are well adapted to parallel computers and
are very popular in parallel computing. They are also very efficient when used on sequential
computers. This is due to the nonlinear cost of a simulation. Since the 50’s, and long before
the advent of parallel computers, these methods have been (and are still) used. They enable
one to perform robust large scale computations even on a monoprocessor computer. In some
sense, for domain decomposition methods, parallel computing is a secondary issue. Also,
in some situations, the domain decomposition is natural from the physics of the problem:
different physics in different subdomains, moving domains, strongly heterogeneous media.

Three dimensional numerical simulations are very demanding in CPU or/and in memory.
When explicit schemes of the general following form

U(t + ∆t, .) = U(t, .) + ∆tF (U(t, .))
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or Monte Carlo methods are used, the limitation comes mostly from the CPU time. The
parallelization is clear. The correct balancing of tasks is then a crucial issue in order to
use parallel computers efficiently. The use of a parallel computer is very profitable. But
very often, numerical simulations involve the solving very large linear systems arising from
Poisson or Helmholtz equations or from the Jacobian matrix in a Newton’s method. These
computations are very demanding both in CPU time and in memory. Generally speaking,
direct solvers are too costly and iterative solvers are not robust enough especially for problems
with strongly heterogeneous media and ill conditioned matrices, see e.g. [Nep91]. There is a
need for hybrid iterative/direct solvers: these are domain decomposition methods. Roughly
speaking, the computational domain is decomposed into smaller subdomains. The equations
in the subdomains are solved by a direct method and the matching of the solutions is imposed
iteratively. Since the cost of a simulation is nonlinear w.r.t. the number of unknowns, breaking
the initial problem into a set of smaller subproblems is profitable. Also, in some situations,
the domain decomposition is natural from the physics of the problem: different physics in
different subdomains (e.g. fluid/structure interaction), moving domains (e.g. rotor and stator
in an electric motor), strongly heterogeneous media: sliding blocks along faults in subsurface
modeling, see Fig. 1).

Figure 1: Subsurface modeling of a geological basin — extract from
http://www.ggl.ulaval.ca

In a slightly different context, the mesh generation is a complex and time-consuming task
both for the user and the computer. In order to speed up this task, an increasingly popular
possibility is to first generate a decomposition of the domain into large subdomains and
then to mesh each subdomain concurrently. The mesh generation becomes a parallel task.
The resulting mesh is of course non-conforming on the interfaces between the subdomains.
Therefore new tools for handling non-conforming mesh are needed. In this case, “Domain
connection” would be a more appropriate term, see Fig. 2 and references [BMP93, BD98,
CDS99, AMW99, AK95, AKP95, Woh99].

1.2 The original Schwarz method (1870)

The first domain decomposition method was developed at the end of the 19th century by the
mathematician H. A. Schwarz. His goal was to study the Laplace operator. At that time,
the main tool for this purpose was Fourier analysis and more generally the use of special
functions. Geometries of the domain were essentially restricted to simple configurations:
rectangles and disks, see Fig. 3. His idea was to study the case of a domain that is the union
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Figure 3: Overlapping domain decomposition

of simple domains. For example, let Ω = Ω1 ∪ Ω2 with Ω1 ∩ Ω2 6= ∅. We want to solve

−∆(u) = f in Ω
u = 0 on ∂Ω.

(1.1)

Schwarz proposed the following algorithm (Multiplicative Schwarz Method, MSM):
Let (un

1 , un
2 ) be an approximation to (u|Ω1

, u|Ω2
) at step n of the algorithm, (un+1

1 , un+1
2 )

is defined by

−∆(un+1
1 ) = f in Ω1

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω

un+1
1 = un

2 on ∂Ω1 ∩ Ω2.

−∆(un+1
2 ) = f in Ω2

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω

un+1
2 = un+1

1 on ∂Ω2 ∩ Ω1.

Problem in domain Ω1 has to be solved before problem in domain Ω2. This algorithm is
sequential.

A slight modification of the algorithm is the additive Schwarz method (ASM)

−∆(un+1
1 ) = f in Ω1

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω

un+1
1 = un

2 on ∂Ω1 ∩ Ω2.

−∆(un+1
2 ) = f in Ω2

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω

un+1
2 = un

1 on ∂Ω2 ∩ Ω1.

(1.2)

Problems in domains Ω1 and Ω2 may be solved concurrently. The ASM is a parallel algorithm
and is adapted to parallel computers. Schwarz proved the linear convergence of (un

1 , un
2 ) to

(u|Ω1
, u|Ω2

) as n tends to infinity.
The benefit of these algorithms is the saving in memory requirements. Indeed, if the

problems are solved by direct methods, the cost of the storage is non-linear with respect to
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the number of unknowns. By dividing the original problem into smaller pieces the amount of
storage can be significantly reduced. As far as CPU is concerned, the original algorithms ASM
and MSM are very slow. Another weakness is the need of overlapping subdomains. Indeed,
only the continuity of the solution is imposed and nothing is imposed on the matching of the
fluxes. When there is no overlap convergence is thus impossible.

The slowness of the method and the need for overlapping subdomains are linked. Indeed,
it can be proved that the convergence rate of the Schwarz method is a continuous function
of the size of the overlap denoted δ. For small overlaps the convergence rate is close to one.
Actually it can be proved that for small overlaps the convergence rate varies as 1− Ctδ.

1.3 Towards faster methods: two families of methods

In order to remedy the drawbacks of the original Schwarz method, two families of methods
have been developed. They both work in the non-overlapping case and consist of introducing
the normal derivative of the solution, but in two very different ways:

• write a substructured formulation of the domain decomposition problem where the
matching of the solution and of its normal derivative along the interface are imposed
explicitly.

• Modify the original Schwarz method by replacing the Dirichlet interface conditions on
∂Ωi\∂Ω, i = 1, 2, by Robin interface conditions (∂ni +α, where n is the outward normal
to subdomain Ωi), see [Lio90].

The first approach is explained in section 2 and the second in section 3.
More generally, a complete overview of various domain decomposition methods may be

found in a few books [CM94, SBG96, QV99] or in the proceedings of various conferences
on domain decomposition methods, see e.g. [CGPW89, PEBK97, LBCW98] and references
therein.

2 Substructured formulation

We explain the basic ideas for a two domain decomposition first at the continuous level and
then at the matrix level. Then we give some references on the general case.

2.1 The symmetric positive definite continuous case

2.1.1 Substructured formulation

We still consider equation (1.1). The domain Ω is decomposed into two non-overlapping
subdomains Ω into Ω1 and Ω2. The interface ∂Ω1 ∩ ∂Ω2 is denoted by Γ. A first formulation
of (1.1) as a domain decomposition method consists of looking for ui = u|Ωi , i = 1, 2, which
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must satisfy

−∆(ui) = f in Ωi, i = 1, 2
ui = 0 on ∂Ωi \ Γ, i = 1, 2
u1 = u2 on Γ,(

∂u1

∂n1
+

∂u2

∂n2

)
= 0 on Γ.

The substructured formulation consists in formulating the problem in terms of the common
value of u1 and u2 on Γ, denoted by uΓ. This is obtained by eliminating the internal unknowns
via the solving of local subproblems. We introduce a Dirichlet BVP in each subdomain with
u|Γ as a Dirichlet data:

−∆(ui) = f in Ωi,

ui = u|Γ on Γ, ui = 0 on ∂Ωi \ Γ.

The jump of the normal derivative across the interface is a function of f and u|Γ,

S(f, u|Γ) =
(

∂u1

∂n1
+

∂u2

∂n2

)∣∣∣∣
Γ

. (2.1)

The substructured interface problem reads: Find u|Γ such that

S(0, u|Γ) = −S(f, 0). (2.2)

The corresponding discretized operator Sh (the Schur complement of the matrix) is a matrix
whose coefficients can be computed by solving a Dirichlet boundary value problem for each
interface unknown (or d.o.f.). This task is long. Moreover, this matrix is full and the solving
of the substructured problem by a direct method would be very costly. For these reasons, the
discretized problem corresponding to (2.2) is solved by a Krylov type method such as CG,
GMRES, BICGSTAB, QMR,. . . , as only matrix-vector products are needed. In our case, it
corresponds to solving a Dirichlet boundary value problem in each subdomain. Therefore,
there is no need to build explicitly the substructured matrix Sh. Moreover, this is a parallel
task.

The convergence is enhanced when compared to a Krylov type method applied to the
original problem. Indeed, the condition number of the discretized operator κ(Sh) is O(1/h)
whereas the condition number of a finite difference, finite volume or finite element discretiza-
tion of the Laplace operator is O(1/h2). The size of the substructured problem is much
smaller than the size of the overall problem. Moreover, as we shall see next, there are very
good preconditioners Th available for Sh which are almost optimal (κ(Th Sh) ' O(1)). These
remarks are even more relevant for problems with large jumps in the coefficients. In this
case, there are no robust preconditioners for the original problem, whereas they exist for the
substructured formulation, see [DSW96, LT94].

2.1.2 The basis for the Neumann-Neumann preconditioner

A very popular preconditioner for the operator S(0, .) has been proposed in [BGLTV]. The
basis for the preconditioner comes from the special case where the domain Ω is decomposed
along a symmetry axis, e.g. a rectangle decomposed into two half rectangles or the whole
plane decomposed into two half planes. In that case we have
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• the operator S(0, .) is naturally split into the sum of two operators S1 and S2 which
are defined for each subdomain and such that S1 = S2.

• The inverses S−1
1 and S−1

2 are obtained via the solving of boundary value problems in
each subdomain.

Then

T :=
1
4
(S−1

1 + S−1
2 ) (2.3)

is an exact preconditioner: T S(0, .) = Id.
For simplicity, we explicitly give these operators for the following model problem:
Find u : R2 → R such that

(η −∆)(u) = f,

where η is positive and f is a given function. The domain is decomposed into two non-
overlapping half-planes Ω1 = (−∞, 0) × R and Ω2 = (0,∞) × R, and the interface is Γ =
{0}×R. We define the operators Si, i = 1, 2, which maps a function living on Γ to a function
living on Γ via the solving of a Dirichlet boundary value problem

Si : vΓ →
∂v

∂ni

∣∣∣∣
Γ

,

where ni is the outward normal to the domain Ωi, and vi is the solution to the following
BVP: {

(η −∆)(vi) = 0 in Ωi,

vi = vΓ on Γ.

The operator Si is the Steklov-Poincaré a.k.a. the Dirichlet to Neumann (DtN) operator of
domain Ωi. By symmetry of the operator and of the decomposition, we have S1 = S2. It is
clear that S(0, .) = S1 + S2.

The inverse of Si corresponds to the solving of a Neumann problem

S−1
i : gΓ → vi|Γ

with vi the solution to the following BVP(η −∆)(vi) = 0 in Ωi,

∂vi

∂ni
= gΓ on Γ.

The name “Neumann-Neumann” preconditioner (2.3) comes from the fact that applying it
amounts to solving a Neumann BVP in each subdomain.

Only the symmetry of the operator and of the domain decomposition and the well-
posedness of Dirichlet and Neumann BVP’s are used. Therefore, this preconditioner can
naturally be extended to elasticity or the Stokes system. It is also easily defined at the
discrete level which eases its implementation.
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2.1.3 The FETI or dual method

It is possible to consider the Neumann-Neumann preconditioner the other way round. The
unknown is the flux at the interface between the subdomains. Let g be a function that lives
on the interface Γ, and consider the Neumann BVP’s (i = 1, 2):−∆vi = f in Ωi,

∂vi

∂ni
= (−1)igΓ on Γ.

The jump of the solutions across the interface is a function of f and g:

T (f, gΓ) := v2 − v1.

The substructured formulation is
Find gΓ such that

T (0, gΓ) := −T (f, 0).

A good preconditioner is
1
4
S(0, .)

which involves the solving in parallel of a Dirichlet problem in each subdomain. This approach
has been developed in [FR91, CMW95, KW01].

2.2 At the matrix level

When the problem (1.1) is discretized by a finite element method for instance, it yields a linear
system of the form AU = F , where F is a given right-hand side and U is the set of unknowns.
Corresponding to the domain decomposition, the set of unknowns U is decomposed into
interior nodes of the subdomains U1 and U2, and to unknowns, UΓ, associated to the interface
Γ. This leads to a block decomposition of the linear systemA11 A1Γ 0

AΓ1 AΓΓ AΓ2

0 A2Γ A22

U1

UΓ

U2

 =

F1

FΓ

F2

 . (2.4)

The substructuring of the linear system corresponds to the Gauss elimination of the unknowns
U1 using the first line of (2.4), and of U2 using the last line. These eliminations correspond
to solving discretized Dirichlet boundary value problems. The resulting linear system reads:

Find UΓ such that

Sh(0, UΓ) := (AΓΓ −AΓ1A
−1
11 A1Γ −AΓ2A

−1
22 A2Γ)(UΓ) = FΓ −AΓ1A

−1
11 F1 −AΓ2A

−1
22 F2

The matrix Sh(0, .) (the Schur complement of the original matrix) is full, due to A−1
ii in its

expression.
We now describe the Neumann-Neumann preconditioner at the matrix level. In order to

split the matrix Sh(0, .) into two matrices, we use the natural decomposition of AΓΓ into its
contribution coming from each subdomain AΓΓ = A1

ΓΓ +A2
ΓΓ. More precisely, for the Laplace

operator, let k, l be the indices of two degrees of freedom on the interface associated with
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two basis functions φk and φl. The corresponding entry akl
ΓΓ can be decomposed into a sum

akl
ΓΓ = a1,kl

ΓΓ + a2,kl
ΓΓ , where

ai,kl
ΓΓ =

∫
Ωi

∇φk∇φl, i = 1, 2.

Then we define the discrete counterparts of Si (i = 1, 2):

Si,h : UΓ → Ai
ΓΓUΓ + Ai

ΓiUi,

where A11U1 = −A1ΓUΓ (Dirichlet problem). Its inverse reads

S−1
i,h : G → VΓ,

where (
Aii AiΓ

AiΓ Ai
ΓΓ

)(
Vi

VΓ

)
=
(

0
G

)
(Neumann problem).

We have Si,h(0, .) = S1,h + S2,h and the Neumann-Neumann preconditioner is

Th =
1
4
(S−1

1,h + S−1
2,h).

For a symmetric decomposition of the domain, it is exact.
For a definition of the preconditioner for an arbitrary decomposition, see e.g. [LT94].

2.3 The non-symmetric continuous case: The Robin-Robin preconditioner

We shall see that the substructured formulation works as in the SPD case but that the
Neumann-Neumann preconditioner has to be modified.

We consider the convection-diffusion equation arising from the time discretization by a
backward Euler scheme of the time-dependent equation

L :=
1

∆t
+ a.∇− ν∆,

where ∆t is the time step, a is a given vector field and ν is the viscosity. The domain on which
the equations are posed is the plane R2 decomposed into two half-planes as in section 2.1.2.
By replacing −∆ by L in the definition of S (2.1), the substructured formulation is still given
by (2.2). The Neumann-Neumann preconditioner is still given by

T :=
1
4
(S−1

1 + S−1
2 ), (2.5)

where

Si : vΓ →
∂vi

∂ni

∣∣∣∣
Γ

(2.6)

and {
L(vi) = 0 in Ωi,

vi = vΓ on Γ.

It is clear that S(0, .) = S1 + S2. But, due to the non symmetry of the operator L, the
operators S1 and S2 are different in general. Thus, the Neumann-Neumann preconditioner T
is no longer exact, T S(0, .) 6= Id. In order to see exactly how S1 and S2 differ, we perform a
Fourier analysis. It will lead us to a new preconditioner adapted to the non-symmetric case:
the Robin-Robin preconditioner.
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2.3.1 A Fourier analysis

By using Fourier transform, we give an explicit form for the operators Si, i = 1, 2, see above
(2.6). We denote the partial Fourier transform of f(x, y) : R2 → R in the y variable by

f̂(x, k) = Fy(f)(x, k) :=
∫ ∞

−∞
e−Ikyf(x, y) dy

(I2 = −1), and the inverse Fourier transform of f̂(x, k) by

f(x, y) = F−1
y (f̂)(x, y) :=

1
2π

∫ ∞

−∞
eIkyf̂(x, k) dk.

Our analysis will also involve the Fourier transform of a convolution operator with kernel
h(y),

Λ(u)(y) :=
∫ ∞

−∞
h(y − z)u(z) dz,

whose Fourier transform is given by

Fy(Λ(u))(k) = ĥ(k)û(k)

or equivalently with Λ̂(k) := ĥ(k),

Λ(u) = F−1
y (Λ̂(k)û(k)).

The function Λ̂(k) is called the symbol of the operator Λ. For example, the symbol of the
operator −∂yy is the polynomial k2. More generally, the symbol of any constant coefficient
differential operator is a polynomial in the Fourier variable k and conversely.

The vector field a = (a1, a2)T and the coefficient ν are assumed to be constants and
a1 > 0. We take the partial Fourier transform of (2.6) in the y direction(

1
∆t

+ a1∂x + a2Ik − ν
∂2

∂x2
+ νk2

)
(v̂i(x, k) = 0.

For a fixed k, this is an ordinary differential equation in x whose solution is sought in the
form

∑
α cαexp(λαx), so that λα is a root of the second order polynomial

1
∆t

+ a1λα + a2Ik − νλ2
α + νk2.

We have two roots with opposite signs:

λ± =
a1 ±

√
a2

1 + 4ν( 1
∆t + Ika2 + νk2)

2ν
. (2.7)

The general form of v̂i(x, k) is thus

v̂i(x, k) = c+
i (k)eλ+x + c−i (k)eλ−x.
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The coefficients c±i are computed from the boundary conditions. We consider first v̂1. The
solution must be bounded as x → −∞ so that c−i (k) ≡ 0. From the Dirichlet boundary
condition at x = 0 we get

v̂1(x, k) = v̂Γ(k)eλ+x

and similarly,
v̂2(x, k) = v̂Γ(k)eλ−x.

The symbols of S1 and S2 are thus

Ŝ1(k) = λ+(k) (2.8)

and (due to n2 = −∂x)
Ŝ2(k) = −λ−(k). (2.9)

The operators S1 and S2 differ: S1(k)− S2(k) = a1/ν.

2.3.2 Definition of the Robin-Robin preconditioner

Thanks to these formulas it is possible to split the operator S(0, .) into two equal contributions
of each subdomain:

S(0, .) = S̃1 + S̃2,

where
ˆ̃S1 = ˆ̃S2 = Ŝ1 −

a1

2ν
= Ŝ2 +

a1

2ν
.

Noticing that a1 = a.n1 = −a.n2, it is possible to give an intrinsic definition of the operators
S̃i, i = 1, 2:

S̃i : vΓ →
∂vi

∂ni

∣∣∣∣
Γ

− a · ni

2ν
vi, (2.10)

where {
L(vi) = 0 in Ωi,

vi = vΓ on Γ.

The inverse of S̃i, i = 1, 2, amounts to solving a Robin boundary value problem:

S̃−1
i : gΓ → wi|Γ, (2.11)

where 
L(wi) = 0 in Ωi,(

∂

∂ni

∣∣∣∣
Γ

− a.ni/2ν

)
(wi) = gΓ on Γ.

The Robin-Robin preconditioner defined by

T̃ :=
1
4
(S̃−1

1 + S̃−1
2 ) (2.12)

is exact, T̃ S(0, .) = Id.
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2.3.3 Numerical results

As examples we show 2D and 3D numerical results.
Consider a two dimensional flow with a velocity with a boundary layer near a wall

a = 3− (300 ∗ (x2 − 0.1)2)e1 if x2 < 0.1
a = 3e1 if x2 ≥ 0.1.

(2.13)

The computational domain is the unit square. To capture the boundary layer, the mesh
is refined in the x2-direction, near the wall x2 = 0 with a geometric progression of ratio
0.9. The advection-diffusion is discretized on a Cartesian grid by a Q1-streamline-diffusion
method. The system for the nodal values at the interface is solved by a preconditioned
GMRES algorithm, and the stopping criterion is to reduce the initial residual by a factor
10−10. The preconditioners are either of the type Robin-Robin (R-R), Neumann-Neumann
(N-N) or the identity (–).

Partition 4× 1 8× 1 12× 1 24× 1 36× 1

Grid 20× 40 20× 40 20× 40 20× 40 20× 40

∆t = 1 R-R 11 18 25 39 51

ν = 0.001 – 51 75 91 > 100 > 100

N-N 49 > 100 > 100 > 100 > 100

Table 1: Iteration counts

In the three dimensional case, we solved the convection diffusion problem, with a =
(y/2 − 0.5,−x/2 + 0.5, 0), ∆t = 10 and ν = 1 on the unstructured decomposition of Fig. 4.
Here the unit cube contains 24576 tetrahedric second order finite elements and is split into
45 subdomains by an automatic mesh partitioner. This is why the boundaries between
subdomains are less regular than for the other computations. For this decomposition the
algorithm converges in 48 iterations with the R-R preconditioner.

2.4 Generalities

Except for numerical results, we have considered so far very simple geometries. Of course,
the ideas presented above are used for arbitrary decompositions: see e.g. [LT94] for the SPD
case and [ATNV00] for the convection-diffusion equation.

For arbitrary decompositions, the Neumann-Neumann or the Robin-Robin precondition-
ers are no longer exact. A general theory has been developed for SPD scalar problems. In
the case of the scalar Laplace operator, the main result is that the condition number of the
preconditioned system is O(1/H2(1 + log(H/h)2)), where h is a typical mesh size and H is
a typical diameter of a subdomain. The term log(H/h)2 comes from multiple intersection
points. The more problematic term 1/H2 comes from the lack of global exchange mechanism
in the preconditioner in order to capture the “average” value of the solution. By adding
a coarse grid preconditioner, see [LT94, CMW95], it is possible to improve the condition
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Figure 4: Three dimensional triangulation and automatic decomposition into 45 subdomains

number of the preconditioned system. Roughly speaking, the coarse grid preconditioner con-
sists in decomposing the solution in each subdomain into an average value and its variation.
Solving a global problem for these average values improves the convergence rate so that it is
O((1 + log(H/h)2)). The iteration count is then almost mesh/decomposition independent.

3 Modified Schwarz method

The Additive Schwarz Method, (1.2), presents the drawback of needing overlapping subdo-
mains in order to converge. In this chapter, we consider several improvements:

• replacement of the Dirichlet interface conditions by mixed interface conditions which
yield convergence for non overlapping domain decompositions, see section 3.1;

• optimization of the interface conditions for faster convergence, see section 3.3;

• replacement of the fixed point iterative strategy of (1.2) by Krylov type methods, see
section 3.4.1

3.1 A general convergence result

A major improvement of the ASM method comes from the use of other interface conditions.
It has first been proposed by P. L. Lions to replace the Dirichlet interface conditions by Robin
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interface conditions, see [Lio90]. Let α be a positive number; the modified algorithm reads:

−∆(un+1
1 ) = f in Ω1,

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω,(

∂

∂n1
+ α

)
(un+1

1 ) =
(
− ∂

∂n2
+ α

)
(un

2 ) on ∂Ω1 ∩ Ω2

(n1 and n2 are the outward normals on the boundary of the subdomains),

−∆(un+1
2 ) = f in Ω2,

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω(

∂

∂n2
+ α

)
(un+1

2 ) =
(
− ∂

∂n1
+ α

)
(un

1 ) on ∂Ω2 ∩ Ω1.

The convergence proof given by P. L. Lions in the elliptic case was extended by B. Desprès
[Des93] to the Helmholtz equation. A general presentation is given in [CGJ00]. We treat
here the elliptic case with second order tangential derivatives in the interface conditions.

Let Ω be an open set. We consider the following problem: Find u such that

η(x)u− div(κ(x)∇u) = f in Ω,

u = 0 on ∂Ω,

where the functions x 7→ η(x), κ(x) are bounded from below by a positive constant.
The domain is decomposed into N nonoverlapping subdomains (Ωi)1≤i≤N , Ω̄ =

⋃N
i=1 Ω̄i

and Ω̄i ∩ Ω̄j = ∅ for i 6= j. Let Γij denote the interface Γij = ∂Ωi ∩ ∂Ωj , i 6= j. For two
disjoints subdomains, Γij = ∅.

For the sake of simplicity in writing the interface conditions, we consider the two di-
mensional case (Ω ⊂ R2) although the proof is valid in arbitrary dimension. The interface
conditions include second order tangential derivatives and have the form

κ(x)
∂

∂ni
+ αij(x)− ∂

∂τi

(
βij(x)

∂

∂τi

)
,

where αij and βij are functions from Γij into R.
The algorithm reads:

η(x)un+1
i − div(κ(x)∇un+1

i ) = f in Ωi,

un+1
i = 0 on ∂Ω ∩ ∂Ωi

κ(x)
∂un+1

i

∂ni
+ αij(x)un+1

i − ∂

∂τi

(
βij(x)

∂un+1
i

∂τi

)
= −κ(x)

∂un
j

∂nj
+ αij(x)un

j −
∂

∂τj

(
βij(x)

∂un
j

∂τj

)
on Γij .

(3.1)

We make the following assumptions on the coefficients of the interface conditions:

αij(x) = αji(x) ≥ α0 > 0,

β(x)ij = β(x)ji ≥ 0 and βij(x) = 0 on ∂Γij
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3.1 Theorem With the above assumptions, algorithm (3.1) converges in H1, i.e.

lim
n→∞

‖un
i − u|Ωi

‖H1(Ωi), for i = 1, . . . , N.

Proof Let us denote the operator

Λij = αij(x)− ∂

∂τi

(
βij(x)

∂

∂τi

)
, x ∈ Γij .

¿From the assumptions of the theorem, we have the following properties of Λij :

• Λij = Λji;

• Λij is SPD (symmetric positive definite);

• Λij is invertible.

Therefore, Λij has an invertible SPD square root, denoted by Λ1/2
ij , whose inverse is denoted

by Λ−1/2
ij . These operators are SPD as well.

The interface condition is rewritten as

Λ−1/2
ij

(
κ(x)

∂ui

∂ni

)
+ Λ1/2

ij (ui) = −Λ−1/2
ij

(
κ(x)

∂uj

∂nj

)
+ Λ1/2

ij (uj) on Γij .

The proof follows the arguments given in [CGJ00] and is based on an energy estimate.

3.2 Lemma (Energy estimate) Let u denote a function that satisfies

η(x)u− div(κ(x)∇u) = 0 in Ωi

u = 0 on ∂Ωi ∩ ∂Ω,

Then ∫
Ωi

η(x)|ui|2 + κ(x)|∇ui|2 +
1
4

∑
j 6=i

∫
∂Γij

(
Λ−1/2

ij

[
κ(x)

∂ui

∂ni
− Λij(ui)

])2

=
1
4

∑
j 6=i

∫
∂Γij

(
Λ−1/2

ij

[
κ(x)

∂ui

∂ni
+ Λij(ui)

])2

.

Proof ¿From
η(x)ui − div(κ(x)∇ui) = 0 in Ωi,

we get ∫
Ωi

η(x)|ui|2 + κ(x)|∇ui|2 =
∫

∂Ωi

κ(x)
∂ui

∂ni
ui

=
∑
j 6=i

∫
∂Γij

κ(x)
∂ui

∂ni
ui

=
∑
j 6=i

∫
∂Γij

κ(x)
∂ui

∂ni
Λ−1/2

ij Λ1/2
ij (ui)

=
∑
j 6=i

∫
∂Γij

Λ−1/2
ij

(
κ(x)

∂ui

∂ni

)
Λ1/2

ij (ui).
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¿From ab = 1/4((a + b)2 − (a− b)2) we infer∫
Ωi

η(x)|ui|2 + κ(x)|∇ui|2 +
∑
j 6=i

1
4

∫
∂Γij

(
Λ−1/2

ij

(
κ(x)

∂ui

∂ni

)
− Λ1/2

ij (ui)
)2

=
∑
j 6=i

1
4

∫
∂Γij

(
Λ−1/2

ij

(
κ(x)

∂ui

∂ni

)
+ Λ1/2

ij (ui)
)2

2

Proof of Theorem 3.1 We prove that en
i = un

i − uΩi converges to zero. By the linearity
of the equations and of the algorithm, it is clear that the error en

i satisfies

η(x)en+1
i − div(κ(x)∇en+1

i ) = 0 in Ωi,

en+1
i = 0 on ∂Ω ∩ ∂Ωi

Λ−1/2
ij

(
κ(x)

∂en+1
i

∂ni

)
+ Λ1/2

ij (en+1
i ) = −Λ−1/2

ij

(
κ(x)

∂en
j

∂nj

)
+ Λ1/2

ij (en
j ) on Γij .

We apply the energy estimate to en+1
i and taking into account the interface condition (3.1)

and noticing that by assumption we have Λij = Λji, we get∫
Ωi

η(x)|en+1
i |2 + κ(x)|∇un+1

i |2 =
∑
j 6=i

1
4

∫
∂Γij

(
Λ−1/2

ji

(
−κ(x)

∂en
j

∂nj

)
+ Λ1/2

ji (en
j )
)2

−
(

Λ−1/2
ij

(
κ(x)

∂en+1
i

∂ni

)
− Λ1/2

ij (en+1
i )

)2

.

We introduce some notations:

En+1
i :=

∫
Ωi

η(x)|un+1
i |2 + κ(x)|∇un+1

i |2,

and

Cn+1
ij :=

1
4

∫
∂Γij

(
Λ−1/2

ij

(
κ(x)

∂un+1
i

∂ni

)
− Λ1/2

ij (un+1
i )

)2

.

The above estimate then reads:

En+1
i +

∑
j 6=i

Cn+1
ij =

∑
j 6=i

Cn
ji.

After summation over the subdomains, we have

N∑
i=1

En+1
i +

∑
i,j

(j 6=i)

Cn+1
ij =

∑
i,j

(j 6=i)

Cn
ji =

∑
i,j

(j 6=i)

Cn
ij .

We introduce the further notations: En+1 =
∑N

i=1 E
n+1
i and Cn =

∑
i,j(j 6=i) Cn

ji.
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So far we have
En+1 + Cn+1 = Cn.

Hence, by summation over n, we get

∞∑
n=0

En+1 ≤ C0.

The strong convergence of the algorithm in H1 is proved. 2

The same kind of proof holds for the Maxwell system [DJR92] and the convection-diffusion
equation [NR95].

3.2 Optimal interface conditions

In the preceding section, we have proved a general convergence result for interface conditions
with second order tangential derivatives. Actually these conditions are not the most general.
Rather than give the general conditions in an a priori form, we shall derive them in this section
so as to have the fastest convergence. We establish the existence of interface conditions which
are optimal in terms of iteration counts. The corresponding interface conditions are pseudo-
differential and are not practical. Nevertheless, this result is a guide for the choice of partial
differential interface conditions. Moreover, this result establishes a link between the optimal
interface conditions and artificial boundary conditions. This is also a help when dealing with
the design of interface conditions since it gives the possibility to use the numerous papers
and books published on the subject of artificial boundary conditions, see e.g. [EM77, Giv92].

We consider a general linear second order elliptic partial differential operator L and the
problem:

Find u such that L(u) = f in a domain Ω and u = 0 on ∂Ω.
The domain Ω is decomposed into two subdomains Ω1 and Ω2. We suppose that the

problem is regular so that ui := u|Ωi , i = 1, 2, is continuous and has continuous normal
derivatives across the interface Γi = ∂Ωi ∩ Ω̄j , i 6= j.

Ω1

Ω2

Ω1
cΩ2

c

Γ1

Γ2

A modified Schwarz type method is considered.

L(un+1
1 ) = f in Ω1

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω

µ1∇un+1
1 .n1 + B1(un+1

1 )
= −µ1∇un

2 .n2 + B1(un
2 ) on Γ1

L(un+1
2 ) = f in Ω2

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω

µ2∇un+1
2 .n2 + B2(un+1

2 )
= −µ2∇un

1 .n1 + B2(un
1 ) on Γ2

(3.2)

where µ1 and µ2 are real-valued functions and B1 and B2 are operators acting along the
interfaces Γ1 and Γ2. For instance, µ1 = µ2 = 0 and B1 = B2 = Id correspond to the ASM
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algorithm (1.2); µ1 = µ2 = 1 and Bi = α ∈ R, i = 1, 2, has been proposed in [Lio90] by
P. L. Lions.

The question is:

Are there other possibilities in order to have convergence in a minimal number of
steps?

In order to answer this question, we note that by linearity, the error e satisfies (µ1 = µ2 = 1)

L(en+1
1 ) = 0 in Ω1

en+1
1 = 0 on ∂Ω1 ∩ ∂Ω

∇en+1
1 .n1 + B1(en+1

1 )
= −∇en

2 .n2 + B1(en
2 ) on Γ1

L(en+1
2 ) = 0 in Ω2

en+1
2 = 0 on ∂Ω2 ∩ ∂Ω

∇en+1
2 .n2 + B2(en+1

2 )
= −∇en

1 .n1 + B2(en
1 ) on Γ2

The initial guess e0
i is arbitrary so that it is impossible to have convergence at step 1 of the

algorithm. Convergence needs at least two iterations.
Having e2

1 ≡ 0 requires
−∇e1

2.n2 + B1(e1
2) ≡ 0.

The only meaningful information on e1
2 is that

L(e1
2) = 0 in Ω2.

In order to use this information, we introduce the DtN (Dirichlet to Neumann) map (a.k.a.
Steklov-Poincaré): Let

u0 : Γ1 → R

DtN2(u0) := ∇v.n2|∂Ω1∩Ω̄2
,

(3.3)

where n2 is the outward normal to Ω2 \ Ω̄1, and v satisfies the following boundary value
problem:

L(v) = 0 in Ω2 \ Ω̄1

v = 0 on ∂Ω2 ∩ ∂Ω
v = u0 on ∂Ω1 ∩ Ω̄2.

We take
B1 := DtN2.

This choice is optimal since we have

−∇e1
2.n2 + B1(e1

2) ≡ 0.

Indeed, in Ω2 \ Ω̄1 ⊂ Ω2, e1
2 satisfies

L(e1
2) = 0.

Hence,

∇e1
2.n2 = DtN2(e1

2)

∇e1
2.n2 = B1(e1

2) (B1 = DtN2)

We have formally proved
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3.3 Result The use of Bi = DtNj (i 6= j) as interface conditions in (3.2) is optimal: we
have (exact) convergence in two iterations.

The two-domain case for an operator with constant coefficients has been first treated in
[HTJ88]. The multidomain case for a variable coefficient operator with both positive results
[NRdS94] and negative conjectures [Nie99] has been considered as well.

3.4 Remark The main feature of this result is to be very general since it does not depend
on the exact form of the operator L and can be extended to systems or to coupled systems
of equations as well with a proper care of the well posedness of the algorithm.

As an application, we take Ω = R2 and Ω1 = ] − ∞, 0 [×R. Using the same Fourier
technique that was presented in section 2.3.1, it is possible to give the explicit form of the
DtN operator for a constant coefficient operator. If L = η − ∆, the DtN map is a pseudo-
differential operator whose symbol is

Bi,opt(k) =
√

η + k2,

i.e., Bi,opt(u)(0, y) =
∫
R Bi,opt(k)û(0, k)eIky dk.

If L is a convection-diffusion operator L := η + a∇− ν∆, the symbol of the DtN map is

Bi,opt(k) =
−a.ni +

√
(a.ni)2 + 4ν(η + a.τikν + ν2k2)

2ν
.

These symbols are not polynomials in the Fourier variable k so that the operators and hence
the optimal interface conditions are not a partial differential operator. They correspond
to exact absorbing conditions, see the contribution of L. Halpern in this volume. These
conditions are used on the artificial boundary resulting from the truncation of a computational
domain. On this boundary, boundary conditions have to be imposed. The solution on the
truncated domain depends on the choice of this artificial condition. We say that it is an
exact absorbing boundary condition if the solution computed on the truncated domain is
the restriction of the solution of the original problem. Surprisingly enough, the notions of
exact absorbing conditions for domain truncation and that of optimal interface conditions in
domain decomposition methods coincide.

As the above examples show, they are pseudodifferential. Therefore they are difficult to
implement. Moreover, in the general case of a variable coefficient operator and/or a curved
boundary, the exact form of these operators is not known, although they can be approximated
by partial differential operators which are easier to implement. The approximation of the
DtN has been addressed by many authors since the seminal paper [EM77] by Engquist and
Majda on this question.

3.3 Optimized interface conditions

The results obtained so far are quite general. In section 3.1, we have proved convergence of
the domain decomposition method with interface conditions of the type

∂n + α− ∂τβ∂τ (3.4)
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for a general but non overlapping domain decomposition. In section 3.2, we have exhibited
interface conditions which are optimal in terms of iteration counts but are pseudodifferential
operators difficult to use in practice.

These results are not sufficient for the design of effective boundary conditions which for the
sake of simplicity must have the form (3.4). From section 3.2, we know that the parameters
α and β must somehow be such that (3.4) approximates the optimal interface conditions

∂

∂ni
+ DtN.

At first sight, it seems that the approximations proposed in the field of artificial boundary
conditions are also relevant in the context of domain decomposition methods. Actually this
is not the case, as was proved for the convection-diffusion equation, see [JN00, JNR01].

In order to clarify the situation, we need an estimate of the convergence rate as a function
of the parameters α and β, the size of the overlap and the coefficients of the partial differential
operator. In particular it will provide a means for choosing the interface conditions in an
optimal way. This type of study is limited to a very simple situation: a constant coefficient
operator and a whole space decomposed into two half-spaces. But, let us insist on the fact that
these limitations concern only this theoretical study. The optimized values of the parameters
of the interface conditions can be used with success in complex applications, see section 3.4.
The robustness of the approach comes from the general convergence result of section 3.1 and
from the replacement of the fixed point algorithm on the interface by a Krylov type method as
explained in section 3.4.1. The efficiency comes from the study below which is made possible
by the use of Fourier techniques similar to the ones used in artificial boundary conditions.
The method is general and has also been applied to other types of equations; see [EZ98] for
the Laplace equation, [Che98] for the Maxwell system, and [WFNS98] for porous flow media.

We shall consider here the example of a symmetric positive definite problem

(η −∆)(u) = f in R2,

η = Ct > 0. The domain is decomposed into to half-planes Ω1 = (−∞, δ) × R and Ω2 =
(0,∞) × R. We introduce an optimization procedure which allows the choice of simplified
interface conditions of the form ∂n + α (β = 0) which are easy to implement and lead to a
good convergence of the iterative method. We consider the Schwarz algorithm

(η −∆)(un+1
1 ) = f(x, y), (x, y) ∈ Ω1

un+1
1 is bounded at infinity(

∂

∂n1
+ α

)
(un+1

1 )(δ, y) =
(
− ∂

∂n2
+ α

)
(un

2 )(δ, y), y ∈ R

(3.5)

and
(η −∆)(un+1

2 ) = f(x, y), (x, y) ∈ Ω2

un+1
2 is bounded at infinity(

∂

∂n2
+ α

)
(un+1

2 )(0, y) =
(
− ∂

∂n1
+ α

)
(un

1 )(0, y), y ∈ R

(3.6)

and compute its convergence rate.
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Computation of the convergence rate

We introduce the errors un
i −u|Ωi , i = 1, 2. By linearity, the errors satisfy the above algorithm

with f = 0:
(η −∆)(en+1

1 ) = 0 in Ω1

en+1
1 is bounded at infinity(

∂

∂n1
+ α

)
(en+1

1 )(δ, y) =
(
− ∂

∂n2
+ α

)
(en

2 )(δ, y),

(3.7)

and
(η −∆)(en+1

2 ) = 0 in Ω2

en+1
2 is bounded at infinity(

∂

∂n2
+ α

)
(en+1

2 )(0, y) =
(
− ∂

∂n1
+ α

)
(en

1 )(0, y).

(3.8)

By taking the partial Fourier transform of the first line of (3.7) in the y direction we get:(
η − ∂2

∂x2
+ k2

)
(ên+1

1 (x, k)) = 0 in Ω1.

For a given k, this is an ODE whose solution is sought in the form
∑

j γj(k) exp(λj(k)x). A
simple calculation shows that there are two possible values for the lambdas:

λ±(k) = ±
√

η + k2.

Therefore we have

ên+1
1 (x, k) = γn+1

+ (k) exp(λ+(k)x) + γn+1
− (k) exp(λ−(k)x).

¿From the second line of (3.7), the solution must be bounded at x = −∞. This implies that
γn+1
− (k) ≡ 0. Thus we have

ên+1
1 (x, k) = γn+1

+ (k) exp(λ+(k)x)

or equivalently, by changing the value of the coefficient γ+,

ên+1
1 (x, k) = γn+1

1 (k) exp(λ+(k)(x− δ))

and similarly,
ên+1
2 (x, k) = γn+1

2 (k) exp(λ+(k)x)

with γn+1
1,2 to be determined. From the interface conditions we get

γn+1
1 (k)(λ+ + α) = γn

2 (k)(λ− + α) exp(λ−(k)δ)

and
γn+1

2 (k)(−λ− + α) = γn
1 (k)(−λ+ + α) exp(−λ+(k)δ).

Combining these two and denoting λ(k) = λ+(k) = −λ−(k), we get for i = 1, 2,

γn+1
i (k) = ρ(k;α, δ)2γn−1

i (k)

with

ρ(k;α, δ) =
∣∣∣∣λ(k)− α

λ(k) + α

∣∣∣∣× exp(−λ(k)δ), (3.9)

where λ(k) =
√

η + k2 and α > 0. This formula deserves a few remarks.
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• For all k ∈ R, ρ(k) < 1 so that γn
i (k) → 0 as n goes to infinity.

• When domains overlap (δ > 0), ρ(k) is uniformly bounded from above by a constant
smaller than one, ρ(k;α, δ) < exp(−√η δ) < 1 and ρ → 0 as k tends to infinity.

• When there is no overlap (δ = 0), ρ → 1 as k tends to infinity.

• Let ξ ∈ R. By taking α = λ(ξ), we have ρ(ξ) = 0.

• For the original Schwarz method (1.2), the convergence rate is exp(−λ(k)δ). For δ = 0
we see once again that there is no convergence. Replacing the Dirichlet interface condi-
tions by Robin conditions enhances the convergence by a factor |(λ(k)− α)/(λ(k) + α)|.

Optimization of the interface condition

It is possible to optimize the choice of the parameter α in order to minimize the convergence
rate in the physical space which is maxk ρ(k;α, δ).

When the subdomains overlap we have seen that the convergence rate is bounded from
above by a positive constant so that it can be checked that the following min-max problem

max
k

ρ(k;αopt, δ) = min
α

max
k

ρ(k;α, δ)

admits a unique solution.
When the subdomains do not overlap, then for any choice of α we have maxk ρ(k;α, 0) = 1,

so that the above min-max problem is ill-posed. Anyhow, the purpose of domain decompo-
sition methods is not to solve partial differential equations. They are used to solve the
corresponding linear systems arising from their discretizations. It is possible to study the
convergence rate of the related domain decomposition methods at the discrete level based
on the discretization scheme, see [Nat96]. Fourier transform is replaced by discrete Fourier
series, i.e. the decomposition on the vectors Vk = (eij∆y k)j∈Z, k ∈ π/(Z∆y) with ∆y the
mesh size in the y direction. The convergence rate depends as before on the parameters of the
continuous problem but also on the discrete parameters: mesh size in x and y. The resulting
formula is quite complex and would be very difficult to optimize.

Nevertheless, comparison with the continuous case and numerical experiments prove that
a semi-continuous approach is sufficient for finding an optimal value for the parameter α.
This of course due to the fact that as the discretization parameters go to zero, the discrete
convergence rate tends to its continuous counterpart.

A semi continuous approach

For the sake of simplicity, we consider only the non-overlapping case, δ = 0. We keep the
formula of the convergence rate in the continuous case:

ρ(k;α) :=
∣∣∣∣λ(k)− α

λ(k) + α

∣∣∣∣ (3.10)

with λ(k) =
√

η + k2. But we observe that the mesh induces a truncation in the frequency
domain. We have |k| < π/∆y := kmax. For a parameter α, the convergence rate is approxi-
mated by

ρh(α) = max
|k|<π/∆y

ρ(k;α).
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The optimization problem reads:
Find αsc

opt such that
ρh(αsc

opt) = min
α

max
k<π/∆y

ρ(k;α). (3.11)

It is easy to check that the optimum is given by the relation ρ(0;αsc
opt) = ρ(kmax;αsc

opt). Let
λm = λ(0) and λM = λ(kmax), we have

αsc
opt =

√
λmλM . (3.12)

It can then easily be checked that in the limit of small ∆y,

ρh(αsc
opt) ' 1− 2

√√
η∆y

π

and
αsc

opt ' η1/4 π

∆y
.

Whereas for α independent of ∆y, we have

ρh(α) ' 1− 2
α∆y

π

for small ∆y. Numerical tests on the model problem of a rectangle divided into two half-
rectangles and a finite difference discretization shows a good agreement with the above for-
mulas. In Table 2, the iteration counts are given for two possible choices of the parameter α,
α = 1 or αsc

opt given by formula (3.12). The reduction error factor is 10−6

1/∆y 10 20 40 80
αsc

opt 6 7 10 16
α = 1 27 51 104 231

Table 2: Number of iterations for different values of the mesh size and two possible choices
for α

3.4 A more complex example: optimized interface conditions for the Helm-
holtz equation

This study is joint work with M. Gander and F. Magoulès, see [GMN01] for a complete
presentation.

We consider the Helmholtz equation

L(u) := (−ω2 −∆)(u) = f(x, y), x, y ∈ Ω.

The difficulty comes from the negative sign of the term of order zero of the operator.
Although the following analysis could be carried out on rectangular domains as well, we

prefer for simplicity to present the analysis in the domain Ω = R2 with the Sommerfeld
radiation condition at infinity,

lim
r=∞

√
r

(
∂u

∂r
+ iωu

)
= 0,
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where r =
√

x2 + y2. We decompose the domain into two non-overlapping subdomains
Ω1 = (−∞, 0 ]×R and Ω2 = [ 0,∞)×R and consider the Schwarz algorithm

−∆un+1
1 − ω2un+1

1 = f(x, y), x, y ∈ Ω1

B1(un+1
1 )(0) = B1(un

2 )(0)
(3.13)

and
−∆un+1

2 − ω2un+1
2 = f(x, y), x, y ∈ Ω2

B2(un+1
2 )(0) = B2(un

1 )(0)
(3.14)

where Bj , j = 1, 2, are two linear operators. Note that for the classical Schwarz method Bj

is the identity, Bj = I and without overlap the algorithm cannot converge. But even with
overlap in the case of the Helmholtz equation, only the evanescent modes in the error are
damped, while the propagating modes are unaffected by the Schwarz algorithm [GMN01].
One possible remedy is to use a relatively fine coarse grid [CW92] or Robin transmission
conditions, see for example [Des93, CCEW98]. We consider here a new type of transmission
conditions which lead to a convergent non-overlapping version of the Schwarz method. We
assume that the linear operators Bj are of the form

Bj := ∂x + Sj , j = 1, 2,

for two linear operators S1 and S2 acting in the tangential direction on the interface. Our
goal is to use these operators to optimize the convergence rate of the algorithm. For the
analysis it suffices by linearity to consider the case f(x, y) = 0 and to analyze convergence to
the zero solution. Taking a Fourier transform in the y direction we obtain

−∂2ûn+1
1

∂x2
− (ω2 − k2)ûn+1

1 = 0,

x < 0, k ∈ R (3.15)
(∂x + σ1(k))(ûn+1

1 )(0) = (∂x + σ1(k))(ûn
2 )(0)

and

−∂2ûn+1
2

∂x2
− (ω2 − k2)ûn+1

2 = 0,

x > 0, k ∈ R (3.16)
(∂x + σ2(k))(ûn+1

2 )(0) = (∂x + σ2(k))(ûn
1 )(0)

where σj(k) denotes the symbol of the operator Sj , and k is the Fourier variable, which we
also call frequency. The general solutions of these ordinary differential equations are

ûn+1
j = Aje

λ(k)x + Bje
−λ(k)x, j = 1, 2,

where λ(k) denotes the root of the characteristic equation λ2 + (ω2 − k2) = 0 with positive
real or imaginary part,

λ(k) =
√

k2 − ω2 for |k| ≥ ω,

λ(k) = i
√

ω2 − k2 for |k| < ω.
(3.17)
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Since the Sommerfeld radiation condition excludes growing solutions as well as incoming
modes at infinity, we obtain the solutions

ûn+1
1 (x, k) = ûn+1

1 (0, k)eλ(k)x

ûn+1
2 (x, k) = ûn+1

2 (0, k)e−λ(k)x.

Using the transmission conditions and the fact that

∂ûn+1
1

∂x
= λ(k)ûn+1

1

∂ûn+1
2

∂x
= −λ(k)ûn+1

2

we obtain over one step of the Schwarz iteration

ûn+1
1 (x, k) =

−λ(k) + σ1(k)
λ(k) + σ1(k)

eλ(k)xûn
2 (0, k)

ûn+1
2 (x, k) =

λ(k) + σ2(k)
−λ(k) + σ2(k)

e−λ(k)xûn
1 (0, k).

Evaluating the second equation at x = 0 for iteration index n and inserting it into the first
equation, we get after evaluating again at x = 0

ûn+1
1 (0, k) =

−λ(k) + σ1(k)
λ(k) + σ1(k)

· λ(k) + σ2(k)
−λ(k) + σ2(k)

ûn−1
1 (0, k).

Defining the convergence rate ρ by

ρ(k) :=
−λ(k) + σ1(k)
λ(k) + σ1(k)

· λ(k) + σ2(k)
−λ(k) + σ2(k)

(3.18)

we find by induction that
û2n

1 (0, k) = ρ(k)nû0
1(0, k),

and by a similar calculation on the second subdomain,

û2n
2 (0, k) = ρ(k)nû0

2(0, k).

Choosing in the Fourier transformed domain

σ1(k) := λ(k), σ2(k) := −λ(k)

corresponds to using exact absorbing boundary conditions as interface conditions. So we
get ρ(k) ≡ 0 and the algorithm converges in two steps independently of the initial guess.
Unfortunately this choice becomes difficult to use in the real domain where computations
take place, since the optimal choice of the symbols σj(k) leads to non-local operators Sj

in the real domain, caused by the square root in the symbols. We have to construct local
approximations for the optimal transmission conditions.

In [EM77], the approximation valid for the truncation of an infinite computational domain
is obtained via Taylor expansions of the symbol in the vicinity of k = 0:

Sapp
j = ±i

(
ω − 1

2ω
∂ττ

)
,
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which leads to the zeroth or second order Taylor transmission conditions, depending on
whether one keeps only the constant term or also the second order term. But these trans-
mission conditions are only effective for the low frequency components of the error. This
is sufficient for the truncation of a domain since there is an exponential decay of the high
frequency part (large k) of the solution away from the artificial boundary.

But in domain decomposition, what is important is the convergence rate which is given
by the maximum over k of ρ(k). Since there is no overlap between the subdomains, it is
not possible to profit from any decay. We present now an approximation procedure suited
to domain decomposition methods. To avoid an increase in the bandwidth of the local
subproblems, we take polynomials of degree at most 2, which leads to transmission operators
Sapp

j which are at most second order partial differential operators acting along the interface.
By symmetry of the Helmholtz equation there is no interest in a first order term. We therefore
approximate the operators Sj , j = 1, 2, in the form Sapp

j = ±(a + b∂ττ ) with a, b ∈ C and
where τ denotes the tangent direction at the interface.

Optimized Robin interface conditions for the Helmholtz equation We approximate
the optimal operators Sj , j = 1, 2, in the form

Sapp
j = ±(p + qi), p, q ∈ R+. (3.19)

The non-negativity of p, q comes from the Shapiro-Lopatinski necessary condition for the
well-posedness of the local subproblems (3.13)–(3.14). Inserting this approximation into the
convergence rate (3.18) we find

ρ(p, q, k) =



p2 +
(
q −

√
ω2 − k2

)2

p2 +
(
q +

√
ω2 − k2

)2 , ω2 ≥ k2

q2 +
(
p−

√
k2 − ω2

)2

q2 +
(
p +

√
k2 − ω2

)2 , ω2 < k2.

(3.20)

First note that for k2 = ω2 the convergence rate ρ(p, q, ω) = 1, no matter what one chooses
for the free parameters p and q. In the Helmholtz case one can not uniformly minimize the
convergence rate over all relevant frequencies, as in the case of positive definite problems,
see [Jap98, GMN01, JNR01]. The point k = ω represents however only one single mode in
the spectrum, and a Krylov method will easily take care of this when the Schwarz method is
used as a preconditioner, as our numerical experiments will show. We therefore consider the
optimization problem

min
p, q∈R+

(
max

k∈(kmin, ω−)∪(ω+, kmax)
|ρ(p, q, k)|

)
, (3.21)

where ω− and ω+ are parameters to be chosen, and kmin denotes the smallest frequency
relevant to the subdomain, and kmax denotes the largest frequency supported by the numerical
grid. This largest frequency is of the order π/h. For example, if the domain Ω is a strip
of height L with homogeneous Dirichlet conditions on top and bottom, the solution can
be expanded in a Fourier series with the harmonics sin(jπy/L), j ∈ N. Hence the relevant
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frequencies are k = jπ/L. They are equally distributed with a spacing π/L and thus choosing
ω− = ω − π/L and ω+ = ω + π/L leaves precisely one frequency k = ω for the Krylov
method and treats all the others by the optimization. If ω falls in between the relevant
frequencies, say jπ/L < ω < (j + 1)π/L then we can even get the iterative method to
converge by choosing ω− = jπ/L and ω+ = (j + 1)π/L, which will allow us to directly verify
our asymptotic analysis numerically without the use of a Krylov method. How to choose the
optimal parameters p and q is given by the following:

3.5 Theorem (Optimized Robin conditions) Under the three assumptions

2ω2 ≤ ω2
− + ω2

+, ω− < ω (3.22)

2ω2 > k2
min + ω2

+, (3.23)

2ω2 < k2
min + k2

max, (3.24)

the solution to the min-max problem (3.21) is unique and the optimal parameters are given
by

p∗ = q∗ =

√√√√√ω2 − ω2
−
√

k2
max − ω2

2
. (3.25)

The optimized convergence rate (3.21) is then given by

max
k∈(kmin, ω−)∪(ω+, kmax)

ρ(p∗, q∗, k) =
1−

√
2
(

ω2−ω2
−

k2
max−ω2

)1/4

+

√
ω2−ω2

−
k2
max−ω2

1 +
√

2
(

ω2−ω2
−

k2
max−ω2

)1/4

+

√
ω2−ω2

−
k2
max−ω2

(3.26)

For the proof, see [GMN01].

Optimized second order interface conditions for the Helmholtz equation We seek
interface conditions in the form Sapp

j = ±(a + b∂ττ ) with a, b ∈ C and where τ denotes the
tangent direction at the interface. The design of optimized second order interface conditions
is simplified by the following:

3.6 Lemma Let u1 and u2 be two functions which satisfy

L(uj) ≡ (−ω2 −∆)(u) = f in Ωj , j = 1, 2,

and the interface condition(
∂

∂n1
+ α

)(
∂

∂n1
+ β

)
(u1) =

(
− ∂

∂n2
+ α

)(
− ∂

∂n2
+ β

)
(u2) (3.27)

with α, β ∈ C, α + β 6= 0, and nj denoting the unit outward normal to domain Ωj. Then the
following second order interface condition is satisfied as well:(

∂

∂n1
+

αβ − ω2

α + β
− 1

α + β

∂2

∂τ2
1

)
(u1) =

(
− ∂

∂n2
+

αβ − ω2

α + β
− 1

α + β

∂2

∂τ2
2

)
(u2) (3.28)
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Proof Expanding the interface condition (3.27) yields(
∂2

∂n2
1

+ (α + β)
∂

∂n1
+ αβ

)
(u1) =

(
∂2

∂n2
2

− (α + β)
∂

∂n2
+ αβ

)
(u2).

Now using the equation L(u1) = f , we can substitute −(∂2/∂τ2
1 +ω2)(u1)−f for ∂2/∂n2

1(u1),
and similarly we can substitute −(∂2/∂τ2

2 + ω2)(u2)− f for ∂2/∂n2
2(u2). Hence we get(

− ∂2

∂τ2
1

− ω2 + (α + β)
∂

∂n1
+ αβ

)
(u1)− f =

(
− ∂2

∂τ2
2

− ω2 − (α + β)
∂

∂n2
+ αβ

)
(u2)− f.

Now the terms f on both sides cancel, and division by α + β yields (3.28). 2

Note that Higdon has already proposed approximations to absorbing boundary conditions
in factored form in [Hig86]. In our case, this special choice of approximating σj(k) by

σapp
j (k) := ±

(
αβ − ω2

α + β
+

1
α + β

k2

)
(3.29)

leads to a particularly elegant formula for the convergence rate. Inserting σapp
j (k) into the

convergence rate (3.18) and simplifying, we obtain

ρ(k;α, β) :=
(
−λ(k)− σ1

λ(k) + σ1

)2

=
(
−(α + β)λ(k) + αβ + k2 − ω2

(α + β)λ(k) + αβ + k2 − ω2

)2

=
(

λ(k)2 − (α + β)λ(k) + αβ

λ(k)2 + (α + β)λ(k) + αβ

)2

=
(

λ(k)− α

λ(k) + α

)2(λ(k)− β

λ(k) + β

)2

(3.30)

where λ(k) is defined in (3.17), and the two parameters α, β ∈ C can be used to optimize the
performance. By the symmetry of λ(k) with respect to k, it suffices to consider only positive
k to optimize performance. We thus need to solve the min-max problem

min
α, β∈C

(
max

k∈(kmin, ω−)∪(ω+, kmax)
|ρ(k;α, β)|

)
, (3.31)

where ω− and ω+ are again the parameters to exclude the frequency k = ω where the
convergence rate equals 1, as in the zeroth order optimization problem. The convergence
rate ρ(k;α, β) consists of two factors, and λ is real for vanishing modes and imaginary for
propagative modes. If we chose α ∈ iR and β ∈ R then for λ real the first factor is of
modulus one and the second one can be optimized using β. If λ is imaginary, then the second
factor is of modulus one and the first one can be optimized independently using α. Hence
for this choice of α and β the min-max problem decouples. We therefore consider here the
simpler min-max problem

min
α∈iR, β∈R

(
max

k∈(kmin, ω−)∪(ω+, kmax)
|ρ(k;α, β)|

)
(3.32)

which has an elegant analytical solution. Note however that the original minimization prob-
lem (3.31) might have a solution with better convergence rate, an issue investigated in
[GMN01].
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3.7 Theorem (Optimized second order conditions) The solution of the min-max prob-
lem (3.32) is unique and the optimal parameters are given by

α∗ = i
(
(ω2 − k2

min)(ω
2 − ω2

−)
)1/4 ∈ iR (3.33)

and
β∗ =

(
(k2

max − ω2)(ω2
+ − ω2)

)1/4 ∈ R. (3.34)

The convergence rate (3.32) is then for the propagating modes given by

max
k∈(kmin, ω−)

|ρ(k, α∗, β∗)| =

(
(ω2 − ω2

−)1/4 − (ω2 − k2
min)

1/4

(ω2 − ω2
−)1/4 + (ω2 − k2

min)1/4

)2

, (3.35)

and for the evanescent modes it is

max
k∈(ω+, kmax)

ρ(k, α∗, β∗) =

(
(k2

max − ω2)1/4 − (ω2
+ − ω2)1/4

(k2
max − ω2)1/4 + (ω2

+ − ω2)1/4

)2

. (3.36)

Proof For k ∈ (kmin, ω−) we have ∣∣∣∣∣ i
√

ω2 − k2 − β

i
√

ω2 − k2 + β

∣∣∣∣∣ = 1

since β ∈ R and thus

|ρ(k;α, β)| =

∣∣∣∣∣ i
√

ω2 − k2 − α

i
√

ω2 − k2 + α

∣∣∣∣∣
2

depends only on α. Similarly, for k ∈ (ω+, kmax) we have∣∣∣∣∣
√

k2 − ω2 − α√
k2 − ω2 + α

∣∣∣∣∣ = 1

since α ∈ iR, and therefore

|ρ(k;α, β)| =

∣∣∣∣∣
√

k2 − ω2 − β√
k2 − ω2 + β

∣∣∣∣∣
2

depends only on β. The solution (α, β) of the minimization problem (3.32) is thus given by
the solution of the two independent minimization problems

min
α∈iR

(
max

k∈(kmin, ω−)

∣∣∣∣∣ i
√

ω2 − k2 − α

i
√

ω2 − k2 + α

∣∣∣∣∣
)

(3.37)

and

min
β∈R

(
max

k∈(ω+, kmax)

∣∣∣∣∣
√

k2 − ω2 − β√
k2 − ω2 + β

∣∣∣∣∣
)

. (3.38)
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We show the solution for the second problem (3.38) only, the solution for the first prob-
lem (3.37) is similar. First note that the maximum of

|ρβ| :=

∣∣∣∣∣
√

k2 − ω2 − β√
k2 − ω2 + β

∣∣∣∣∣
is attained on the boundary of the interval [ω+, kmax], because the function ρβ (but not |ρβ |)
is monotone increasing with k ∈ [ω+, kmax]. On the other hand, as a function of β, |ρβ(ω+)|
grows monotonically with β while |ρβ(kmax)| decreases monotonically with β. The optimum
is therefore reached when we balance the two values on the boundary, ρβ(ω+) = −ρβ(kmax),
which implies that the optimal β satisfies the equation

√
k2

max − ω2 − β√
k2

max − ω2 + β
= −

√
ω2

+ − ω2 − β√
ω2

+ − ω2 + β
(3.39)

whose solution is given in (3.34). 2

The optimization problem (3.38) arises also for symmetric positive definite problems when
an optimized Schwarz algorithm without overlap and Robin transmission conditions are used
and the present solution can be found in [WFNS98].

Fig. 5 shows the convergence rate obtained for a model problem on the unit square
with two subdomains, ω = 10π and h = 1/50. The optimal parameters were found to be
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Figure 5: Convergence rate of the optimized Schwarz method with second order transmission
conditions in Fourier space for ω = 10π

α∗ = 20.741i and β∗ = 47.071, which gives a convergence rate ρ = 0.0419 for the propagating
modes and ρ = 0.2826 for the evanescent modes. It is interesting to note that with the current
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practice in engineering of choosing about 10 grid points per wavelength, we have h ≈ π/(5ω),
and thus for the propagating modes the optimized Schwarz method presented here has an
asymptotic convergence rate of

ρp = 1−O(h1/4).

3.4.1 Numerical implementation and acceleration via Krylov type methods

This section is concerned with the Finite Element implementation of the interface conditions
of Robin type and of the ones with second order tangential derivatives along the interface. We
show that thanks to a reformulation of the algorithm they are as easy to implement as Neu-
mann boundary conditions. We first treat the case of a decomposition into two subdomains
and then an arbitrary decomposition of the domain.

Two-domain decomposition

We present the discretization scheme for a decomposition of a domain Ω into two subdomains
Ω1 and Ω2 with interface Γ12. So far, we have considered the optimized Schwarz algorithm
at the continuous level,

−∆un+1
1 − ω2un+1

1 = f1 in Ω1

∂un+1
1

∂n1
+ Sapp

1 (un+1
1 ) = −∂un

2

∂n2
+ Sapp

1 (un
2 ) on Γ12

(3.40)
−∆un+1

2 − ω2un+1
2 = f2 in Ω2

∂un+1
2

∂n2
+ Sapp

2 (un+1
2 ) = −∂un

1

∂n1
+ Sapp

2 (un
1 ) on Γ12.

A direct discretization would require the computation of the normal derivatives along the
interfaces in order to evaluate the right hand sides in the transmission conditions of (3.40).
This can be avoided by introducing two new variables,

λn
1 = −∂un

2

∂n2
+ Sapp

1 (un
2 ) and λn

2 = −∂un
1

∂n1
+ Sapp

2 (un
1 ).

The algorithm then becomes

−∆un+1
1 − ω2un+1

1 = f1 in Ω1

∂un+1
1

∂n1
+ Sapp

1 (un+1
1 ) = λn

1 on Γ12

−∆un+1
2 − ω2un+1

2 = f2 in Ω2

∂un+1
2

∂n2
+ Sapp

2 (un+1
2 ) = λn

2 on Γ12

λn+1
1 = −λn

2 + (Sapp
1 + Sapp

2 )(un+1
2 )

λn+1
2 = −λn

1 + (Sapp
1 + Sapp

2 )(un+1
1 ).

(3.41)

We can interpret this new algorithm as a fixed point algorithm in the new variables λj ,
j = 1, 2, to solve the substructured problem

λ1 = −λ2 + (Sapp
1 + Sapp

2 )(u2(λ2, f2)),
λ2 = −λ1 + (Sapp

1 + Sapp
2 )(u1(λ1, f1)),

(3.42)



Domain decomposition methods 31

where uj = uj(λj , fj), j = 1, 2, are solutions of

−∆uj − ω2uj = fj in Ωj ,

∂uj

∂nj
+ Sapp

j (uj) = λj on Γ12.

Instead of solving the substructured problem (3.42) by the fixed point iteration (3.41), one
usually uses a Krylov subspace method to solve the substructured problem directly. This
corresponds to using the optimized Schwarz method as a preconditioner for the Krylov sub-
space method. A finite element discretization of the substructured problem (3.42) leads to
the linear system

λ1 = −λ2 + (S1 + S2)B2u2

λ2 = −λ1 + (S1 + S2)B1u1

K̃1u1 = f1 + BT
1 λ1

K̃2u2 = f2 + BT
2 λ2

(3.43)

where B1 and B2 are the trace operators of the domains Ω1 and Ω2 on the interface Γ12,
and we omit the superscript app in the discretization Sj of the continuous operators Sapp

j

to reduce the notation. If the two vectors u1 and u2 containing the degrees of freedom have
their first components corresponding to the interior unknowns

uj =

[
ui

j

ub
j

]
, j = 1, 2, (3.44)

where the indices i and b correspond to interior and interface degrees of freedom respectively
for domain Ωj , then the discrete trace operators B1 and B2 are just the boolean matrices
corresponding to the decomposition (3.44) and they can be written as

Bj =
[
0 I

]
, j = 1, 2, (3.45)

where I denotes the identity matrix of appropriate size. For example, B1u1 = ub
1 and B2u2 =

ub
2. The matrices K̃1 and K̃2 arise from the discretization of the local Helmholtz subproblems

along with the interface conditions ∂n + a− b∂ττ ,

K̃j = Kj − ω2Mj + BT
j (aMΓ12 + bKΓ12)Bj , j = 1, 2. (3.46)

Here K1 and K2 are the stiffness matrices, M1 and M2 are the mass matrices, MΓ12 is the
interface mass matrix, and KΓ12 is the interface stiffness matrix,

[MΓ12 ]nm =
∫

Γ12

φnφm dξ and [KΓ12 ]nm =
∫

Γ12

∇τφn∇τφm dξ. (3.47)

The functions φn and φm are the basis functions associated with the degrees of freedom n
and m on the interface Γ12, and ∇τφ is the tangential component of ∇φ on the interface. We
have

Sj = aMΓ12 + bKΓ12 , j = 1, 2.



32 F. Nataf

For given λ1 and λ2, the acoustic pressure u1 and u2 can be computed by solving the last
two equations of (3.43). Eliminating u1 and u2 in the first two equations of (3.43) using the
last two equations of (3.43), we obtain the substructured linear system

Fλ = d, (3.48)

where λ = (λ1, λ2) and the matrix F and the right hand side d are given by

F =

(
I I − (S1 + S2)B2K̃

−1
2 BT

2

I − (S1 + S2)B1K̃
−1
1 BT

1 I

)

d =

(
(S1 + S2)B1K̃

−1
1 f1

(S1 + S2)B2K̃
−1
2 f2.

) (3.49)

The linear system (3.48) is solved by a Krylov subspace method. The matrix vector product
amounts to solving a subproblem in each subdomain and to send interface data between
subdomains. Note that the optimization of the interface conditions was performed for the
convergence rate of the additive Schwarz method and not for a particular Krylov method ap-
plied to the substructured problem. In the positive definite case one can show that minimizing
the convergence rate is equivalent to minimizing the condition number of the substructured
problem [JN00]. Numerical experiments in the next section indicate that for the Helmholtz
equation our optimization also leads to parameters close to the best ones for the precondi-
tioned Krylov method.

The general case of a decomposition into an arbitrary number of subdomains is treated
in [GMN01].

Numerical results

We present two sets of numerical experiments. The first set corresponds to the model prob-
lem analyzed in this paper and the results obtained illustrate the analysis and confirm the
asymptotic convergence results. The second numerical experiment comes from industry and
consists of analyzing the noise levels in the interior of a VOLVO S90.

Model problem

We study a two dimensional cavity on the unit square Ω with homogeneous Dirichlet condi-
tions on top and bottom and on the left and right radiation conditions of Robin type. We
thus have the Helmholtz problem

−∆u− ω2u = f 0 < x, y < 1
u = 0 0 < x < 1, y = 0, 1

∂u

∂x
− iωu = 0 x = 0, 0 < y < 1

−∂u

∂x
− iωu = 0 x = 1, 0 < y < 1.

(3.50)

We decompose the unit square into two subdomains of equal size, and we use a uniform
rectangular mesh for the discretization. We perform all our experiments directly on the error
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equations, f = 0 and choose the initial guess of the Schwarz iteration so that all the frequen-
cies are present in the error. We show two sets of experiments: The first one with ω = 9.5π,
thus excluding ω from the frequencies k relevant in this setting, k = nπ, n = 1, 2, . . .. This
allows us to test directly the iterative Schwarz method, since with optimization parameters
ω− = 9π and ω+ = 10π we obtain a convergence rate which is uniformly less than one for all
k. Table 3 shows the number of iterations needed for different values of the mesh parameter
h for both the zeroth and second order transmission conditions. The Taylor transmission

Order Zero Order Two
Iterative Krylov Iterative Krylov

h Taylor Optimized Taylor Optimized Taylor Optimized Taylor Optimized
1/50 - 457 26 16 - 22 28 9
1/100 - 126 34 21 - 26 33 10
1/200 - 153 44 26 - 36 40 13
1/400 - 215 57 34 - 50 50 15
1/800 - 308 72 43 - 71 61 19

Table 3: Number of iterations for different transmission conditions and different mesh pa-
rameter for the model problem

conditions do not lead to a convergent iterative algorithm, because for all frequencies k > ω,
the convergence rate equals 1. However, with Krylov acceleration, GMRES in this case, the
methods converge. Note however that the second order Taylor condition is only a little better
than the zeroth order Taylor conditions. The optimized transmission conditions lead, in the
case where ω lies between two frequencies, already to a convergent iterative algorithm. The
iterative version even beats the Krylov accelerated Taylor conditions in the second order case.
No wonder that the optimized conditions lead by far to the best algorithms when they are
accelerated by a Krylov method, the second order optimized Schwarz method is more than
a factor three faster than any Taylor method. Note that the only difference in cost of the
various transmission conditions consists of different entries in the interface matrices, with-
out enlarging the bandwidth of the matrices. Fig. 6 shows the asymptotic behavior of the
methods considered, on the left for zeroth order conditions and on the right for second order
conditions. Note that the scale on the right for the second order transmission conditions
is different by an order of magnitude. In both cases the asymptotic analysis is confirmed
for the iterative version of the optimized methods. In addition one can see that the Krylov
method improves the asymptotic rate by almost an additional square root, as expected from
the analysis in ideal situations. Note the outlier of the zeroth order optimized transmission
condition for h = 1/50. It is due to the discrepancy between the spectrum of the continuous
and the discrete operator: ω = 9.5π lies precisely in between two frequencies 9π and 10π at
the continuous level, but for the discrete Laplacian with h = 1/50 this spectrum is shifted
to 8.88π and 9.84π and thus the frequency 9.84π falls into the range [9π, 10π] neglected by
the optimization. Note however that this is of no importance when Krylov acceleration is
used, so it is not worthwhile to consider this issue further. Now we put ω directly onto a
frequency of the model problem, ω = 10π, so that the iterative methods cannot be considered
any more, since for that frequency the convergence rate equals one. The Krylov accelerated
versions however are not affected by this, as one can see in Table 4. The number of iterations
does not differ from the case where ω was chosen to lie between two frequencies, which shows
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Figure 6: Asymptotic behavior for the zeroth order transmission conditions (above) and for
the second order transmission conditions (below)
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Order Zero Order Two
h Taylor Optimized Taylor Optimized

1/50 24 15 27 9
1/100 35 21 35 11
1/200 44 26 41 13
1/400 56 33 52 16
1/800 73 43 65 20

Table 4: Number of iterations for different transmission conditions and different mesh pa-
rameter for the model problem when ω lies precisely on a frequency of the problem and thus
Krylov acceleration is mandatory

that with Krylov acceleration the method is robust for any values of ω. We finally tested for
the smallest resolution of the model problem how well Fourier analysis predicts the optimal
parameters to use. Since we want to test both the iterative and the Krylov versions, we
need to put again the frequency ω in between two problem frequencies, and in this case it
is important to be precise. We therefore choose ω to be exactly between two frequencies of
the discrete problem, ω = 9.3596π, and optimized using ω− = 8.8806π and ω+ = 9.8363π.
Fig. 7 shows the number of iterations the algorithm needs to achieve a residual of 10e−6 as a
function of the optimization parameters p and q of the zeroth order transmission conditions,
on the left in the iterative version and on the right for the Krylov accelerated version. The
Fourier analysis shows well where the optimal parameters lie and when a Krylov method is
used, the optimized Schwarz method is very robust with respect to the choice of the opti-
mization parameter. The same holds also for the second order transmission conditions, as
Fig. 8 shows.

Noise levels in a VOLVO S90

We analyze the noise level distribution in the passenger cabin of a VOLVO S90. The vibrations
are stemming from the part of the car called firewall. This example is representative for a
large class of industrial problems where one tries to determine the acoustic response in the
interior of a cavity caused by vibrating parts. We perform a two dimensional simulation
on a vertical cross section of the car. Fig. 9 shows the decomposition of the car into 16
subdomains. The computations were performed in parallel on a network of sun workstations
with 4 processors.

The problem is characterized by ωa = 18.46 which corresponds to a frequency of 1000 Hz
in the car of length a. To solve the problem, the optimized Schwarz method was used as a
preconditioner for the Krylov method ORTHODIR, and as convergence criterion we used

‖K̃u− f‖L2 ≤ 10−6‖f‖L2 . (3.51)

When using zeroth order Taylor conditions and a decomposition into 16 subdomains, the
method needed 105 iterations to converge, whereas when using second order optimized trans-
mission conditions, the method converged in 34 iterations, confirming that also in real appli-
cations the optimized Schwarz method is about a factor 3 faster, as we found for the model
problem earlier. Fig. 10 shows the acoustic field obtained in the passenger compartment of
the VOLVO S90.
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Figure 7: Number of iterations needed to achieve a certain precision as function of the
optimization parameters p and q in the zeroth order transmission conditions, for the iterative
algorithm (above) and for the Krylov accelerated algorithm (below). The star denotes the
optimized parameters p∗ and q∗ found by our Fourier analysis
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Figure 9: Decomposition of the passenger compartment into 16 subdomains

4 Conclusion

In this presentation, we have stressed the influence of interface conditions in domain de-
composition methods. By choosing them carefully, it is possible to achieve better and more
reliable convergence behaviors for various types of scalar equations and the Stokes or Maxwell
systems.

For complex systems of equations (e.g. multiphase flow, compressible Navier-Stokes equa-
tions) treated in a coupled way, the theory is still in development.

On the end-user point of view (physicists, engineers,. . . ) there is a lack of black-box
routines working at the matrix level and implementing the latest methods. This could be
achieved by a closer collaboration between numerical analysis and computer science.

Acknowledgment I thank Victorita Dolean and Laurent Saas for their careful reading and
useful suggestions.
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par décomposition de domaine, Ph.D. thesis, Université Paris VI, 1998.
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