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In this paper, we study the convergence of domain decomposition methods for the
solving of advection-diffusion equations

(0.1) (BY — h divOV)(u) = f,

where B is a given vector field (B, > 0), h is the viscosity and C' is a positive definite
symmetric matrix. Equation (0.1) models the transport of a quantity u (e.g. dyer,
temperature, energy, ...) by a vector field B and its diffusion scaled by a usually small
viscosity coefficient h. It arises in many different areas like environmental flows, semi-
conductors, fluid dynamics,... . It is also involved in the numerical computation of
Navier-Stokes solutions by successive linearizations techniques (see e.g. [9]). Domain
decomposition methods are well-fitted to the solving of (0.1) for very large scale prob-
lems on parallel computers. Roughly speaking, the idea is to solve a boundary value
problem by decomposing the domain into overlapping or nonoverlapping subdomains.
The equation is satisfied in each subdomain. In order to enforce continuity of the solu-
tion and of its derivatives, the interface conditions are imposed in an iterative manner.
The main computational interest lies in the saving of memory which enables to treat
very large scale problems (see [13] and references herein). It is also of mathematical
interest since it is related to the factorization of elliptic operators and to the study of
Dirichlet-to-Neumann operator.

We consider three iterative domain decomposition methods in a simple geometry.
The whole space is decomposed into N vertical strips with possible overlaps. The
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three methods differ by the updating of the solution in every in subdomain. The
first algorithm is the additive Schwarz method (ASM) which consists in updating the
solution at the same time in every subdomain. In the second algorithm denoted by
DSA, the updating is made by double sweeps over the domain. In the third method
called FDA, the solution is updated by flow directed sweeps over the domain (flow
directed Gauss-Seidel method, see [12]). In the overlapping case for which few results
are available up to now, we obtain geometric convergence. In [8] and [15], convergence
was proved for specific interface conditions, derived from Dirichlet/Fourier boundary
conditions, by a blend of energy estimates and maximum principles. Here, we follow
a different approach and extend for general boundary conditions the results obtained
with constant coefficients in [16]. In the nonoverlapping case, our convergence analysis
is based on energy estimates similar in principle to those of [6],[14] and [17]. Moreover,
we check that the convergence is faster in some sense for a judicious choice of the
interface conditions, derived from absorbing boundary conditions.

The clue is a careful study of the Dirichlet-to-Neumann operator associated with
the convection-diffusion operator (0.1) on the half-space. Owing to the presence of the
viscosity h as a small parameter, we develop a semi-classical analysis which extends
naturally the Fourier analysis of [16] for constant coefficients. Hence, all the results,
which we mentionned and which are detailed further, hold for small enough values of
h. This analysis is developed in the framework of Weyl-Hormander calculus allowed
by our flat geometry. Indeed this calculus takes into account low frequencies and gives
at once global norm estimates, which is crucial while proving convergence.
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1 Semi-Classical Second Order Elliptic Half-Space
Problems

In this section, we first consider the Dirichlet-to-Neumann operator associated with
semi-classical elliptic half-space problems. By Beals criterion (see Appendix A) we
check that it is an h-pseudo-differential operator. Then by using the factorization of
Appendix B, we construct an approximation of this operator which provides additional
information. Our final aim is to write exact solutions of semi-classical second order
elliptic half-space problems in terms of parabolic evolution systems.

1.1 Dirichlet-to-Neumann operators

We consider second order differential operators on R'*¢ = R, x RZ which depend on a
small parameter h € (0, hg),

(1.1) L = a +'B(hd) — "(hd)C(h)

. 0y b, 1 Cyy
with 0 = , B= and O =1C = .
9y B, Cyo Cyy

Here and in the sequel we use small letters for scalar coefficients and capital letters for
matrices.

Hypothesis: a) The coefficients a, b, by, co s ¢y and ¢y, ., 4,7 = 1...d, are real-
valued functions of (z,y;h) € R4 x (0, hg) supposed to be uniformly bounded with
respect to h € (0, hg) in S(1,dz* 4 dy?).

b) MOI’GOVGI’ Wwe assume
a(w,y;h) > o, and C(x,y;h) > 7*1d,  Y(w,y;h) € R x (0, ho),

where o and = are two positive constants.



Remark 1.1 «) If the matriz C satisfies all the above assumptions except ¢y, = 1,
we go back to the described situation by taking suitable constants o, v and hqy for the
operator

Lk = o U B(hd) — {(hd)C'(hD)

) bx - h@xcm — t@ [ C -
By - h TlTT ny — a(aycg;g;)cyy

Cax

b) The drift-diffusion operators (0.1) do not exactly correspond to these hypotheses.
Meanwhile if we assume b, > 23 and a >0 in (0.1), conjugating with e brings back
to our assumptions. Indeed we have
e W Lhe ™ = a5 + ' By(hd) — '(h)C(h)
b, — 2
BZ/ - 2601’,1/

2
) and ag = pb, — #* = h'9,C,y .5 > ﬂ_

ith  Bg =
w1 Jé; ( 5

for b small enough.
¢) In the sequel we may have to restrict the domain of the small parameter h. The
upper bound hg will generically denote a constant which is determined by the operator
L" (more precisely by a finite number of semi-norms in S(1, dz*+dy?) of its coefficients)
Definition 1.2 The Dirichlet-to-Neumann operator denoted by AT"(x¢) is defined on
HoHY2RRY), s >0, h € (0, ho), by ATF(x0)uo = hd,u

solution of

(1.2)

where u ts the variational

T=T0

{Ehu:(), T Z X

u = Up.

T=T0
The precise framework of this definition will be briefly reviewed in the next lemmas.

Our aim is to prove

Theorem 1.3 The operator A" (z0) equals \*(xo,y, hDy; k), where \E belongs to the
symbol class P°S™ ({(n),g,) defined in Appendiz B.1.

In order to write accurate estimates uniform with respect to h € (0, hg), we will
use Sobolev spaces H*"(Q) which depend on A via their norm. When = R", we
take [[ul|gsn@ny = [[(RD)’ul|r2@n), according to the notations of Appendix A. The

definition of H*"(Q) and Hg’h(ﬂ) for any “smooth” open set ) follow as usual. Notice

|l reny = | D7 ull ey with Dyu(z) = h_%u(%), when ) is a convex cone of R"™
with vertex 0, while HuH%IS,h(Q) = > ja|<s H(hD)auH%Q(Q) for a general © and s € N. We
also need h-dependent norms on some partial Sobolev spaces (see [11]-Appendix B for
the case h = 1). We will consider the Hilbert-spaces H™9"([ x RZ), where [ is an

open interval of R, and (m,s,h) € N x R x (0, ho), endowed with the norm

1/2
R (o TR AP

j=1...m

Among other properties we have to mention the
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Lemma 1.4 a) For any xo € I, the trace (hax)ju‘ , 7 € N, defines a continuous
T=T0

operator from H™h([ x RY) into H™+s=1=Y/2H(RY) as soon as m > j+1/2, with the
uniform estimates

(13) H(hag;)ju‘x:xoHHm-I-s—]—l/2,h(Rd) S Cm757]'h_1/2HuHH(m,s),h(Rd-l-l)-

b) Reciprocally, the lifting map Eg, defined after a partial Fourier transform in the

y-direction by

(14 Bu(e.n) = of iy

with 0 € S(R), 9(0) = 1, is continuous from H"F*=Y2MRY) into H™)H(RAHY) for
m € N, s € R. Moreover the estimates

HE;LUHH(m,s),h(Rd+1) S Cm75h1/2HUHHm+s—1/2,h(Rd)
hold with constants C,, s independent of h € (0, hg).

Proof : For a general open interval I, H{™*" (] x R;l) is the space of restrictions
of elements of H(™*)*(R'4). Hence, we consider as usual the case I = R. We can

also take xg = 0 and set ’y]hu = hdu| . Assertions a) and b) comes at once from

standard results for A = 1 because ’y]hu = h_l/zDh’y}Dglu and Egu = hl/zDglE;Dhu.
Note that the h'/? = hd;r_l/hg factor results from the normalization factor depending

on the dimension of the unitary dilation Dy. a

Lemma 1.5 a) There exists a constant hg > 0 so that the boundary value problem
{L‘hu =f, x>0

[

(1.5)
=0 — Uo

admits a unique solution in H'"(R) for all h € (0,ho) as soon as ug € H'Y2H(RY)
and f € H™V"(RTM). The estimate

1wl e < Co (hl/zHuoHHl/zh + HfHH—l,h)

holds uniformly with respect to h € (0, ho). Moreover when f € L*(R?), the second trace

can be extended from its usual definition as an element of H~'/*H(R?)

r=

Yiu = hd,u
with
It ulli=ssen < Co (luollmren + B2 fl12)
b) Whenever ug € H"H+3/20(R9) and f € H(m’s)’h(Ri"'l) with m € N and s > 0, the
solution u of (1.5) belongs to H(m"'z’s)’h(Ri"'l). Moreover the estimates
[l gomsrn < Cons (Bt cssson + 11 llimers)
and || ull gmserien < Cly, (Iuollgmressrzn + B2 Fllgmern )

hold with constants Cp, s and C!. . independent of h € (0, ho).

'S
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Proof : Like in Lemma 1.4 we refer to standard results by using the dilations Dy,.
Here are some details in order to check the uniform control of the constants. We set
Uo = D 'ug, F'= D;' f and U = Dj;'u. Then we have |[ug||g:» = ||Uo|| g+ with similar
identities for /" and U. Equation (1.5) writes

D' LMD U = F,
(1.6)

U = K20,

with D; 'L Dy, = a(ha, hy; h) + ' B(hx, hy; k)0 + '0C (ha, hy; h)d.
a) Let E) be the continuous lifting map: H'Y?(RY) — H'(R$M) defined by (1.4) with
h=1.If U is replaced by V = U — hl/zE;Uo, equation (1.6) writes
{ D LMDV = F — WD LMD, LU,
U =0
0

r=

where the H™'-norm of the right-hand side is bounded by Co(|| F||z-1 + hl/QHUOHHuz).
The bilinear form (V, W) — (V, D;' L"D,W);2 is continuous on Hj(R%) and inte-
grating by part the first order term gives

Re(V, D' LDy V)2 = min(e, M|[VI[ip = bl OBll=||VIIZ2, YV € Hy(Q).

Lax-Milgram theorem applies if one takes hg small enough so that A|'0B| L~ <

L min(a,~) for all i € (0, hg) and leads to uniform estimates.

2
and we still work with the

z=0
dilated equation (1.6). Integration by part with /' € CZ(RY™) and V € HY*(RY)
gives

For the second trace, we recall ’yfu = h=12D,0,U

/R Vo) = /R . foEv] Clou) + /R d++1JE;—V[t608U] n /R [a,c.7,

where we omit the arguments (ha, hy; h) and (0, hy; h). The right-hand side extends
to any U € H'(R%H) such that ['0C9U] € L*(R%) and especially to the solution of
(1.6), if we assume F' € L*(R{™). Moreover the L?-norm of [f{9C' U] is then bounded
by CollF 2 + K2 Uoll e )
b) We write (1.6) in the form

{ (a(hax, hy; h) 4+ 10C (ha, hy; h)0)V = I — hl/zDgl,ChDhE;Uo — 'B(hx, hy; h)OU,
U =0

=0

where Lemma 1.4-b) with A = 1 implies
1D £ Dr B Ul m.er < Crns| Ul et

We first prove U € H(™+%5)(Qy) for m,s € N by induction on m + s with Nirenberg’s
method of differential quotients. We get uniform estimates because all the derivatives of
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the coefficients a(hx, hy; h), B(hx, hy; h) and C'(hx, hy; h) are bounded uniformly with

respect to h € (0, hg). Finally the result for general s > 0 comes from interpolation. O

This lemma gives a meaning to Definition 1.2 for any s > 0. Next we work with
s = 1, for which the second trace +} is naturally defined. One makes sure that the
constant hg > 0 does not depend on x¢ by writing (1.2) in the form

Lhu=0 220
(1.7) { w0 =

with £ = 7_, L7, [Toeu)(z) = u(z — z0). In the sequel we focus on A™"(z0) and
the properties of AT () follow by symmetry. Lemma 1.5 applied with homogeneous
boundary conditions ensures that for any m € N, s > 0 and h € (0, hg), L‘ZO defines
an isomorphism from Hj (R4 N H(m"'z’s)’h(Ri"'l) onto H(m’s)’h(Ri"'l) which will be
denoted by L‘Bm. With such an operator and the lifting map Eg, A= (zo) writes
explicitly as

(1.8) A" (o) uo = AP [,CB;OI (_'CZOESUO) + Eguo] .

Proof of Theorem 1.3 : The regularity with respect to z¢ of ,L’on, Eg;ol and

A="z0) is induced by our assumptions on the coefficients a(z,y;h), B(z,y;h) and
C(z,y;h). As a continuous operator S(R?) — S"(R?), A="(xq) writes A\~ (zo,y, hDy; )
with A\~ (2o; h) € S'(T*R?). We will get that A~ (xo, /) is bounded in S({(3),g,) uni-
formly with respect to (2o, h) € R x (0, hg) by Beals criterion (Proposition A.11). We
have to verify the estimates

I (adf adjyp, A_’h(l'O)) ull gz < Coghl™ N u] garen,  Vu € S(RY),

with constants C, g independent of (g, h) € R x (0, hg). One easily checks from (1.4)
that E” is continuous from S(R?) into S(RI?) = {u‘ o UE SR}, endowed with

its natural quotient topology. Meanwhile, we have
AP (zo)u = F_’h(xo)Egu, Yu € S(RY),

where F="(xq) = 41 [_E%,;;'CZO + ]d] is continuous from S(R1™) into S'(RY). In this
framework, Leibnitz formula

I} « —,h _ 8! o —,h 6-p3' a—a' mh
(1.9pd adgip, A™"(z0) = (a/ﬂ/)zs(aﬁ) Corr (adl) adsy, F="(x0)) (ad)= adip®” E2)
makes sense for it involves only bounded operators. The second factor will be treated
directly. In order to avoid questions about domains while looking at the first one, we

introduce the mollified commutators

8 o _ Bi agr
(1.10) ady . ad,p, . = 1<1;[<d adx(sy)yi 1<1;[<d adX(EhDy)hDyi/



with y € S(R%), x(0) = 1, and ¢ € (0,1). We note

(L.11)  lim (ad adzD ; F_’h(xo)) u = (adfl adgby F_’h(xo)) u in S'(RY)

e—0

for all u € S(R4™), while the boundedness of x(ey)y; and x(chD,)hD,, on the func-
tional spaces H5+1/2’h(Rd), H(O’S)’h(Ri"'l), H(z’s)’h(Ri"'l) and H&(Ri"’l) OH(Q’S)’h(Ri"'l),
s >0, allows

(1.12) adﬁ adzD EF_’h(l'o) =

o Con (o0 £ o] it £2,)

>
(a,p")<(a",8")
for (o, 8') > (0,0). We next consider each factor by itself.

a)adg angy Eg: Since hD,, commutes with Eg, we only consider the case a = 0. For
v € S(RY and j € {0, 1,2}, we have

LT . T .
(hda)'ady . Ejo(z,n) = |(hd=) D o5 ()| &(n).
The derivatives of (hax)ngg(%<hn>) can be obtained recursively in the form

(h.)' D7 ol (hm)) = WP ()™ () o (5 )

k<218

where the fi ;s(z) all belong to S(1, %) and the gy ;g all satisfy g; ;5 € S(R). Let

(/g denote the L*(Ry)-function Gg = sup ,,is |gr,5,5/(2). We end as usual by

J=0,1,2

(k02" Bfolle arviaeom < Cab™ [ 1

) (hn)* |Gﬁ( (hn))|?dzedny

< CalGal /RW 602 (ki

+

We have proved
(1.13) lad? adyp, . E2o|lgeisn < Cogh®PH2 0] oy,

b)adﬁ adyp, 6,CZO: The differential operator L‘ZO writes L(x + xo, hDy,y, hD,; k) with

L e PZShO(l,gn) and the operators x(ey)y; and x(ehDy)hD,,, 1 <i,2" < d, commute
with hD,. Moreover the symbols x(en)n; are uniformly bounded in S({n), ¢g,) so that

the multi-commutator adjp, . L is treated by referring to semi-classical calculus in
the metric g,. It remains to study the commutator ad,(.y)y, (¥, hDy;h), 1 <@ < d,
when the h-symbol ¢(y,n; k) belongs to S ((n)" g,). Its Schwarz-kernel writes

gy dn
/Rdeh(y Py ms h) [x(ey)y: = x(ey )] 5
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We have )
X(ey)yi — x(ey')y's = (y — y’)-/o eix(eys) + Fi(eyy)dt

by setting y: = ty + (1 — t)y’ and Fi(y) = :0,x(y). Integration by parts transforms
the above kernel into

T o 1 dL
h/Rdeﬁ(y Dy, s h). [/0 eix(€ys) +F¢(€yt)dt] h—z

where the kernel-symbol D,o(y,n; k). [fol ex(ey:) + Fi(eyt)dt] is uniformly bounded in

Sy, dy? 4 dy"”* + %) The semi-classical version of [18]-Proposition 2.1 then gives

adx(sy)yi S‘Q(yv hDZH h) = h¢(y, hDy7 h7€)7

where ¢(g) is bounded in S™((n)"!,g,) uniformly with respect to ¢ € (0,1). As a
conclusion, we obtain

ady _adyp, Lh = hMVIL, o(2 4 2o, kD, y, hDy; b, e)

with L 3(¢) uniformly bounded in P25% ((5)~18l, g,). Proposition A.7 about continuity
of h-pseudo-differential operators yields

(1.14) H .ELdg6 .ELngz“6 ,CZOUHH(O,SH,@D,;L < Ca7ﬁ7sh|a|+|ﬁ|HvHH(2,s),h, s € R.

c) adlg6 adyp, . ,CB;OI: Leibnitz formula applied to the identity

Lholch =1d on Hy (RN HEIHREY), s >0
leads to
adg,s adsz,s E%,;Ol
=— ) Corp (Lhd) (adibadsh, o L0, ) (£520) .

(a1,61)++(,8)=(a,3)
o (adfadgy, Lt ) (Lh3).

The operator £}, is nothing but the restriction to H3(RE) N HED MR of L] .
Hence by referring to (1.14), we obtain for every s > 0 the estimates

(1.15) lad) _adyp, . L5 ollgeessnn < Copsh 0] oon.

Estimates (1.14)(1.15) hold uniformly with respect to ¢ € (0,1) and combining them
with (1.11)(1.12) provides the expected estimate of adfl adgby F~"(z0). We conclude
by using (1.9) and (1.13). O



1.2 Approximate Dirichlet-to-Neumann Operator and Ap-
plications

The symbol L € P2S"(1,¢g,) such that £L* = L(x,hD,,y,hD,;h) is explicitely deter-
mined by

L = a+by(hdy) + 'By(hd,) — (hs)? — (hdy)Cuy(h,)
_t(hay)cyx(hax) - t(hay)cyy(hay)

= —(hd,)* + [=2C0y(hD,) + by — h('0,C\0)| (hO,)
~Cyy ¢ [(h0,)'(hD,)] + “By(hd,) + a — h |0,Cuy +'0,Cy | (RD,),
A representant of its principal symbol (1,0)-symbol is given by
oa1(L) = € 4+ i[=2iCoyn + bs] € + 'nCyyn + ' Byy + a.
Its discriminant equals
A = —[=2iCpyn +b,)* — 4'Cyyn — 44" B,y — 4a.
= — [4Cyyn — 4(Cayn)® + (b)* + 40| — 4i [—b,Coy + B[ 9
= — [4Cy + (b,)* + 40| —4i [~b,Coy + B[

where the matrix

. ~C, ~C,
(1.16) C=Cyy— Cpplly = ’f( y) 0( y)
1d, 1d,

still satisfies 1C' = €' > yv2Id,. On {z € C,Re(z) > 0} we choose /z = {/(ge"?) =
91/262'57 0] < 7, and the roots of the principal symbol of L write

(1.17) E s h) = ~Cogn +i— 5=

—b, — v/ —A
(1.18) £y i) = —Cagy + i,

Our smoothness assumptions on the coefficients a, B, C, yield ¢ € P°S™((n),g,).
Meanwhile we have

—b, + Rev/—A  —b, £ /Re(=A
(119)  Im &F = i; 2 5 ( )zi\/a2+72|n|2,

which implies [T — 7| = \/m > 2inf{a,v}(n). By Theorem B.1 and Theorem B.4
one can construct four sequences of symbols (Af’i)keN , with Af’i € POSho((n)1=* g,)
so that

M= —i Y R AT and ki = —i 2 RFATT

k<N k<N
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satisfy the two properties:

a) 00,()(AN) = 00,)(K7) = i€*.

b) L+ (i€ — k%) #010) (1€ = W) = WVER with RY € POS™ ()", g,)

We set A]iv’h(x) = A& (z,y,hDy; h) and ]’ih( ) = k& (x,y,hDy; k) and the former

equality gives the approximate factorization
(1.20) Lh = —(hd, — kG (2))(h0, — AV (2)) + BV R (2, y, hD,; h).

Remark 1.6 The approzimate factorization of,CZO = 7_y LI7,, is deduced from (1.20)
by simply changing the argument x into x+x9. Meanwhile the approximate factorization
of e=w Lheh is obtained by replacing AL and k% by AT — ¢ and k% — c.

Proposition C.3 applies, with suitable signs, to the symbols AL involved in the approx-
imate factorization (1.20).

Proposition 1.7 There exists hg > 0 so that, for any (N,s,h) € N xR x (0, hg), the
initial value problem

{ hd,u — Aﬁ’h(:p)u =0, x> 2 (resp. x < ')

defines an evolution system S]_V’h(x",x’), ¥ < a2, (resp. S;’h(x”,x’), > a") on
H*"(RY) with all the regularity properties of Proposition C.3. Moreover for any & > 0
one can find hy . so that the estimates

1.21 SR | prpem < e= TR a1 s g
( N L ) ’
(1.22) and HS;’}L(:I;”,:I;’)H,C(HSJL) <e h o, <,

hold for every h € (0, hns.).

Proof : We just have to prove (1.21)(1.22). The 4+ and — cases are symmetric and
we focus on Sy, By (1.19), we can find, for any ¢ > 0, ¢. > 0 so that

—Re [zf_] —(a—¢)>cn).

By Lemma C.2-b) this provides for any (N, s) € N* x R the existence of hy . such
that
Re(u,A]_V’h(x)u)Hs,h < —(a—a)|[ull3en, VYu€ HTUH(RY.

Differentiating HS]_Vh( ’)vHHs,h with respect to 2" > 2’ and referring to the conti-
nuity at ” = 2’ yield (1 21). O
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Proposition 1.8 a) There exists hy > 0 so that vf(x) = Sﬁ’h(:p + 29, xo)ug, £ > 0,
is the variational solution of

(1.23) {Eizova = WV RE (2 + wo,y, hDy; R)o, 20

U]:'\:f _ = Up
=0

as soon as ug € Hl/z’h(Rd) and h € (0,hy).
b) Let pry, k € N, | € Z, denote the seminorms on S({(n)',g,) defined by (A.2). For
any (k, N) € N x N* there exists hyn € (0, ho) so that the estimate

(1.24) Pra—n(AE (2, h) = A% (2, k) < Cp v
holds for h € (0, hy ) with Cyn > 0 independent of (x,h) € R x (0, g n).

Proof : a) We take hy > 0 small enough so that Proposition 1.7 estimate (1.21) hold
for s =0 and e = /2. For ug € HI/Q’h(Rd), vyl(e) = S]_V’h(x + xg, To)ug is a classical
solution to

(1.25) hd,vy — AN (2 + zo)vy =0, for 2 > 0.
Thus the approximate factorization (1.20) of £ leads to

L‘Zov& = hNR]_V(l' + x0,y, hDy; h)vy  in D’(Ri"‘l),

while the continuity of the evolution system S]_V’h gives vy _, = Uo It remains to

check that vy € H(RT™) and that the right-hand side belongs to L*(R{™). By
making use of equation (1.25), we get for k + |£'| <1

(834 (89, o5l ey < [ Owlloi(z)

while Ry € POSh((n)2=N g,), N > 1, yields

1R (w4 0.9, hDy; Wox sy < [ OnlloR(@) i
By referring to Lemma C.4, we have

[ 1@ < O [l [ o (el
while estimate (1.21) implies

| s @llEade < lluol [ e

b) Since A=Y (A5 (x, h) — Ay;(x, h)) belongs to POS™((n)= g,) for M > N, we just
have to find M > N large enough so that pr1_n(A " (x,h)— Ay (2, h)) is an O(RY). This

number M will be fixed further as a function of (k, V). By Beals criterion as stated in
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Proposition A.11, there exists v = v(k, N) € N so that pg1-n(A™(x,h) — Ay (2, h)) is
estimated by

| |il|15p|< h_|a|_|ﬁ|H adf adsz(A_’h(:L‘) — AMh(w))HE(H3/2,h7H1/2+|,6|+N,h).

By taking the difference between (1.2) and (1.23), ey, = u — vy, with A € (0, har),
appears as the variational solution to
{zizo ext = WV Ry (i + 0, hDy; B)ogs

€M7w0 0 = 0

and we have (A="(xq) — AMh(xo))uo = ~vlepr. Hence we get for h € (0, hyy)

_ -1 _ _
(A~ (o) = A3 (wo)uo = 1 (L) [WY R (& + o,y hDys h)Syi" (2 + w0, 20)uo)

We next develop the same techniques as in Theorem 1.3. We introduce the mollified
commutators (1.10) so that every factor of

_ o -1
(1.26) ady, adyp, (A™"(x) = Ay (@) =4 % [O%ﬂi ady, adiih, . (Ll )

aytagtaz=a
B1+B2+83=5

adgfs adlﬁ’)y’6 (hMRMh(:L' + x0,y, hDy; h)) adgf’s adlﬁ)y’6 (S]\_jh(x + w0, :1;0))] )

make sense for ¢ > 0 and |a| + |#] < v. We need estimates for each of the three
factors which are uniform with respect to ¢ € (0,1). The first one is estimated by
(1.15) while the second one only involves semi-classical operators. Let us have a look
at adlg6 adyp, - (S]\_jh(x + :1;0,:1;0)) for |a| + |3] < v. For @ > 0, we have

ho, [adgs adyp, . Sy (@ + o, :1:0)] = adlg6 adyp, . [AM}L(Z‘ + 20) 53" (z + o, :1:0)]
— AMh(:L' + w9) [adgs angw S]\_jh(x + w0, :1:0)] +

i O ad) 2" adip. Ay (2 + wo) ad)), adyp, . Sy (@ + w0, 7o),

O[/7ﬁ/ < O[7ﬁ

while adlg6 adyp, . S (@o, m0) = 0 as soon as (a, 3) # 0. Hence we get

1 pe+eo —hy
Sui (2" + 2, ) > [...]dx.

'
adlg6 angw Sy (@ + o, 20) = -
xo (a/7ﬁ/)<(a7ﬁ)

Note that the factor adfgﬁ/ ad%ﬁjja A]T/L(:L' + x0) may produce a loss of regularity, espe-
cially for g = p'. Let F,(x), p € {0,1...v}, denote the quantity

sup || adlg6 adyp, . Sv(x + xo, 20) || c(ra/2m e 2=mhy-
lo|+181=p

13



The previous identity implies

x”-l—xo
B < Co [ sup IS5 4 0, ) oty sup Fua(w)de

%o 0 <p 0/ <p

We now take hys, so that (1.21) holds with s =3/2 — p, g € {0,1... v}, and ¢ = /2.
With such a choice, we get at once by induction the uniform boundedness of the F,(x),
that is

lady. adyp, - Sy (@ + 2o, 20) | oo o ramieimioiny < Cop

for all (a, ), |a| + |3] < v. We conclude by taking M = M(N,v(k,N)) large enough
in order to balance the above loss of regularity by the second factor of (1.26). O

Theorem 1.9 a) There exists hg > 0 so that, for any (s,h) € R x (0, hy), the initial

value problem
{ hdyu — AT (2)u =0, > 2’ (resp. 2’ < z)

u =0

defines an evolution system S~™'(z" 2"), 2" > 2’ (resp. ST (a",2'), 2" < 2'), on
H*"(RY) which satisfies all the regularity properties of Proposition C.3.

b) For any e > 0 one can find hy. so that the estimates

(1.27) 1S~ (2", 2)|| aramy < e , a2 >al,

(1.28) and  ||ST*(2", 2| goreny < € o, o <,

hold for every h € (0, hs.).
¢) There exists ho > 0 so that u(x) = STz + xg, 20)ug coincides with the variational
solution of (1.7) as soon as ug € H'*"(RY) and h € (0, ho).

Proof : Applying Proposition 1.8-b) with k=0 and N =1 gives
[IAE = i&F || < Coh.

According to (1.19), we can take hg small enough so that Re A = £22%(n). Assertions
a) and b) come from the same arguments as the one developed for S]_V’h. For part c),
we first notice that if u is the variational solution of (1.7) with ug € S(R?), then u(x)
is the classical solution to

{ hdyu — AT (2 4+ 29)u =0, x > 2’ (vesp. 2’ < x)

u = Up

o

r=

and coincides with ST*(z+z¢, x¢)ug. The half-space H" estimate for ST (z+z0, 0)uo
is derived from Lemma C.4 like in Propostion 1.8-a) and the equality carries over for
any ug € H'Y/2MRY). O
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2 Domain Decomposition Algorithms

In this section, we give the precise definitions of the domain decomposition methods
with which we are concerned and exhibit their basic properties.

2.1 Description

We want to solve the whole space problem:
(2.1) LM(u) = fin R4

where f is given in L2(R%*1). The space R**! is decomposed into N vertical strips:
Letﬂi:(li,Li)de,l <3 < Nwith —cc=L <L <L <...< Ly, <[; <
Lii < ...< Ly = +00. We have Rt = UfVZIQZ'. As interface conditions, we take for
the left (resp. right) boundary of a subdomain hd, — ITI*" (resp. hd, — [I7") where
the operators II¥" (0 < h < hg) are h-pseudodifferential operators whose symbols 7+
satisfy (We set j V 1 = max{y,1}) :

H1 There exists 7 > 0 such that #* € P°S™((n)?, g,) with |a<77>]v1(7ri—if¢)| > e )V,
for some positive constant ¢, .
H2There exists k, jV1—1<k < j so that Re(:l:ﬂ'iZF%) € POS™((n)k, g,), Re(£r* F

by > ¢ (n)¥, for some positive constant ¢/

In the sequel, we may have to restrict the range of the small parameter h according to
estimates of the symbols 7% and 7. In such a case, we write h € (0, ).

Three domain decomposition methods are considered. They are defined recursively
by starting from the initial estimates u? € H?({;) of the solution u of (2.1) in the
domain Q;,: =1,..., V.

The first one is the additive Schwarz method (abbreviated to ASM) and writes:

utt e H* (), 1<i< N
LMult) = fin O,
(hd, — IHR) (ut) = (hd, — TP (u? ) at x =1;, 2<i <N

(hdy — =M (uf*Y) = (RO, — ") (ulyy) at @ = L, 1 <4< N —1

(2.2)

In the ASM, u? is updated at same time in every subdomain. In the second algorithm,
the value of u is updated in one subdomain at a time. We proceed by double sweeps
over the subdomains:

left to right sweep

uT e HA Q) 1<i <N

,Ch(u?—l_lﬂ) = fin

ho, — 1" u Ty = ho, — 1" uﬁ_—l_l/2 at x =1, 2<:<N

( 7 1—1 9

hd, — =0 (Y% = (h0, —TT=M)(ul ) at 2= Ly, 1<i < N — 1
( 1 1+1 9

(2.3)
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right to left sweep
utt e H*(Q),1<i< N
LMufty = fin Q;
(h@y — TIHM)(uf ™)
(h@y — TI=M) (uf ™)

2.4
(24) ho, — H"”h)(u?_—l_llm) at v =1, 2<i<N

=
= (h0, — H_’h)(u?_l‘_"f) atx =L;, 1 <:< N-—1.

Let us remark that unN+1/2 = ut!. This algorithm is called DSA (for Double Sweep
Algorithm).

The third algorithm denoted shortly by FDA is a slight modification of the second one.
It consists only in flow directed sweeps:

left to right sweep

utt e H*(Q),1<i< N
LMu?t™) = fin Q;
(hd, — IER) (ut) = (hd, — TP (uiT ) at e =1, 2<i < N

(hOy — II™M)(uftY) = (RO, — ") (uly) at o = L, 1 <i< N —1

(2.5)

2.2 Well-posedness of the algorithms

The well-posedness relies on the study of the boundary value problem

{ LMv) = fin O,
(2.6) (hd, —TT*")(v) = gy at . = [;

(hd, —II=")(v) = g, at z = L;.
Proposition 2.1 For any m > 0. there exvists hy, € (0,ho) so that the boundary

value problem (2.6) admits a unique solution v € H**™"(Q;) as soon as f € H™"(8;),
g and g, € H3?m=VUWNRY) and h € (0,hrm). Moreover the mapping: (g1,9,) €

, 2
(H3/2+m_]V1’h(Rd)) — v € H**™h(Q,), where one forgets g for i = 1 and g, for
1 = N, is uniformly continuous.

Proof : According to Lemma C.2 we take h, > 0 small enough so that there
exists ¢t € POS™((n)=/V1, ¢,) with

(7% —itT)# e =1, Vh € (0,h,).

Existence: Let u denote the solution of the whole space problem (2.1). We seek a
o + w with

solution to (2.6) of the form v =u

w = S_’h(:zj, l)ou + S+’h(:1;, Li)a,

and oy, a, € H3?tMRY). By Theorem 1.9, w is then the variational solution of

L"w = 0 with Dirichlet-boundary conditions
= o+ S+7h(li7 Li)ar

w

r=l;

w

= S_’h([/i, li)ozl + «,.

r=L;
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In such a case, we get like in Lemma 1.5 that w and v belong to H**™"(£);). We next
construct oy and «,. The boundary conditions of (2.6) are equivalent to

(A7) = T g [A4(E) = ] S2(1, Lo,

=g — (h0, — I*")u = g,

and [A—vh(li) — H—,h] S~ (L, oy + [A+’h(li) _ H_vh] o
=g, — (h0, —1I"M)u = g.

this system also writes

2.7 |1d+ ( 0 [A—vh(li) - H+,h]_1 [A-l—’h(li) _ H""h] S+’h(li,[/i) )

(A1) =114 7 [A= (1) = 4] S= (L, 1) 0

where the right-hand-side belongs to (H3/2+m’h(Rd))2. According to Theorem 1.9, the

2
above perturbation of identity is bounded on (H3/2+m’h(Rd)) with a norm uniformly
a(Li=l;)

estimated by Cre™ " 2, as soon as h € (0, h,, ). We take Ay < Ay Ah, small enough
and we obtain for h € (0, hy )

o (2) b (R0

Uniqueness: By linearity, it is done when a solution v € H?"(£;) of (2.6) with f = 0,
g1 = 0 and g, = 0 necessarily equals 0. By multiplying £"(v) by v, integrating by parts

and taking the real part, we obtain

L;

by
0> COHUH?'_Il,h(Qi) + [h Re (v, 5V hoyv — nyhayv) ] ;
12

l;
with Cy > 0 and h € (0, ho), ho small enough. From the boundary conditions, we get
(Hi’h — AjF’h)v = (h0, — AjF’h)v at v =1; or L;

so that v l € H'/2HVER(RY) for any h € (0, h,). Thus, the estimate

¢ Or Ly
b b
0> COHUH?'_Il,h(Qi) + [h Re (v, %v — %y — nyhayv) ]
L2

l;

makes sense. We now combine hypothesis H2 with Lemma C.2 in order to get positive
boundary terms for h € (0, hr), h, small enough. This yields v = 0. a
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2.3 Substructuring

which amounts to take

For the sake of simplicity, we next work with e} = u? —u

f=0. We set

9
2

gy = (h0, — T ")ef

r=l;

and g/, = (h0, — I=")er

r=L; )

Let Q% ozf»il and ozfiT, 1 <@ < N respectively denote the operator defined in Proposition
2.1 and by (2.7)(2.8) with m = 0 and f = 0. Then we have e = Qf(gffl,g%) and more
precisely

(2.9) ef = S™" (@, Loty (gl 9f,) + ST, Ll (0, 95,

Now, the ASM described in (2.2) writes

gt = (hd, Q)|
gt = (hd. — TTPM)(Qh(g5,0) + Q(0,05,))|

=l3

(2.10) gjnv—j—ll = (hd, — H+’h)(Q§LV—1(9JnV—1,lv 0) + Q?V—l(o’g%_“))‘l’:llv
. g{b’i‘l — (hal, — H_’h)(Qg(gg,l) + QS(O"gg’T))‘w:[q
g?v—l__lz,r = (hd, — H_’h)(Q?V—l(QKT—Ll) + Q?\f—l(o’g%_“))‘x=LN—2
g = 0, R

, N—
We consider 2(N — 1)-uplets G' = (g2, ..., gN-1+) € (HS/Q_]Vl’h(Rd))Z( Y and define

the operator 7 by

(hdy — TTM)Q1(g1,1) iy
(hdy — TI)(Qa(g2,0) + Q2(0. 92,))|

=l3

(hdy — TP ) (Qn-1(gn—1,4,0) + Q2(079N—1,r))‘1,
(hde = T1=)(Q2(0, 92,1) + Qa(92.,0))|

TG = =

=1

(h0, — H_’h)(QN—l(O,gN—l,r) + Qn-1(gn-1,, 0))‘
(h0y —TI=M)QN (9N, O)L

z=Ly_o

=Ly _

)2(N_1) according to (2.8)(2.9) and The-

The operator 7 is bounded on (HS/Q_jVI’h(Rd)
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orem 1.9. It can be written as an operator valued matrix

0 0 X 0 g2l
" .
B 0 x 0 0 X gnN,i
T(G) = X 0 0 x 0 91
. X :

|0 x 0 0 | Lov-ir ]

where the crosses correspond to non zero operators.
From (2.10), we see that the additive Schwarz method corresponds to a Jacobi

algorithm:
(2.11) G = T(G")

Consider now the DSA (2.3)-(2.4) and the FDA (2.5). In order to write them in a

compact form, we introduce four (2N — 2) x (2N — 2) operator valued matrices:

Ty 1<m,n<N-—1
0 otherwise

Ml = (Ml)lsmﬂ»LSQN_Q Wlth Mlmn = {

Ty 1<m<IN—-1, N<n<2N -2
0 otherwise

Al = (Al)lsm7nS2N_2 Wlth Almn = {

) Tow N<m<2N-2 1<n<N-1
Ar = (Ar)lﬁm,n§2N_2 with Ar,,, = { Sms n

0 otherwise
Tn N <m,n<2N —2
0 otherwise

MT = (Mr)lsm7nS2N_2 with ./\/lrmn = {

so that we have T = MI[ + Al + Mr 4+ Ar. From the structure of 7, we have the

following important properties:

MVt = MIN=L=0; MIMr=MrMi=0; A?=Ar?=0

(2.12) AIMI=ArMr=0; MIAr=Mr Al =0

It is worth noticing that these relations come from the structure of the matrices and
do not depend on the value of the components.
With these notations, we see the DSA (2.3)-(2.4) corresponds to the algorithm:

G2 = (MI+ AD(G™HY2) + (Ar 4+ Mr)(G")
G = (MU + AD(G™H2) 4 (Ar + Mr)(GHY),
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that is

(213)G 1 = (1d— Ar — My)~L(Id — Ml — A=Y (M1 + AD(Ar + Mr) G7
= IZ'dS Gna

while the FDA (2.5) corresponds to a Gauss-Seidel algorithm (see for instance [23],

[5]):
G = (MI+ AD(G™) 4 (Ar + Mr)(G™),

that is
(2.14) Gt = (]d—./\/ll—Al)_l(Ar—l—./\/lr) G" =Ty G"

The operators (Id — Ml — Al) and (Id — Mr — Ar) are invertible since M+ Al and
Mr + Ar are nilpotent.

3 Convergence Analysis

We begin the convergence analysis for the three algorithms ASM,FDA and DSA with

h
a remark. If we take II*" = A®" then the operator ( Oé;;l is diagonal and A; =

A, = 0. Hence, the three operators 7, Ty and 7, are nilpofent. Actually we have the

Proposition 3.1 If [I¥" = A" there exists hyg > 0 so that the algorithms ASM,FDA
and DSA are well-posed for h € (0,ho) and converge after finitely many iterations
according to TN~1 =0, 7—le\7—1 =0 and T35 = 0.

The convergence for general II*" in the overlapping case is derived from a pertur-
bative analysis of the above result. It relies on the nilpotency relationships (2.12) and
on the exponential decay estimates (1.27)(1.28)(2.8). When the subdomains do not
overlap, our results are weaker. They only hold for the ASM and FDA algortihms and
require stronger assumptions. In this latter case, the convergence is proved via energy
estimates like in [6][17].

Remark 3.2 a) We are considering the non-constant coefficients case. Hence, the
next convergence results do not hold only for domain decomposition into rectilinear
strips but also for any situation which can be reduced to this case after a change of
variables.

b) While looking for uniform estimates in the previous sections, we did not fix the small
parameter h. In the next convergence statements, h is supposed to be fixed so that the
norm ||.|[gsn is equivalent to the usual H®-norm.
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3.1 The overlapping case

In this paragraph, we establish the geometric convergence for the three algorithms in
the overlapping case.

Theorem 3.3 There exist constants h,, &, £, > 0 so that the following convergence
result holds as soon as 0 < h < h, inf1<;<ny a(L; —lH_l)/h > ¢, inficien o Li—1;) /b >
fc and Li—li>2([/]‘—l]‘+1)>0, \V/i,je {1, —1}

For initial data u? € H*"(Q;),1 <1 < N and f07“ [ € L3R, the three algorithms
achieve geometric com)ergence with the estimates:

[[uf — ullg2nqy < Cpplan = 1>]sup [uf — ullg2n,), n > 2N + 1, for the ASM,

[uf — ul|2n@ )<Chp sup]||u —ul|g2n(q, n>3f0rthe DSA,

[uf — ullperg) < Cpl ™= 1]sup] |uf —u||H2h ) n = 2N —1 for the FDA,

(writing [.] for the integer part) where Cj, > 0, p € (0,1)do not depend on (N,u?, f).

)2(N—1)

On (H3/2_jV1’h(Rd) we use the [°°(H3/?=VLR(RY))-norm. Then, the Banach
2(N-1

algebra L ((H3/2_jV1’h(Rd)) (

)) is naturally endowed with the norm
H[X’H = sup Z H[{mnH’C(H1/2—]\/1,h(Rd)),
1<m<2N =21 <p<aN—2

where K is considered as an operator-valued matrix K = (K., )1<mn<an—2. Theorem
5.1 and Remark 5.10 of [16] which rely on a combinatorial analysis give as a consequence
of the nilpotency relationships the

Lemma 3.4 Suppose

N=2 N=2
o = |1 Ar]] 1A (Z ||M1||”) (Z ||Mr||”) <1
n=0 n=0
Then the estimates

177 < ¢ L plw=3 wn >N

p

172" < C (L4 p)p"~t,  Vn>2
175 < € ple=1=2 v > 2N = 1)

hold with € = (1 + i) (14 g + mafivam)
Proof of Theorem 3.3: From (2.9)(2.10) we get at once

gl = (A () - H+h<zz+1>] < Lok (g7, 7))

+ [AJ“ (Ligr) — T l+1 ] (livrs Li)al (g0 97))
g = [A—ﬁ(Lu )| S=MLicy, Lol (gt 2)
+ AT (Licy) — < >]s <21, Dol (g7, 97,)-
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Let 6 = inf1<;en—1(Li — lip1) and L = infi<icn(Li — [;) satisfy 0 < 6 < % Putting
together (1.27)(1.28) and (2.8) leads to

AL w1l cgrrz-ramgays | Ansn—tnllgarzmminay < e,
_a(l=9%) _al
[ Mlnsinll cro-mvin@ays [Mraen-1oen |l crr-svin@ae) < Cem 72 < Ce i

for any h € (0, h,), h, small enough. With the notations of Lemma 3.4, this yields

o 1 ?
0< %% (1—0?) . Yhe(0,hy).

a

Remark 3.5 The convergence could be proved here with a simpler criterion than the
one provided by Lemma 3.4. Indeed with the overlapping 6 > 0, the perturbations of
the nilpotent matrices are always exponentially small with respect to h. However, the
criterion of Lemma 3.4 has the advantage that it also gives convergence for 6 = 0 in
the constant coefficients case (see [16]).

3.2 The nonoverlapping case

In this paragraph, we still assume hypotheses H1 and H2 while enforcing j € [0, 2]
and 2(j V1 —1) <k <j. We split the difference 77 — 7~ into its real and imaginary
parts, 77 — 77 = ¢ + ip, and we set r = 2—) so that ﬁ% = 1+ r. According to
H1 and H2, we have ¢ € P°S™(()?,g,) with ¢ > C.(n)*, p € P°S*({)’,g,) and
r € POSM((n)=% g,), while 0 < 2(; V1 —1) <k <j <2 impliesj —k < 1. The
semi-classical quantization of p, ¢ and r will be respectively denoted by P*, Q" and R".
The next analysis requires additional assumptions. Although these assumptions will
be verified in practical situations via semi-classical calculus, their general presentation
is more convenient in terms of operators.

H3: The estimate
Re (1 + iR ), (=by + 200y hd, + TV + M) | < Cohllulfpen, Yu € H(RY),

holds for any h € (0, h,).
H4: There exists p € (0,1) so that

62
(3.1) Re (u [Rh(—bx(]w +'B,)hD, — Rhﬁf{h] u) > —Crehllul/3n,
L2

Yu € H*"(RY, h € (0,h,).

Theorem 3.6 Let UT" satisfy the assumptions H1, H2, H3 and H4. There ex-
ists hr > 0, so that ASM and FDA algorithms achieve convergence by lim,, . |[ul —
ul|gringg,) = 0 as soon as uf € H*" (), 1<: <N, fe L*(R¥™) and h € (0, hy).

B
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Remark 3.7 This result does not hold for DSA. However, in the constant coefficients
case, the convergence was proved in [16] for the three algorithms by methods based on
Lemma 3.4 and Fourier analysis.

The above result relies on the following energy estimate.

Proposition 3.8 There exists h, € (0,ho) and Cr > 0 so that
(3.2) Cﬂ”“”%[l,h(gi) +h Re ((h@x — 17", (QM) 1 (hD, — H—,h)u)
+hRe ((hal, — 1", (QM) (A, — H”L)u)

< hRe((hd, — Ty, Q") (hd, — T1~")u)

L2 |lz=l;

L2 lz=L;

L2 lz=L;
+hRe ((hd, — M u, (QM7 (h, — 1TH"u) |
holds as soon as u € H*"(Q;), L"u =0 in Q; and h € (0,h,).
Proof : Let us first remind that (Q")~! is a well-defined semi-classical operator

with symbol in P°S*=(()~*,g,) by taking h, € (0,ho) small enough. Hence the
hRe-terms of (3.2) make sense as bounded forms on H*"(Q;) because 2(j V 1) — k <
2jV1)=2(jv1—1) =2. By mollifying u

boundary conditions, we can assume u € H™"(Q;) with m large enough so that the

and u considered as Dirichlet

b

next calculations make sense. The estimate for general u € H*"(Q;) follows. The
energy estimate is obtained by multiplying £"(u) by (Id + ¢ R")u, integrating by parts
and taking the real part:
h _
(3.3) 0 = Re// alul® — §zfaB|u|2 + 1QuC (hou) + i Rhuau
Q; —_—
—I—%(iRhu)bgghaxu — %h@x [bx(thu)] u
+H(iRMu) By (hdyu) + [*ho(iRMu)| C(hdu) dady

h ——— L;
+ ) Re/Rd [(u + i Rhu) (byu — 2C,, hdyu — 2h@xu)]li dy.
We first look at the boundary terms. Let us consider for « € {l;, L;} the expression
Eu) = ((hd — IH")u, (Q") (hd, — H”L)u)ﬂ
— ((h0y =TT~ yu, (QM) ™' (hd, — T~ Yu)
= (=1 I (Q) 7 (hdy — )
= (b0 =Ty, (@)~ (T — 1=

L2

2’
Since the principal symbol, %, of (Q")~! is real-valued, we have [(Qh)_l]* — QM) =
he(z,y, hDy; h) with ¢ € POS™((3)=%=1 ¢,). Hence, semi-classical calculus yields

gRe[E(u)] = LRe((QM)TNITH — "), (—2h0, 4 T+ 4+ ")) |

+O(h) u| 1372720
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h
= SRe((1+ iR, (b — 20, hdyu — 200, )u) |, + O(0)|ullFn e, -

where the last line is a consequence of H3 and of the estimate (1.3). As a conclusion
the boundary terms of (3.2) and (3.3) differ by an O(h)HuH%ILh(Qi) term. It remains to
check that the volume integral of (3.3), now denoted by V(u), is bounded from below
by C'||u HH1 n( . It satisfies

) > Re// th@u (hou) + (iRh Jau + (th Vb hOu — %bw(ithaxu)u
+(i RMu)’ y(hayu) [ RM(thou)|C(hdu) dxdy

a Ny
(1= 25— 0] el

Commutator terms were included in the O(h) remainder by using r € P°S"((n)7=% g,),
J — k < 1. By introducing hdcu = hOyu + Cpyhdyu, we have

/ /Q,(fh@mc(h@u)dxdy > / /Q [hdeul* + (Thdyu)C (hdyu) dzdy

> [ [ Ihdcul dedy.
Q;

which leads to the lower bound of V(u)

Re/liLi ﬂ2"hacu"%2 + (iRhu7au)L2 + % (iRhu, bxhacu)L,Z — % (bgg(ithacu),u)LZ)

+ (iR, "B, (hd,u)) , — % (1", boClay (hOyu))

7.2 L2
1 . .
—|—§ (bx(th)Cl’y(hayu)7u)L2 —I_ (ZRh(hau)7 C(hau))(L2)d+1 dw
a Ny
+ 0= 25— o] fullyen,

The symbol r of R" is real-valued so that R" — (R")* = he(x,y, hDy; k) with
c € POS*((n)7=%=1,g,). The previous estimates and semi-classical calculus then imply

that V(u) is bounded from below by
fl{” 12 ||hdcul|. + Re (h@cu, iwahu) L2 + Re(u, R*(=b,Cy +'B,)hD,u): dx
+ (1= )25 = O] Nl
> fl{” Re (u, [Rh(—bwcxy +'B,)hD, — Rh%ﬂ’h] u)L2 dx
+ (1= 125 = O] l[ullfna,-
We conclude by referring to H4 and by taking A, small enough. 0
Proof of Theorem 3.6: We proceed as in [6] or [17]. Let

= Collu? 3oy, AL = hRe (A0, — TT-")uf, (QM) 7 (k. — T~ M)uf)
By =hRe(<ha$—H+’h>u?,<@> H(hd, — Ty

r=L;

Y

2 _l‘
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£ =S Er, A" =Y A7 and B" =Y B

According to Proposition2.1, these quantities are well-defined for any n € N as soon as
ud € H*"(9;),7 = 1... N. Further since the principal symbol 5 of (Q")~1 is real-valued
with 5 > C,(n)~%, the quadratic term A?, B!, A" and B" are non-negative for any
h € (0,h,), hr small enough (see Lemma C.1-b)). One easily checks by using L; = l;44
that we have for ASM

EM 4 AT 4 BT <A 4 BT

and for FDA
gn—l—l_I_An—I—l SAn

The convergence follows by summation over n. O

4 Local Approximations of Dirichlet-to-NNeumann
Operators

We saw in Proposition (3.1) that the three algortihms converge after a finite number
of steps for II™" = A®"  Nevertheless, local boundary conditions are preferred in
numerical applications. Indeed numerical discretization truncates the high frequencies
while A is usually small. It is thus sensible to approximate A* by Taylor expansions
at 7 = 0. Three Taylor expansions are considered up to the second order (see [17]).
Higher order approximations are not used in practical algorithms. We first check that
the operator IIT" so constructed satisfy hypotheses H1 H2 H3 and H4. Then we
show that the differences AT"* — II*"* are small in some sense and that this choice of
boundary conditions leads to a better convergence than arbitrary II**,

4.1 Adequacy with the general convergence analysis

We take
(4.1) my =i (2, y, 05 h),
+ st . afi . +
(4.2) 7 =1 (2, y,0h) + ma—n(:p, y,0;h) + thAT (2,y,0;h)
and
. . O¢t ot
(4.3) = itE(x,y,0;h) + ma—n(:p, y,0;h) + z% i (x,y,0;h)
- L OAT -
—I_ZhAl (:L',y,(); h) —I_ @}”7 877 (x,y,(); h) —I_ Zh A2 (:L',y,(); h)
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and we recall

Zfi(xvyvn;h) = E_ZC%Z/UZET?

—A = [4%76’77 + (bl,)2 + 4@] + 42 [—bl,Cl,y + tBy 7.

In [7], the same approximations are made for the wave equation in the framework
of classical pseudo-differential calculus. Here the h-pseudo-differential calculus also
enables norm estimates for the difference between A*" and the proposed local approx-
imations. The complete expression of 7, [ = 0,1,2, are derived from Theorem B.1,

TheoremB.4 and

by £1/b, 2 +4
i€ (2, y,05h) = T

2 2
+ —b ‘B
in—af (z,y,0;h) = —iCypyn £ {0 Coy By
" Vb +4da
2 92¢4 t, 2 t 2
n? 0% oy 2O (6g + 4a) + [(—b.Coy + "By )]
and -y . (x,y,0;h) =+ TRESPEE :

Proposition 4.1 The symbol 7 (or the operators Hf’h), [ =0,1,2, all satisfy hy-
potheses H1, H2, H3 and H4.

Proof : By their construction the symbols 7 belong to P°S% (()!, g,) for [ = 0,1,2.
Assumption H1 is true for j = [ while H2 is satisfied by taking £ =0 for j =1 € {0,1}
and k =2 for j = [ = 2. In the case [ = 0, we have r = 0 while o(o(7" +77) = b,.
Hence H3 and H4 are trivially satisfied. For I = 1,2, we have o u(rt 4+ 77) =
b, — 2:Cyyn so that H3 is true. We now verify H4 for [ = 1,2. In these cases we can
write

_bxcxy + tBy] n = TT/

with ' = %(bi + 4a) for [ = 1 and ' > %(bi + 4a) + tnén for [ = 2. Since v’ €
POSh=((n) =9+ 1 g,) and —j + k+1 =0for I =1 and —j +k+1 =2 for [ = 2,

expression (3.1) equals

b2
Re (Rhu, [r’(:z;,y, hD,; h) — ﬁ] Rhu) + O(hHuH%p/z,h)-
L2

By taking y € (v/2,1), H4 comes at once from Lemma C.1-b). O

4.2 Quality of local approximations

In order to describe the low frequency behaviour of a semi-classical operator we intro-
duce the
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Definition 4.2 The operator a(x,y,hDy;h), a € POSh((n) g,), is said to be an
OLF(hk) if the estimate

Ha(l',y, hDy; h)X(DZ/)H/J(L2) < thkv \V/(l', h) € R x (07 ho)v
holds for any y € C&°(RY).

Lemma 4.3 For given a € P°S™((n)/,g,), 7 € R, and m € N, we set

b=a— aia(x,y,();h)n—’.
al

| <m

Then the operators (656)(:1;,y,hDy;h), B € Z% are Opp(h™*). More precisely, the
estimate

(4.4)”856(:1;,3/, hDy; h)u|lgen < Com ™ THUD) ™ || gessvm—imanin, Yu € S(RY),
holds for any (s,h) € R x (0, ho).
Proof : The whole lemma is contained in (4.4) because

(D)™ Dyl < (DYDY (D, ulls < s

We can reduce the analysis to § = 0. In order to treat separately low and high
frequencies we consider the partition of unity yo + Yoo = 1 with yo € C°(RY), xo = 1
in a neighbourhood of 7 = 0. Let Y., € C*(RY) be such that Y., =1 on supp Y., and
Yoo = 0 in a neighbourhood of n = 0. We write

bY oo "
b= byo + |n|m(+nl)xoo(77)|77|

With the (1,0)-quantization, we have

OP?LO) [b|n|m+1 Xoo(7) 7] H] = OP?LO) [b|n|m+1 0 Xoo(hDy)|hDy| .

But bX=l) ¢ P05h0(<n>jvm_(m+1)’9") implies

||t

Xoo(7)
| Op?l’o) [b|77|ﬂ”(a+3] ullgen < Cansl[tll grtsvm—imenn,

while we have
HXOO(hDy) |hDy |m+1uHHs+]\/m—(m+1),h S hm+1 H <Dy>m+1uHHs+JVm—(m+1),h .

For the low frequencies, Taylor formula gives
1

bxo(n) =(m+1) ¥ (1 =t)"0 a(x,y,tn; h)dt Xo(ﬁ)?7

(o}
o] =m 410 al
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where [fol(l — )"0 a(x,y,tn; h) dt] Yo(n) belongs to P°S"(()=>°, g,). Hence we get

H(bxo)(l', y, hDy, h)uHHs,h S Ca7m75hm+1 H <Dy>m+1uHHs+]\/m—(m+1),h-

a

Proposition 4.4 For any a € 2%, there exists hy, € (0, ho) so that adp, (A" — ")
is an Opp(h'*) for h € (0,h,), I = 0,1,2. More precisely, for (s,a) € R x Z? there
exists hso € (0, hg) so that the estimate

ladg, (AE" = T Yullren < Coth™ (DY) ull esva-cann,  Yu € S(RY)
holds for any h € (0, hs4).

Proof : We write

o 1 o 1 o s s
adDy(Ai’h - Hli’h) = lal athy(Ai’h - Ali-kib) + Blal athy(A?fI—iL - Hli h)-
The first term is estimated in L(H*TVI=UHR o0 Ty some seminorm py(A* — )\;fl_l)
with & = k(s,a). We refer to Proposition 1.8-b). For the second one, we use the
previous lemma (Remind adj,p, aly,hDy) = h'al(aja)(y, hD,)). O

We next consider a simple domain decomposition problem with two nonoverlapping
subdomains. The interface lays at * = 0. Though the general convergence result of
Theorem 3.6 does not provide any order of convergence, the local approximations
(4.1)(4.2)(4.3) lead to a convergence all the faster as h is small. It can be checked that
el =ul —u (i =1, 2) satisfies

n+2
€;

= [A o) = o)) (AT 0) — )] [A* o) 1 (o))
AT (0) =TI 0)] er| _ = Afeer

=0

»=0"

Proposition 4.5 There exists ho > 0 so that the operator Al is an OLF(hQ(H'l)) for
h € (0,ho) and | = 0,1,2. Indeed there exists for any s € R hy € (0, ho) so that the
estimate

| AFel[ger < Coh? M| geomatsnn, Ve € S(RY,
holds for any h € (0, hs).
Proof : For e € S(RY), we infer from H1, Lemma C.2-a) and Proposition 4.4

_ -1
[Afellmen < Call [AH(0) = T (0)] [A"(0) — 11" (0)]
[A="(0) = I1"(0)| €l re-ver,n
_ -1 _ _
< GRS 9y [ARR0) — IT0)] T [AT0) — IO el renrenn

o <141
< RS 0 [ATM0) = T7M0)] el remin -

ol <41
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We have
Dye(y,hD,) = adp, c(y, hDy) + ey, hD,) D,

while adp, and .D, commute. Hence Leibnitz formula gives

o o a—0 B
Dy =% 5 adp " c(y, hDy)D,.

fa

We finally obtain by referring again to Proposition 4.4

HA;LGHHs,h S Cshz(l-l_l) Z HajeHHs_w“),h.
o[ <2(141)

A Semi-Classical Weyl Calculus and Beals Crite-
rion

This appendix presents a semi-classical version of the work of Bony and Chemin in
[2] where Beals criterion introduced in [1] was completely proved. It was done on the
basis of confinement theory developed by Bony and Lerner in [3] to which we also
refer. We introduce the notion of h-confinement for symbols depending on a small
parameter h € (0, hg) and write the semi-classical form of Beals criterion. We only
give a summary of the arguments of [2][3] with indications in order to translate their
proofs in the semi-classical framework.
Contrary to the rest of the paper, we consider here the Weyl quantization

(a¥ (2, kD)) (&) = (Oplalu) (0) = [ “Fa("2E eutypdedy

The corresponding #f;, operation, h € (0, ho), defined by Oply[a#l0] = Oplyla] o
Opt[8] for a,b € S(T*R?), writes according to [2][3][11]

1 2y, X—
(A1) a#hb(X;h) = W//e XX YDy (s ) b(Ya: h)d Y Y,
— %U(Dm,Dﬁ;Dy,Dn) Ay h
€ a(x7€7 ) (y7777 )‘(:%77):(1,75)'
where o(.,.) or [.,.] denote the canonical symplectic two-form on T*R.
The metric g and the weight m > 0 on T*R? are supposed independent of & € (0, ho)
and to satisfy the same assumptions as in [2]:
Slowness of ¢: There exists a constant (y so that

gx(X =Y) < Ty = (gv()/gx()F < Co.
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Uncertainty Principle: gx(.) < g% (.) where g% (.) is the o-dual metric of g,

If we set as usual A(X)? = inf M it writes A > 1.
7#0 gx (T')
We write the temperance condition in its symmetric form which is more natural ac-
gx + QY)U
~ 2
Symmetric Temperance of ¢: There exist ' > 0 and N € N so that

cording to [3] by introducing the metric g%, = (

(gv () /gx () < T (14 g5y (X = V)V,

Slowness of m: There exists a constant C’o > 0 so that

gx(X —Y) < Ty = (m(Y)/m(X))*" < Co.

Temperance of m: There exist ¢' > 0 and N € N so that

(m(Y)/m(X)*' < C (1 + gy (X = V)V

With such a metric ¢ and a weight m, one associates according to [2][3][11] the symbol
class S(m, g) of C* functions a(z,&) on T*R? such that the quantities

‘a(”)(:p, .1y ... T,
m(z, §)

(A2) lallx.smg = sup
z,6€T*Rd
9y e(T)<1,i=1..v
are bounded (a*) denotes the v derivative of a). It is a Fréchet space when endowed
with these seminorms.

In the sequel we will use the following convention: constants depending on the
slowness constants Cy and Cy will be written with a @) superscript; the one which also
depend on the temperance constants C, N, C and N will have a () superscript; if more-
over such a constant depends on hy we use a (?) superscript. Additional dependance
will be indicated by the subscript.

A.1 h-confinement, partitions of unity and remarks

We set Uy, = {X € T*"R% gy (X —Y) < r?} where r = () is a positive constant so
that r* < 6&1.

Definition A.1 a) For a fired h € (0,ho), the space Cont"(g,Y,r) of symbols h-
confined in the g-ball Uy, is S(T*R?) endowed with the topology given by the seminorms

}

. 9 & —k/2
HaHk,Confh(g,Y,T) = mf{C > 07 |aT1 s aTla(‘)()| S ¢ (1 + h 2gY(X - UYJ“))
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where | <k and gy (T;) <1, j=1...1L
b) An h-symbol (a(h))ne(o,hy), that is a family of symbols indexed by h € (0, ho), will be
said h-confined in Uy, if a(h) € S(T*RY) and if the estimates

HaHk,Confh(g,Y,T) S Ck

hold uniformly with respect to h € (0, hg).

Notice that the h-confinement corresponds semi-classically to the notion of support in
the sense that the constant h-symbol (a(h) = a)ne(o,h,) is h-confined in Uy, if and only
if supp a C Uy,,.

The construction of the partition of unity (¢y)yersre given in [3]-Theorem 3.1.3
relies only on the slowness of the metric ¢ and does not depend on h. The functions
@y are uniformly bounded in S(1,¢) and satisfy

/T*Rdwlgyll/de =1 and supp py C Uy,.

Proposition A.2 «a) If the h-symbol a(h) belongs to S(m,g) for any h € (0, ho) then
it writes

(A.3) a(X;h) = [ m(V)ay (X; b)lgy |2y

T*Rd
where the symbols ay (h) satisfy the uniform estimates

v (W)l cont g < L (Bl 50,0
b) Reciprocally, if the h-symbols ay (h) are h-confined in Uy, uniformly with respect to
Y € T*R? then the the integral (A.3) is uniformly bounded in S(m,g) with

2 2
VE, 3,0, a(h)llksmg < CED sup [alh)]lcontt )
yeron

Proof : a) Take ay(h) = m(Y) ta(h)py. Then the estimates come from the slowness
conditions by

|01, ... Or,ay (X h)) i
{ <m(Y)7Or, . Onapy (X; h)| < Chlalh)l[kstm.g) < CoColla(h)|x,s(m.0)
—0 i X ¢ Uy,

b) We have

la(h) k. cont(av.r) < sup{L, M a(h)lly cont(g.vr) < sUP{L hg Ha(h)lx contriy.y.n)
for all b € (0, hg) and our assertions comes at once from the results [3][2] for h = 1. O

We will not give the complete proofs of the next results which are rather long. We
recall their general principle: 1) Establish the estimates for a constant metricy, v < 47,

31



with constants independent of v; 2) For a general metric, reduce the problem to part
1) owing to the slowness and temperance conditions. Here are several remarks which
will allow the reader to translate the proofs of [3]-Theorem 3.2.1 and [2]-Theorem 3.1
and Theorem 5.5 into the semi-classical framework.

Remark A.3 a) Like in Proposition A.2-b), some assertions can be deduced from the
results for A = 1 by using

(14 h %)™ <sup{1, hE}(1 +u)™¥2 Yu>0.

b) When the metric 4 is constant, integration by part in the integral (A.1) is applied
like in [3][2] with the operator 1 + 1[T, Dy,] where T" = Ty, x is chosen so that
(T) =1 and [T,Y; — X] = 77(Y; — X)"/2. Note that h=247 replaces 77 in the
equality

1 k 2i k 2i
(1 + 5[[T7 DYQ]:I) e—f[[Y1—X,Y2—X]] _ (1 T h—l,ya(}/l _X)1/2) e-fl[Yl-X,YQ—X]]‘

c) We need an h-dependent analogue of the quantity 6,(X,Y) =1+ g%y (Ux, — Uy,)
which appears in the symmetric temperance condition

SUXY) = 1+ 0295y (Ux, — Uy,r).
Remark a) applies to &, and 8" so that Theorem 3.2.2 of [3] yields

(A4) thet(l(])ph - oM(X, y)—N<1>|gy|1/2dY <@,
T2SEO_1

We do not use the quantities

ANX,Y) =1+ k™% sup{g% (Ux,, — Uy,), 9% (Ux,r — Uy, )}
and  AM(X,Y) =14 h2inf{g%(Ux, — Uy,). 6% (Ux, — Uy, )}

because it does not seem possible to make the logarithmic equivalence with 6",
stated in [2] for A = 1, uniform with respect to h.

d) At some point, one is lead to estimate for a constant metric vy, v < 47, the quantity

(d+1)

(A%// (1 + h—Q,YU(Yl . X))_(d+1) (1 4 h_Q’VU(Yz N Uz))_ dY,dY,

where Uy = Uy, ,+ for some ' > 0. We first use remark a) and write
(1 B2 —(d+1) 2d+2 o —(d+1)
+ AT (Vo = 0h)) < sup{1 AEH (147 (Y = )Y,
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Then the same argument as in the proof of Theorem 2.2.1 [3] gives
L+7(Ye — Xp) <O (1 +97(Y2 = Uy)).
Hence the integral (A.5) is less than

o/ vi—x ) @+ - _

Cagao | [ (1477(5550) 70 (1 92 = X)) d (B55) d(; - Xa)
which is bounded by a constant Cy s, independent of X, X; and v because
Iyl = 1.

e) The uniform L*-continuity of «"(x,hD;h) when the h-symbol a(h) is h-confined

in the g-ball Uy, is a consequence of Weyl’s formula

" (2, hD; h) = / a(u, 0 h)e' @ +0.D) gy

R2d

which holds in ,C(LQ(Rd)) as soon as a(h) € Ll(de).

A.2 Results

Proposition A.4 (h-biconfinement theorem) For any v,k, N € N, there exist | =
ll(j,;N eENand C = ng,?k),N > 0 so that

1 (ih[Dx,, Dx,]\’
h 19 2
(A.6) lastyrb — OS%:@ ] (—2 A @bl el kCont (0.1r)
< Chl/)\(y)—l/ HaHl,Confh(g,Y,T) Hle,Confh(g,Z,T)57{L(Y7 Z)_N

holds for all a,b € S(T*RY).

The case v = 0 expresses the semi-classical almost orthogonality: if the h-symbols
ay(h) and by(h) are h-confined in Uy, uniformly with respect to Y € T*R? then
ay (h)#5:b7(h) is h-confined in Uy, and Uz, with h-confinement semi-norms estimated

by C,E?J)V@@(Y, 7Z)~N. By taking N large enough and referring to Proposition A.2 and
(A.4) one easily obtain

Vi, 3 =17,30 = C) ladthblly contr ey < Crn(Y)allt.sgns 1Bl cont (o.y0)-
Vi, A =11,30 = O, la# bk sonmrg) < Cllallsim|bllsimg)-

One also obtains that the remainder of the v*-order expansion writes

1 (ih[Dx,. Dx,]\’
agtib— 3 .—,(—Z [[ = X?“) @b

0<j<r ]+

= h"R,(a,b;h)

Diagonal

where the h-symbol R,(a,b; h) satisfies the estimates

Vi, 3= 110,30 = C), |[Ru(a, b 1) |kspmmn-rv.g) < CllallismBllis(mrg)-
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Proposition A.5 (Decomposition of h-confined h-symbols) For any K > 1, v > 0
small enough and any family ay (k) of h-symbols uniformly h-confined in Uy, there
exists two families by, (k) € S(T*RY) and cy, (k) € S(T*RY) for (Y,v) € T*"R? x N so0
that

ay(h) = 3 by, (h)#er.(h)

veN

and so that for all N € N, the h-symbols (1 + v)Vby, (k) and (1 + v)Ney,(h) are
h-confined in Uy g, uniformly with respect to (Y, v).

Here is a remark about the proof which can be adapted from [2]. As we said, the
small parameter h appears in the quantization and in the integrations by parts. The
last argument of the proof of [2] relies on a decomposition in Fourier series. It is a
technical trick required to inverse some tensor product operation, while the metric v
is constant. The small parameter must not appear in the phase of these Fourier series
if one wants to get uniform estimates.

Next the constant K > 1 is fixed and one takes a ¢g-partition of unity ¢y, Y € T*RY,

so that supp ¢y C Uy, k. The above Proposition provides two families of h-symbols
Yy, (h) and Oy, (k) uniformly h-confined in Uy, so that ¢y = 3, ey ¥y, (h)# 50y, (h).

Definition A.6 For a weight m satisfying the slowness and temperance conditions and
for any h € (0, ho), we define the Sobolev space H"(m,g) as the space of u € S'(R?)
such that

S [ mY P10, (e D yulalgy 24 < o,
veN JT*R4 ’

It is a Hilbert space when endowed with the scalar product
(s V) () = y%:N/T*Rdm(Y)Q (0%/(:1;, hD,:; /1)117(9)1/}7711(;1;7 hD,; h)v)];z |gy|1/2dY.

The h-biconfinement estimates given in Proposition A.4 with v = ( are indeed sharper
than the one obtained for & = 1 according to Remark A.3 a). Meanwhile the uniform
L*-continuity of h-confined h-symbols is given by Remark A.3 e). Hence the method
developed in [2] which proves the continuity of pseudo-differential operators via Schur’s
lemma and almost orthogonality applies as it is in the semi-classical framework.

Proposition A.7 a) If the weights m and m' satisfy the slowness and temperance
conditions, then the quantized operator " (x,hD,) of a symbol a € S(m,g) sends
continuously H"(m',g) into H"(m'/m,g). Morcover there exist k = ki;) € N and

C = Cﬁi)m, > 0 so that

0™ (@, D) c(arn e g), 10 ot fmog)) < Clli,s(m.)-

b) The space H"(1,gq) is nothing but L*(R?).
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Next we write Beals criterion in the form proposed in [2]-Remark 5.6 which is
more convenient for our purpose. With a vector Ty € T*R?, Ty # 0, we associate the
operator L% = Oply ([To, X]) where [Ty, X] denotes the linear form X — [Tp, X]. A
finite sequence of such vectors will be written T'= {7, #£0, j =1...|T|}.

Theorem A.8 a) An operator A : S(RY) — S'(RY) writes a"(z,hD) with a €
S(m,g), h € (0, ho) being fized, iff the quantities

—IT| =1)pW .
3 o D) (11 iy ) e

11
i<IT]
are bounded by constants Cyr| independent of (Y,v) € T*R? and of the choice of T},

gy (Ty), forj=1...]T].
b) If we set

MMA)= sup h—ITIHQ;YU(x,hD;h) 1 adp, Al lere
|T|§(k,)y,y J<IT) B
gy T] <1

the above condition is equivalent to the finiteness of these quantities for all k € N and
we have

(A7) Wk, 30 =1, 3C = Y, J[allk sy < CMJ (" (2, hD)).

Remark A.9 a) The normalization factor h='Tl is here in order to compensate the
gain of h induced by each commutator adLg .

J
b) Since the estimates reverse to (A.7) are a consequence of semi-classical calculus, the
second assertion means that the two topologies on S(m,q) defined by the seminorms
(A.2) and M} (a" (x,hD)) are uniformly equivalent with respect to h € (0, ho).

A.3 Applications

We first develop the final remark of [2]-Section 5 concerned with diagonal metrics

and finally apply our results to the metric dz? + %. Like in [2], we make the more

general assumption that there exists a fixed basis & = {e;, ¢ = 1...2d} of T*R?
so that the convex hull of {¢; = gy(ei)_l/zei, i = 1...2d} contains the gy-ball of
radius o for some o € (0,1) independent of Y. As an example if the metric gy is
diagonal in the basis £ it is true with ¢ = (2d)7Y/2. We consider E-valued finite
sequences K ={F; € £, j=1...|F|}. With such a sequence we associate the weight
mp(Y) = <z gy (E;)'/? which satisfies the slowness and temperance conditions and
the normalized sequence given by Ej =gy (E)"'V2E;, 5 =1...|B|.

Proposition A.10 Under the above assumptions, an operator A : S(R?) — S(RY)
writes a"V (x, hD) with a € S(m,g), h € (0, ho) fized, iff the quantities

N,?(A) = sup h_|E|Hj<H adL%J AHL‘(L?,Hh((mmE)—l,g))

|E|<k <|E]
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are all finite. Moreover the equivalence estimates
(A8) Wk, 3 =17, 3C = O, |||k spmg) < ON/(a" (2, kD))
are uniform with respect to h € (0, ho).

Proof : The h-confinement in Uy, of fy,,(h) uniform with respect to (Y, v) combined
with the temperance of mmyg which can be made uniform with respect to £, |E| <
k imply that (m(Y)mg(Y)) 'y, (h) is uniformly bounded is S((mmg)~, ¢). More
precisely the k-th semi-norm is estimated by C,fl)E|. Hence Proposition A.7 yields

h—|E|(m(y)mE(y))—1Heyy(x,hD;h)( I ady, A) leqezy < Cla|Ni (A)

i<|E|

which also writes

h—lElm(Y)—lue;Yy(x,hD;h)( ad A) lews) < ClNjip(A)-

I
Ji<|E|

Our assumption ensures that any vector Ty satisfying gy (7o) = 1 writes Tp = 3 Aié;
<2d

<2

with A; > 0, 35,c00 A < o~t. We conclude with
MJ(A) < o " CIIN](A), VheN.
O

For general metrics and weights, the above Proposition is not simpler than Theorem
A.8 because Definition A.6 of Sobolev spaces H"(m, g) involves the family of A-symbols
fy,.(h). However in the case in which we are interested, that is with the metric g¢ =
da? + % and the weights (£)*, s € R, the Sobolev spaces H"((£)*,g¢) are nothing
but the standard Sobolev spaces H*(R?) with the h-dependent norms introduced in
Section 2. This is a straightforward consequence of Proposition A.7: the operator
(hD)=* = Opl,((£)=*) defines an isomorphism between L?(R%) and H"((£)*, g¢) on one
side uniform estimates with respect to h € (0, ko) and an isometry between L%*(R)
and H*"(R?) on the other side. In T*R%, we take the basis & = {e1,...,¢eq,€5,..., €5},
where {e1,..., ¢4} is the canonical basis and {e,..., e} its dual basis. Then we have
L"(e;) = hD; and L"(e}) = —z; for i = 1...d while Jacobi’s identity gives

adxi adhpi, — adhpi, adxi = — adh(gi i =0.
Hence if E' denotes an &-valued finite sequence we have

. B
I ad —ad®rad’ = 11 ad®y, [T ad”
gy ) T EERD S e T g D i

where «; and 8, are the occurence number of ¢; and €}, in E. Finally we notice that
the weight mp defined above equals mp(z, &) = (£)71°l and Proposition A.10 now has
the form
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Proposition A.11 An operator A : S(R?) — S'(RY) writes o' (x,hD) with a €
S((E)*, ge) tff the quantities

N]?(A) = sup h—|0l|-|ﬁ|” ang adgA"E(L27H|’B|_S7h)
lor|+18|<k

are all finite. Moreover estimate (A.8) still holds uniformly with respect to h € (0, hyg).

Remark A.12 a) Since (hD)™, m € R, satisfies the criterion and adp is a derivation,
the norms in L(L*, HPI=*") can be replaced by norms in L(H™", [Hm+Bl=shy,

b) In Theorem A.8, Proposition A.10 and Proposition A.11, the result holds with the
standard (1,0)-caleulus and more generally with any (t,1—t)-quantization as soon as the
metric g is splitted, ¢, ¢(tz, —te) = gue(ts, te), owing to the equivalence of quantizations
in this case.

B Factorizing Semi-Classical Elliptic Operators

As it is well known, factorizing elliptic operators with an arbitrarily smooth or small
remainder is related to the construction of Calderon projector. Instead of using com-
plex integral and residue formula like in [4][11][21], we follow the method of Treves in
[22] which is convenient in our case with flat boundaries. From a technical point of
view, it gives at once uniform estimates in our framework. Secondly, it is completely
constructive and provides a suitable algorithm for applications.

In order to use the (1,0)-calculus corresponding to the quantization

(B.1) Az, z'; h):/ ei%ﬁa(x,f;h)%.
R

with which differential operators are easier to handle, we assume the metric ¢ to be
splitted g, ¢(ts, —te) = gre(ts,te). For h € (0, hg), the Schwartz-kernel (B.1)defines
an operator denoted by a(x, hD;h) or Op"[a(h)] continuous from S(R?) into S'(RY)
when a(h) € S'(T*R?) and continuous from S(R?) (resp. S'(R9)) into S(R?) (resp.
S'(R%)) when a(h) belongs in a symbol class S(m, g). We consider the space S (m, g)
of h-dependent symbols a(h) uniformly bounded in S(m, g) with respect to h € (0, ho).
Endowed with the semi-norms p"(a) = SUD he (0,ho) la(P)]1,5(m,g), Where the |||, 5(m.9)
are defined by (A.2), S"(m,g) is a Fréchet space. The bilinear mapping #" defined
by
Op” [(a#"b)(h)] = Op" [a(h)] 0 Op" [b(h)]

satisfies

(a# B)(w, &) = PePra(a, & h)by, n: b))

(Zh)|a| o o N

(B.2) = X D¢aDgb(x, & h) + ™ Ry (a, b)(x, &5 )

o<y !

(y:m)=(2,¢)
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where, for any N € N, the mapping (a,b) — Rx(a,b) is continuous from S"(m,g) x
Sho(m/, g) into ShO(TiTﬁ/,g). Remind that when a and b are polynomials, that is when
a(x,hD) and b(x,hD) are h-differential operators, formula (B.2) is nothing but the
Leibnitz rule and the remainder Ry is zero for N large enough.

The principal symbol o, ,(a) (or simply o,,(a) when the context is clear) of a €
Sho(m, g) is defined as its class with respect to the equivalence relation

(a=0) < (a—b=hewith c € Sho(%,g)).

This equivalence relation is compatible with addition and multiplication of symbols
and we can define o,, 4(a) + 0., 4(b) = opy(a 4+ b) and o, (@) 4(0) = O g(ab).
The expansion (B.2) implies

UmW,g(a#?o,l)b) = Omg(@)om g(b).

As a consequence of the equivalence with Weyl calculus [11] for a splitted ¢, the formal
adjoint of a(z, hD;h) writes b(z, hD;h) where b € S™(m,g) is a continuous function
of a € S"(m,g) and

Oing(b) = 0 g(@).
Note that in the sequel, we do not distinguish by notations the principal symbol o, ,(a)
as a class and an arbitrary representant.

B.1 A class of polynomial symbols

We consider semi-classical pseudo-differential operators on R4! = R, x RZ which are
h-differential operators with respect to z. Their (1,0)-symbol in T*R%*! have the form

a(z, &, y,m; h) =2 ar(x,y,m; h)E*

where for any (j,k) € N x {0,...,n} da(x) is uniformly bounded in S™(mA\*, g)
with respect to * € R. We call P"S"(m, g) the space of such symbols endowed with
seminorms

pz}j,j,k (a) = SUE pﬁ,k(aiak(l’))
EAS

where (pffk) is the complete family of seminorms on S™ (m ¥, ¢) defined in the previous
paragraph. The Leibnitz rule for differential operators, allows to define a #” operation
for the above polynomial symbols so that

Op"[(a#"b)(R)] = Op"[a(h)] 0 Op"[b(h)].

For a € P"S"(m, ¢) and b € P S (m’, g), we get

(" D)y &)= 52 (") Jondtlony Diber] (s )ETIERD,
0<i<n—k<n
o<k <n!
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The mapping #” is continuous from P"5% (m, ¢) x P S (m/, g) to P 5% (mm’, ¢).
The asymptotic expansion is derived by referring to (B.2) for each term. Like in the
previous paragraph, we introduce the equivalence relation on P"5" (m, g),

(a=0b) & (a—b=hcwith ¢ € Pnsho(%ag))a

compatible with addition and multiplication. The principal symbol o, ,, 4(@) (or simply
Onm(a)) of a € PPS™(m, g) is defined as the class of @ and we have

Un-l—n’,mmﬁg(a#hb) = Un,m,g(a)an’mﬁg(b)-

B.2 Factorization

In this paragraph we consider a semi-classical operator

P2, hDyyy, hDys h) = (hD,)" + 5> Pilw,y, hDy; h)(hD,)" ™"
1<j<n

of which the symbol equals P(z,&,y,n;h) = §" + YXicjcn Pe(2, &y, m;3 h)E"* and be-
longs to P"S" (1, g). We assume this operator to be elliptic in the following sense.
Ellipticity assumptions: a) There exists a representant of the principal symbol o, 1(P)

which considered as a polynomial function of ¢ admits nt (resp.n™) roots & (z,y,n; h),
i = 1...n%, with a negative (resp. positive) imaginary part. The integers nT and n~
do not depend on (z,y,n; h) and satisfy nt +n~ = n.
b) The roots ¢E(x,y,m;h), i = 1...n%, belong to PSh (X, ¢) with

. _l_ o _

_inf & =& = CA
=1l..n—

where C' > 0 does not depend on (z,y,n;h).

Notation: We set M*(z,{,y,m;h) = 11_[ i(f —&i(x,y,m; h)) and n* = min(nt,n7).
Theorem B.1 There exist two sequences of symbols (A )en, AL € P”i_lsho()\l_k,g)
so that:

a) ope (67 + AF) = o, (ME).

b) The symbols M = f”i—l—zkd\f hFAE € P”iShO(l,g) satisfy P— M%i#"My = bV Ry
with Ry € P Gho(\n=n"+1=N gy c Pr=1Gho (A\=N g) C PnSho (AN ¢).

In order to get the remainder Ry precisely in P =1 Sk (\n=m"+1=N ¢} we will use a
kind of euclidean division.

Lemma B.2 a) Assume My to be defined as above and Ry € Pr1Sho (AN g), then
there exist Q% € P”+_15h0()\1_N,g) and Ry € PV ~1Sho (A= +1=N ) 50 that Ry =
QN#" My + By .

b) Assume M7 to be defined as above and Ry € P"=1S5"(MN=N ¢} then there exist
Qy € PP 1SR (NN g) and Bf, € P 1Sk (A =N g so that Ry = MA#"Qx+
R%.
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Proof : a) Indeed we prove that for r, € P*=*Sho(M\=N gy 1 < k < n't there exist
qr € P”+_k5h°()\k_N,g) and rpy1 € P”_k_lsho()\k"'l_N,g) so that r, = qk#hM]?f—l-rkH.

When it is done, it suffices to start from r; = Ry, to construct recursively the r.’s up to
"ot 11 = Ry and to take QF = > 1<k<n+ & Which finally belongs to P”+_15h0()\1_N,g)
owing to the inclusions

POS" (A" =N g) € ... C PPTTESh (AN g) € PPTILSR (AN ),

So let i = Yo g ThyE" T T with vy ; € POST (AN ) We have

ry = l > Tk,jfnJr_k_j] £+ > Tk,jfn_k_j

0<j<nt -k nt —k<j<n—k

= |m e - s e

0<j<nt—k 1<<n-
+ > €t
nt—k<j<n—k
by writing My = &" + X 1<j<n- M&jf”__j. The fact that gr = Y o<j<pn+—k rk7j§”+_k_j
belongs to P”+_k5h°()\k_N,g) is a consequence of definitions while semi-classical cal-
culus ensures that

s s o
Pt = % TN [ X kg " ]] # [ 2 My € ]]
nt—k<j<n—k 0<j<nt —k 1<5<n~

belongs to Pr=F=1Gho (\FH1=N )
b) Due to the commutation relationship

o Al y,m ) — Az, y,m; h)#(o1)§ = hd:A(z,y,n; h),

we can write
by= ¥ (E#") "Ry,
0<;j<n—1
The same arguments as above works by transposing the operations on the left. Namely
we replace the left factor (f#h)”+ by M7 — Yicicnt M]*V'Jfﬁ -J 0

Proof of Theorem B.1: We construct the AF’ s recursively.
N = 1: By semi-classical calculus, we know 0271(]3) = UZJ,J(M"')UZ_J(M_) which
means

P—M*Y#"M~ =hR,, Ry eP"S™(\7! g).
Since P and M*#"M~ have the same leading term ", Ry € Pr=18h0 (A0 g). We
conclude by referring to Lemma B.2: If nt > n~ we take My = M~, Ay = M~ —&",
AT = MY — & + hQF, Mt = Mt + hQF and R, = Ry. Otherwise, if n™ < n~ we
take Mt = M+, AT = M+ — ¢ Ay = M~ — & + hQ7, M7 = M~ + hQ} and
Ry = Rf. Note that the principal symbol of AZ and M are not changed by the last
operation.
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N = N 4 1: We now suppose that the Af’ s are known for k£ < N, N > 1, and satisfy
P =ME#" My + bV Ry, Ry e PP (AN o) ¢ Prlghe (AN g),
We want to construct AL € Pr+=18% (=N ¢) 5o that Mﬁ_l_l = MZ + BV AL satisfy
P =M # My + 1Y Ry, By € PUTIS (VTN ),

By the same argument as above relying on Lemma B.2, the problem is reduced to the
construction of AL € P =15 (\=N ¢} 50 that

P =My #' My + WV Ry, Ry e PSR (AN ),

by setting M;\_Lu-l = Mi+ hNA]iV One easily checks that the A]iv and Ry, have to

solve
(B.3) AL# My + ME#" Ay — Rly = —hRyy1 — WYV AL#" A
From A% € Pre=tSho (NN ) Ry € P15 (AN g) and N > 1 we infer

AZ# My + ME#M AN — Ry € Pr15To (AN )
and  AL#M Ay € P25 (AN ) € PrlSho (AN g).

As a consequence, it suffices to find A]iv solving
Cucii-n |AGH#IMY + ME#AS — R =0
(B.4) or AyMt + ALM™ = Ry

When (z,y,n; k) is fixed, the polynomials M*(£) = ;= (£ — &) have no common
root. Thus by Bezout Theorem, the linear mapping: (f,¢g) € C*” ~'[¢] x c e —
fMT 4+ gM~ € C*'[{] is an isomorphism and (A}C,flfv) is nothing but the inverse
image of Ry. It remains to specify the behaviour of A]iv with respect to (x,y,n;h). We
set
Ajiv = 2 Ajiv,jfni_l_j
j=0...nt -1

and we will verify A]ivj € P”i_IShO(Al_NH,g). By writing equation (B.4) for ¢ = &F,
i =1...n%, we get two indepent linear systems which determine the coefficients

MFEEE T L MFEET T Ry(eh) ... MF(E)

A - M7 (¢)et, ! . M*(ffi)ﬁfi”i‘: Ry(es) ... MF(ES)
’ MF(E)eE" ™ M) MF(eE)
MF(EE)EET MFE) R L M)
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MFEHE™ . Ry(e) ... M)

_ IMFenHE" T L Ra(E) .. MF(ES)
i:11._.[.ni MjF(fli)] L<k<l;['<7ﬁbi(§’“i o fki’)

where the polynomial Ry appears in the (5 + 1) column, j = 0...n* — 1. By the
multilinearity of the determinant, we can separate the contribution of the (z,y,n;h)-
dependent coefficients of M¥ and Ry from the contribution of the &£ € S* (A, ¢). We

set MT = M;Ffﬁ_i and Ry = > RNJf”_l_i and the above quotient splits
0<i<n¥ 0<i<n—1

as a sum whose terms write

+n—1—iy +n—j—1; +n—1—1¢ +nFT—i 4
1 LEEIEY 1 1 LEEIEY 1
+ + AF + —1—1 —j=t —1—1 T
Mil e MZJ RN7ZM,L']+2 e Mlnﬂ: f;lb::tn 1 . f;lb:in Iy fi:j:n g . f;lb:j:n Int
[Hi:l...ni M?(f})] (6 — &5
k k!
1<k<k'<n*

The assumptions on M ¥ and Ry imply that the numerator of the first quotient belongs
to POSho (Nt F1=Ntitisa+it o) while the second quotient is a universal symmet-

ric polynomial of (&, ..., ¢%,) of which the total degree equals ntn™ +j — (i1 4+ -+ +

i;+ ¢+ 149+ i,2). The ellipticity assumption ensures (ngiigk—) c S\ g), for
alli=1...n%, k=1...n", which yields m € S\ g), fori =1...n* We
finally obtain zzlji\f] € Sho(MH-N gy and A% € P”i_IShO(Al_N,g). 0

Remark B.3 a) In the case n = 2, n* = 1, the euclidean division described in Lemma
B.2 has to be performed only once for AE. Indeed if Ry is a polynomial of degree
0 with respect to &, the symbols AL € POSho (AN g) given by equation (B.4)verify
121]"\} + 121]_\7 =0 and Ry41 derived from identity (B.3) is again a polynomial of degree 0.
b)In the above proofs, the + and — signs can be interchanged and we state the

Theorem B.4 There exist two sequences of symbols (BE )yer, BE € P”i_lsho()\l_k,g)
so that:

a) ope1 (67 + BE) = 021 (M7).

b) The symbols M'E = f”i—l—zkd\; h*BE € Prs™ (L9) satisfy P—M'y#"M'Y = WV Ry
with Ry € P71 8ho (\n=n"+1=N o) c PrSho (AN ¢).
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C Functional Analysis of Semi-Classical Opera-
tors

This appendix is restricted to the metric g, = dy* + %. Some results are standard
(see a.e. [10]). However it provides the precise statements to which we often refer
along our analysis. Let us first consider properties which are uniform with respect to

h € (0, ho)

Lemma C.1 a) Let the symbol a € S™((n)™,g,), m > 0, satisfy the ellipticity con-
dition |K + a| > Co(m)™ for some constants K € C and Cy > 0. Then for every
h € (0,ho) and every s € R, the operator A" = a(y, hDy; k) defined on H*"(R?) with
the domain D(A") = H**™"(R?) is closed and the domain of its adjoint A*=" with
respect to the H*"-scalar product is also D(A**") = H*+t™"(RY).

b) If the principal symbol o (,ym(a) (indeed one of its representative) of a € S™ ((n)™, g,),
m € R, is real-valued, then we have

(C.1) Im(w, a(y, hDy; h)u)}ﬁh < CaﬁhHuHiI#yh, Yu € H%-I-m,h(Rd)‘

If further this principal symbol is bounded from below by Co(n)™, then we have

(C.2) Re(u,a(y,hDy ;h)u > W omm(a)(y, hDy; h)u

- a,shH HH#M VUEHiiJ’m’h(Rd).

The constants C, s and C', s only depend on s and finitely many semi-norms of a

Proof : The problem can be reduced to the case s = 0, while replacing a(y, hDy; h)
by as(y, hDy; h) = (hDy)*a(y, hDy; h)(hD,)=*. Since oym(as) = opym(a), the assump-
tions of a) and b) are also satisfied by as, by possibly changing the constants.

a) For the sake of simplicity, we assume K = 0 and fix A = 1, which does not affect the
validity of the next arguments. We have |a| > Co(n)™ so that a=' € S({n)™™, g,).
Pseudo-differential calculus gives a '#"a = 1 —|— by, by € S((n)~ ' g,) and we can
construct by induction a1 = @', by, az = a”t —atby, by ..., ar € S((n)7", g,),
b, € S({n)7*,g,) so that ar#"a = 1 + by. Let u™ € L*(R?) converge to u € L*(RY)

while a(y, D,)u™ — v as n — oo. We have
U+ by (y, Dy)u = nh_{go an(y, Dy)aly, Dy)u”™ = an(y,Dy)v in Lz(Rd)

so that u = a,,(y, Dy)v — b, (y, D,)u € H™(R?). Since the pseudo-differential operator
a(y, D,) is continuous: S'(R?Y) — S’(R?), we also conclude v = a(y, D, )u. The operator
A = a(y, D,) defined on L*(R?) with domain D(A) = H™(R%) is closed. By the density
of S(RY) in L?(RY) and the imbedding L?(R?) € S'(R%), the adjoint A* of A is nothing
but the formal adjoint a(y, D;) with domain D(A*) = {u € LA RY), a(y,D,)*u €
L*(R%}. The equivalence between the Weyl- and (1,0)- calculus implies a(y, D,)* =

43



(@a+c)(y, D,) with ¢ € S((n)™*,g,). Hence we can find a constant K’ € C so that o’ =
K'+ a+ c satisfies |a'| > C'o(n)™ while D(A*) = {u € L*(RY), '(y, D,)*u € L*(RY)}.
By taking ', € S((n)™",¢,) and b,, € S((n)~",¢,) so that a',,#a =14V, we get

u € D(A*) = u= a/m(vay)a(vay)u - bm(vay)u S Hm(Rd)

and D(A*) = H™(RY).
b) The difference between the symbol a € S™((n)™,g,) and a representative of its

m—1

principal part writes hb with b € S"({5)™~! g,). Hence we can suppose the symbol

itself to be real-valued. The equivalence with the Weyl semi-classical calculus gives
a(y,hDy; h)* = (a + he)(y, Dy; h) with ¢ € Sh((n)™=1 g,). Hence for any u € S(R?),

we have the estimates
 h
Im(u, a(y, hDy; h)u)re = %(u,C(y,hDy; hyu)re < Cohlfull? mes

which extends to any u € H™"(R?) by density.
If @ > Co(n)™, then its square root \/a belongs to 5™ ((n) %, ¢g,). Semi-classical calculus
yields

Sla(y, kD h) + aly, kD Y] = (Va)(y, hDy: h)(Va) . RDy; ) + he(y, hDy: h)

with ¢ € S™((n)™~1,g,). We obtain for any u € S(R%)

Re(u,aly. Dy hu)e = |[Valy, hD,: hYullis + h(u,cly, hD,: hyu)e
> Waly hDys byulie = ColJull? s,

and we conclude by a density argument like above. a
We end with some refinements of the previous lemma which hold for A “small

enough”.

Lemma C.2 a) Let a € S"((n)™,g,), m € R, satisfy |a| > Co(n)™ for some constant
Co > 0. Then there exist hy, 0 < hy, < hg, depending on finitely many seminorms of
a, and a’ € S"((n)~", g,) so that

a#t"a = d'#"a =1, Yh € (0,h,).

b) Let the symbol a € S™((n)™,g,), m € R, satisfy Re(a) € S"((n)*, g,) with Re(a) >
Co<77>k, m—1<k<mand Cy > 0. Then there exist hys € (0,ho) and Cys > 0,
depending on a finite number of seminorms of a and on s, so that

Re(u a(y, hDy: h)u)ysn 2 Cosllul sge,, Vo€ HIHRY, h€ (0, has).

c) Let the symbol a € S™((n),g,), satisfy the uniform estimate K + Re(a) > Co(n)
for some constants K € R and Cy > 0. Let A; = a(y,hDy; h) be the operator defined
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on H2MR?), s € R with the domain D(A,) = Hsér_l’h(Rd). Then there exists hy(q) €
(0, ho), depending only on a fixed number of seminorms of oiy(Re(a)), so that the
resolvent of A, is estimated by

_1H . < Ca,s
L(H2M) = 1+ |z|’

(C.3) |(z — was — As) Vz e C,Re(z) <0,

with constants w, s € R and Cy s possibly depending on a and s, for all h € (0, hy(q)).

Proof : a) By considering (hD,) " a(y, hD,; k), the problem is reduced to the case
m = 0. We write (a™1)#"a = 1 + hb and a#"(a') = 1 + he with b,c € Sh((n)~1, g,).
For some h,, 0 < h, < hg, the operators (1 4+ hbd)(y, hD,;h) and (1 + he)(y, hDy; h)
are invertible as soon as h < h,. Hence a(y,hD,;h) admits a left and right inverse
A", We next check A™ = a'(y,hDy; h) with @’ € S"(1,g,) by referring to the Beals
criterion of Proposition A.11. By applying multi-commutators to a(y, hD,; h)A’h =1,

we have
A% ad? A" = O 5 A" adot ad hD,: h
a Y a hDy — (a1, )_|_...+Z(: )=(ar8) @iy fi a y a hDy Cl(y, Y ) o
00 A" addtad), a(y, hDy; h)A™.

Then the proof is done if A" is uniformly bounded on HEYR?) for k € N. Tt comes
at once by induction from the identity
(hD)A" = [(hD,), A"| + A"(hD,)
= —A"[(hD,),a(y, hDy; )] A" + A" (hD,).

b) We first write

Re(u, a(y, hDy; h)u) o = Re(u,Re(a)(y, hDy; h)uw) g
— Im (u, Im(a)(y, ADy; h)u)gon -

By referring to estimates (C.1)(C.2), we deduce

Re (u, a(y, hDyi W) 2 R = Cosh (Il cpms , + [l sscs |

2
lyRe(@)[ren = Cashllull” s ,-

According to part a) we can choose h, small enough so that \/Re(a)(y, hD,;h) is an
isomorphism from H#’h(Rd) onto Hz"(R%), for all 0 < h < ho(a), With uniform
estimates. Then h,, < h, is taken so that the negative term does not exceed half of
the first one.

c¢) By possibly replacing the symbol ¢ by K + a, we can assume Re(a) > Cy(n). For
the sake of simplicity we consider Re(a) as a representant of its prinsipal symbol. We

Y
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take (4 € (0, ho) so that \/Re(a)(y, hDy; h) is an isomorphism from Hz"(R9) onto
Hir_l’h(Rd). Due to the boundedness of (hD,)~"2a(y, hD,; h){(hD,)~ /2, HS;r_l’h(Rd)
is a form domain for ¢(u) = (u,a(y, hDy; h)u) We first check that ¢ is strictly

m-sectorial in the sense of [20]-Vol.I, that is

Hh:

qu) € Sus ={2€C, —0,5<arg(z —wys) <05}, Yuée HS;r_l’h(Rd)
with 0, s < 7. Estimates (C.1) and (C.2) extended to u € Hsér_l’h(Rd) give
Req(u) > [VEea(y, hD,: Bl s — Coshllull g

while we have Im ¢(u) < C’aﬁHuHiIﬁh. Hence we can find h,(,),s > 0, €45 > 0 and
wy,s € Cso that e“(q + wq,s — 1) is strictly m-accretive as soon as —g, s < ¢ < g, and
h € (0,hy0),;). Then we take 0, , = § — €4,. By Lemma C.1 a), the operator A =
a(y, hDy; h) with D(A) = H>+t""(R?) is closed and D(A*) = H2+YH(R?). Meanwhile
we have

q(u) = (u, Au) 50 = (A"u,u) Yu € D(A) = D(A*) = H2T"(RY).

H5h

By Proposition of [20], A is the unique stricly m-sectorial operator associated with the
form ¢ and therefore satisfies for Rez < 0

Ca,s

Z— e — A )
(2~ s — ) Far

S dlSt(Z - wa,sa Sa,s)_l S

! H/;(Hih)
O

We next use the above properties in order to study some parabolic evolution sys-
tems. Let a € P°S™((n),g,) be such that om(Rea) > Co(n) where Cp > 0 does not
depend on h € (0,ho) and = € R. We consider the operator A*(z) = a(z,y,hDy;h)
defined on H*"(R%) with domain D(A"(z)) = H**'""(R?). According to the above
lemmas we know that this operator is closed and satisfies estimate (C.3) uniformly
with respect to (z,h) € R x (0, hsa),s). According to Lemma C.2-a), the resolvent
(wa.s + A"(2))7! is a uniformly bounded operator from H*"(R?) into H**'"(R?) and
we obtain

(C.4) (A" (@") = A" (@)} (was + A" (@) ey
< | AM") — Ah(fl?/)H.c(Hsth,Hsyh)H(Ws + Ah(fl?))_lH.c(Hsyh,leyh)
S C/s|$// _ $/|.

Hence the z-dependent operator w, ;+ A" (z) satisfies the three assumptions of Tanabe-
Sobolevskii theorem (see [19][24]), that is : constant domain, resolvent estimate (C.3)
and uniform smoothness (C.4). After a conjugation with ¢~ % ~ this theorem yields the

46



Proposition C.3 Under the above assumptions on a € P05h0(<n>,gn), there exists

ho(a) € (0, ho), so that the initial value problem
hoyu + a(x,y,hD,;h)u =0, v > 2’
(C.5) { (z,y vi )

u =0

defines an evolution system S"(2",z'), ' < 2" on H*"(R?) for every s € R and
h € (0, hoy). Moreover this evolution system has the properties:

a)As a bounded operator on H*"(R?), S*(z" z') is strongly continuous with respect to
o 2" 7 < ol

b) For ' <", S"(z",2") is a bounded operator: H*"(RY) — H*TLVH(RY). As an el-
ement of L(H*"(RY)), it is strongly differentiable with respect to z". Its derivative
hdpunS™M (2", 2"} belongs to L(H*"(R?)) and is strongly continuous with respect to ', 2",
' < 2" with the identity

honS™ (2" &'y + AM(2")S" (2", 2y =0, 2’ <2,

c) If v € H Y (RY), Then S*(2", 2" v is differentiable with respect to z', 2", for z' < 2"
and we have

RO S™ (2", 2o = — AM(2")S" (2", 2" )v
and  hO.SM (2" 2" )o = SM(2" ") AR for 2" > 2.

d) If ve HP(RY), k € N, then S"(2", 2')v € flyﬁock_j({x' < 2"}y, HHh(RY)).
]:

Accurate exponential decay estimates for the evolution systems involved in our problem
are provided in the text. Here are some other estimates which will be useful.

Lemma C.4 Let u(z) = S"(z,z0)up for x > o with ug € H5+1/2’h(Rd). We have for
every h € (0, ho(a))

o0 o0
[N pennnds < Co oo+ 4 [ e Byond]
&0 Zo

Proof : For z > 2’ > g, u(z) = S"(x,2')u(2’) is a classical solution in H*"(R%) and
in HotY/2h(RY) of
ho,u + Ah(:zj)u = 0.

By taking the H*"-scalar product with u(z), we obtain
RO ||u||3ren = =2 Re(u, A™(x)u)pen

which implies
1 l,//
(@ n > - [ 2Re(u, Au)gen(w)da

~— h z!
l,//

Ca,s
h [/x, (@) Frewssan = Clashllu(@) zronde |

Y
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We do the same with the H*t'/?"_scalar product and we obtain

1

C z
M = S | [ ol ns = )]
T

Putting these two estimates together yields

1

// |u(@)||Frerrndr < C, sk ["u(ml)"?qs+1/2,h + // hHu(:z;)quhdx]

and we conclude by taking the limit as @’ — 2 and 2" — oc. O
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