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In this paper, we study the convergence of domain decomposition methods for the

solving of advection-di�usion equations

(Br� h divCr)(u) = f;(0.1)

where B is a given vector �eld (B

x

> 0), h is the viscosity and C is a positive de�nite

symmetric matrix. Equation (0.1) models the transport of a quantity u (e.g. dyer,

temperature, energy, : : :) by a vector �eld B and its di�usion scaled by a usually small

viscosity coe�cient h. It arises in many di�erent areas like environmental 
ows, semi-

conductors, 
uid dynamics,: : : . It is also involved in the numerical computation of

Navier-Stokes solutions by successive linearizations techniques (see e.g. [9]). Domain

decomposition methods are well-�tted to the solving of (0.1) for very large scale prob-

lems on parallel computers. Roughly speaking, the idea is to solve a boundary value

problem by decomposing the domain into overlapping or nonoverlapping subdomains.

The equation is satis�ed in each subdomain. In order to enforce continuity of the solu-

tion and of its derivatives, the interface conditions are imposed in an iterative manner.

The main computational interest lies in the saving of memory which enables to treat

very large scale problems (see [13] and references herein). It is also of mathematical

interest since it is related to the factorization of elliptic operators and to the study of

Dirichlet-to-Neumann operator.

We consider three iterative domain decomposition methods in a simple geometry.

The whole space is decomposed into N vertical strips with possible overlaps. The
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three methods di�er by the updating of the solution in every in subdomain. The

�rst algorithm is the additive Schwarz method (ASM) which consists in updating the

solution at the same time in every subdomain. In the second algorithm denoted by

DSA, the updating is made by double sweeps over the domain. In the third method

called FDA, the solution is updated by 
ow directed sweeps over the domain (
ow

directed Gauss-Seidel method, see [12]). In the overlapping case for which few results

are available up to now, we obtain geometric convergence. In [8] and [15], convergence

was proved for speci�c interface conditions, derived from Dirichlet/Fourier boundary

conditions, by a blend of energy estimates and maximum principles. Here, we follow

a di�erent approach and extend for general boundary conditions the results obtained

with constant coe�cients in [16]. In the nonoverlapping case, our convergence analysis

is based on energy estimates similar in principle to those of [6],[14] and [17]. Moreover,

we check that the convergence is faster in some sense for a judicious choice of the

interface conditions, derived from absorbing boundary conditions.

The clue is a careful study of the Dirichlet-to-Neumann operator associated with

the convection-di�usion operator (0.1) on the half-space. Owing to the presence of the

viscosity h as a small parameter, we develop a semi-classical analysis which extends

naturally the Fourier analysis of [16] for constant coe�cients. Hence, all the results,

which we mentionned and which are detailed further, hold for small enough values of

h. This analysis is developed in the framework of Weyl-H�ormander calculus allowed

by our 
at geometry. Indeed this calculus takes into account low frequencies and gives

at once global norm estimates, which is crucial while proving convergence.
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1 Semi-Classical Second Order Elliptic Half-Space

Problems

In this section, we �rst consider the Dirichlet-to-Neumann operator associated with

semi-classical elliptic half-space problems. By Beals criterion (see Appendix A) we

check that it is an h-pseudo-di�erential operator. Then by using the factorization of

Appendix B, we construct an approximation of this operator which provides additional

information. Our �nal aim is to write exact solutions of semi-classical second order

elliptic half-space problems in terms of parabolic evolution systems.

1.1 Dirichlet-to-Neumann operators

We consider second order di�erential operators on R

1+d

= R

x

�R

d

y

which depend on a

small parameter h 2 (0; h

0

),

L

h

= a+

t

B(h@)�

t

(h@)C(h@)(1.1)

with @ =

 

@

x

@

y

!

; B =

 

b

x

B

y

!

and C =

t

C =

 

1 C

xy

C

yx

C

yy

!

:

Here and in the sequel we use small letters for scalar coe�cients and capital letters for

matrices.

Hypothesis: a) The coe�cients a, b

x

, b

y

i

, c

x;y

i

, c

y

i

;x

and c

y

i

;y

j

, i; j = 1 : : : d, are real-

valued functions of (x; y;h) 2 R

1+d

� (0; h

0

) supposed to be uniformly bounded with

respect to h 2 (0; h

0

) in S(1; dx

2

+ dy

2

).

b) Moreover we assume

a(x; y;h) � �

2

; and C(x; y;h) � 


2

Id; 8(x; y;h) 2 R

1+d

� (0; h

0

);

where � and 
 are two positive constants.
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Remark 1.1 a) If the matrix C satis�es all the above assumptions except c

xx

= 1,

we go back to the described situation by taking suitable constants �, 
 and h

0

for the

operator

1

c

xx

L

h

= a

0

+

t

B

0

(h@)�

t

(h@)C

0

(h@)

where a

0

=

a

c

xx

; C

0

=

1

c

xx

C and B

0

=

1

c

xx

 

b

x

� h@

x

c

xx

�

h

c

xx

(

t

@

y

c

xx

)C

yx

B

y

� h

@

x

c

xx

c

xx

C

xy

�

h

c

xx

(@

y

c

xx

)C

yy

!

:

b) The drift-di�usion operators (0.1) do not exactly correspond to these hypotheses.

Meanwhile if we assume b

x

� 2� and a � 0 in (0.1), conjugating with e

�

�x

h

brings back

to our assumptions. Indeed we have

e

�

�x

h

L

h

e

�x

h

= a

�

+

t

B

�

(h@)�

t

(h@)C(h@)

with B

�

=

 

b

x

� 2�

B

y

� 2�C

x;y

!

and a

�

= �b

x

� �

2

� h

t

@

y

C

y;x

� �

�

2

2

for h small enough.

c) In the sequel we may have to restrict the domain of the small parameter h. The

upper bound h

0

will generically denote a constant which is determined by the operator

L

h

(more precisely by a �nite number of semi-norms in S(1; dx

2

+dy

2

) of its coe�cients)

De�nition 1.2 The Dirichlet-to-Neumann operator denoted by �

�;h

(x

0

) is de�ned on

H

s+1=2;h

(R

d

), s � 0, h 2 (0; h

0

), by �

�;h

(x

0

)u

0

= h@

x

u

�

�

�

x=x

0

where u is the variational

solution of

(

L

h

u = 0; x ? x

0

u

�

�

�

x=x

0

= u

0

:

(1.2)

The precise framework of this de�nition will be brie
y reviewed in the next lemmas.

Our aim is to prove

Theorem 1.3 The operator �

�;h

(x

0

) equals �

�

(x

0

; y; hD

y

;h), where �

�

belongs to the

symbol class P

0

S

h

0

(h�i; g

�

) de�ned in Appendix B.1.

In order to write accurate estimates uniform with respect to h 2 (0; h

0

), we will

use Sobolev spaces H

s;h

(
) which depend on h via their norm. When 
 = R

n

, we

take kuk

H

s;h

(R

n

)

= khhDi

s

uk

L

2

(R

n

)

, according to the notations of Appendix A. The

de�nition of H

s;h

(
) and H

s;h

0

(
) for any \smooth" open set 
 follow as usual. Notice

kuk

H

s;h

(
)

= kD

�1

h

uk

H

s

(
)

with D

h

u(x) = h

�

n

2

u(

x

h

), when 
 is a convex cone of R

n

with vertex 0, while kuk

2

H

s;h

(
)

=

P

j�j�s

k(hD)

�

uk

2

L

2

(
)

for a general 
 and s 2 N. We

also need h-dependent norms on some partial Sobolev spaces (see [11]-Appendix B for

the case h = 1). We will consider the Hilbert-spaces H

(m;s);h

(I � R

d

y

), where I is an

open interval of R

x

and (m; s; h) 2 N �R� (0; h

0

), endowed with the norm

kuk

H

(m;s);h

(I�R

d

)

=

 

P

j=1:::m

k(h@

x

)

j

uk

2

L

2

(I;H

m+s�j;h

(R

d

))

!

1=2

:

Among other properties we have to mention the
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Lemma 1.4 a) For any x

0

2 I, the trace (h@

x

)

j

u

�

�

�

x=x

0

, j 2 N, de�nes a continuous

operator from H

(m;s);h

(I �R

d

) into H

m+s�j�1=2;h

(R

d

) as soon as m > j+1=2, with the

uniform estimates

k(h@

x

)

j

u

�

�

�

x=x

0

k

H

m+s�j�1=2;h

(R

d

)

� C

m;s;j

h

�1=2

kuk

H

(m;s);h

(R

d+1

)

:(1.3)

b) Reciprocally, the lifting map E

h

%

, de�ned after a partial Fourier transform in the

y-direction by

d

E

h

%

u(x; �) = %(

xhh�i

h

)û(�)(1.4)

with % 2 S(R), %(0) = 1, is continuous from H

m+s�1=2;h

(R

d

) into H

(m;s);h

(R

d+1

) for

m 2 N, s 2 R. Moreover the estimates

kE

h

%

uk

H

(m;s);h

(R

d+1

)

� C

m;s

h

1=2

kuk

H

m+s�1=2;h

(R

d

)

hold with constants C

m;s

independent of h 2 (0; h

0

).

Proof : For a general open interval I, H

(m;s);h

(I � R

d

y

) is the space of restrictions

of elements of H

(m;s);h

(R

1+d

). Hence, we consider as usual the case I = R. We can

also take x

0

= 0 and set 


h

j

u = h@

j

x

u

�

�

�

x=0

. Assertions a) and b) comes at once from

standard results for h = 1 because 


h

j

u = h

�1=2

D

h




1

j

D

�1

h

u and E

h

%

u = h

1=2

D

�1

h

E

1

%

D

h

u.

Note that the h

1=2

= h

d+1

2

=h

d

2

factor results from the normalization factor depending

on the dimension of the unitary dilation D

h

. 2

Lemma 1.5 a) There exists a constant h

0

> 0 so that the boundary value problem

(

L

h

u = f; x > 0

u

�

�

�

x=0

= u

0

(1.5)

admits a unique solution in H

1;h

(R

d+1

+

) for all h 2 (0; h

0

) as soon as u

0

2 H

1=2;h

(R

d

)

and f 2 H

�1;h

(R

d+1

+

). The estimate

kuk

H

1;h � C

0

�

h

1=2

ku

0

k

H

1=2;h
+ kfk

H

�1;h

�

holds uniformly with respect to h 2 (0; h

0

). Moreover when f 2 L

2

(R

d

), the second trace




h

1

u = h@

x

u

�

�

�

x=0

can be extended from its usual de�nition as an element of H

�1=2;h

(R

d

)

with

k


h

1

uk

H

�1=2;h
� C

0

�

ku

0

k

H

1=2;h
+ h

�1=2

kfk

L

2

�

:

b) Whenever u

0

2 H

m+s+3=2;h

(R

d

) and f 2 H

(m;s);h

(R

d+1

+

) with m 2 N and s � 0, the

solution u of (1.5) belongs to H

(m+2;s);h

(R

d+1

+

). Moreover the estimates

kuk

H

(m+2;s);h

� C

m;s

�

h

1=2

ku

0

k

H

m+s+3=2;h

+ kfk

H

(m;s);h

�

and k


h

1

uk

H

m+s+1=2;h

� C

0

m;s

�

ku

0

k

H

m+s+3=2;h

+ h

�1=2

kfk

H

(m;s);h

�

:

hold with constants C

m;s

and C

0

m;s

independent of h 2 (0; h

0

).
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Proof : Like in Lemma 1.4 we refer to standard results by using the dilations D

h

.

Here are some details in order to check the uniform control of the constants. We set

U

0

= D

�1

h

u

0

, F = D

�1

h

f and U = D

�1

h

u. Then we have ku

0

k

H

s;h = kU

0

k

H

s

with similar

identities for F and U . Equation (1.5) writes

(

D

�1

h

L

h

D

h

U = F;

U

�

�

�

x=0

= h

1=2

U

0

(1.6)

with D

�1

h

L

h

D

h

= a(hx; hy;h) +

t

B(hx; hy;h)@ +

t

@C(hx; hy;h)@.

a) Let E

1

%

be the continuous lifting map: H

1=2

(R

d

) ! H

1

(R

d+1

+

) de�ned by (1.4) with

h = 1. If U is replaced by V = U � h

1=2

E

1

%

U

0

, equation (1.6) writes

(

D

�1

h

L

h

D

h

V = F � h

1=2

D

�1

h

L

h

D

h

E

1

%

U

0

;

U

�

�

�

x=0

= 0

where the H

�1

-norm of the right-hand side is bounded by C

0

(kFk

H

�1
+h

1=2

kU

0

k

H

1=2
).

The bilinear form (V;W ) ! (V;D

�1

h

L

h

D

h

W )

L

2
is continuous on H

1

0

(R

d+1

+

) and inte-

grating by part the �rst order term gives

Re(V;D

�1

h

L

h

D

h

V )

L

2
� min(�; 
)kV k

2

H

1

� hk

t

@Bk

L

1

kV k

2

L

2

; 8V 2 H

1

0

(


0

):

Lax-Milgram theorem applies if one takes h

0

small enough so that hk

t

@Bk

L

1

�

1

2

min(�; 
) for all h 2 (0; h

0

) and leads to uniform estimates.

For the second trace, we recall 


h

1

u = h

�1=2

D

h

@

x

U

�

�

�

x=0

and we still work with the

dilated equation (1.6). Integration by part with U 2 C

1

0

(R

d+1

+

) and V 2 H

1=2

(R

d

)

gives

Z

R

d

V [@

x

U ] =

Z

R

d+1

+

h

t

@E

1

%

V

i

C [@U ] +

Z

R

d+1

+

E

1

%

V

h

t

@C@U

i

+

Z

R

d

h

t

@

y

C

yx

V

i

U;

where we omit the arguments (hx; hy;h) and (0; hy;h). The right-hand side extends

to any U 2 H

1

(R

d+1

+

) such that [

t

@C@U ] 2 L

2

(R

d+1

+

) and especially to the solution of

(1.6), if we assume F 2 L

2

(R

d+1

+

). Moreover the L

2

-norm of [

t

@C@U ] is then bounded

by C

0

(kFk

L

2
+ h

1=2

kU

0

k

H

1=2
).

b) We write (1.6) in the form

(

(a(hx; hy;h) +

t

@C(hx; hy;h)@)V = F � h

1=2

D

�1

h

L

h

D

h

E

1

%

U

0

�

t

B(hx; hy;h)@U;

U

�

�

�

x=0

= 0

where Lemma 1.4-b) with h = 1 implies

kD

�1

h

L

h

D

h

E

1

%

U

0

k

H

(m;s)

� C

m;s

kU

0

k

H

m+s+3=2

:

We �rst prove U 2 H

(m+2;s)

(


0

) for m; s 2 N by induction on m+ s with Nirenberg's

method of di�erential quotients. We get uniform estimates because all the derivatives of
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the coe�cients a(hx; hy;h), B(hx; hy;h) and C(hx; hy;h) are bounded uniformly with

respect to h 2 (0; h

0

). Finally the result for general s � 0 comes from interpolation. 2

This lemma gives a meaning to De�nition 1.2 for any s � 0. Next we work with

s = 1, for which the second trace 


h

1

is naturally de�ned. One makes sure that the

constant h

0

> 0 does not depend on x

0

by writing (1.2) in the form

(

L

h

x

0

u = 0; x ? 0

u

�

�

�

x=0

= u

0

:

(1.7)

with L

h

x

0

= �

�x

0

L

h

�

x

0

, [�

x

0

u](x) = u(x � x

0

). In the sequel we focus on �

�;h

(x

0

) and

the properties of �

+;h

(x

0

) follow by symmetry. Lemma 1.5 applied with homogeneous

boundary conditions ensures that for any m 2 N, s � 0 and h 2 (0; h

0

), L

h

x

0

de�nes

an isomorphism from H

1

0

(R

d+1

+

) \ H

(m+2;s);h

(R

d+1

+

) onto H

(m;s);h

(R

d+1

+

) which will be

denoted by L

h

D;x

0

. With such an operator and the lifting map E

h

%

, �

�;h

(x

0

) writes

explicitly as

�

�;h

(x

0

)u

0

= 


h

1

h

L

h �1

D;x

0

�

�L

h

x

0

E

h

%

u

0

�

+ E

h

%

u

0

i

:(1.8)

Proof of Theorem 1.3 : The regularity with respect to x

0

of L

h

D;x

0

, L

h �1

D;x

0

and

�

�;h

(x

0

) is induced by our assumptions on the coe�cients a(x; y;h), B(x; y;h) and

C(x; y;h). As a continuous operator S(R

d

)! S

0

(R

d

), �

�;h

(x

0

) writes �

�

(x

0

; y; hD

y

;h)

with �

�

(x

0

;h) 2 S

0

(T

�

R

d

). We will get that �

�

(x

0

; h) is bounded in S(h�i; g

�

) uni-

formly with respect to (x

0

; h) 2 R� (0; h

0

) by Beals criterion (Proposition A.11). We

have to verify the estimates

k

�

ad

�

y

ad

�

hD

y

�

�;h

(x

0

)

�

uk

H

j�j+1=2;h

� C

�;�

h

j�j+j�j

kuk

H

3=2;h

; 8u 2 S(R

d

);

with constants C

�;�

independent of (x

0

; h) 2 R� (0; h

0

). One easily checks from (1.4)

that E

h

%

is continuous from S(R

d

) into S(R

1+d

+

) = fu

�

�

�

x>0

; u 2 S(R

1+d

)g, endowed with

its natural quotient topology. Meanwhile, we have

�

�;h

(x

0

)u = F

�;h

(x

0

)E

h

%

u; 8u 2 S(R

d

);

where F

�;h

(x

0

) = 


h

1

h

�L

h �1

D;x

0

L

h

x

0

+ Id

i

is continuous from S(R

1+d

+

) into S

0

(R

d

). In this

framework, Leibnitz formula

ad

�

y

ad

�

hD

y

�

�;h

(x

0

) =

P

(�

0

;�

0

)�(�;�)

C

�

0

;�

0

�

ad

�

0

y

ad

�

0

hD

y

F

�;h

(x

0

)

� �

ad

���

0

y

ad

���

0

hD

y

E

h

%

�

(1.9)

makes sense for it involves only bounded operators. The second factor will be treated

directly. In order to avoid questions about domains while looking at the �rst one, we

introduce the molli�ed commutators

ad

�

y;"

ad

�

hD

y

;"

=

�

1�i�d

ad

�

i

�("y)y

i

�

1�i

0

�d

ad

�

i

0

�("hD

y

)hD

y

i

0

(1.10)

7



with � 2 S(R

d

), �(0) = 1, and " 2 (0; 1). We note

lim

"!0

�

ad

�

0

y;"

ad

�

0

hD

y

;"

F

�;h

(x

0

)

�

u =

�

ad

�

0

y

ad

�

0

hD

y

F

�;h

(x

0

)

�

u in S

0

(R

d

)(1.11)

for all u 2 S(R

1+d

+

), while the boundedness of �("y)y

i

and �("hD

y

)hD

y

i

0

on the func-

tional spaces H

s+1=2;h

(R

d

), H

(0;s);h

(R

d+1

+

), H

(2;s);h

(R

d+1

+

) and H

1

0

(R

d+1

+

)\H

(2;s);h

(R

d+1

+

),

s � 0, allows

ad

�

0

y;"

ad

�

0

hD

y

;"

F

�;h

(x

0

) =(1.12)

�


h

1

"

P

(�

00

;�

00

)�(�

0

;�

0

)

C

�

00

;�

00

�

ad

�

00

y;"

ad

�

00

hD

y

;"

L

h �1

D;x

0

� �

ad

�

0

��

00

y;"

ad

�

0

��

00

hD

y

;"

L

h

x

0

�

#

for (�

0

; �

0

) > (0; 0). We next consider each factor by itself.

a)ad

�

y

ad

�

hD

y

E

h

%

: Since hD

y

i

0

commutes with E

h

%

, we only consider the case � = 0. For

v 2 S(R

d

) and j 2 f0; 1; 2g, we have

(h@

x

)

j

\

ad

�

y;"

E

h

%

v(x; �) =

�

(h@

x

)

j

D

�

�

%(

x

h

hh�i)

�

v̂(�):

The derivatives of (h@

x

)

j

D

�

�

%(

x

h

hh�i) can be obtained recursively in the form

(h@

x

)

j

D

�

�

%(

x

h

hh�i) = h

j�j

hh�i

j�j�j

P

k�2

j�j

f

k;j;�

(h�)g

k;j;�

(

x

h

hh�i)

where the f

k;j;�

(z) all belong to S(1;

dz

2

hzi

2

) and the g

k;j;�

all satisfy g

k;j;�

2 S(R). Let

G

�

denote the L

2

(R

+

)-function G

�

= sup

k�2

j�j

j=0;1;2

jg

k;j;�

j(z). We end as usual by

k(h@

x

)

j

ad

�

y;"

E

h

%

vk

2

L

2

(R

+

;H

2+j�j�j;h

)

� C

�

h

2j�j

Z

R

d+1

+

jv̂(�)j

2

hh�i

4

jG

�

(

x

h

hh�i)j

2

dx �d�

� C

�

kG

�

k

2

L

2

h

2j�j+1

Z

R

d+1

+

jv̂(�)j

2

hh�i

3

�d�:

We have proved

k ad

�

y;"

ad

�

hD

y

;"

E

h

%

vk

H

(2;j�j);h
� C

�;�

h

j�j+j�j+1=2

kvk

H

3=2;h
:(1.13)

b)ad

�

y;"

ad

�

hD

y

;"

L

h

x

0

: The di�erential operator L

h

x

0

writes L(x+ x

0

; hD

x

; y; hD

y

;h) with

L 2 P

2

S

h

0

(1; g

�

) and the operators �("y)y

i

and �("hD

y

)hD

y

i

0

, 1 � i; i

0

� d, commute

with hD

x

. Moreover the symbols �("�)�

i

0

are uniformly bounded in S(h�i; g

�

) so that

the multi-commutator ad

�

hD

y

;"

L

h

x

0

is treated by referring to semi-classical calculus in

the metric g

�

. It remains to study the commutator ad

�("y)y

i

'(y; hD

y

;h), 1 � i � d,

when the h-symbol '(y; �;h) belongs to S

h

0

(h�i

n

; g

�

). Its Schwarz-kernel writes

Z

R

d

e

i

h

(y�y

0

)�

'(y; �;h) [�("y)y

i

� �("y

0

)y

0

i

]

�d�

h

d

:
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We have

�("y)y

i

� �("y

0

)y

0

i

= (y � y

0

):

Z

1

0

e

i

�("y

t

) + F

i

("y

t

)dt

by setting y

t

= ty + (1 � t)y

0

and F

i

(y) = y

i

@

y

�(y). Integration by parts transforms

the above kernel into

h

Z

R

d

e

i

h

(y�y

0

)�

D

�

'(y; �;h):

�

Z

1

0

e

i

�("y

t

) + F

i

("y

t

)dt

�

�d�

h

d

where the kernel-symbolD

�

'(y; �;h):

h

R

1

0

e

i

�("y

t

) + F

i

("y

t

)dt

i

is uniformly bounded in

S(h�i

n�1

; dy

2

+dy

0

2

+

d�

2

h�i

2

). The semi-classical version of [18]-Proposition 2.1 then gives

ad

�("y)y

i

'(y; hD

y

;h) = h (y; hD

y

;h; ");

where  (") is bounded in S

h

0

(h�i

n�1

; g

�

) uniformly with respect to " 2 (0; 1). As a

conclusion, we obtain

ad

�

y;"

ad

�

hD

y

;"

L

h

x

0

= h

j�j+j�j

L

�;�

(x+ x

0

; hD

x

; y; hD

y

;h; ")

with L

�;�

(") uniformly bounded in P

2

S

h

0

(h�i

�j�j

; g

�

). Proposition A.7 about continuity

of h-pseudo-di�erential operators yields

k ad

�

y;"

ad

�

hD

y

;"

L

h

x

0

vk

H

(0;s+j�j);h

� C

�;�;s

h

j�j+j�j

kvk

H

(2;s);h

; s 2 R:(1.14)

c) ad

�

y;"

ad

�

hD

y

;"

L

h �1

D;x

0

: Leibnitz formula applied to the identity

L

h �1

D;x

0

L

h

D;x

0

= Id on H

1

0

(R

d+1

+

) \H

(2;s);h

(R

d+1

+

); s � 0

leads to

ad

�

y;"

ad

�

hD

y

;"

L

h �1

D;x

0

= �

P

(�

1

;�

1

)+���+(�

l

;�

l

)=(�;�)

C

�

i

;�

i

�

L

h �1

D;x

0

� �

ad

�

1

y;"

ad

�

1

hD

y

;"

L

h

D;x

0

� �

L

h �1

D;x

0

�

: : :

: : :

�

ad

�

l

y;"

ad

�

l

hD

y

;"

L

h

D;x

0

� �

L

h �1

D;x

0

�

:

The operator L

h

D;x

0

is nothing but the restriction to H

1

0

(R

d+1

+

) \H

(2;s);h

(R

d+1

+

) of L

h

x

0

.

Hence by referring to (1.14), we obtain for every s � 0 the estimates

k ad

�

y;"

ad

�

hD

y

;"

L

h �1

D;x

0

vk

H

(2;s+j�j);h

� C

�;�;s

h

j�j+j�j

kvk

H

(0;s);h

:(1.15)

Estimates (1.14)(1.15) hold uniformly with respect to " 2 (0; 1) and combining them

with (1.11)(1.12) provides the expected estimate of ad

�

0

y

ad

�

0

hD

y

F

�;h

(x

0

). We conclude

by using (1.9) and (1.13). 2
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1.2 Approximate Dirichlet-to-Neumann Operator and Ap-

plications

The symbol L 2 P

2

S

h

0

(1; g

�

) such that L

h

= L(x; hD

x

; y; hD

y

;h) is explicitely deter-

mined by

L

h

= a+ b

x

(h@

x

) +

t

B

y

(h@

y

)� (h@

x

)

2

� (h@

x

)C

xy

(h@

y

)

�

t

(h@

y

)C

yx

(h@

x

)�

t

(h@

y

)C

yy

(h@

y

)

= �(h@

x

)

2

+

h

�2C

xy

(h@

y

) + b

x

� h(

t

@

y

C

yx

)

i

(h@

x

)

�C

yy

:

h

(h@

y

)

t

(h@

y

)

i

+

t

B

y

(h@

y

) + a� h

h

@

x

C

xy

+

t

@

y

C

yy

i

(h@

y

);

A representant of its principal symbol (1; 0)-symbol is given by

�

2;1

(L) = �

2

+ i [�2iC

xy

� + b

x

] � +

t

�C

yy

� + i

t

B

y

� + a:

Its discriminant equals

� = � [�2iC

xy

� + b

x

]

2

� 4

t

�C

yy

� � 4i

t

B

y

� � 4a:

= �

h

4

t

�C

yy

� � 4(C

xy

�)

2

+ (b

x

)

2

+ 4a

i

� 4i

h

�b

x

C

xy

+

t

B

y

i

�

= �

h

4

t

�

~

C� + (b

x

)

2

+ 4a

i

� 4i

h

�b

x

C

xy

+

t

B

y

i

�

where the matrix

~

C = C

yy

� C

yx

C

xy

=

t

 

�C

xy

Id

y

!

C

 

�C

xy

Id

y

!

(1.16)

still satis�es

t

~

C =

~

C � 


2

Id

y

. On fz 2 C ;Re(z) � 0g we choose

p

z =

q

(%e

i�

) =

%

1=2

e

i

�

2

, j�j �

�

2

, and the roots of the principal symbol of L write

�

�

(x; y; �;h) = �C

x;y

� + i

�b

x

+

p

��

2

(1.17)

�

+

(x; y; �;h) = �C

x;y

� + i

�b

x

�

p

��

2

:(1.18)

Our smoothness assumptions on the coe�cients a, B, C, yield �

�

2 P

0

S

h

0

(h�i; g

�

).

Meanwhile we have

Im �

�

=

�b

x

�Re

p

��

2

?

�b

x

�

q

Re(��)

2

? �

q

�

2

+ 


2

j�j

2

;(1.19)

which implies j�

+

� �

�

j =

q

j�j � 2 inff�; 
gh�i. By Theorem B.1 and Theorem B.4

one can construct four sequences of symbols (A

�;�

k

)

k2N

, with A

�;�

k

2 P

0

S

h

0

(h�i

1�k

; g

�

)

so that

�

�

N

= �i

P

k<N

h

k

A

�;+

k

and �

�

N

= �i

P

k<N

h

k

A

�;�

k

10



satisfy the two properties:

a) �

0;h�i

(�

�

N

) = �

0;h�i

(�

�

N

) = i�

�

.

b) L+

�

i� � �

�

N

�

#

h

(1;0)

�

i� � �

�

N

�

= h

N

R

�

N

with R

�

N

2 P

0

S

h

0

(h�i

2�N

; g

�

).

We set �

�;h

N

(x) = �

�

N

(x; y; hD

y

;h) and K

�;h

N

(x) = �

�

N

(x; y; hD

y

;h) and the former

equality gives the approximate factorization

L

h

= �(h@

x

� �

�;h

N

(x))(h@

x

��

�;h

N

(x)) + h

N

R

�

N

(x; y; hD

y

;h):(1.20)

Remark 1.6 The approximate factorization of L

h

x

0

= �

�x

0

L

h

�

x

0

is deduced from (1.20)

by simply changing the argument x into x+x

0

. Meanwhile the approximate factorization

of e

�c

x

h

L

h

e

c

x

h

is obtained by replacing �

�

N

and �

�

N

by �

�

N

� c and �

�

N

� c.

Proposition C.3 applies, with suitable signs, to the symbols �

�

N

involved in the approx-

imate factorization (1.20).

Proposition 1.7 There exists h

0

> 0 so that, for any (N; s; h) 2 N �R� (0; h

0

), the

initial value problem

(

h@

x

u� �

�;h

N

(x)u = 0; x > x

0

(resp: x < x

0

)

u

�

�

�

x=x

0

= v

de�nes an evolution system S

�;h

N

(x

00

; x

0

), x

0

� x

00

, (resp. S

+;h

N

(x

00

; x

0

), x

0

� x

00

) on

H

s;h

(R

d

) with all the regularity properties of Proposition C.3. Moreover for any " > 0

one can �nd h

N;s;"

so that the estimates

kS

�;h

N

(x

00

; x

0

)k

L(H

s;h

)

� e

�

(��")(x

00

�x

0

)

h

; x

00

� x

0

(1.21)

and kS

+;h

N

(x

00

; x

0

)k

L(H

s;h

)

� e

(��")(x

00

�x

0

)

h

; x

00

� x

0

;(1.22)

hold for every h 2 (0; h

N;s;"

).

Proof : We just have to prove (1.21)(1.22). The + and � cases are symmetric and

we focus on S

�;h

N

. By (1.19), we can �nd, for any " > 0, c

"

> 0 so that

�Re

h

i�

�

i

� (� � ") � c

"

h�i:

By Lemma C.2-b) this provides for any (N; s) 2 N

�

� R the existence of h

N;s;"

such

that

Re(u;�

�;h

N

(x)u)

H

s;h � �(�� ")kuk

2

H

s;h

; 8u 2 H

s+1;h

(R

d

):

Di�erentiating kS

�;h

N

(x

00

; x

0

)vk

2

H

s;h

with respect to x

00

> x

0

and referring to the conti-

nuity at x

00

= x

0

yield (1.21). 2
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Proposition 1.8 a) There exists h

N

> 0 so that v

�

N

(x) = S

�;h

N

(x+ x

0

; x

0

)u

0

, �x > 0,

is the variational solution of

(

L

h

x

0

v

�

N

= h

N

R

�

N

(x+ x

0

; y; hD

y

;h)v

�

N

; x ? 0

v

�

N

�

�

�

x=0

= u

0

(1.23)

as soon as u

0

2 H

1=2;h

(R

d

) and h 2 (0; h

N

).

b) Let p

k;l

, k 2 N, l 2 Z, denote the seminorms on S(h�i

l

; g

�

) de�ned by (A.2). For

any (k;N) 2 N � N

�

, there exists h

k;N

2 (0; h

0

) so that the estimate

p

k;1�N

(�

�

(x; h)� �

�

N

(x; h)) � C

k;N

h

N

(1.24)

holds for h 2 (0; h

k;N

) with C

k;N

> 0 independent of (x; h) 2 R� (0; h

k;N

).

Proof : a) We take h

N

> 0 small enough so that Proposition 1.7 estimate (1.21) hold

for s = 0 and " = �=2. For u

0

2 H

1=2;h

(R

d

), v

�

N

(x) = S

�;h

N

(x + x

0

; x

0

)u

0

is a classical

solution to

h@

x

v

�

N

� �

�;h

N

(x+ x

0

)v

�

N

= 0; for x > 0:(1.25)

Thus the approximate factorization (1.20) of L

h

x

0

leads to

L

h

x

0

v

�

N

= h

N

R

�

N

(x+ x

0

; y; hD

y

;h)v

�

N

in D

0

(R

d+1

+

);

while the continuity of the evolution system S

�;h

N

gives v

�

N

�

�

�

x=0

= u

0

. It remains to

check that v

�

N

2 H

1;h

(R

d+1

+

) and that the right-hand side belongs to L

2

(R

d+1

+

). By

making use of equation (1.25), we get for k + jk

0

j � 1

k(h@

x

)

k

(h@

y

)

k

0

v

�

N

k

2

L

2

(R

1+d

+

)

�

Z

1

0

C

N

kv

�

N

(x)k

2

H

1;h

dx;

while R

�

N

2 P

0

S

h

0

(h�i

2�N

; g

�

), N � 1, yields

kR

�

N

(x+ x

0

; y; hD

y

;h)v

�

N

k

L

2

(R

1+d

+

)

�

Z

1

0

C

N

kv

�

N

(x)k

2

H

1;h

dx

:

By referring to Lemma C.4, we have

Z

1

0

kv

�

N

(x)k

2

H

1;h

� C

N

h

�

ku

0

k

2

H

1=2;h

+ h

Z

1

0

kv

�

N

(x)k

2

L

2

dx

�

while estimate (1.21) implies

Z

1

0

kv

�

N

(x)k

2

L

2

dx � ku

0

k

2

L

2

Z

1

0

e

�

�x

h

dx

:

b) Since h

�N

(�

�

N

(x; h) � �

�

M

(x; h)) belongs to P

0

S

h

0

(h�i

1�N

; g

�

) for M � N , we just

have to �ndM � N large enough so that p

k;1�N

(�

�

(x; h)��

�

M

(x; h)) is an O(h

N

). This

numberM will be �xed further as a function of (k;N). By Beals criterion as stated in

12



Proposition A.11, there exists � = �(k;N) 2 N so that p

k;1�N

(�

�

(x; h)� �

�

M

(x; h)) is

estimated by

sup

j�j+j�j��

h

�j�j�j�j

k ad

�

y

ad

�

hD

y

(�

�;h

(x)� �

�;h

M

(x))k

L(H

3=2;h

;H

1=2+j�j+N;h

)

:

By taking the di�erence between (1.2) and (1.23), e

�

M

= u � v

�

M

, with h 2 (0; h

M

),

appears as the variational solution to

(

L

h

x

0

e

M

= h

M

R

�

M

(x+ x

0

; y; hD

y

;h)v

�

M

e

M;x

0

�

�

�

x=0

= 0

and we have (�

�;h

(x

0

)� �

�;h

M

(x

0

))u

0

= 


h

1

e

M

. Hence we get for h 2 (0; h

M

)

(�

�;h

(x

0

)��

�;h

M

(x

0

))u

0

= 


h

1

�

L

h

D;x

0

�

�1

h

h

M

R

�;h

M

(x+ x

0

; y; hD

y

;h)S

�;h

M

(x+ x

0

; x

0

)u

0

i

:

We next develop the same techniques as in Theorem 1.3. We introduce the molli�ed

commutators (1.10) so that every factor of

ad

�

y;"

ad

�

hD

y

;"

(�

�;h

(x)� �

�;h

M

(x)) = 


h

1

P

�

1

+�

2

+�

3

=�

�

1

+�

2

+�

3

=�

�

C

�

i

�

i

ad

�

1

y;"

ad

�

1

hD

y

;"

�

L

h

D;x

0

�

�1

(1.26)

ad

�

2

y;"

ad

�

2

hD

y

;"

�

h

M

R

�;h

M

(x+ x

0

; y; hD

y

;h)

�

ad

�

3

y;"

ad

�

3

hD

y

;"

�

S

�;h

M

(x+ x

0

; x

0

)

�i

:

make sense for " > 0 and j�j + j�j � �. We need estimates for each of the three

factors which are uniform with respect to " 2 (0; 1). The �rst one is estimated by

(1.15) while the second one only involves semi-classical operators. Let us have a look

at ad

�

y;"

ad

�

hD

y

;"

�

S

�;h

M

(x+ x

0

; x

0

)

�

for j�j+ j�j � �. For x > 0, we have

h@

x

h

ad

�

y;"

ad

�

hD

y

;"

S

�;h

M

(x+ x

0

; x

0

)

i

= ad

�

y;"

ad

�

hD

y

;"

h

�

�;h

M

(x+ x

0

)S

�;h

M

(x+ x

0

; x

0

)

i

= �

�;h

M

(x+ x

0

)

h

ad

�

y;"

ad

�

hD

y

;"

S

�;h

M

(x+ x

0

; x

0

)

i

+

P

(�

0

;�

0

)<(�;�)

C

�

0

;�

0

ad

���

0

y;"

ad

���

0

hD

y

;"

�

�;h

M

(x+ x

0

) ad

�

0

y;"

ad

�

0

hD

y

;"

S

�;h

M

(x+ x

0

; x

0

);

while ad

�

y;"

ad

�

hD

y

;"

S

�;h

M

(x

0

; x

0

) = 0 as soon as (�; �) 6= 0. Hence we get

ad

�

y;"

ad

�

hD

y

;"

S

�;h

M

(x

00

+ x

0

; x

0

) =

1

h

Z

x

00

+x

0

x

0

S

�;h

M

(x

00

+ x

0

; x)

P

(�

0

;�

0

)<(�;�)

[: : :]dx:

Note that the factor ad

���

0

y;"

ad

���

0

hD

y

;"

�

�;h

M

(x+ x

0

) may produce a loss of regularity, espe-

cially for � = �

0

. Let F

�

(x), � 2 f0; 1 : : : �g, denote the quantity

sup

j�j+j�j=�

k ad

�

y;"

ad

�

hD

y

;"

S

�;h

M

(x+ x

0

; x

0

)k

L(H

3=2;h

;H

3=2��;h

)

:

13



The previous identity implies

F

�

(x

00

) � C

M;�

Z

x

00

+x

0

x

0

sup

0��

0

��

kS

�;h

M

(x

00

+ x

0

; x)k

L(H

3=2��

0

;h

)

sup

0��

0

<�

F

��1

(x)dx:

We now take h

M;�

so that (1.21) holds with s = 3=2� �, � 2 f0; 1 : : : �g, and " = �=2.

With such a choice, we get at once by induction the uniform boundedness of the F

�

(x),

that is

k ad

�

y;"

ad

�

hD

y

;"

S

�;h

M

(x+ x

0

; x

0

)k

L(H

3=2;h

;H

3=2�j�j�j�j;h

)

� C

�;�

for all (�; �), j�j + j�j � �. We conclude by taking M = M(N; �(k;N)) large enough

in order to balance the above loss of regularity by the second factor of (1.26). 2

Theorem 1.9 a) There exists h

0

> 0 so that, for any (s; h) 2 R� (0; h

0

), the initial

value problem

(

h@

x

u� �

�;h

(x)u = 0; x > x

0

(resp: x

0

< x)

u

�

�

�

x=x

0

= v

de�nes an evolution system S

�;h

(x

00

; x

0

), x

00

� x

0

(resp. S

+;h

(x

00

; x

0

), x

00

� x

0

), on

H

s;h

(R

d

) which satis�es all the regularity properties of Proposition C.3.

b) For any " > 0 one can �nd h

s;"

so that the estimates

kS

�;h

(x

00

; x

0

)k

L(H

s;h

)

� e

�

(��")(x

00

�x

0

)

h

; x

00

� x

0

;(1.27)

and kS

+;h

(x

00

; x

0

)k

L(H

s;h

)

� e

(��")(x

00

�x

0

)

h

; x

00

� x

0

;(1.28)

hold for every h 2 (0; h

s;"

).

c) There exists h

0

> 0 so that u(x) = S

�;h

(x+ x

0

; x

0

)u

0

coincides with the variational

solution of (1.7) as soon as u

0

2 H

1=2;h

(R

d

) and h 2 (0; h

0

).

Proof : Applying Proposition 1.8-b) with k = 0 and N = 1 gives

k�

�

� i�

�

k

L

1

� C

0

h:

According to (1.19), we can take h

0

small enough so that Re�

�

? �

�^


2

h�i. Assertions

a) and b) come from the same arguments as the one developed for S

�;h

N

. For part c),

we �rst notice that if u is the variational solution of (1.7) with u

0

2 S(R

d

), then u(x)

is the classical solution to

(

h@

x

u� �

�;h

(x+ x

0

)u = 0; x > x

0

(resp: x

0

< x)

u

�

�

�

x=0

= u

0

and coincides with S

�;h

(x+x

0

; x

0

)u

0

. The half-spaceH

1;h

estimate for S

�;h

(x+x

0

; x

0

)u

0

is derived from Lemma C.4 like in Propostion 1.8-a) and the equality carries over for

any u

0

2 H

1=2;h

(R

d

). 2

14



2 Domain Decomposition Algorithms

In this section, we give the precise de�nitions of the domain decomposition methods

with which we are concerned and exhibit their basic properties.

2.1 Description

We want to solve the whole space problem:

L

h

(u) = f in R

d+1

(2.1)

where f is given in L

2

(R

d+1

). The space R

d+1

is decomposed into N vertical strips:

Let 


i

= (l

i

; L

i

) � R

d

; 1 � i � N with �1 = l

1

< l

2

� L

1

< : : : < L

i�2

< l

i

�

L

i�1

< : : : < L

N

= +1. We have R

d+1

= [

N

i=1

�




i

. As interface conditions, we take for

the left (resp. right) boundary of a subdomain h@

x

� �

+;h

(resp. h@

x

� �

�;h

) where

the operators �

�;h

(0 < h < h

0

) are h-pseudodi�erential operators whose symbols �

�

satisfy (We set j _ 1 = maxfj; 1g) :

H1 There exists j � 0 such that �

�

2 P

0

S

h

0

(h�i

j

; g

�

) with j�

h�i

j_1
(�

�

�i�

�

)j � c

�

h�i

j_1

,

for some positive constant c

�

.

H2There exists k; j _ 1�1 � k � j so that Re(��

�

�

b

x

2

) 2 P

0

S

h

0

(h�i

k

; g

�

), Re(��

�

�

b

x

2

) � c

0

�

h�i

k

, for some positive constant c

0

�

.

In the sequel, we may have to restrict the range of the small parameter h according to

estimates of the symbols �

+

and �

�

. In such a case, we write h 2 (0; h

�

).

Three domain decomposition methods are considered. They are de�ned recursively

by starting from the initial estimates u

0

i

2 H

2

(


i

) of the solution u of (2.1) in the

domain 


i

; i = 1; : : : ; N .

The �rst one is the additive Schwarz method (abbreviated to ASM) and writes:

8

>

>

>

>

<

>

>

>

>

:

u

n+1

i

2 H

2

(


i

); 1 � i � N

L

h

(u

n+1

i

) = f in 


i

(h@

x

��

+;h

)(u

n+1

i

) = (h@

x

��

+;h

)(u

n

i�1

) at x = l

i

; 2 � i � N

(h@

x

��

�;h

)(u

n+1

i

) = (h@

x

��

�;h

)(u

n

i+1

) at x = L

i

; 1 � i � N � 1

(2.2)

In the ASM, u

n

i

is updated at same time in every subdomain. In the second algorithm,

the value of u

n

i

is updated in one subdomain at a time. We proceed by double sweeps

over the subdomains:

left to right sweep

8

>

>

>

>

>

<

>

>

>

>

>

:

u

n+1=2

i

2 H

2

(


i

); 1 � i � N

L

h

(u

n+1=2

i

) = f in 


i

(h@

x

��

+;h

)(u

n+1=2

i

) = (h@

x

��

+;h

)(u

n+1=2

i�1

) at x = l

i

; 2 � i � N

(h@

x

��

�;h

)(u

n+1=2

i

) = (h@

x

��

�;h

)(u

n

i+1

) at x = L

i

; 1 � i � N � 1

(2.3)
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right to left sweep

8

>

>

>

>

<

>

>

>

>

:

u

n+1

i

2 H

2

(


i

); 1 � i � N

L

h

(u

n+1

i

) = f in 


i

(h@

x

��

+;h

)(u

n+1

i

) = (h@

x

��

+;h

)(u

n+1=2

i�1

) at x = l

i

; 2 � i � N

(h@

x

��

�;h

)(u

n+1

i

) = (h@

x

��

�;h

)(u

n+1

i+1

) at x = L

i

; 1 � i � N � 1:

(2.4)

Let us remark that u

n+1=2

N

= u

n+1

N

. This algorithm is called DSA (for Double Sweep

Algorithm).

The third algorithm denoted shortly by FDA is a slight modi�cation of the second one.

It consists only in 
ow directed sweeps:

left to right sweep

8

>

>

>

>

<

>

>

>

>

:

u

n+1

i

2 H

2

(


i

); 1 � i � N

L

h

(u

n+1

i

) = f in 


i

(h@

x

��

+;h

)(u

n+1

i

) = (h@

x

��

+;h

)(u

n+1

i�1

) at x = l

i

; 2 � i � N

(h@

x

��

�;h

)(u

n+1

i

) = (h@

x

��

�;h

)(u

n

i+1

) at x = L

i

; 1 � i � N � 1

(2.5)

2.2 Well-posedness of the algorithms

The well-posedness relies on the study of the boundary value problem

8

>

<

>

:

L

h

(v) = f in 


i

(h@

x

��

+;h

)(v) = g

l

at x = l

i

(h@

x

��

�;h

)(v) = g

r

at x = L

i

:

(2.6)

Proposition 2.1 For any m � 0. there exists h

�;m

2 (0; h

0

) so that the boundary

value problem (2.6) admits a unique solution v 2 H

2+m;h

(


i

) as soon as f 2 H

m;h

(


i

),

g

l

and g

r

2 H

3=2+m�j_1;h

(R

d

) and h 2 (0; h

�;m

). Moreover the mapping: (g

l

; g

r

) 2

�

H

3=2+m�j_1;h

(R

d

)

�

2

! v 2 H

2+m;h

(


i

), where one forgets g

l

for i = 1 and g

r

for

i = N , is uniformly continuous.

Proof : According to Lemma C.2 we take h

�

> 0 small enough so that there

exists c

�

2 P

0

S

h

0

(h�i

�j_1

; g

�

) with

(�

�

� i�

�

)#

h

c

�

= 1; 8h 2 (0; h

�

):

Existence: Let u denote the solution of the whole space problem (2.1). We seek a

solution to (2.6) of the form v = u

�

�

�




i

+ w with

w = S

�;h

(x; l

i

)�

l

+ S

+;h

(x;L

i

)�

r

and �

l

; �

r

2 H

3=2+m;h

(R

d

). By Theorem 1.9, w is then the variational solution of

L

h

w = 0 with Dirichlet-boundary conditions

w

�

�

�

x=l

i

= �

l

+ S

+;h

(l

i

; L

i

)�

r

w

�

�

�

x=L

i

= S

�;h

(L

i

; l

i

)�

l

+ �

r

:
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In such a case, we get like in Lemma 1.5 that w and v belong to H

2+m;h

(


i

). We next

construct �

l

and �

r

. The boundary conditions of (2.6) are equivalent to

h

�

�;h

(l

i

)��

+;h

i

�

l

+

h

�

+;h

(l

i

)��

+;h

i

S

+;h

(l

i

; L

i

)�

r

= g

l

� (h@

x

��

+;h

)u =

e

g

l

and

h

�

�;h

(l

i

)��

�;h

i

S

�;h

(L

i

; l

i

)�

l

+

h

�

+;h

(l

i

)��

�;h

i

�

r

= g

r

� (h@

x

��

�;h

)u =

e

g

l

:

this system also writes

2

6

4

Id+

0

B

@

0

h

�

�;h

(l

i

)��

+;h

i

�1

h

�

+;h

(l

i

)��

+;h

i

S

+;h

(l

i

; L

i

)

h

�

+;h

(l

i

)��

�;h

i

�1

h

�

�;h

(l

i

)��

�;h

i

S

�;h

(L

i

; l

i

) 0

1

C

A

3

7

5

 

�

l

�

r

!

=

0

B

@

h

�

�;h

(l

i

)��

+;h

i

�1

e

g

l

h

�

+;h

(l

i

)��

�;h

i

�1

f

g

r

1

C

A

(2.7)

where the right-hand-side belongs to

�

H

3=2+m;h

(R

d

)

�

2

. According to Theorem 1.9, the

above perturbation of identity is bounded on

�

H

3=2+m;h

(R

d

)

�

2

with a norm uniformly

estimated by C

�

e

�

�(L

i

�l

i

)

2h

, as soon as h 2 (0; h

m

). We take h

�;m

� h

m

^h

�

small enough

and we obtain for h 2 (0; h

�;m

)

 

�

l

�

r

!

=

�

Id+O(e

�

�(L

i

�l

i

)

2h

)

�

0

B

@

h

�

�;h

(l

i

)��

+;h

i

�1

e

g

l

h

�

+;h

(l

i

)��

�;h

i

�1

f

g

r

1

C

A

:(2.8)

Uniqueness: By linearity, it is done when a solution v 2 H

2;h

(


i

) of (2.6) with f = 0,

g

l

= 0 and g

r

= 0 necessarily equals 0. By multiplying L

h

(v) by v, integrating by parts

and taking the real part, we obtain

0 � C

0

kvk

2

H

1;h

(


i

)

+

"

hRe

 

v;

b

x

2

v � h@

x

v � C

xy

h@

y

v

!

L

2

#

L

i

l

i

;

with C

0

> 0 and h 2 (0; h

0

), h

0

small enough. From the boundary conditions, we get

(�

�;h

� �

�;h

)v = (h@

x

� �

�;h

)v at x = l

i

or L

i

so that v

�

�

�

l

i

or L

i

2 H

1=2+j_1;h

(R

d

) for any h 2 (0; h

�

). Thus, the estimate

0 � C

0

kvk

2

H

1;h

(


i

)

+

"

hRe

 

v;

b

x

2

v ��

�

v � C

xy

h@

y

v

!

L

2

#

L

i

l

i

makes sense. We now combine hypothesis H2 with Lemma C.2 in order to get positive

boundary terms for h 2 (0; h

�

), h

�

small enough. This yields v = 0. 2
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2.3 Substructuring

For the sake of simplicity, we next work with e

n

i

= u

n

i

� u

�

�

�




i

, which amounts to take

f = 0. We set

g

n

i;l

= (h@

x

��

+;h

)e

n

i

�

�

�

x=l

i

and g

n

i;r

= (h@

x

��

�;h

)e

n

i

�

�

�

x=L

i

:

Let Q

h

i

, �

h

i;l

and �

h

i;r

, 1 � i � N respectively denote the operator de�ned in Proposition

2.1 and by (2.7)(2.8) with m = 0 and f = 0. Then we have e

n

i

= Q

h

i

(g

n

i;l

; g

n

i;r

) and more

precisely

e

n

i

= S

�;h

(x; l

i

)�

h

i;l

(g

n

i;l

; g

n

i;r

) + S

+;h

(x;L

i

)�

h

i;r

(g

n

i;l

; g

n

i;r

):(2.9)

Now, the ASM described in (2.2) writes

g

n+1

2;l

= (h@

x

��

+;h

)Q

h

1

(g

n

1;r

)

�

�

�

x=l

2

g

n+1

3;l

= (h@

x

��

+;h

)(Q

h

2

(g

n

2;l

; 0) +Q

h

2

(0; g

n

2;r

))

�

�

�

x=l

3

.

.

.

g

n+1

N;l

= (h@

x

��

+;h

)(Q

h

N�1

(g

n

N�1;l

; 0) +Q

h

N�1

(0; g

n

N�1;r

))

�

�

�

x=l

N

g

n+1

1;r

= (h@

x

��

�;h

)(Q

h

2

(g

n

2;l

) +Q

h

2

(0; g

n

2;r

))

�

�

�

x=L

1

.

.

.

g

n+1

N�2;r

= (h@

x

��

�;h

)(Q

h

N�1

(g

n

N�1;l

) +Q

h

N�1

(0; g

n

N�1;r

))

�

�

�

x=L

N�2

g

n+1

N�1;r

= (h@

x

��

�;h

)Q

h

N

(g

n

N;l

)

�

�

�

x=L

N�1

:

(2.10)

We consider 2(N �1)-uplets G = (g

2;l

; : : : ; g

N�1;r

) 2

�

H

3=2�j_1;h

(R

d

)

�

2(N�1)

and de�ne

the operator T by

T G =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

(h@

x

��

+;h

)Q

1

(g

1;r

)

�

�

�

x=l

2

(h@

x

��

+;h

)(Q

2

(g

2;l

; 0) +Q

2

(0; g

2;r

))

�

�

�

x=l

3

.

.

.

(h@

x

��

+;h

)(Q

N�1

(g

N�1;l

; 0) +Q

2

(0; g

N�1;r

))

�

�

�

x=l

N

(h@

x

��

�;h

)(Q

2

(0; g

2;r

) +Q

2

(g

2;l

; 0))

�

�

�

x=L

1

.

.

.

(h@

x

��

�;h

)(Q

N�1

(0; g

N�1;r

) +Q

N�1

(g

N�1;l

; 0))

�

�

�

x=L

N�2

(h@

x

��

�;h

)Q

N

(g

N;l

; 0)

�

�

�

x=L

N�1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

The operator T is bounded on

�

H

3=2�j_1;h

(R

d

)

�

2(N�1)

according to (2.8)(2.9) and The-
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orem 1.9. It can be written as an operator valued matrix

T (G) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0

�

.

.

.

.

.

.

.

.

.

0 � 0

� 0

.

.

.

.

.

.

0 �

� 0

.

.

.

.

.

.

0 �

0 � 0

.

.

.

.

.

.

.

.

.

�

0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

g

2;l

.

.

.

.

.

.

g

N;l

g

1;r

.

.

.

.

.

.

g

N�1;r

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

where the crosses correspond to non zero operators.

From (2.10), we see that the additive Schwarz method corresponds to a Jacobi

algorithm:

G

n+1

= T (G

n

)(2.11)

Consider now the DSA (2.3)-(2.4) and the FDA (2.5). In order to write them in a

compact form, we introduce four (2N � 2) � (2N � 2) operator valued matrices:

Ml = (Ml)

1�m;n�2N�2

with Ml

mn

=

(

T

mn

1 � m; n � N � 1

0 otherwise

Al = (Al)

1�m;n�2N�2

with Al

mn

=

(

T

mn

1 � m � N � 1; N � n � 2N � 2

0 otherwise

Ar = (Ar)

1�m;n�2N�2

with Ar

mn

=

(

T

mn

N � m � 2N � 2; 1 � n � N � 1

0 otherwise

Mr = (Mr)

1�m;n�2N�2

with Mr

mn

=

(

T

mn

N � m; n � 2N � 2

0 otherwise

so that we have T = Ml + Al +Mr + Ar. From the structure of T , we have the

following important properties:

Mr

N�1

=Ml

N�1

= 0; MlMr =MrMl = 0; Al

2

= Ar

2

= 0

AlMl = ArMr = 0; MlAr =MrAl = 0

(2.12)

It is worth noticing that these relations come from the structure of the matrices and

do not depend on the value of the components.

With these notations, we see the DSA (2.3)-(2.4) corresponds to the algorithm:

G

n+1=2

= (Ml+Al)(G

n+1=2

) + (Ar +Mr)(G

n

)

G

n+1

= (Ml+Al)(G

n+1=2

) + (Ar +Mr)(G

n+1

);
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that is

G

n+1

= (Id�Ar �Mr)

�1

(Id�Ml�Al)

�1

(Ml +Al)(Ar+Mr)G

n

=: T

ds

G

n

;

(2.13)

while the FDA (2.5) corresponds to a Gauss-Seidel algorithm (see for instance [23],

[5]):

G

n+1

= (Ml+Al)(G

n+1

) + (Ar +Mr)(G

n

);

that is

G

n+1

= (Id�Ml�Al)

�1

(Ar +Mr)G

n

=: T

fl

G

n

(2.14)

The operators (Id�Ml�Al) and (Id�Mr�Ar) are invertible sinceMl+Al and

Mr +Ar are nilpotent.

3 Convergence Analysis

We begin the convergence analysis for the three algorithms ASM,FDA and DSA with

a remark. If we take �

�;h

= �

�;h

, then the operator

 

�

h

i;l

�

h

i;r

!

is diagonal and A

l

=

A

r

= 0. Hence, the three operators T , T

fl

and T

ds

are nilpotent. Actually we have the

Proposition 3.1 If �

�;h

= �

�;h

, there exists h

0

> 0 so that the algorithms ASM,FDA

and DSA are well-posed for h 2 (0; h

0

) and converge after �nitely many iterations

according to T

N�1

= 0, T

N�1

fl

= 0 and T

ds

= 0.

The convergence for general �

�;h

in the overlapping case is derived from a pertur-

bative analysis of the above result. It relies on the nilpotency relationships (2.12) and

on the exponential decay estimates (1.27)(1.28)(2.8). When the subdomains do not

overlap, our results are weaker. They only hold for the ASM and FDA algortihms and

require stronger assumptions. In this latter case, the convergence is proved via energy

estimates like in [6][17].

Remark 3.2 a) We are considering the non-constant coe�cients case. Hence, the

next convergence results do not hold only for domain decomposition into rectilinear

strips but also for any situation which can be reduced to this case after a change of

variables.

b) While looking for uniform estimates in the previous sections, we did not �x the small

parameter h. In the next convergence statements, h is supposed to be �xed so that the

norm k:k

H

s;h is equivalent to the usual H

s

-norm.
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3.1 The overlapping case

In this paragraph, we establish the geometric convergence for the three algorithms in

the overlapping case.

Theorem 3.3 There exist constants h

�

; �

c

; �

0

c

> 0 so that the following convergence

result holds as soon as 0 < h < h

�

, inf

1�i�N

�(L

i

�l

i+1

)=h > �

0

c

, inf

1�i�N

�(L

i

�l

i

)=h >

�

c

and L

i

� l

i

> 2(L

j

� l

j+1

) > 0, 8i; j 2 f1; : : : ; N � 1g.

For initial data u

0

i

2 H

2;h

(


i

); 1 � i � N and for f 2 L

2

(R

d+1

), the three algorithms

achieve geometric convergence with the estimates:

jju

n

i

� ujj

H

2;h

(


i

)

� C

h

�

[

n

2(N�1)

]

sup

j

jju

0

j

� ujj

H

2;h

(


j

)

, n � 2N + 1, for the ASM,

jju

n

i

� ujj

H

2;h

(


i

)

� C

h

�

n

sup

j

jju

0

j

� ujj

H

2;h

(


j

)

n � 3 for the DSA,

jju

n

i

� ujj

H

2;h

(


i

)

� C

h

�

[

n

N�1

]

sup

j

jju

0

j

� ujj

H

2;h

(


j

)

n � 2N � 1 for the FDA,

(writing [:] for the integer part) where C

h

> 0, � 2 (0; 1)do not depend on (N;u

0

i

; f).

On

�

H

3=2�j_1;h

(R

d

)

�

2(N�1)

we use the l

1

(H

3=2�j_1;h

(R

d

))-norm. Then, the Banach

algebra L

�

�

H

3=2�j_1;h

(R

d

)

�

2(N�1)

�

is naturally endowed with the norm

kKk = sup

1�m�2N�2

X

1�n�2N�2

kK

mn

k

L(H

1=2�j_1;h

(R

d

))

;

where K is considered as an operator-valued matrix K = (K

mn

)

1�m;n�2N�2

. Theorem

5.1 and Remark 5.10 of [16] which rely on a combinatorial analysis give as a consequence

of the nilpotency relationships the

Lemma 3.4 Suppose

� = jjArjj jjAljj

 

N�2

X

n=0

jjMljj

n

!  

N�2

X

n=0

jjMrjj

n

!

< 1:

Then the estimates

jjT

n

jj � C

1

1��

�

[

n

2N�2

�

3

2

]

; 8n � 2N

jjT

ds

n

jj � C (1 + �)�

n�1

; 8n � 2

jjT

fl

n

jj � C

1

1��

�

[

n

N�1

]

�2

; 8n � 2(N � 1)

hold with C =

�

1 +

�

jjAljj

� �

1 +

�

jjArjj

+

�

jjArjjjjAljj

�

:

Proof of Theorem 3.3: From (2.9)(2.10) we get at once

g

n+1

i+1;l

=

h

�

�;h

(l

i+1

)��

+;h

(l

i+1

)

i

S

�;h

(l

i+1

; l

i

)�

h

i;l

(g

n

i;l

; g

n

i;r

)

+

h

�

+;h

(l

i+1

)��

+;h

(l

i+1

)

i

S

+;h

(l

i+1

; L

i

)�

h

i;r

(g

n

i;l

; g

n

i;r

)

g

n+1

i�1;r

=

h

�

�;h

(L

i�1

)��

�;h

(L

i�1

)

i

S

�;h

(L

i�1

; l

i

)�

h

i;l

(g

n

i;l

; g

n

i;r

)

+

h

�

+;h

(L

i�1

)��

�;h

(L

i�1

)

i

S

+;h

(L

i�1

; L

i

)�

h

i;r

(g

n

i;l

; g

n

i;r

):
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Let � = inf

1�i�N�1

(L

i

� l

i+1

) and L = inf

1�i�N

(L

i

� l

i

) satisfy 0 < � <

L

2

. Putting

together (1.27)(1.28) and (2.8) leads to

kAl

n;n+N�1

k

L(H

1=2�j_1;h

(R

d

))

; kA

n+N�1;n

k

L(H

1=2�j_1;h

(R

d

))

� Ce

�

��

2h

;

kMl

n+1;n

k

L(H

1=2�j_1;h

(R

d

))

; kMr

n+N�1;n+N

k

L(H

1=2�j_1;h

(R

d

))

� Ce

�

�(L��)

2h

� Ce

�

�L

4h

for any h 2 (0; h

�

), h

�

small enough. With the notations of Lemma 3.4, this yields

% � C

2

e

�

��

h

 

1

1� Ce

�

�L

4h

!

2

; 8h 2 (0; h

�

):

2

Remark 3.5 The convergence could be proved here with a simpler criterion than the

one provided by Lemma 3.4. Indeed with the overlapping � > 0, the perturbations of

the nilpotent matrices are always exponentially small with respect to h. However, the

criterion of Lemma 3.4 has the advantage that it also gives convergence for � = 0 in

the constant coe�cients case (see [16]).

3.2 The nonoverlapping case

In this paragraph, we still assume hypotheses H1 and H2 while enforcing j 2 [0; 2]

and 2(j _ 1� 1) � k � j. We split the di�erence �

+

� �

�

into its real and imaginary

parts, �

+

� �

�

= q + ip, and we set r =

p

q

so that

�

+

��

�

q

= 1 + ir. According to

H1 and H2, we have q 2 P

0

S

h

0

(h�i

j

; g

�

) with q � C

�

h�i

k

, p 2 P

0

S

h

0

(h�i

j

; g

�

) and

r 2 P

0

S

h

0

(h�i

j�k

; g

�

), while 0 � 2(j _ 1 � 1) � k � j � 2 implies j � k � 1. The

semi-classical quantization of p, q and r will be respectively denoted by P

h

, Q

h

and R

h

.

The next analysis requires additional assumptions. Although these assumptions will

be veri�ed in practical situations via semi-classical calculus, their general presentation

is more convenient in terms of operators.

H3: The estimate

Re

�

(1 + iR

h

)u; (�b

x

+ 2C

xy

h@

y

+�

+;h

+�

�;h

)u

�

L

2

� C

�

hkuk

2

H

1=2;h

; 8u 2 H

2;h

(R

d

);

holds for any h 2 (0; h

�

).

H4: There exists � 2 (0; 1) so that

Re

 

u;

"

R

h

(�b

x

C

xy

+

t

B

y

)hD

y

�R

h

b

2

x

4�

2

R

h

#

u

!

L

2

� �C

�

hkuk

2

H

1;h

;(3.1)

8u 2 H

2;h

(R

d

); h 2 (0; h

�

):

Theorem 3.6 Let �

�;h

satisfy the assumptions H1, H2, H3 and H4. There ex-

ists h

�

> 0, so that ASM and FDA algorithms achieve convergence by lim

n!1

ku

n

i

�

uk

H

1;h

(


i

)

= 0 as soon as u

0

i

2 H

2;h

(


i

), 1 � i � N , f 2 L

2

(R

d+1

) and h 2 (0; h

�

).
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Remark 3.7 This result does not hold for DSA. However, in the constant coe�cients

case, the convergence was proved in [16] for the three algorithms by methods based on

Lemma 3.4 and Fourier analysis.

The above result relies on the following energy estimate.

Proposition 3.8 There exists h

�

2 (0; h

0

) and C

�

> 0 so that

C

�

kuk

2

H

1;h

(


i

)

+hRe

�

(h@

x

��

�;h

)u; (Q

h

)

�1

(h@

x

��

�;h

)u

�

L

2

�

�

�

x=l

i

(3.2)

+hRe

�

(h@

x

��

+;h

)u; (Q

h

)

�1

(h@

x

��

+;h

)u

�

L

2

�

�

�

x=L

i

� hRe

�

(h@

x

��

�;h

)u; (Q

h

)

�1

(h@

x

��

�;h

)u

�

L

2

�

�

�

x=L

i

+hRe

�

(h@

x

��

+;h

)u; (Q

h

)

�1

(h@

x

��

+;h

)u

�

L

2

�

�

�

x=l

i

holds as soon as u 2 H

2;h

(


i

), L

h

u = 0 in 


i

and h 2 (0; h

�

).

Proof : Let us �rst remind that (Q

h

)

�1

is a well-de�ned semi-classical operator

with symbol in P

0

S

h

�

(h�i

�k

; g

�

) by taking h

�

2 (0; h

0

) small enough. Hence the

hRe-terms of (3.2) make sense as bounded forms on H

2;h

(


i

) because 2(j _ 1) � k �

2(j _ 1) � 2(j _ 1 � 1) = 2. By mollifying u

�

�

�

x=l

i

and u

�

�

�

x=L

i

, considered as Dirichlet

boundary conditions, we can assume u 2 H

m;h

(


i

) with m large enough so that the

next calculations make sense. The estimate for general u 2 H

2;h

(


i

) follows. The

energy estimate is obtained by multiplying L

h

(u) by (Id+ iR

h

)u, integrating by parts

and taking the real part:
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+
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+

h

2
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Z
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d

h
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h

u)(b

x

u� 2C
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y

u� 2h@

x

u)

i

L

i

l

i
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We �rst look at the boundary terms. Let us consider for x 2 fl

i

; L

i

g the expression

E(u) =

�
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x
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�
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�
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:

Since the principal symbol,

1

q

, of (Q

h

)

�1

is real-valued, we have

h
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)
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i

�
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)

�1

=

hc(x; y; hD

y
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�
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). Hence, semi-classical calculus yields

h

2

Re[E(u)] =

h

2

Re

�

(Q

h

)

�1

(�
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=

h

2

Re

�

(1 + iR

h

)u; (b

x

� 2C
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h@

y

u� 2h@

x

)u

�

L

2

+O(h)kuk

2

H

1;h

(


i

)

;

where the last line is a consequence of H3 and of the estimate (1.3). As a conclusion

the boundary terms of (3.2) and (3.3) di�er by an O(h)kuk

2

H

1;h

(


i

)

term. It remains to

check that the volume integral of (3.3), now denoted by V (u), is bounded from below

by Ckuk

2

H

1;h

(


i

)

. It satis�es

V (u) � Re

Z Z




i

�

2

(

t

h@u)C(h@u) + (iR
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t
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�

(1� �

2

)

� ^ 


2
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2
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)

:

Commutator terms were included in the O(h) remainder by using r 2 P

0

S

h

0

(h�i

j�k

; g

�

),

j � k � 1. By introducing h@

C

u = h@

x

u+ C

xy

h@

y

u, we have
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2

dxdy;

which leads to the lower bound of V (u)
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:

The symbol r of R

h

is real-valued so that R

h

� (R

h

)

�

= hc(x; y; hD

y

;h) with

c 2 P

0

S

h

�

(h�i

j�k�1

; g

�

). The previous estimates and semi-classical calculus then imply

that V (u) is bounded from below by

R
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We conclude by referring to H4 and by taking h

�

small enough. 2

Proof of Theorem 3.6: We proceed as in [6] or [17]. Let

E
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E

n

=

X

i

E

n

i

; A

n

=

X

i

A

n

i

and B

n

=

X

i

B

n

i

:

According to Proposition2.1, these quantities are well-de�ned for any n 2 N as soon as

u

0

i

2 H

2;h

(


i

), i = 1 : : : N . Further since the principal symbol

1

q

of (Q

h

)

�1

is real-valued

with

1

q

� C

�

h�i

�k

, the quadratic term A

n

i

, B

n

i

, A

n

and B

n

are non-negative for any

h 2 (0; h

�

), h

�

small enough (see Lemma C.1-b)). One easily checks by using L

i

= l

i+1

that we have for ASM

E
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n+1

+ B

n+1

� A

n

+ B

n

and for FDA

E

n+1

+A

n+1

� A

n

:

The convergence follows by summation over n. 2

4 Local Approximations of Dirichlet-to-Neumann

Operators

We saw in Proposition (3.1) that the three algortihms converge after a �nite number

of steps for �

�;h

= �

�;h

. Nevertheless, local boundary conditions are preferred in

numerical applications. Indeed numerical discretization truncates the high frequencies

while h is usually small. It is thus sensible to approximate �

�

by Taylor expansions

at � = 0. Three Taylor expansions are considered up to the second order (see [17]).

Higher order approximations are not used in practical algorithms. We �rst check that

the operator �

�;h

so constructed satisfy hypotheses H1 H2 H3 and H4. Then we

show that the di�erences �

�;h

� �

�;h

are small in some sense and that this choice of

boundary conditions leads to a better convergence than arbitrary �

�;h

.

4.1 Adequacy with the general convergence analysis

We take

�

�
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�
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and we recall
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In [7], the same approximations are made for the wave equation in the framework

of classical pseudo-di�erential calculus. Here the h-pseudo-di�erential calculus also

enables norm estimates for the di�erence between �

�;h

and the proposed local approx-

imations. The complete expression of �

�

l

, l = 0; 1; 2, are derived from Theorem B.1,

TheoremB.4 and
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:

Proposition 4.1 The symbol �

�

l

(or the operators �

�;h

l

), l = 0; 1; 2, all satisfy hy-

potheses H1, H2, H3 and H4.

Proof : By their construction the symbols �

�

l

belong to P

0

S

h

0

(h�i

l

; g

�

) for l = 0; 1; 2.

AssumptionH1 is true for j = l whileH2 is satis�ed by taking k = 0 for j = l 2 f0; 1g

and k = 2 for j = l = 2. In the case l = 0, we have r = 0 while �
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0
(�

+

+ �

�

) = b

x

.

Hence H3 and H4 are trivially satis�ed. For l = 1; 2, we have �
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l(�
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b
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� 2iC
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2
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By taking � 2 (

p

2; 1), H4 comes at once from Lemma C.1-b). 2

4.2 Quality of local approximations

In order to describe the low frequency behaviour of a semi-classical operator we intro-

duce the

26



De�nition 4.2 The operator a(x; y; hD

y
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We can reduce the analysis to � = 0. In order to treat separately low and high

frequencies we consider the partition of unity �

0

+ �

1
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0
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1
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� 1
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For the low frequencies, Taylor formula gives
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where

h
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2
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The �rst term is estimated in L(H
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We next consider a simple domain decomposition problem with two nonoverlapping

subdomains. The interface lays at x = 0. Though the general convergence result of

Theorem 3.6 does not provide any order of convergence, the local approximations

(4.1)(4.2)(4.3) lead to a convergence all the faster as h is small. It can be checked that
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(0) ��

�;h

l

(0)

i

ek

H

s�l_1;h

� C

s

h

l+1

P

j�j�l+1

k@

�

y

h

�

+;h

(0) ��

�;h

l

(0)

i

�1

h

�

�;h

(0) ��

�;h

l

(0)

i

ek

H

s�(l+1);h

� C

s

h

l+1

P

j�j�l+1

k@

�

y

h

�

�;h

(0) ��

�;h

l

(0)

i

ek

H

s�(l+1)�l_1;h
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We have

D

y

c(y; hD

y

) = ad

D

y

c(y; hD

y

) + c(y; hD

y

)D

y

while ad

D

y

and :D

y

commute. Hence Leibnitz formula gives

D

�

y

=

P

���

 

�

�

!

ad

���

D

y

c(y; hD

y

)D

�

y

:

We �nally obtain by referring again to Proposition 4.4

kA

h

l

ek

H

s;h
� C

s

h

2(l+1)

P

j�j�2(l+1)

k@

�

y

ek

H

s�2(l+1);h

:

2

A Semi-Classical Weyl Calculus and Beals Crite-

rion

This appendix presents a semi-classical version of the work of Bony and Chemin in

[2] where Beals criterion introduced in [1] was completely proved. It was done on the

basis of con�nement theory developed by Bony and Lerner in [3] to which we also

refer. We introduce the notion of h-con�nement for symbols depending on a small

parameter h 2 (0; h

0

) and write the semi-classical form of Beals criterion. We only

give a summary of the arguments of [2][3] with indications in order to translate their

proofs in the semi-classical framework.

Contrary to the rest of the paper, we consider here the Weyl quantization

�

a

W

(x; hD)u

�

(x) =

�

Op

h

W

[a]u

�

(x) =

Z

R

2d

e

i(x�y):�

h

a(

x+ y

2

; �)u(y) �d�dy

The corresponding #

h

W

operation, h 2 (0; h

0

), de�ned by Op

h

W

[a#

h

W

b] = Op

h

W

[a] �

Op

h

W

[b] for a; b 2 S(T

�

R

d

), writes according to [2][3][11]

a#

h

W

b(X;h) =

1

�

2d

h

2d

Z Z

e

�

2i

h

[[X�Y

1

;X�Y

2

]]

a(Y

1

;h)b(Y

2

;h)dY

1

dY

2

(A.1)

= e

ih

2

�(D

x

;D

�

;D

y

;D

�

)

a(x; �;h)b(y; �;h)

�

�

�

(y;�)=(x;�)

:

where �(:; :) or [[:; :]] denote the canonical symplectic two-form on T

�

R

d

.

The metric g and the weightm � 0 on T

�

R

d

are supposed independent of h 2 (0; h

0

)

and to satisfy the same assumptions as in [2]:

Slowness of g: There exists a constant C

0

so that

g

X

(X � Y ) � C

�1

0

) (g

Y

(:)=g

X

(:))

�1

� C

0

:
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Uncertainty Principle: g

X

(:) � g

�

X

(:) where g

�

X

(:) is the �-dual metric of g,

g

�

X

(T ) = sup

W 6=0

[[T;W ]]

2

g

X

(T )

:

If we set as usual �(X)

2

= inf

T 6=0

g

�

X

(T )

g

X

(T )

it writes � � 1.

We write the temperance condition in its symmetric form which is more natural ac-

cording to [3] by introducing the metric g

�

XY

=

�

g

X

+ g

Y

2

�

�

Symmetric Temperance of g: There exist C > 0 and N 2 N so that

(g

Y

(:)=g

X

(:))

�1

� C (1 + g

�

XY

(X � Y ))

N

:

Slowness of m: There exists a constant

~

C

0

> 0 so that

g

X

(X � Y ) � C

�1

0

) (m(Y )=m(X))

�1

�

~

C

0

:

Temperance of m: There exist

~

C > 0 and

~

N 2 N so that

(m(Y )=m(X))

�1

�

~

C (1 + g

�

XY

(X � Y ))

~

N

:

With such a metric g and a weight m, one associates according to [2][3][11] the symbol

class S(m; g) of C

1

functions a(x; �) on T

�

R

d

such that the quantities

kak

k;S(m;g)

= sup

��k;

x;�2T

�

R

d

g

x;�

(T

i

)�1;i=1:::�

�

�

�a

(�)

(x; �):T

1

: : : T

�

�

�

�

m(x; �)

(A.2)

are bounded (a

(�)

denotes the �

th

derivative of a). It is a Fr�echet space when endowed

with these seminorms.

In the sequel we will use the following convention: constants depending on the

slowness constants C

0

and

~

C

0

will be written with a

(0)

superscript; the one which also

depend on the temperance constants C, N ,

~

C and

~

N will have a

(1)

superscript; if more-

over such a constant depends on h

0

we use a

(2)

superscript. Additional dependance

will be indicated by the subscript.

A.1 h-con�nement, partitions of unity and remarks

We set U

Y;r

= fX 2 T

�

R

d

; g

Y

(X � Y ) � r

2

g where r = r

(0)

is a positive constant so

that r

2

� C

�1

0

.

De�nition A.1 a) For a �xed h 2 (0; h

0

), the space Conf

h

(g; Y; r) of symbols h-

con�ned in the g-ball U

Y;r

is S(T

�

R

d

) endowed with the topology given by the seminorms

kak

k;Conf

h

(g;Y;r)

= inffC > 0; j@

T

1

: : : @

T

l

a(X)j � C

�

1 + h

�2

g

�

Y

(X � U

Y;r

)

�

�k=2

g
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where l � k and g

Y

(T

j

) � 1, j = 1 : : : l.

b) An h-symbol (a(h))

h2(0;h

0

)

, that is a family of symbols indexed by h 2 (0; h

0

), will be

said h-con�ned in U

Y;r

if a(h) 2 S(T

�

R

d

) and if the estimates

kak

k;Conf

h

(g;Y;r)

� C

k

hold uniformly with respect to h 2 (0; h

0

).

Notice that the h-con�nement corresponds semi-classically to the notion of support in

the sense that the constant h-symbol (a(h) = a)

h2(0;h

0

)

is h-con�ned in U

Y;r

if and only

if supp a � U

Y;r

.

The construction of the partition of unity ('

Y

)

Y 2T

�

R

d given in [3]-Theorem 3.1.3

relies only on the slowness of the metric g and does not depend on h. The functions

'

Y

are uniformly bounded in S(1; g) and satisfy

Z

T

�

R

d

'

Y

jg

Y

j

1=2

dY = 1 and supp '

Y

� U

Y;r

:

Proposition A.2 a) If the h-symbol a(h) belongs to S(m; g) for any h 2 (0; h

0

) then

it writes

a(X;h) =

Z

T

�

R

d

m(Y )a

Y

(X;h)jg

Y

j

1=2

dY(A.3)

where the symbols a

Y

(h) satisfy the uniform estimates

ka

Y

(h)k

k;Conf

h

(g;Y;r)

� C

(0)

k

ka(h)k

k;S(m;g)

:

b) Reciprocally, if the h-symbols a

Y

(h) are h-con�ned in U

Y;r

uniformly with respect to

Y 2 T

�

R

d

then the the integral (A.3) is uniformly bounded in S(m; g) with

8k; 9l; C

(2)

k;l

; ka(h)k

k;S(m;g)

� C

(2)

k;l

sup

Y2T

�

R

d

h2(0;h

0

)

ka(h)k

l;Conf

h

(g;Y;r)

:

Proof : a) Take a

Y

(h) = m(Y )

�1

a(h)'

Y

. Then the estimates come from the slowness

conditions by

j@

T

1

: : : @

T

l

a

Y

(X;h)j

(

� m(Y )

�1

j@

T

1

: : : @

T

l

a'

Y

(X;h)j � C

k

m(X)

m(Y )

ka(h)k

k;S(m;g)

� C

k

~

C

0

ka(h)k

k;S(m;g)

= 0 if X 62 U

Y;r

:

b) We have

ka(h)k

k;Conf(g;Y;r)

� supf1; h

k

gka(h)k

k;Conf

h

(g;Y;r)

� supf1; h

k

0

gka(h)k

k;Conf

h

(g;Y;r)

for all h 2 (0; h

0

) and our assertions comes at once from the results [3][2] for h = 1. 2

We will not give the complete proofs of the next results which are rather long. We

recall their general principle: 1) Establish the estimates for a constant metric 
, 
 � 


�

,
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with constants independent of 
; 2) For a general metric, reduce the problem to part

1) owing to the slowness and temperance conditions. Here are several remarks which

will allow the reader to translate the proofs of [3]-Theorem 3.2.1 and [2]-Theorem 3.1

and Theorem 5.5 into the semi-classical framework.

Remark A.3 a) Like in Proposition A.2-b), some assertions can be deduced from the

results for h = 1 by using

(1 + h

�2

u)

�k=2

� supf1; h

k

0

g(1 + u)

�k=2

; 8u � 0:

b) When the metric 
 is constant, integration by part in the integral (A.1) is applied

like in [3][2] with the operator 1 +

1

2

[[T;D

Y

2

]] where T = T

Y

1

;X

is chosen so that


(T ) = 1 and [[T; Y

1

�X]] = 


�

(Y

1

�X)

1=2

. Note that h

�2




�

replaces 


�

in the

equality

�

1 +

1

2

[[T;D

Y

2

]]

�

k

e

�

2i

h

[[Y

1

�X;Y

2

�X ]]

=

�

1 + h

�1




�

(Y

1

�X)

1=2

�

k

e

�

2i

h

[[Y

1

�X;Y

2

�X ]]

:

c) We need an h-dependent analogue of the quantity �

r

(X;Y ) = 1+ g

�

XY

(U

X;r

�U

Y;r

)

which appears in the symmetric temperance condition

�

h

r

(X;Y ) = 1 + h

�2

g

�

XY

(U

X;r

� U

Y;r

):

Remark a) applies to �

r

and �

h

r

so that Theorem 3.2.2 of [3] yields

sup

X;h2(0;h

0

)

r

2

�C

�1

0

Z

T

�

R

d

�

h

r

(X;Y )

�N

(1)

jg

Y

j

1=2

dY � C

(2)

:(A.4)

We do not use the quantities

�

h

r

(X;Y ) = 1 + h

�2

supfg

�

X

(U

X;r

� U

Y;r

); g

�

X

(U

X;r

� U

Y;r

)g

and �

0

h

r

(X;Y ) = 1 + h

�2

inffg

�

X

(U

X;r

� U

Y;r

); g

�

X

(U

X;r

� U

Y;r

)g

because it does not seem possible to make the logarithmic equivalence with �

h

r

,

stated in [2] for h = 1, uniform with respect to h.

d) At some point, one is lead to estimate for a constant metric 
, 
 � 


�

, the quantity

1

�

2d

h

2d

Z Z

�

1 + h

�2




�

(Y

1

�X)

�

�(d+1)

�

1 + h

�2




�

(Y

2

� U

2

)

�

�(d+1)

dY

1

dY

2

(A.5)

where U

2

= U

X

2

;r

0

for some r

0

> 0. We �rst use remark a) and write

�

1 + h

�2




�

(Y

2

� U

2

)

�

�(d+1)

� supf1; h

2d+2

0

g (1 + 


�

(Y

2

� U

2

))

�(d+1)

:
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Then the same argument as in the proof of Theorem 2.2.1 [3] gives

1 + 
(Y

2

�X

2

) � C

r

0

(1 + 


�

(Y

2

� U

2

)) :

Hence the integral (A.5) is less than

C

d;r

0

;h

0

Z Z

�

1 + 


�

(

Y

1

�X

h

)

�

�(d+1)

(1 + 
(Y

2

�X

2

))

�(d+1)

d

�

Y

1

�X

h

�

d (Y

2

�X

2

)

which is bounded by a constant C

d;r

0

;h

0

independent of X, X

2

and 
 because

j
jj


�

j = 1.

e) The uniform L

2

-continuity of a

W

(x; hD;h) when the h-symbol a(h) is h-con�ned

in the g-ball U

Y;r

is a consequence of Weyl's formula

a

W

(x; hD;h) =

Z

R

2d

â(u; �;h)e

i(u:x+h�:D)

�du �d�

which holds in L(L

2

(R

d

)) as soon as â(h) 2 L

1

(R

2d

).

A.2 Results

Proposition A.4 (h-bicon�nement theorem) For any �; k;N 2 N, there exist l =

l

(1)

�;k;N

2 N and C = C

(2)

�;k;N

> 0 so that

ka#

h

W

b�

P

0�j<�

1

j!

 

ih[[D

X

1

;D

X

2

]]

2

!

j

a
 b

�

�

�

Diagonal

k

k;Conf

h

(g;Y;r)

(A.6)

� Ch

�

�(Y )

��

kak

l;Conf

h

(g;Y;r)

kbk

l;Conf

h

(g;Z;r)

�

h

r

(Y;Z)

�N

holds for all a; b 2 S(T

�

R

d

).

The case � = 0 expresses the semi-classical almost orthogonality: if the h-symbols

a

Y

(h) and b

Y

(h) are h-con�ned in U

Y;r

uniformly with respect to Y 2 T

�

R

d

then

a

Y

(h)#

h

W

b

Z

(h) is h-con�ned in U

Y;r

and U

Z;r

with h-con�nement semi-norms estimated

by C

(2)

k;N

�

h

r

(Y;Z)

�N

. By taking N large enough and referring to Proposition A.2 and

(A.4) one easily obtain

8k;9l = l

(1)

k

;9C = C

(2)

k

; ka#

h

W

bk

k;Conf

h

(g;Y;r)

� Cm(Y )kak

l;S(m;g)

kbk

l;Conf

h

(g;Y;r)

;

8k;9l = l

(1)

k

;9C = C

(2)

k

; ka#

h

W

bk

k;S(mm

0

;g)

� Ckak

l;S(m;g)

kbk

l;S(m

0

;g)

:

One also obtains that the remainder of the �

th

-order expansion writes

a#

h

W

b�

P

0�j<�

1

j!

 

ih[[D

X

1

;D

X

2

]]

2

!

j

a
 b

�

�

�

Diagonal

= h

�

R

�

(a; b;h)

where the h-symbol R

�

(a; b;h) satis�es the estimates

8k;9l = l

(1)

k;�

;9C = C

(2)

k;�

; kR

�

(a; b;h)k

k;S(mm

0

�

��

;g)

� Ckak

l;S(m;g)

kbk

l;S(m

0

;g)

:
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Proposition A.5 (Decomposition of h-con�ned h-symbols) For any K > 1, r

0

> 0

small enough and any family a

Y

(h) of h-symbols uniformly h-con�ned in U

Y;r

0

, there

exists two families b

Y;�

(h) 2 S(T

�

R

d

) and c

Y;�

(h) 2 S(T

�

R

d

) for (Y; �) 2 T

�

R

d

� N so

that

a

Y

(h) =

P

�2N

b

Y;�

(h)#

h

W

c

Y;�

(h)

and so that for all N 2 N, the h-symbols (1 + �)

N

b

Y;�

(h) and (1 + �)

N

c

Y;�

(h) are

h-con�ned in U

Y;Kr

0

uniformly with respect to (Y; �).

Here is a remark about the proof which can be adapted from [2]. As we said, the

small parameter h appears in the quantization and in the integrations by parts. The

last argument of the proof of [2] relies on a decomposition in Fourier series. It is a

technical trick required to inverse some tensor product operation, while the metric 


is constant. The small parameter must not appear in the phase of these Fourier series

if one wants to get uniform estimates.

Next the constant K > 1 is �xed and one takes a g-partition of unity '

Y

, Y 2 T

�

R

d

,

so that supp '

Y

� U

Y;r=K

. The above Proposition provides two families of h-symbols

 

Y;�

(h) and �

Y;�

(h) uniformly h-con�ned in U

Y;r

so that '

Y

=

P

�2N

 

Y;�

(h)#

h

W

�

Y;�

(h).

De�nition A.6 For a weight m satisfying the slowness and temperance conditions and

for any h 2 (0; h

0

), we de�ne the Sobolev space H

h

(m; g) as the space of u 2 S

0

(R

d

)

such that

P

�2N

Z

T

�

R

d

m(Y )

2

k�

W

Y;�

(x; hD

x

;h)uk

2

L

2

jg

Y

j

1=2

dY <1:

It is a Hilbert space when endowed with the scalar product

(u; v)

H

h

(m;g)

=

P

�2N

Z

T

�

R

d

m(Y )

2

�

�

W

Y;�

(x; hD

x

;h)u; �

W

Y;�

(x; hD

x

;h)v

�

L

2

jg

y

j

1=2

dY :

The h-bicon�nement estimates given in Proposition A.4 with � = 0 are indeed sharper

than the one obtained for h = 1 according to Remark A.3 a). Meanwhile the uniform

L

2

-continuity of h-con�ned h-symbols is given by Remark A.3 e). Hence the method

developed in [2] which proves the continuity of pseudo-di�erential operators via Schur's

lemma and almost orthogonality applies as it is in the semi-classical framework.

Proposition A.7 a) If the weights m and m

0

satisfy the slowness and temperance

conditions, then the quantized operator a

W

(x; hD

x

) of a symbol a 2 S(m; g) sends

continuously H

h

(m

0

; g) into H

h

(m

0

=m; g). Moreover there exist k = k

(1)

m;m

0

2 N and

C = C

(2)

m;m

0

> 0 so that

ka

W

(x; hD

x

)k

L(H

h

(m

0

;g);H

h

(m

0

=m;g))

� Ckak

k;S(m;g)

:

b) The space H

h

(1; g) is nothing but L

2

(R

d

).
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Next we write Beals criterion in the form proposed in [2]-Remark 5.6 which is

more convenient for our purpose. With a vector T

0

2 T

�

R

d

, T

0

6= 0, we associate the

operator L

h

T

0

= Op

h

W

([[T

0

;X]]) where [[T

0

;X]] denotes the linear form X ! [[T

0

;X]]. A

�nite sequence of such vectors will be written T = fT

j

6= 0; j = 1 : : : jT jg.

Theorem A.8 a) An operator A : S(R

d

) ! S

0

(R

d

) writes a

W

(x; hD) with a 2

S(m; g), h 2 (0; h

0

) being �xed, i� the quantities

h

�jT j

m(Y )

�1

k�

W

Y;�

(x; hD;h)

 

�

j�jT j

ad

L

h

T

j

A

!

k

L(L

2

)

are bounded by constants C

jT j

independent of (Y; �) 2 T

�

R

d

and of the choice of T

j

,

g

Y

(T

j

), for j = 1 : : : jT j.

b) If we set

M

h

k

(A) = sup

jT j�k; Y;�

g

Y

(T

j

)�1

h

�jT j

k�

W

Y;�

(x; hD;h)

 

�

j�jT j

ad

L

h

T

j

A

!

k

L(L

2

)

the above condition is equivalent to the �niteness of these quantities for all k 2 N and

we have

8k; 9l = l

(1)

k

; 9C = C

(2)

k

; kak

k;S(m;g)

� CM

h

l

(a

W

(x; hD)):(A.7)

Remark A.9 a) The normalization factor h

�jT j

is here in order to compensate the

gain of h induced by each commutator ad

L

h

T

j

.

b) Since the estimates reverse to (A.7) are a consequence of semi-classical calculus, the

second assertion means that the two topologies on S(m; g) de�ned by the seminorms

(A.2) and M

h

k

(a

W

(x; hD)) are uniformly equivalent with respect to h 2 (0; h

0

).

A.3 Applications

We �rst develop the �nal remark of [2]-Section 5 concerned with diagonal metrics

and �nally apply our results to the metric dx

2

+

d�

2

h�i

2

. Like in [2], we make the more

general assumption that there exists a �xed basis E = fe

i

; i = 1 : : : 2dg of T

�

R

d

so that the convex hull of f _e

i

= g

Y

(e

i

)

�1=2

e

i

; i = 1 : : : 2dg contains the g

Y

-ball of

radius % for some % 2 (0; 1) independent of Y . As an example if the metric g

Y

is

diagonal in the basis E it is true with % = (2d)

�1=2

. We consider E-valued �nite

sequences E = fE

j

2 E; j = 1 : : : jEjg. With such a sequence we associate the weight

m

E

(Y ) =

�

j�jEj

g

Y

(E

j

)

1=2

which satis�es the slowness and temperance conditions and

the normalized sequence given by

_

E

j

= g

Y

(E

j

)

�1=2

E

j

, j = 1 : : : jEj.

Proposition A.10 Under the above assumptions, an operator A : S(R

d

) ! S

0

(R

d

)

writes a

W

(x; hD) with a 2 S(m; g), h 2 (0; h

0

) �xed, i� the quantities

N

h

k

(A) = sup

jEj�k

h

�jEj

k

�

j�jEj

ad

L

h

E

j

Ak

L(L

2

;H

h

((mm

E

)

�1

;g))
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are all �nite. Moreover the equivalence estimates

8k; 9l = l

(1)

k

; 9C = C

(2)

k

; kak

k;S(m;g)

� CN

h

l

(a

W

(x; hD))(A.8)

are uniform with respect to h 2 (0; h

0

).

Proof : The h-con�nement in U

Y;r

of �

Y;�

(h) uniform with respect to (Y; �) combined

with the temperance of mm

E

which can be made uniform with respect to E, jEj �

k imply that (m(Y )m

E

(Y ))

�1

�

Y;�

(h) is uniformly bounded is S((mm

E

)

�1

; g). More

precisely the k-th semi-norm is estimated by C

(2)

k;jEj

. Hence Proposition A.7 yields

h

�jEj

(m(Y )m

E

(Y ))

�1

k�

W

Y;�

(x; hD;h)

 

�

j�jEj

ad

L

h

E

j

A

!

k

L(L

2

)

� C

(2)

jEj

N

h

jEj

(A)

which also writes

h

�jEj

m(Y )

�1

k�

W

Y;�

(x; hD;h)

 

�

j�jEj

ad

L

h

_

E

j

A

!

k

L(L

2

)

� C

(2)

jEj

N

h

jEj

(A):

Our assumption ensures that any vector T

0

satisfying g

Y

(T

0

) = 1 writes T

0

=

P

i�2d

�

i

_e

i

with �

i

� 0,

P

i�2d

�

i

� %

�1

. We conclude with

M

h

k

(A) � %

�k

C

(2)

k

N

h

k

(A); 8k 2 N:

2

For general metrics and weights, the above Proposition is not simpler than Theorem

A.8 because De�nition A.6 of Sobolev spaces H

h

(m; g) involves the family of h-symbols

�

Y;�

(h). However in the case in which we are interested, that is with the metric g

�

=

dx

2

+

d�

2

h�i

2

and the weights h�i

s

, s 2 R, the Sobolev spaces H

h

(h�i

s

; g

�

) are nothing

but the standard Sobolev spaces H

s

(R

d

) with the h-dependent norms introduced in

Section 2. This is a straightforward consequence of Proposition A.7: the operator

hhDi

�s

= Op

h

W

(h�i

�s

) de�nes an isomorphism between L

2

(R

d

) and H

h

(h�i

s

; g

�

) on one

side uniform estimates with respect to h 2 (0; h

0

) and an isometry between L

2

(R

d

)

and H

s;h

(R

d

) on the other side. In T

�

R

d

, we take the basis E = fe

1

; : : : ; e

d

; e

�

1

; : : : ; e

�

d

g,

where fe

1

; : : : ; e

d

g is the canonical basis and fe

�

1

; : : : ; e

�

d

g its dual basis. Then we have

L

h

(e

i

) = hD

i

and L

h

(e

�

i

) = �x

i

for i = 1 : : : d while Jacobi's identity gives

ad

x

i

ad

hD

i

0

� ad

hD

i

0

ad

x

i

= � ad

h�

i;i

0

= 0:

Hence if E denotes an E-valued �nite sequence we have

�

j�jEj

ad

L(E

j

)

= ad

�

hD

ad

�

�x

=

�

1�i�d

ad

�

i

hD

�

1�i

0

�d

ad

�

i

0

�x

where �

i

and �

i

0

are the occurence number of e

i

and e

�

i

0

in E. Finally we notice that

the weight m

E

de�ned above equals m

E

(x; �) = h�i

�j�j

and Proposition A.10 now has

the form
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Proposition A.11 An operator A : S(R

d

) ! S

0

(R

d

) writes a

W

(x; hD) with a 2

S(h�i

s

; g

�

) i� the quantities

N

h

k

(A) = sup

j�j+j�j�k

h

�j�j�j�j

k ad

�

hD

ad

�

x

Ak

L(L

2

;H

j�j�s;h

)

are all �nite. Moreover estimate (A.8) still holds uniformly with respect to h 2 (0; h

0

).

Remark A.12 a) Since hhDi

m

, m 2 R, satis�es the criterion and ad

B

is a derivation,

the norms in L(L

2

;H

j�j�s;h

) can be replaced by norms in L(H

m;h

;H

m+j�j�s;h

).

b) In Theorem A.8, Proposition A.10 and Proposition A.11, the result holds with the

standard (1; 0)-calculus and more generally with any (t; 1�t)-quantization as soon as the

metric g is splitted, g

x;�

(t

x

;�t

�

) = g

x;�

(t

x

; t

�

), owing to the equivalence of quantizations

in this case.

B Factorizing Semi-Classical Elliptic Operators

As it is well known, factorizing elliptic operators with an arbitrarily smooth or small

remainder is related to the construction of Calderon projector. Instead of using com-

plex integral and residue formula like in [4][11][21], we follow the method of Treves in

[22] which is convenient in our case with 
at boundaries. From a technical point of

view, it gives at once uniform estimates in our framework. Secondly, it is completely

constructive and provides a suitable algorithm for applications.

In order to use the (1; 0)-calculus corresponding to the quantization

A(x; x

0

;h) =

Z

R

d

e

i

(x�x

0

):�

h

a(x; �;h)

�d�

h

d

:(B.1)

with which di�erential operators are easier to handle, we assume the metric g to be

splitted g

x;�

(t

x

;�t

�

) = g

x;�

(t

x

; t

�

). For h 2 (0; h

0

), the Schwartz-kernel (B.1)de�nes

an operator denoted by a(x; hD;h) or Op

h

[a(h)] continuous from S(R

d

) into S

0

(R

d

)

when a(h) 2 S

0

(T

�

R

d

) and continuous from S(R

d

) (resp. S

0

(R

d

)) into S(R

d

) (resp.

S

0

(R

d

)) when a(h) belongs in a symbol class S(m; g). We consider the space S

h

0

(m; g)

of h-dependent symbols a(h) uniformly bounded in S(m; g) with respect to h 2 (0; h

0

).

Endowed with the semi-norms p

h

�

(a) = sup

h2(0;h

0

)

ka(h)k

�;S(m;g)

; where the k:k

�;S(m;g)

are de�ned by (A.2), S

h

0

(m; g) is a Fr�echet space. The bilinear mapping #

h

de�ned

by

Op

h

h

(a#

h

b)(h)

i

= Op

h

[a(h)] �Op

h

[b(h)] ;

satis�es

(a#

h

b)(x; �;h) = e

ihD

�

:D

y

a(x; �;h)b(y; �;h)

�

�

�

(y;�)=(x;�)

=

P

j�j<N

(ih)

j�j

�!

D

�

�

aD

�

x

b(x; �;h) + h

N

R

N

(a; b)(x; �;h)(B.2)
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where, for any N 2 N, the mapping (a; b) ! R

N

(a; b) is continuous from S

h

0

(m; g) �

S

h

0

(m

0

; g) into S

h

0

(

mm

0

�

N

; g). Remind that when a and b are polynomials, that is when

a(x; hD) and b(x; hD) are h-di�erential operators, formula (B.2) is nothing but the

Leibnitz rule and the remainder R

N

is zero for N large enough.

The principal symbol �

m;g

(a) (or simply �

m

(a) when the context is clear) of a 2

S

h

0

(m; g) is de�ned as its class with respect to the equivalence relation

(a � b), (a� b = hc with c 2 S

h

0

(

m

�

; g)):

This equivalence relation is compatible with addition and multiplication of symbols

and we can de�ne �

m;g

(a) + �

m;g

(b) = �

m;g

(a + b) and �

m;g

(a)�

m

0

;g

(b) = �

mm

0

;g

(ab).

The expansion (B.2) implies

�

mm

0

;g

(a#

h

(0;1)

b) = �

m;g

(a)�

m

0

;g

(b):

As a consequence of the equivalence with Weyl calculus [11] for a splitted g, the formal

adjoint of a(x; hD;h) writes b(x; hD;h) where b 2 S

h

0

(m; g) is a continuous function

of a 2 S

h

0

(m; g) and

�

m;g

(b) = �

m;g

(a):

Note that in the sequel, we do not distinguish by notations the principal symbol �

m;g

(a)

as a class and an arbitrary representant.

B.1 A class of polynomial symbols

We consider semi-classical pseudo-di�erential operators on R

d+1

= R

x

�R

d

y

which are

h-di�erential operators with respect to x. Their (1; 0)-symbol in T

�

R

d+1

have the form

a(x; �; y; �;h) =

P

0�k�n

a

k

(x; y; �;h)�

n�k

where for any (j; k) 2 N � f0; : : : ; ng @

j

x

a

k

(x) is uniformly bounded in S

h

0

(m�

k

; g)

with respect to x 2 R. We call P

n

S

h

0

(m; g) the space of such symbols endowed with

seminorms

p

h

�;j;k

(a) = sup

x2R

p

h

�;k

(@

j

x

a

k

(x))

where (p

h

�;k

) is the complete family of seminorms on S

h

0

(m�

k

; g) de�ned in the previous

paragraph. The Leibnitz rule for di�erential operators, allows to de�ne a #

h

operation

for the above polynomial symbols so that

Op

h

[(a#

h

b)(h)] = Op

h

[a(h)] �Op

h

[b(h)]:

For a 2 P

n

S

h

0

(m; g) and b 2 P

n

0

S

h

0

(m

0

; g), we get

(a#

h

b)(x; y; �; �;h) =

P

0�l�n�k�n

0�k

0

�n

0

h

l

�

n�k

l

� h

a

k

#

h

(0;1)

D

l

x

b

k

0

i

(x; y; �;h)�

n+n

0

�(k+k

0

+l)

:
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The mapping #

h

is continuous from P

n

S

h

0

(m; g)�P

n

0

S

h

0

(m

0

; g) to P

n+n

0

S

h

0

(mm

0

; g).

The asymptotic expansion is derived by referring to (B.2) for each term. Like in the

previous paragraph, we introduce the equivalence relation on P

n

S

h

0

(m; g),

(a � b), (a� b = hc with c 2 P

n

S

h

0

(

m

�

; g));

compatible with addition and multiplication. The principal symbol �

n;m;g

(a) (or simply

�

n;m

(a)) of a 2 P

n

S

h

0

(m; g) is de�ned as the class of a and we have

�

n+n

0

;mm

0

;g

(a#

h

b) = �

n;m;g

(a)�

n

0

;m

0

;g

(b):

B.2 Factorization

In this paragraph we consider a semi-classical operator

P (x; hD

x

; y; hD

y

;h) = (hD

x

)

n

+

P

1�j�n

P

k

(x; y; hDy;h)(hD

x

)

n�k

of which the symbol equals P (x; �; y; �;h) = �

n

+

P

1�j�n

P

k

(x; �; y; �;h)�

n�k

and be-

longs to P

n

S

h

0

(1; g). We assume this operator to be elliptic in the following sense.

Ellipticity assumptions: a) There exists a representant of the principal symbol �

n;1

(P )

which considered as a polynomial function of � admits n

+

(resp.n

�

) roots �

�

i

(x; y; �;h),

i = 1 : : : n

�

, with a negative (resp. positive) imaginary part. The integers n

+

and n

�

do not depend on (x; y; �;h) and satisfy n

+

+ n

�

= n.

b) The roots �

�

i

(x; y; �;h), i = 1 : : : n

�

, belong to P

0

S

h

0

(�; g) with

inf

i=1:::n

+

j=1:::n

�

j�

+

i

� �

�

j

j � C�

where C > 0 does not depend on (x; y; �;h).

Notation: We set M

�

(x; �; y; �;h) =

�

i=1:::n

�

(� � �

i

(x; y; �;h)) and n

�

= min(n

+

; n

�

).

Theorem B.1 There exist two sequences of symbols (A

�

k

)

k2N

, A

�

k

2 P

n

�

�1

S

h

0

(�

1�k

; g)

so that:

a) �

n

�

;1

(�

n

�

+A

�

0

) = �

n

�

;1

(M

�

).

b) The symbolsM

�

N

= �

n

�

+

P

k<N

h

k

A

�

k

2 P

n

�

S

h

0

(1; g) satisfy P�M

+

N

#

h

M

�

N

= h

N

R

N

with R

N

2 P

n

�

�1

S

h

0

(�

n�n

�

+1�N

; g) � P

n�1

S

h

0

(�

1�N

; g) � P

n

S

h

0

(�

�N

; g).

In order to get the remainder R

N

precisely in P

n

�

�1

S

h

0

(�

n�n

�

+1�N

; g) we will use a

kind of euclidean division.

Lemma B.2 a) Assume M

�

N

to be de�ned as above and

~

R

N

2 P

n�1

S

h

0

(�

1�N

; g), then

there exist Q

+

N

2 P

n

+

�1

S

h

0

(�

1�N

; g) and R

�

N

2 P

n

�

�1

S

h

0

(�

n�n

�

+1�N

; g) so that

~

R

N

=

Q

+

N

#

h

M

�

N

+R

�

N

.

b) Assume M

+

N

to be de�ned as above and

~

R

N

2 P

n�1

S

h

0

(�

1�N

; g), then there exist

Q

�

N

2 P

n

�

�1

S

h

0

(�

1�N

; g) and R

+

N

2 P

n

+

�1

S

h

0

(�

n�n

+

+1�N

; g) so that

~

R

N

=M

+

N

#

h

Q

�

N

+

R

+

N

.
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Proof : a) Indeed we prove that for r

k

2 P

n�k

S

h

0

(�

k�N

; g), 1 � k � n

+

there exist

q

k

2 P

n

+

�k

S

h

0

(�

k�N

; g) and r

k+1

2 P

n�k�1

S

h

0

(�

k+1�N

; g) so that r

k

= q

k

#

h

M

�

N

+r

k+1

.

When it is done, it su�ces to start from r

1

=

~

R

N

, to construct recursively the r

k

's up to

r

n

+

+1

= R

�

N

and to take Q

+

N

=

P

1�k�n

+
q

k

which �nally belongs to P

n

+

�1

S

h

0

(�

1�N

; g)

owing to the inclusions

P

0

S

h

0

(�

n

+

�N

; g) � : : : � P

n

+

�2

S

h

0

(�

2�N

; g) � P

n

+

�1

S

h

0

(�

1�N

; g):

So let r

k

=

P

j=0:::n�k

r

k;j

�

n�k�j

with r

k;j

2 P

0

S

h

0

(�

j+k�N

; g). We have

r

k

=

"

P

0�j�n

+

�k

r

k;j

�

n

+

�k�j

#

�

n

�

+

P

n

+

�k<j�n�k

r

k;j

�

n�k�j

=

"

P

0�j�n

+

�k

r

k;j

�

n

+

�k�j

#

#

h

"

M

�

N

�

P

1�j�n

�

M

�

N;j

�

n

�

�j

#

+

P

n

+

�k<j�n�k

r

k;j

�

n�k�j

:

by writing M

�

N

= �

n

�

+

P

1�j�n

�
M

�

N;j

�

n

�

�j

. The fact that q

k

=

P

0�j�n

+

�k

r

k;j

�

n

+

�k�j

belongs to P

n

+

�k

S

h

0

(�

k�N

; g) is a consequence of de�nitions while semi-classical cal-

culus ensures that

r

k+1

=

P

n

+

�k<j�n�k

r

k;j

�

n�k�j

�

"

P

0�j�n

+

�k

r

k;j

�

n

+

�k�j

#

#

h

"

P

1�j�n

�

M

�

N;j

�

n

�

�j

#

belongs to P

n�k�1

S

h

0

(�

k+1�N

; g).

b) Due to the commutation relationship

�#

h

(0;1)

A(x; y; �;h)�A(x; y; �;h)#

h

(0;1)

� = h@

x

A(x; y; �;h);

we can write

~

R

N

=

P

0�j�n�1

(�#

h

)

n�1�j

~

R

0

N;j

:

The same arguments as above works by transposing the operations on the left. Namely

we replace the left factor (�#

h

)

n

+

by M

+

N

�

P

1�j�n

+
M

+

N;j

�

n

+

�j

. 2

Proof of Theorem B.1: We construct the A

�

k

' s recursively.

N = 1: By semi-classical calculus, we know �

h

n;1

(P ) = �

h

n

+

;1

(M

+

)�

h

n

�

;1

(M

�

) which

means

P �M

+

#

h

M

�

= h

~

R

1

;

~

R

1

2 P

n

S

h

0

(�

�1

; g):

Since P and M

+

#

h

M

�

have the same leading term �

n

,

~

R

1

2 P

n�1

S

h

0

(�

0

; g). We

conclude by referring to Lemma B.2: If n

+

� n

�

we take M

�

1

=M

�

, A

�

0

=M

�

� �

n

�

,

A

+

0

= M

+

� �

n

+

+ hQ

+

1

, M

+

1

= M

+

+ hQ

+

1

and R

1

= R

�

1

. Otherwise, if n

+

< n

�

we

take M

+

1

= M

+

, A

+

0

= M

+

� �

n

+

, A

�

0

= M

�

� �

n

�

+ hQ

�

1

, M

�

1

= M

�

+ hQ

+

1

and

R

1

= R

+

1

. Note that the principal symbol of A

�

0

and M

�

1

are not changed by the last

operation.
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N ) N + 1: We now suppose that the A

�

k

' s are known for k < N , N � 1, and satisfy

P =M

+

N

#

h

M

�

N

+ h

N

R

N

; R

N

2 P

n

�

�1

S

h

0

(�

n�n

�

+1�N

; g) � P

n�1

S

h

0

(�

1�N

; g):

We want to construct A

�

N

2 P

n

�

�1

S

h

0

(�

1�N

; g) so that M

�

N+1

=M

�

N

+ h

N

A

�

N

satisfy

P =M

+

N+1

#

h

M

�

N+1

+ h

N+1

R

N+1

; R

N+1

2 P

n

�

�1

S

h

0

(�

n�n

�

�N

; g):

By the same argument as above relying on Lemma B.2, the problem is reduced to the

construction of

~

A

�

N

2 P

n

�

�1

S

h

0

(�

1�N

; g) so that

P =

~

M

+

N+1

#

h

~

M

�

N+1

+ h

N+1

~

R

N+1

;

~

R

N+1

2 P

n�1

S

h

0

(�

�N

; g);

by setting

~

M

�

N+1

= M

�

N

+ h

N

~

A

�

N

. One easily checks that the

~

A

�

N

and

~

R

N+1

have to

solve

~

A

+

N

#

h

M

�

N

+M

+

N

#

h

~

A

�

N

�R

h

N

= �h

~

R

N+1

� h

N

~

A

+

N

#

h

~

A

�

N

:(B.3)

From

~

A

�

N

2 P

n

�

�1

S

h

0

(�

1�N

; g), R

N

2 P

n�1

S

h

0

(�

1�N

; g) and N � 1 we infer

~

A

+

N

#

h

M

�

N

+M

+

N

#

h

~

A

�

N

�R

h

N

2 P

n�1

S

h

0

(�

1�N

; g)

and

~

A

+

N

#

h

~

A

�

N

2 P

n�2

S

h

0

(�

2�2N

; g) � P

n�1

S

h

0

(�

�N

; g):

As a consequence, it su�ces to �nd

~

A

�

N

solving

�

n�1;�

1�N

h

~

A

+

N

#

h

M

�

N

+M

+

N

#

h

~

A

�

N

�R

h

N

i

= 0

or

~

A

�

N

M

+

+

~

A

+

N

M

�

= R

N

:(B.4)

When (x; y; �;h) is �xed, the polynomials M

�

(�) =

�

i=1:::n

�
(� � �

i

) have no common

root. Thus by Bezout Theorem, the linear mapping: (f; g) 2 C

n

�

�1

[�] � C

n

+

�1

[�] !

fM

+

+ gM

�

2 C

n�1

[�] is an isomorphism and (

~

A

+

N

;

~

A

�

N

) is nothing but the inverse

image of R

N

. It remains to specify the behaviour of

~

A

�

N

with respect to (x; y; �;h). We

set

~

A

�

N

=

P

j=0:::n

�

�1

~

A

�

N;j

�

n

�

�1�j

and we will verify

~

A

�

N;j

2 P

n

�

�1

S

h

0

(�

1�N+j

; g). By writing equation (B.4) for � = �

�

i

,

i = 1 : : : n

�

, we get two indepent linear systems which determine the coe�cients

~

A

�

N;j

=

�

�

�

�

�

�

�

�

M

�

(�

�

1

)�

�

1

n

�

�1

: : : M

�

(�

�

1

)�

�

1

n

�

�j

R

N

(�

�

1

) : : : M

�

(�

�

1

)

.

.

.

.

.

.

.

.

.

.

.

.

M

�

(�

�

n

)�

�

n

�

n

�

�1

: : : M

�

(�

�

n

�

)�

�

n

�

n

�

�j

R

N

(�

�

n

�

) : : : M

�

(�

�

n

�

)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

M

�

(�

�

1

)�

�

1

n

�

�1

M

�

(�

�

1

)�

�

1

n

�

�2

: : : M

�

(�

�

1

)

.

.

.

.

.

.

.

.

.

M

�

(�

�

n

)�

�

n

�

n

�

�1

M

�

(�

�

n

)�

�

n

�

n

�

�2

: : : M

�

(�

�

n

�

)

�

�

�

�

�

�

�

�

�
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=

�

�

�

�

�

�

�

�

M

�

(�

�

1

)�

�

1

n

�

�1

: : : R

N

(�

�

1

) : : : M

�

(�

�

1

)

.

.

.

.

.

.

.

.

.

M

�

(�

�

n

)�

�

n

�

n

�

�1

: : : R

N

(�

�

n

�

) : : : M

�

(�

�

n

�

)

�

�

�

�

�

�

�

�

�

�

i=1:::n

�

M

�

(�

�

i

)

�

"

�

1�k<k

0

�n

�

(�

�

k

� �

�

k

0

)

#

where the polynomial R

N

appears in the (j + 1)

th

column, j = 0 : : : n

�

� 1. By the

multilinearity of the determinant, we can separate the contribution of the (x; y; �;h)-

dependent coe�cients of M

�

and R

N

from the contribution of the �

�

i

2 S

h

0

(�; g). We

set M

�

=

P

0�i�n

�

M

�

i

�

n

�

�i

and R

N

=

P

0�i�n�1

R

N;i

�

n�1�i

and the above quotient splits

as a sum whose terms write

M

�

i

1

: : :M

�

i

j

R

N;i

M

�

i

j+2

: : :M

�

i

n

�

h

�

i=1:::n

�
M

�

(�

�

i

)

i

�

�

�

�

�

�

�

�

�

�

1

n�1�i

1

: : : �

�

1

n�j�i

j

�

�

1

n�1�i

: : : �

�

1

n

�

�i

n

�

.

.

.

.

.

.

.

.

.

.

.

.

�

�

n

�

n�1�i

1

: : : �

�

n

�

n�j�i

j

�

�

n

�

n�1�i

: : : �

�

n

�

n

�

�i

n

�

�

�

�

�

�

�

�

�

"

�

1�k<k

0

�n

�

(�

�

k

� �

�

k

0

)

#

:

The assumptions onM

�

and R

N

imply that the numerator of the �rst quotient belongs

to P

0

S

h

0

(�

i

1

+���+i

j

+1�N+i+i

j+2

���+i

n

�

; g) while the second quotient is a universal symmet-

ric polynomial of (�

�

1

; : : : ; �

�

n

�

) of which the total degree equals n

+

n

�

+ j � (i

1

+ � � �+

i

j

+ i + i

j+2

� � � + i

n

�

). The ellipticity assumption ensures

1

(�

+

i

��

�

k

)

2 S

h

0

(�

�1

; g), for

all i = 1 : : : n

+

, k = 1 : : : n

�

, which yields

1

M

�

(�

�

i

)

2 S

h

0

(�

�n

�

; g), for i = 1 : : : n

�

. We

�nally obtain

~

A

�

N;j

2 S

h

0

(�

j+1�N

; g) and

~

A

�

N

2 P

n

�

�1

S

h

0

(�

1�N

; g). 2

Remark B.3 a) In the case n = 2, n

�

= 1, the euclidean division described in Lemma

B.2 has to be performed only once for A

�

0

. Indeed if R

N

is a polynomial of degree

0 with respect to �, the symbols

~

A

�

N

2 P

0

S

h

0

(�

1�N

; g) given by equation (B.4)verify

~

A

+

N

+

~

A

�

N

= 0 and R

N+1

derived from identity (B.3) is again a polynomial of degree 0.

b)In the above proofs, the + and � signs can be interchanged and we state the

Theorem B.4 There exist two sequences of symbols (B

�

k

)

k2N

, B

�

k

2 P

n

�

�1

S

h

0

(�

1�k

; g)

so that:

a) �

n

�

;1

(�

n

�

+B

�

0

) = �

n

�

;1

(M

�

).

b) The symbolsM

0

�

N

= �

n

�

+

P

k<N

h

k

B

�

k

2 P

n

�

S

h

0

(1;g)

satisfy P�M

0

�

N

#

h

M

0

+

N

= h

N

R

0

N

with R

0

N

2 P

n

�

�1

S

h

0

(�

n�n

�

+1�N

; g) � P

n

S

h

0

(�

�N

; g).
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C Functional Analysis of Semi-Classical Opera-

tors

This appendix is restricted to the metric g

�

= dy

2

+

d�

2

h�i

2

. Some results are standard

(see a.e. [10]). However it provides the precise statements to which we often refer

along our analysis. Let us �rst consider properties which are uniform with respect to

h 2 (0; h

0

)

Lemma C.1 a) Let the symbol a 2 S

h

0

(h�i

m

; g

�

), m � 0, satisfy the ellipticity con-

dition jK + aj � C

0

h�i

m

for some constants K 2 C and C

0

> 0. Then for every

h 2 (0; h

0

) and every s 2 R, the operator A

h

= a(y; hD

y

;h) de�ned on H

s;h

(R

d

) with

the domain D(A

h

) = H

s+m;h

(R

d

) is closed and the domain of its adjoint A

�

s

;h

with

respect to the H

s;h

-scalar product is also D(A

�

s

;h

) = H

s+m;h

(R

d

).

b) If the principal symbol �

h�i

m
(a) (indeed one of its representative) of a 2 S

h

0

(h�i

m

; g

�

),

m 2 R, is real-valued, then we have

Im(u; a(y; hD

y

;h)u)

H

s

2

;h

� C

a;s

hkuk

2

H

s+m�1

2

;h

; 8u 2 H

s

2

+m;h

(R

d

):(C.1)

If further this principal symbol is bounded from below by C

0

h�i

m

, then we have

Re(u; a(y; hDy ;h)u)

H

s

2

;h

� k

q

�

h�i

m

(a)(y; hD

y

;h)uk

2

H

s

2

;h

(C.2)

�C

0

a;s

hkuk

2

H

s+m�1

2

;h

; 8u 2 H

s

2

+m;h

(R

d

):

The constants C

a;s

and C

0

a;s

only depend on s and �nitely many semi-norms of a

Proof : The problem can be reduced to the case s = 0, while replacing a(y; hD

y

;h)

by a

s

(y; hD

y

;h) = hhD

y

i

s

a(y; hD

y

;h)hhD

y

i

�s

. Since �

h�i

m

(a

s

) = �

h�i

m

(a), the assump-

tions of a) and b) are also satis�ed by a

s

, by possibly changing the constants.

a) For the sake of simplicity, we assume K = 0 and �x h = 1, which does not a�ect the

validity of the next arguments. We have jaj � C

0

h�i

m

so that a

�1

2 S(h�i

�m

; g

�

).

Pseudo-di�erential calculus gives a

�1

#

h

a = 1 + b

1

, b

1

2 S(h�i

�1

; g

�

) and we can

construct by induction a

1

= a

�1

, b

1

, a

2

= a

�1

� a

�1

b

1

, b

2

: : : , a

k

2 S(h�i

�m

; g

�

),

b

k

2 S(h�i

�k

; g

�

) so that a

k

#

h

a = 1 + b

k

. Let u

n

2 L

2

(R

d

) converge to u 2 L

2

(R

d

)

while a(y;D

y

)u

n

! v as n!1. We have

u+ b

m

(y;D

y

)u = lim

n!1

a

m

(y;D

y

)a(y;D

y

)u

n

= a

m

(y;D

y

)v in L

2

(R

d

)

so that u = a

m

(y;D

y

)v� b

m

(y;D

y

)u 2 H

m

(R

d

). Since the pseudo-di�erential operator

a(y;D

y

) is continuous: S

0

(R

d

)! S

0

(R

d

), we also conclude v = a(y;D

y

)u. The operator

A = a(y;D

y

) de�ned on L

2

(R

d

) with domain D(A) = H

m

(R

d

) is closed. By the density

of S(R

d

) in L

2

(R

d

) and the imbedding L

2

(R

d

) 2 S

0

(R

d

), the adjoint A

�

of A is nothing

but the formal adjoint a(y;D

�

y

) with domain D(A

�

) = fu 2 L

2

(R

d

); a(y;D

y

)

�

u 2

L

2

(R

d

)g. The equivalence between the Weyl- and (1; 0)- calculus implies a(y;D

y

)

�

=
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(�a+c)(y;D

y

) with c 2 S(h�i

m�1

; g

�

). Hence we can �nd a constant K

0

2 C so that a

0

=

K

0

+ �a+ c satis�es ja

0

j � C

0

0

h�i

m

while D(A

�

) = fu 2 L

2

(R

d

); a

0

(y;D

y

)

�

u 2 L

2

(R

d

)g.

By taking a

0

m

2 S(h�i

�m

; g

�

) and b

m

2 S(h�i

�m

; g

�

) so that a

0

m

#a = 1 + b

0

m

, we get

u 2 D(A

�

) ) u = a

0

m

(y;D

y

)a(y;D

y

)u� b

m

(y;D

y

)u 2 H

m

(R

d

)

and D(A

�

) = H

m

(R

d

).

b) The di�erence between the symbol a 2 S

h

0

(h�i

m

; g

�

) and a representative of its

principal part writes hb with b 2 S

h

0

(h�i

m�1

; g

�

). Hence we can suppose the symbol

itself to be real-valued. The equivalence with the Weyl semi-classical calculus gives

a(y; hD

y

;h)

�

= (a+ hc)(y;D

y

;h) with c 2 S

h

0

(h�i

m�1

; g

�

). Hence for any u 2 S(R

d

),

we have the estimates

Im(u; a(y; hD

y

;h)u)

L

2
=

ih

2

(u; c(y; hD

y

;h)u)

L

2
� C

�

hkuk

2

H

m�1

2

;h

;

which extends to any u 2 H

m;h

(R

d

) by density.

If a � C

0

h�i

m

, then its square root

p

a belongs to S

h

0

(h�i

m

2

; g

�

). Semi-classical calculus

yields

1

2

[a(y; hD

y

;h) + a(y; hD

y

;h)

�

] = (

p

a)(y; hD

y

;h)(

p

a)(y; hD

y

;h)

�

+ hc(y; hD

y

;h)

with c 2 S

h

0

(h�i

m�1

; g

�

). We obtain for any u 2 S(R

d

)

Re(u; a(y; hD

y

;h)u)

L

2

= k

p

a(y; hD

y

;h)uk

2

L

2

+ h(u; c(y; hD

y

;h)u)

L

2

� k

p

a(y; hD

y

;h)uk

2

L

2

� C

a

hkuk

2

H

m�1

2

;h

and we conclude by a density argument like above. 2

We end with some re�nements of the previous lemma which hold for h \small

enough".

Lemma C.2 a) Let a 2 S

h

0

(h�i

m

; g

�

), m 2 R, satisfy jaj � C

0

h�i

m

for some constant

C

0

> 0. Then there exist h

a

, 0 < h

a

� h

0

, depending on �nitely many seminorms of

a, and a

0

2 S

h

a

(h�i

�r

; g

�

) so that

a#

h

a

0

= a

0

#

h

a = 1; 8h 2 (0; h

a

):

b) Let the symbol a 2 S

h

0

(h�i

m

; g

�

), m 2 R, satisfy Re(a) 2 S

h

0

(h�i

k

; g

�

) with Re(a) �

C

0

h�i

k

, m � 1 � k � m and C

0

> 0. Then there exist h

a;s

2 (0; h

0

) and C

a;s

> 0,

depending on a �nite number of seminorms of a and on s, so that

Re(u; a(y; hD

y

;h)u)

H

s

2

;h

� C

a;s

kuk

2

H

s+k

2

;h

; 8u 2 H

s

2

+k;h

(R

d

); h 2 (0; h

a;s

):

c) Let the symbol a 2 S

h

0

(h�i; g

�

), satisfy the uniform estimate K + Re(a) � C

0

h�i

for some constants K 2 R and C

0

� 0. Let A

s

= a(y; hD

y

;h) be the operator de�ned
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on H

s

2

;h

(R

d

), s 2 R with the domain D(A

s

) = H

s+1

2

;h

(R

d

). Then there exists h

�(a)

2

(0; h

0

), depending only on a �xed number of seminorms of �

h�i

(Re(a)), so that the

resolvent of A

s

is estimated by

k(z � !

a;s

�A

s

)

�1

k

L(H

s

2

;h

)

�

C

a;s

1 + jzj

; 8z 2 C ;Re(z) < 0;(C.3)

with constants !

a;s

2 R and C

a;s

possibly depending on a and s, for all h 2 (0; h

�(a)

).

Proof : a) By considering hhD

y

i

�m

a(y; hD

y

;h), the problem is reduced to the case

m = 0. We write (a

�1

)#

h

a = 1 + hb and a#

h

(a

�1

) = 1 + hc with b; c 2 S

h

0

(h�i

�1

; g

�

).

For some h

a

, 0 < h

a

� h

0

, the operators (1 + hb)(y; hD

y

;h) and (1 + hc)(y; hD

y

;h)

are invertible as soon as h � h

a

. Hence a(y; hD

y

;h) admits a left and right inverse

A

0

h

. We next check A

0

h

= a

0

(y; hD

y

;h) with a

0

2 S

h

a

(1; g

�

) by referring to the Beals

criterion of Proposition A.11. By applying multi-commutators to a(y; hD

y

;h)A

0

h

= 1,

we have

ad

�

y

ad

�

hD

y

A

0

h

= �

P

(�

1

;�

1

)+���+(�

l

;�

l

)=(�;�)

(�

1

;�

1

) 6=(0;0)

C

�

i

;�

i

A

0

h

ad

�

1

y

ad

�

1

hD

y

a(y; hD

y

;h) : : :

A

0

h

ad

�

l

y

ad

�

l

hD

y

a(y; hD

y

;h)A

0

h

:

Then the proof is done if A

0

h

is uniformly bounded on H

k;h

(R

d

) for k 2 N. It comes

at once by induction from the identity

hhD

y

iA

0

h

=

h

hhD

y

i; A

0

h

i

+A

0

h

hhD

y

i

= �A

0

h

[hhD

y

i; a(y; hD

y

;h)]A

0

h

+A

0

h

hhD

y

i:

b) We �rst write

Re(u; a(y; hD

y

;h)u)

H

s;h

= Re(u;Re(a)(y; hD

y

;h)u)

H

s;h

� Im(u; Im(a)(y; hD

y

;h)u)

H

s;h

:

By referring to estimates (C.1)(C.2), we deduce

Re(u; a(y; hD

y

;h)u)

H

s;h

� k

q

Re(a)k

2

H

s;h

� C

a;s

h

�

kuk

2

H

s+m�1

2

;h

+ kuk

2

H

s+k�1

2

;h

�

� k

q

Re(a)k

2

H

s;h

� C

a;s

hkuk

2

H

s+k

2

;h

:

According to part a) we can choose h

a

small enough so that

q

Re(a)(y; hD

y

;h) is an

isomorphism from H

s+k

2

;h

(R

d

) onto H

s

2

;h

(R

d

), for all 0 < h � h

�(a)

, with uniform

estimates. Then h

a;s

� h

a

is taken so that the negative term does not exceed half of

the �rst one.

c) By possibly replacing the symbol a by K + a, we can assume Re(a) � C

0

h�i. For

the sake of simplicity we consider Re(a) as a representant of its prinsipal symbol. We

45



take h

�(a)

2 (0; h

0

) so that

q

Re(a)(y; hD

y

;h) is an isomorphism from H

s

2

;h

(R

d

) onto

H

s+1

2

;h

(R

d

). Due to the boundedness of hhD

y

i

�1=2

a(y; hD

y

;h)hhD

y

i

�1=2

, H

s+1

2

;h

(R

d

)

is a form domain for q(u) = (u; a(y; hD

y

;h)u)

H

s

2

;h

. We �rst check that q is strictly

m-sectorial in the sense of [20]-Vol.I, that is

q(u) 2 S

a;s

= fz 2 C ; ��

a;s

� arg(z � !

a;s

) � �

a;s

g; 8u 2 H

s+1

2

;h

(R

d

)

with �

a;s

<

�

2

. Estimates (C.1) and (C.2) extended to u 2 H

s+1

2

;h

(R

d

) give

Req(u) � k

p

Rea(y; hD

y

;h)uk

2

H

s

2

;h

� C

a;s

hkuk

2

H

s

2

;h

while we have Im q(u) � C

0

a;s

kuk

2

H

s+1

2

;h

. Hence we can �nd h

�(a);s

> 0, "

a;s

> 0 and

!

a;s

2 C so that e

i"

(q+ !

a;s

� 1) is strictly m-accretive as soon as �"

a;s

� " � "

a;s

and

h 2 (0; h

�(a);s

). Then we take �

a;s

=

�

2

� "

a;s

. By Lemma C.1 a), the operator A =

a(y; hD

y

;h) with D(A) = H

s

2

+1;h

(R

d

) is closed and D(A

�

) = H

s

2

+1;h

(R

d

). Meanwhile

we have

q(u) = (u;Au)

H

s

2

;h

= (A

�

u; u)

H

s

2

;h

; 8u 2 D(A) = D(A

�

) = H

s

2

+1;h

(R

d

):

By Proposition of [20], A is the unique stricly m-sectorial operator associated with the

form q and therefore satis�es for Rez < 0

k(z � !

a;s

�A)

�1

k

L(H

s

2

;h

)

� dist(z � !

a;s

; S

a;s

)

�1

�

C

a;s

1 + jzj

:

2

We next use the above properties in order to study some parabolic evolution sys-

tems. Let a 2 P

0

S

h

0

(h�i; g

�

) be such that �

h�i

(Rea) � C

0

h�i where C

0

> 0 does not

depend on h 2 (0; h

0

) and x 2 R. We consider the operator A

h

(x) = a(x; y; hD

y

;h)

de�ned on H

s;h

(R

d

) with domain D(A

h

(x)) = H

s+1;h

(R

d

). According to the above

lemmas we know that this operator is closed and satis�es estimate (C.3) uniformly

with respect to (x; h) 2 R � (0; h

�(a);s

). According to Lemma C.2-a), the resolvent

(!

a;s

+ A

h

(x))

�1

is a uniformly bounded operator from H

s;h

(R

d

) into H

s+1;h

(R

d

) and

we obtain

k(A

h

(x

00

)�A

h

(x

0

))(!

a;s

+A

h

(x))

�1

k

L(H

s;h

)

(C.4)

� kA

h

(x

00

) �A

h

(x

0

)k

L(H

s+1;h

;H

s;h

)

k(!

s

+A

h

(x))

�1

k

L(H

s;h

;H

s+1;h

)

� C

0

s

jx

00

� x

0

j:

Hence the x-dependent operator !

a;s

+A

h

(x) satis�es the three assumptions of Tanabe-

Sobolevskii theorem (see [19][24]), that is : constant domain, resolvent estimate (C.3)

and uniform smoothness (C.4). After a conjugation with e

!

a;s

x

h

this theorem yields the
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Proposition C.3 Under the above assumptions on a 2 P

0

S

h

0

(h�i; g

�

), there exists

h

�(a)

2 (0; h

0

), so that the initial value problem

(

h@

x

u+ a(x; y; hD

y

;h)u = 0; x > x

0

u

�

�

�

x=x

0

= v

(C.5)

de�nes an evolution system S

h

(x

00

; x

0

), x

0

� x

00

on H

s;h

(R

d

) for every s 2 R and

h 2 (0; h

�(a)

). Moreover this evolution system has the properties:

a)As a bounded operator on H

s;h

(R

d

), S

h

(x

00

; x

0

) is strongly continuous with respect to

x

0

; x

00

, x

0

� x

00

.

b) For x

0

< x

00

, S

h

(x

00

; x

0

) is a bounded operator: H

s;h

(R

d

) ! H

s+1;h

(R

d

). As an el-

ement of L(H

s;h

(R

d

)), it is strongly di�erentiable with respect to x

00

. Its derivative

h@

x

00

S

h

(x

00

; x

0

) belongs to L(H

s;h

(R

d

)) and is strongly continuous with respect to x

0

; x

00

,

x

0

< x

00

, with the identity

h@

x

00

S

h

(x

00

; x

0

) +A

h

(x

00

)S

h

(x

00

; x

0

) = 0; x

0

< x

00

:

c) If v 2 H

s+1;h

(R

d

), Then S

h

(x

00

; x

0

)v is di�erentiable with respect to x

0

; x

00

, for x

0

� x

00

and we have

h@

x

00

S

h

(x

00

; x

0

)v = �A

h

(x

00

)S

h

(x

00

; x

0

)v

and h@

x

0

S

h

(x

00

; x

0

)v = S

h

(x

00

; x

0

)A

h

(x

0

)v for x

00

� x

0

:

d) If v 2 H

s+k;h

(R

d

), k 2 N, then S

h

(x

00

; x

0

)v 2

k

\

j=0

C

k�j

(fx

0

� x

00

g;H

s+j;h

(R

d

)).

Accurate exponential decay estimates for the evolution systems involved in our problem

are provided in the text. Here are some other estimates which will be useful.

Lemma C.4 Let u(x) = S

h

(x; x

0

)u

0

for x � x

0

with u

0

2 H

s+1=2;h

(R

d

). We have for

every h 2 (0; h

�(a)

)

Z

1

x

0

ku(x)k

2

H

s+1;h

dx � C

a;s

h

�

ku

0

k

2

H

s+1=2;h

+ h

Z

1

x

0

ku(x)k

2

H

s;h

dx

�

:

Proof : For x � x

0

> x

0

, u(x) = S

h

(x; x

0

)u(x

0

) is a classical solution in H

s;h

(R

d

) and

in H

s+1=2;h

(R

d

) of

h@

x

u+A

h

(x)u = 0:

By taking the H

s;h

-scalar product with u(x), we obtain

h@

x

kuk

2

H

s;h

= �2Re(u;A

h

(x)u)

H

s;h

which implies

ku(x

0

)k

2

H

s;h

�

1

h

Z

x

00

x

0

2Re(u;A

h

u)

H

s;h(x)dx

�

C

a;s

h

"

Z

x

00

x

0

ku(x)k

2

H

s+1=2;h

� C

0

a;s

hku(x)k

2

H

s;h

dx

#

:
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We do the same with the H

s+1=2;h

-scalar product and we obtain

ku(x

0

)k

2

H

s+1=2;h

�

C

a;s

h

"

Z

x

00

x

0

ku(x)k

2

H

s+1;h

� C

0

a;s

hku(x)k

2

H

s+1=2;h

#

:

Putting these two estimates together yields

Z

x

00

x

0

ku(x)k

2

H

s+1;h

dx � C

a;s

h

"

ku(x

0

)k

2

H

s+1=2;h

+

Z

x

00

x

0

hku(x)k

2

H

s;h

dx

#

and we conclude by taking the limit as x

0

! x

0

and x

00

!1. 2
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