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AN ADDITIVE SCHWARZ METHOD TYPE THEORY FOR LIONS’
ALGORITHM
AND A SYMMETRIZED OPTIMIZED RESTRICTED ADDITIVE
SCHWARZ METHOD*

R. HAFERSSAST, P. JOLIVET!, AND F. NATAF$

Résumé. Optimized Schwarz methods (OSM) are very popular methods which were introduced
by P.L. Lions in [32] for elliptic problems and by B. Després in [8] for propagative wave phenomena.
We give here a theory for Lions’ algorithm that is the genuine counterpart of the theory developed
over the years for the Schwarz algorithm. The first step is to introduce a symmetric variant of the
ORAS (Optimized Restricted Additive Schwarz) algorithm [44] that is suitable for the analysis of
a two-level method. Then we build a coarse space for which the convergence rate of the two-level
method is guaranteed regardless of the regularity of the coefficients. We show scalability results for
thousands of cores for nearly incompressible elasticity and the Stokes systems with a continuous
discretization of the pressure.

1. Introduction. Substructuring algorithms such as BNN or FETI are defi-
ned for nonoverlapping domain decompositions but not for overlapping subdomains.
Schwarz method [41] is defined only for overlapping subdomains. With the help of a
coarse space correction, the two-level versions of both type of methods are weakly sca-
lable, see [45] and references therein. The domain decomposition method introduced
by P.L. Lions [32] is a third type of methods. It can be applied to both overlapping
and nonoverlapping subdomains. It is based on improving Schwarz methods by repla-
cing the Dirichlet interface conditions by Robin interface conditions. This algorithm
was extended to Helmholtz problem by Després [9]. Robin interface conditions can
be replaced by more general interface conditions that can be optimized (Optimized
Schwarz methods, OSM) for a better convergence, see [21, 20] and references therein.

P.L. Lions proved the convergence of his algorithm in the elliptic case for a no-
noverlapping domain decomposition. The proof is based on energy estimates and a
summation technique. These results were extended to Helmholtz and Maxwell equa-
tions in [2, 10]. Over the last years, a lot of results have been obtained for different
classes of equations and optimized algorithms based on carefully chosen parameters in
the transmission conditions, have been derived, see e.g. [25, 20, 21, 11] and references
therein. Most of these works are valid for nonoverlapping decomposition or for simple
overlapping domain decompositions as in [28, 35] for the two-subdomain case. When
the domain is decomposed into a large number of subdomains, these methods are, on
a practical point of view, scalable if a second level is added to the algorithm via the
introduction of a coarse space [25, 17, 7, 13, 34]. But there is no systematic proce-
dure to build coarse spaces with a provable efficiency for general symmetric positive
definite systems.

The purpose of this article is to define a general framework for building adaptive
coarse space for OSM methods for decomposition into overlapping subdomains. We
prove that we can achieve the same robustness that what was done for Schwarz [42] and
FETI-BDD [43] domain decomposition methods with so called GenEO (Generalized
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2 R. HAFERSSAS, P. JOLIVET, AND F. NATAF

Eigenvalue in the Overlap) coarse spaces. Compared to these previous works, we have
to introduce SORAS (symmetrized ORAS) a non standard symmetric variant of the
ORAS method as well as two generalized eigenvalue problems. As numerical results
will show in § 6.3, the method scales very well for saddle point problems such as
highly heterogeneous nearly incompressible elasticity problems as well as the Stokes
system. More precisely, in § 2, we give a short presentation of the current theory for
the additive Schwarz method. Then, in section 3, we present algebraic variants to the
P.L. Lions’ domain decomposition method. In § 4, we build a coarse space so that the
two-level SORAS method achieves a targeted condition number. In § 5, the method
is applied to saddle point problems.

2. Short introduction to ASM theory. In order to appraise the theory de-
veloped in § 3, we first give a short presentation of the current theory for two-level
additive Schwarz methods. The starting point was the original Schwarz algorithm [41]
for proving the well-posedness of the Poisson problem —Aw = f with Dirichlet boun-
dary conditions in some domain 2 decomposed into two subdomains €; and 2o,
Q=0;UQs.

DEFINITION 2.1 (Original Schwarz algorithm). The Schwarz algorithm is an ite-
rative method based on solving alternatively sub-problems in domains 1 and Qs. It
updates (u},uy) — (uit uitt) by

(1)

Aty = f in O ~A(usty = f in Qg
u{”’l = 0 on 001 NI then, ug“ = 0 on 009 N O
u?“ = ud  ondQ NN ugﬂ = u’f“ on 0Qs N Q.

H. Schwarz proved the convergence of the algorithm and thus the well-posedness of
the Poisson problem in complex geometries. A small modification of the algorithm
[33] makes it suited to parallel architectures. Its convergence can be proved using the
maximum principle [31].

DEFINITION 2.2 (Parallel Schwarz algorithm). Iterative method which solves concur

rently in all subdomains, i = 1,2 :

Ay =f in £
(2) ul ™t =0 on  0Q; N O
untt = uf_ . on  9Q; N Q3.

The discretization of this algorithm yields a parallel algebraic method for solving the
linear system AU = F € R#¥N (N is the set of degrees of freedom) arising from the
discretization of the original Poisson problem set on domain €2. Due to the duplication
of the unknowns in the overlapping region €2 N Qa, this direct discretization involves
a matrix of size larger than that of matrix A, see e.g. [23] for more details. Actually,
it is much simpler and as efficient to use the RAS preconditioner [6]

N
(3) Mphg=> RID;A7'R;,
=1

where N is the number of subdomains, R; for some 1 < ¢ < N is the Boolean matrix
that restricts a global vector to its degrees of freedom in subdomain €2;, matrix
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80 is the Dirichlet matrix of subdomain 2; and D; is a local diagonal matrix that yields
81 an algebraic partition of unity on R#V :

N
82 (4) I, = Z RTD;R;.

i=1
83 Indeed, it is proved in [16] that the following fixed point algorithm
81 (5) U™t =U" + My, 4(F — AU™)

85 yields iterates that are equivalent to that of the discretization of Algorithm (2). Note
86 that our analysis is the same whether Di is Boolean or not.

87 The RAS preconditioner (3) is not symmetric. For M-matrices a general conver-
88 gence result is given in [18]. In order to develop a general theory for it when used as
89  preconditioner in a Krylov method, its symmetric variant, the ASM preconditioner :

N
90 (6) My = ZRiTAi_lRi,

i=1

91  was studied extensively, see [45] and references therein. Starting with the pioneering
92 work [40], a lot of effort has been devoted to the design and analysis of two-level
93 methods that are the key ingredient to scalable methods. In adaptive methods, the
94 coarse space in the two-level method is built by solving local generalized eigenvalue
95 problems [19, 14, 38, 42] . This way, it is possible to target a user defined condition
96 number of the preconditioned system. Here we focus on the GenEO approach [42]
97 where the coarse space is based on solving Generalized Eigenvalue problems for the
98 set of degrees of freedom N of subdomain 1 < j < N. Let A;V €% denote the matrix
99  of the local Neumann problem, we have to find the eigenpairs (Vj k, Aj k) such that :
100 Vig €RNiand \j >0

101 (7) Dj A;DiVik = Xk AY Vi,

102 By combining the eigenvectors corresponding to eigenvalues larger than some given
103 threshold 7 > 0 into a coarse space, it is proved in [42, 12] that the eigenvalues of the
104 hybrid Schwarz preconditioned system satisfy the following estimate

1

105 (8 < AM L, A) < k.

)() 1+k1T—(HSM )—0
106 where kg is the maximum number of neighbors of a subdomain and k7 is the maximum
107 multiplicity of the intersections of subdomains.
108
109 To sum up, the current theory for the two-level Schwarz method is based on the
110  following four steps :
111 1. Schwarz algorithm at the continuous level (1)
112 2. An equivalent algebraic formulation (5) with the introduction of the RAS
113 preconditioner (3)
114 3. A symmetrized variant named ASM (6) of the RAS preconditioner
115 4. A two-level method with an adaptive coarse space with prescribed targeted

116 convergence rate.
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4 R. HAFERSSAS, P. JOLIVET, AND F. NATAF

3. Symmetrized ORAS method. Our goal here is to develop a theory and
computational framework for P.L. Lions algorithm similar to what was done for the
Schwarz algorithm for a symmetric positive definite (SPD) matrix A. We follow the
steps recalled above.

First we introduce the P.L. Lions’ algorithm which is based on improving Schwarz
methods by replacing the Dirichlet interface conditions by Robin interface conditions.
Let a be a positive number, the modified algorithm reads

—A(uy™) = f n 0,
) u{”‘l = 0 on O NN,
9 n+1 _ 87 n 0.
<(‘3nl + a) (uf™) = <8n1 + a) (uy) on 9 Ny,

and

—A(u?“) = f in Qo
(10) upy™ =0 on 08y NON
9 n+1 _ 67 n 0.
<81’12 + a> (ug™) = <6n2 + a> (uf) on 9N

where n; and ny are the outward normals on the boundary of the subdomains.

The second step is an algebraic equivalent formulation of the P.L. Lions algorithm
in the case of overlapping subdomains. It is based on the introduction of the ORAS
(Optimized Restricted Additive Schwarz) [44] preconditioner :

N
(11) Mgpas =Y RID;B'R;,
i=1
where (B;)1<i<n is the discretization matrix of the Robin problem in subdomain ;.
The following fixed point method

(12) U™t = U" + Mg ag(F — AU™)

yields iterates that are equivalent to that of the discretization of P.L. Lions’ Algo-
rithm (9)-(10), see [44].

The third step is the introduction of a symmetric variant that allows for a com-
prehensive theoretical study. It seems at first glance that we should mimic what was
done for the RAS algorithm and study the following symmetrized variant :

N
(13) Maher = S RIBR,.
i=1
For reasons explained in Remark 1, we introduce another non standard variant of the
ORAS preconditioner (11), the symmetrized ORAS (SORAS) algorithm :

N
(14) MS_OlRAS,l = ZR;‘[DiBi_lDiRi~
i=1
This variant is reminiscent of the RASH [6] algorithm. Note also that the symmetric
variant of ORAS is not equivalent to Lions’ algorithm exactly as neither ASM nor
RASH are equivalent to RAS which is itself equivalent the Schwarz algorithm, see [15].
The missing step is the fourth one, namely to build an adaptive coarse space for
a two-level SORAS method. it is done in the next section.
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50 4. Two-level SORAS algorithm. Before designing and analyzing the two-
51 level SORAS method, we precise our mathematical framework.
5

153 4.1. Mathematical framework. The problem to be solved is defined via a
154 variational formulation on a domain @ C R? for d € N :

155 Find w € V such that : aq(u,v) =1(v), YveV,

156 where V is a Hilbert space of functions from (2 with real values. The problem we
157 consider is given through a symmetric positive definite bilinear form aq that is defined
158 in terms of an integral over any open set w C €. Typical examples are the Darcy
159 equation (K is a diffusion tensor)

160 ay(u,v) = / KVu-Vvdz,

161 or the elasticity system (C is the fourth-order stiffness tensor and e(u) is the strain
162 tensor of a displacement field ) :

163 ay(u, v) = / C:e(u):e(v)de.

164 The problem is discretized by a finite element method. Let A denote the set of degrees
165 of freedom and (¢x)ren be a finite element basis on a mesh 7. Let A € RN X#N
166 be the associated finite element matrix, Ay := aq(¢;, x), k,I € N. For some given
167 right hand side F € R#*N | we have to solve a linear system in U of the form

168 AU=F.
169 Domain € is decomposed into N overlapping subdomains (€2;)1<;<n so that all sub-
170 domains are a union of cells of the mesh 7. This decomposition induces a natural

171 decomposition of the set of indices N into N subsets of indices (M)lgig N :
172 (15) N, :={k € N'| meas(supp(¢py) N Q;) >0}, 1 << N.

173 For all 1 <i < N, let R; be the restriction matrix from R#*N to the subset R#Ni and
174 D; be a diagonal matrix of size #N; x #N;, so that we have a partition of unity at
175 the algebraic level,

N
176 (16) ZRiTDiRi =1a,

i=1

177 where Iy € R#¥N>*#N g the identity matrix.

178 For all subdomains 1 < i < N, let B; be a SPD matrix of size #N; x #N;, which comes
179  typically from the discretization of boundary value local problems using optimized
180 transmission conditions.

181 We also define for all subdomains 1 < j < N, A7, the #N; x #N; matrix defined
182 by
183 (17) VIAU; =aq, | Y Uuér, > Vasr |, U;, V; €RN

lE./\/j lENj
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6 R. HAFERSSAS, P. JOLIVET, AND F. NATAF

When the bilinear form a results from the variational solve of a Laplace problem, the
previous matrix corresponds to the discretization of local Neumann boundary value
problems. For this reason we will call it “Neumann” matrix even in a more general
setting.

We also make use of two numbers kg and k; related to the domain decomposition.
Let

1 ko = j ART

(18) o= max #{j | RjAR] #0}

be the maximum multiplicity of the interaction between subdomains plus one. Let kq
be the maximal multiplicity of subdomains intersection, i.e. the largest integer m such
that there exists m different subdomains whose intersection has a non zero measure.

4.2. SORAS with GenEO-2. We now consider a two-level method based on
enriching the one-level SORAS preconditioner (11) by introducing two generalized
eigenvalue problems which allow us to control the spectrum of the preconditioned
operator as written in Theorem 4.10.

4.2.1. Coarse Space for the lower bound. More precisely, we define the
following generalized eigenvalue problem :

DEFINITION 4.1 (Generalized Eigenvalue Problem for the lower bound). For each
subdomain 1 < 7 < N, we introduce the generalized eigenvalue problem

(19) Find (Vji, \jx) € R#Ni\ {0} x R such that
ATV, = X\t BiVp, .

Let 7 > 0 be a user-defined threshold, we define Z.,., C R#N' s the vector space
spanned by the family of vectors (RJTDjij)A].KT 1<j<nN corresponding to eigenvalues
smaller than T.

Let 7; be the projection from R#Ni on Span{V x| \jx < 7} parallel to Span{V ;x| \;x >|]
7}. In the present case of the SORAS-2 method, Lemma 7.6, page 167 in [12] translates
into :

LEMMA 4.2 (Intermediate Lemma for GenEO-SORAS-2). For all subdomains
1<j3<N andeERNJ’, we have :

(20) 7 ((Ia — 7;)U;) ' B;j(Iy — 7;)U; < UTAIU;.

where by abuse of notation I; € R#¥Ni*#Ni s the identity matriz on RN3 .

4.2.2. Coarse space for the upper bound. We introduce the following ge-
neralized eigenvalue problem :

DEFINITION 4.3 (Generalized Eigenvalue Problem for the upper bound).

Find (U, pir) € RN\ {0} x R such that
(21)
D;R;ARTD; U = pix B Uy .

Let v > 0 be a user-defined threshold, we define Z},,,., C R#N as the vector space

spanned by the family of vectors (RF D;Uik) iy >~ 1<i<N corresponding to eigenvalues
larger than .

This manuscript is for review purposes only.
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220 Now, let & denote the projection from R#Ni on Span {Ujx |y > pa} parallel to
221 Span{U;x | v < pix}. From these definitions, Lemma 7.6, page 167 in [12] leads to :
222 LEMMA 4.4. For all subdomains 1 <i < N and U; € ]R#Ni, we have :

223 (22) (RTDy(I, — &)U;)" ARTDi(I4 — &)U;) < v UTB,U;.

224 4.3. SORAS-GENEO-2 method. We are now ready to define the SORAS
225 two level preconditioner

226 DEFINITION 4.5 (Two level SORAS-GENEO-2 preconditioner). Let Py denote the
227 a-orthogonal projection on the SORAS-GENEQ-2 coarse space

298 ZGenE0-2 = Zgeneo @ Zgenco >

229 the two-level SORAS-GENEO-2 preconditioner is defined as follows, see [36] :

N
230 (23) M3dpass=PoA™ + (Ia— Po) Y RI'DiB; ' DiR;(14 — PY).

i=1

231 Let Zy be a matrix whose columns are a basis of Zgenro-2 and let denote its transpose
232 by R := Z{. It is easily checked that

233 PyA™' = R (RoARS) 'Ry .

234 This definition is reminiscent of the balancing domain decomposition preconditio-
235 mer [36] introduced for Schur complement based methods. Note that the coarse space
236 is now defined by two generalized eigenvalue problems instead of one in [42, 43] for
237 ASM and FETI-BDD methods.

238

239 The proof of Theorem 4.10 is based on the Fictitious Space [39] Lemma 7.4 in
240 [12] , page 164.

241 DEFINITION 4.6 (Two-level SORAS in the Fictitious Space Lemma). Two Hilbert

242 spaces H and Hp, two other associated bilinear forms and induced scalar products as
243 well as the Rsoras,2 operator between them are defined as follows.

244 — Space H := R*¥N endowed with the standard Euclidean scalar product. We
245 consider another bilinear form a defined by :
246 (24) a:HxH—R, (U, V)—a(U,V):=VTAU.
247 where A is the matriz of the problem we want to solve.
248 — Space Hp, defined as the product space
N
249 (25) Hp = R#¥No x TTR#N:
i=1
250 18 endowed with standard scalar FEuclidean product. For U = (Ui)1§i§N7 V=
251 (Vi)i<i<ny with U;, 'V, € R#Ni | the bilinear form b is defined by
b:HpxHp — R
252 (26) al

U, V) — bU,V) = (REVo)TA(RFU,) + > VI B;U;,
i=1
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Let B denote the block-diagonal operator such that for all U,V € Hp, we

have :
(BU, V) =bU,V)
— For any U = (U;)o<i<n the linear operator Rsoras,2 is defined as
(27)

N
Rsorasz2 : Hp — H, Rsoras2(U) = RE U + Z(Id — P))RI'D,; U,.

i=1

It can easily be checked that

—1 o —1pT
MSORAS,Q = Rsoras2B RSORAS,Q'

We now check the assumptions of the Fictitious Space Lemma.

LEMMA 4.7 (Surjectivity of RSORAS,Q)-

Proof. For all U € H, we have :

N
U=PRU+(;—PR)U=PRU+> (I;— P)R/D:R;U.

i=1

Operator Rsoras,2 15 surjective.

Since Py U € Span(RY), there exists Uy € R#No such that Py U = RI Uy. Thus, we

have

N
U =R Us+ > (I — Po) RT Di(R;U),

i=1

or, in other words

Rsoras2(Ug, (RiU)1<i<n) =U,

which proves the surjectivity.

We now prove

LEMMA 4.8 (Continuity of RSORAS,2)- Let U = (Uz’)OSiSN € Hp.

following continuity estimate

Proof. Since Py and I;— Py are a-orthogonal projections, we have by a-orthogonality :|i

a(Rsoras2(U), Rsoras2(U)) < max(1, ko) b(U, U).

a(Rsoras2(U), Rsoras2(U)) = a(PyR{ Uo,Po R§ Uy)

((Id - BR) ZRTD U;, (Ig — Py) ZRTD U,

i=1

Since P, is the a-orthogonal projection on Zgengo-2 and that

we have

N
> RIDi&U; € Z],00 C Zaenko-2

i=1
N

(la — Po) ZRiTDifiUz‘ =0,
i=1
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280 and thus

N N
a <(Id —P)Y RID;U;,(Is— Py) Y _RI'D; Ui>

281 =1 N i=1

N
=a ((Id —Py) Y RIDi(Is— &)U, (Is— Po) Y RI D; (1y — fi)Uz) :

i=1 =1

282 Finally, using ko defined as in in Lemma 7.11, page 174 in [12] , we have

a(Rsoras2(U), Rsoras2(U)) < a (R Uy, Rj Uy)
- +a (vazl RI'D; (I — &)Uy, YLy RTD; (Ig — &)Ui)
< a (R U, R] Uy)

+ko le\;l a(RI'D; (Is — &)U, RI D; (I — &)U;) .

284 Then, using estimate (22), we have :

N

oo a(RsoraspU), Rsoras2U)) < a(Rg Uo, Rf Uo) +kov Y _(Bi Ui, Uy)

} i=1

< max(1, ko) bU, U).

286 which concludes the estimate of the continuity of Rsoras,2- 0
287 LEMMA 4.9 (Stable decomposition with Rsoras,2). Let U be a vector in H. We
288 define :
289 Uj = (Idf%j)RjU
290 and Ug € R#No such that :
291 RgUo:PoU'

292 We define U := (U;)o<i<n-
293 Then, the stable decomposition property is verified with a constant (1 + ky771)71,
294 since_ we have :

295 Rsoras2U) =T,
296 _ b(U,U) < a(U,U)
206 a .
’ (T4 k1) 7= T
297 Proof. We first check that we have indeed a decomposition Rsoras2(U) = U.
208 Note that for all 1 < j < N we have
299 RID;7;R;U € Z7 .00 C Zgenro-2 = (Ia — Py)R] D;7; R; U =0.

300 We have :

N
U = PRU+Iy-P)U=PU+(I;—P)Y R]D;R; U
301 N 7=1
= PRR{Ug+ (Ia—Po)> RID;(Is—7;) R; U = Rsoras2U) .
j=1
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The last thing to do is to check the stability of this decomposition. Using (20) and
then Lemma 7.13, page 175 in [12] . , we have

b(Ll,L{) = a(RgUo,RgUQ)
N
+> (s = 7) B; U)T By (Ia — 7;) R; U))
Jj=1 N )
< a(RU,RU)+7 1> (R;U) A (R;U)
j=1
< a(U,U) + ki 7 1a(U,U) < (1 + k; 7~ 1) a(U, U). O

The assumptions of the Fictitious Space Lemma are verified and thus we have just
proved the following

THEOREM 4.10 (Spectral estimate for the two level SORAS-GenEO-2). Let v be
a chosen threshold in Definition 4.3, T be a chosen threshold in Definition (4.1) of the
GenEO-2 coarse space and the two-level SORAS-GenFEO-2 preconditioner defined by
(23). Then, the eigenvalues of the two-level SORAS-GenEO-2 preconditioned system
satisfy the following estimate

1

1+ ko < AMMgopasaA) < max(l, ko)

We have the

Remark 1. An analysis of a two-level version of the preconditioner M&}xs (13)
following the same path yields the following two generalized eigenvalue problems :

Find (Ujk, ;1) € R#FNi\ {0} x R such that
AUy, = pir. BiUiy,

and
Find (Vjg, \j) € R#Ni\ {0} x R such that
AV, = N\ D;B;D;Vy, . )

In the general case for 1 < i < N, matrices D; may have zero entries for boundary
degrees of freedom since they are related to a partition of unity. Moreover very often
matrices B; and A; differ only by the interface conditions that is for entries corres-
ponding to boundary degrees of freedom. Therefore, matriz D;B;D; on the right hand
side of the last generalized eigenvalue problem is not impacted by the choice of the
interface conditions of the one level optimized Schwarz method. This cannot lead to
efficient adaptive coarse spaces.

5. Saddle point problems. Many applications in science and engineering re-
quire solving large linear algebraic systems in saddle point form; see [3] for an ex-
tensive survey. Although our theory does not apply in a straightforward manner to
saddle point problems, we use it for these difficult problems for which it is not always
possible to preserve both symmetry and positivity of the problem, see [30]. Note that
generalized eigenvalue problems (21) and (19) still make sense if A is the matrix of a
saddle point problem and local matrices A;, B; and ﬁi, 1 < i < N, are based on a
partition of unity and on variational formulations.
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We start by the global problem defined via variational formulation see for instance
§ 6.1 for the systems of almost incompressible elasticity and of Stokes. As in § 4.1,
these formulations are written in terms of integrals of differential quantities (gradient,
divergence, ...) over some domain 2 C R? for d € N :
Find (u,p) € V x A such that :

ag(u, v) +bo(v, p) = l(v), YwveV,
bQ(U, Q) - CQ(pa Q) = l2(q)7 vq c Aa

where V' and A are Hilbert spaces of functions from Q with real values, aq, bo and
cq are bilinear forms, aq and by being symmetric. Discretization by a finite element
method yields a saddle point system of the form :

- =[5 E]01-[)

where H = HT is positive definite, C = C7 is positive semidefinite. The set of
degrees of freedom is decomposed into subsets (NV;)1<i<n. The matrices involved in
the partition of unity (16) have a block diagonal form

D¥ 0 R 0
D; = [ 0’ DP} and R; := [OZ RP] .

The local “Dirichlet” matrices have the following block form :

o or  [Hi BT
A,._RlARZ-_[Bi _é,

where
H;:= R'HR'T, C;:= R’CR’" and B, := R'BR!" .

The local “Neumann” problems arise from the variational formulation restricted the
finite element space of a subdomain as in (17). We use the following block notation

i BT

Ai = ~
B, -G

For each subdomain 1 <7 < N, the “Robin” matrix is
Bi=A; + Z;

where Z; = ZI' is positive semidefinite and is such that matrix B; is symmetric
positive definite. For sake of simplicity the “Robin” boundary condition will only
apply to the u term, that is :
u
7 = {Zi 0} |

0 O

5.1. GenEO eigenvalue problem for saddle point problems. Eigenvalue
problem for saddle point problem has been considered by various authors, see [4] and
references therein. We cannot use directly their results since we consider generalized
eigenvalue problems where both left and right matrices have saddle point structures.
In order to prove that the GenEO eigenvalues are real and non negative, we need the
following assumption :
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ASSUMPTION 1.
368 (29) (Hyu, u) + (Z'u, u) + (Cip,p) =0 = u =0 and p = 0.

369 This assumption is satisfied for the two applications we consider below in § 6. For
370 instance, in the case of nearly incompressible elasticity, matrix C; is the mass matrix
371 of subdomain ; weighted by the inverse of the first Lamé coefficient (A) which is
372 SPD. As for H; + Z* it is the sum of the stiffness matrix of subdomain €2; and of a
373 positive boundary term on the interface. This matrix is thus SPD as well.
374 Consider the generalized eigenvalue problem that controls the lower bound of the
375 spectrum of the preconditioned system :

B

NE

-

377 By Assumption 1, it is clear that the matrix in the right part of the equality is

A BT

H;+ 2z BF
B; -C;

376 (30
(30) B; —-C;

378 invertible. In order to prove it, it suffices to take an element Z in the kernel and

379 take the scalar product with [u — p]T to prove that the kernel reduces to the null
380 vector. Thus, left multiplying problem (30) by the inverse of this matrix reduces it to
381 a standard eigenvalue problem.

382 We now take the scalar product of (30) with [u - p]T. The cross product terms

383 (E?u, p) cancel and we get :

384 (31) (f[iu, u) + (@p7 p)=A [(f[iu, u) + (Z'u, u) + (éip,p)] .

w
x®
ot

All terms above are non negative. From Assumption 1, the right term cannot be zero.
386 Therefore, A € [0,1].

387 Consider now the eigenvalue problem that controls the upper bound of the spec-
388 trum of the preconditioned system :

H;+ 2z B

s (32) DYH,D*  D¥BTD!] [u] _ u
o DB, —-DrC; DY |p| ~ M| B —G | o]
300 We take the scalar product of (32) with [u — p}T and we get :

49, (33)  (HiDj'u, Dju) + (C;Dp, Dip) = p[(Hyu, u) + (Zj'u, u) + (Cip,p)]

393 All terms above are non negative. From Assumption 1, the right term cannot be zero.
394  Therefore, p > 0.

395 6. Application to the systems of Stokes and of Nearly Incompressible
396 elasticity. Mixed finite elements are often used to solve incompressible Stokes and
397 nearly incompressible elasticity problems. Continuous pressures have been used in

398 many mixed finite elements. However, most domain decomposition methods require
399  that the pressure be discontinuous when they are used to solve the indefinite linear
400 systems arising from such mixed finite element discretizations. Several domain de-
1 composition algorithms allow one to use continuous pressures, see [46] and references
2 therein. To our knowledge, our method is the first one to exhibit scalability for a highly
3 heterogeneous nearly incompressible elasticity problems with continuous pressures.
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104 6.1. Variational formulations. The mechanical properties of a solid can be
405 characterized by its Young modulus E and Poisson ratio v or alternatively by its
406 Lamé coefficients A and p. These coefficients relate to each other by the following

107  formulas :

Ev E
408 (34 A= —————— d p=———.
08 (34) A+r)d-20) " =001
109 The variational problem consists in finding (wp,pn) € Vi, := PENHE(Q) x Py such

410 that for all (vp,qpn) € Vi

Jo 2ue(un) : e(vp)de  — [, prdiv (vp)de = [, fopde
411 (35)

= Jo div (un)gndz — Jo xPnan =0

112 Let u denote the degrees of freedom of u, and p that of p,, they satisfy a linear
113 system denoted as follows :

414 (36) AU = [g _gT] [Z] = B] =F.

115 Matrix A; arises from the variational formulation (35) where the integration over
416 domain € is replaced by the integration over subdomain €2; and finite element space
417V is restricted to subdomain Q;. Matrix B; corresponds to a Robin problem and
418 is the sum of matrix A; and of the matrix of the following variational formulation
119 restricted to the same finite element space :

2001(2p1 + A
20 (37) / 2ap2it D) | with = 10 in our test,
annon At 3u

421 In the next section, we explain the origin of the term (37).

422 6.2. Interface conditions. We touch here another peculiarity of the P.L. Lions
423 algorithm. In some situations, it is possible to choose the interface condition in order
424 to have convergence in a number of steps equal to the number of subdomains, see [37].
125 In our case, let the global domain © be the whole plane R? decomposed into two half
126 planes Q; := (—00, §) x R and 5 := (0, 0c0) x R where § > 0 is the width of the
427 overlap, k denote the Fourier transform in the y direction, the following interface
428 condition yields to a convergence in two iterations :

2[k[p(2u4N) 2ikp”
) 230 A3u F(ug)
429 (38) a-n+F"
—2iky® 2Ak|putN) || F(uy,)
P A3

130 where o - n is the normal component of the stress tensor, the velocity is decompo-
431 sed into its normal u, and tangential component u, u = [ug, u,]? and F denotes
432 the Fourier transform in the y direction. Due to the absolute value |k| this interface
433  condition is non local in space and also difficult to apply in the general domain de-
134 compositions and has to be approximated, see [21]. For sake of simplicity, we drop the

135 extra diagonal terms which correspond to tangential derivative in the physical space.
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-——Robin ky = 0.1
- -Robin kg = 0.5
-- Robinky =1

Robin ky =5
Robin kg = 10

-~ Robinky = 20
Robin ky = 30
— Robin ky = 40

Dirichlet or Neumann

KO = 10 ==
k0 =20
kO = 40

p(k)

tho(k)

FIGURE 1. Convergence rate vs Fourier number k for various interface conditions — Poisson
ratio v = 0.4999 — overlap 6 = 0.1.

As for the diagonal terms, we approximate them at some frequency kg. Finally, the
optimal interface condition (38) is approximated as follows :

2lko|p(2u+A
= T Flus)
o n+F!
0 ety | | Fu,)
which simplifies in :
2p(2p + A)
39 . ko| ———=
(39) a-n+ |k N U

This approximation has an impact on the convergence rate of the P.L. Lions’ algo-
rithm. Using similar arguments to that of [21] or [12] chapter 2, it is possible to derive
a formula for the convergence rate as a function of the Fourier mode in the y direction.
Since we have a system of partial differential equations, the formula is quite complex
and was obtained with the help of Maple software. It can be found in [22]. On Fi-
gure 1, we plot the convergence as a function of the Fourier mode in the y direction
for various values of the parameter kg for an almost incompressible elasticity system
v = 0.4999 and an overlap of size § = 0.1. Although the Robin interface condition (39)
is never exact even for k = kg, the convergence rate is quite close to zero (of the order
of 10™%) for k = ko. We see on Figure 1 that taking ko = 10 yields small convergence
rate except for k very close to 1 and thus was chosen in our numerical tests below. Note
that Dirichlet (cf. kg > 1) or Neumann (cf. kg = 0) (stress free) interface conditions
yield the same bad convergence rates. For small Fourier numbers, the convergence
rate is very close to 1 which is bad. Overall, Robin interface conditions perform much
better than simple Dirichlet or Neumann interface conditions.

As for Stokes system, it can be seen as the limit as A tends to infinity of the
elasticity system. As a result, the interface condition we take reads :

a-n+ |kol2pw.

The interface condition (39) can be used for arbitrary domain decompositions since its
variational formulation is the one of a stress free BVP to which we add the variational
formulation of (37) where a := |ko| for some chosen Fourier number ky. Thus although
the Fourier analysis has a limited domain of validity, the interface condition (39) can
be used for arbitrary domain decompositions.
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——————

FIGURE 2. 2D Elasticity : coefficient distribution of steel and rubber.

AS SORAS ||AS+ZEM |[[SORAS +ZEM || AS-GenEO [[SORAS GenEO2

d.of.| N iter iter iter | dim ||iter dim iter dim || iter dim
35841 | 8 150 184 117 24 74 24 110 184 || 13 145
70590 | 16 276 337 170| 48 |/ 136 48 153 400 || 17 303
141375| 32 497 >1000 ||261| 96 |[[199 96 171 800 || 22 561
279561 | 64 || >1000| >1000 |[[333| 192 ||329 192 496 |1600]| 24 855

561531 (128 || >1000 || >1000 |[[329| 384 ||325 384 >1000 | 2304 || 29 1220
1077141 |256 || >1000 || >1000 |[330| 768 || 321 768 >1000 | 3840 36 1971

TABLE 1

2D Elasticity. GMRES iteration counts for a solid made of steel and rubber.

164 6.3. Numerical results. The new coarse space was tested quite successfully on
465 mnearly incompressible elasticity and Stokes problems with a discretization based on
466 saddle point formulations in order to avoid locking phenomena.

467 6.3.1. Tests against other algorithms. We first report 2D results for a hete-
168 rogeneous beam of eight layers of steel (E1,v1) = (210-10%,0.3) and rubber (Eq, v5) =
169 (0.1-10%,0.4999), see Figure 2. The beam is clamped on its left and right sides. Simu-
470 lations were made with FreeFem-++ [24]. Iteration counts for various domain decom-
471 position methods for a relative tolerance of 10~¢ are given in Table 1. We compare
472 the one level Additive Schwarz (AS) and SORAS methods, the two level AS and SO-
473 RAS methods with a coarse space consisting of rigid body motions which are zero
474 energy modes (ZEM) and finally AS with a GenEO coarse space as defined in [42]
175 and SORAS with the GenEO-2 coarse space defined in Definition 4.1 with 7 = 0.4
476 and v = 103. Columns dim refer to the total size of the coarse space of a two-level
477 method. Eigenvalue problem (19) accounts for roughly 90% of the GenEO-2 coarse
478 space size. We see that only the last method scales well with respect to the number
479  of subdomains denoted by N. We also considered the dependence on the optimized
180 interface condition. We found that for SORAS+ZEM, the method is very sensitive
481 to the choice of ky. Fortunately, SORAS+GenE02 yielded iteration counts that were
482 very similar for kg ranging from 4 to 60.

483 6.3.2. 3D and 2D highly heterogeneous linear elasticity equations. Throu-li
484 ghout this section we look at a linear elasticity problem with highly heterogeneous
185 Lamé coefficients corresponding to steel and rubber materials. In the case of rub-
186 ber which is nearly incompressible material the Poisson ratio v approaches 1/2 and
487  A/u =2v/(1 — 2v) approaches infinity. In order to avoid the resulting locking pheno-
488 mena with finite element discretization, the pure displacement problem is replaced by
480 a mixed formulation as proposed in [5]. We performed a large 2D and 3D simulations,
490 on an heterogeneous beam, where the Lamé (E, v) vary discontinuously over the do-
191 main in eight alternating layers of steel material with (E1,v1) = (210 x 10%,0.3) and
192 rubber material with (Es,15) = (0.1 x 10%,0.4999) submitted to an external forces,
493 see Figure 3. The system is discretized using a Taylor-Hood mixed finite element
494 discretization which are inf-sup stable. P3/P» for the 2D case and P,/P; for the 3D
495 case. The problem is solved with a minimal geometric overlap of one mesh element
196 and a preconditioned GMRES is used to solve the resulting linear system where the
197  stopping criteria for the relative residual norm is fixed to 1076, All the test cases were
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[

FIGURE 3. Material coefficient, alternating layers of steel and rubber (left) and domain decom-
position into 8 subdomains with a graph partitioner (right)

2 100% |- 1704
S
o |
) 2
o 80%| 1197 &
B E
O .
= 60% - | =
2 T | 4
5 B Q
S 40% | z
o 122 ©
& | 3
% -m—2D |6
O% | | | | | |
W %o os, o4 Yoy, Sig,

# of processes

FIGURE 4. Weak scaling experiments.

498  performed inside FreeFem++ code interfaced with the domain decomposition library
499 HPDDM [26, 27]. The factorizations are computed for each local problem and also
500 for the global coarse problem using MUMPS [1]. Generalized eigenvalue problems to
generate the GenEO space are solved using ARPACK [29]. The coarse space is formed
only with the generalized eigenvalue problem (19) since we noticed that the second
one (21) has only a little effect on the convergence. All the results of this section were
obtained on Turing machine which is an IBM/Blue Gene/Q machine composed of
1024 compute nodes where each one is made of 16 cores PowerPC A2 clocked at 1.6
GHz.

These computations, see Figure 4, assess the weak scalability of the algorithm
with respect to the problem size and the number of subdomains. All times are wall
clock times. The domain is decomposed automatically into subdomains with a graph
partitioner, ranging from 256 subdomains to 8192. and the problem size is increased
by mesh refinement. In 3D the initial problem is about 6 millions d.o.f decomposed
into 256 subdomains and solved in 145.2s and the final problem is about 197 millions
of d.o.f decomposed into 8192 subdomains and solved in 196s which gives an efficiency

(S
= o © N O U R W N

ot Ot O Ot Ut Ut Ot Ot Ot Ut Ut U
oo

—
w N
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N Factorization Deflation Solution # of it. Total # of d.o.f.

256 25.2s 76.0s 37.2s 46 145.2s 6.1-106
512 26.55 81.1s 39.8s 47 155.1s  12.4-10°
3D 1024 20.2s 82.65s 41.7s 45 165.5s  25.0- 106
2048 26.95 83.5s 46.3s 47 171.0s  48.8- 106
4096 28.35 88.8s 54.5 53 177.7s  97.9- 106
8192 29.0s 78.3s 79.8s 60 196.1s 197.6-10°
256 485 72.9s 39.9s 46 123.9s  22.1-10°
512 4.7s 65.95 45.0s 51 121.3s  44.0-10°
oD 1024 4.8s 70.0s 46.1s 51 127.0s  88.3-106
2048 4.8s 69.0s 46.5s 51 127.4s 176.8 - 10
4096 4.8s 65.8s 52.85 56 132.6s  351.0-10°
8192 4.8s 65.4s 53.0s 54 134.8s  704.1-10°

FIGURE 5. Weak scaling experiments elasticity timings tab .

514 mear to 75%. For the 2D case, the initial problem is approximately of size 22 millions
515 unknowns (d.o.f) decomposed into 256 subdomains and solved in 123.9s and we end
516 up with a bigger problem about 704 millions unknowns (d.o.f) decomposed into 8192
517 subdomains and solved in 134s. The efficiency is close to 90%. In figure table 5, we
518 report the number of GMRES iterations. They increase very slowly as the mesh is

519 refined which shows the scalability of the preconditioner. We report in the same table
520 all the timings concerning the algorithm, column ”Factorization” concerns the local
521 subdomains, the assembling and the factorization of the coarse operator are in column
522 "Deflation” and in column ”Solution” we display the time spent by GMRES.
523 6.4. 3D and 2D incompressible Stokes system. Using the same libraries, we
524 also performed a strong scaling test for an incompressible Stokes system of equations
525 for a driven cavity problem :
526 Find (u,p) € H(Q)%=23 x Ly(Q) such that
527 (40) —divg ,(u,p) =0, anddiv(u)=0 in,
528 with
529 (41) {UFW’P) = —pl +2ue(u),
02 _ 1 T _ 1 (0w  Ouj

g(u) = §(¥u+ (gu) ) and €;; = 5 (a;j + 8x:> .

530 As a boundary conditions, we consider a continuous velocity on the upper face and
zero Dirichlet otherwise. The computations are done in both two and three dimensions
on a domain Q = [0,1]? and Q = [0,1]3, respectively. Once more the problems are
discretized via Taylor-Hood finite element Py/P; with a continuous pressure.

T W N =

We assess here the strong scalability of the algorithm. For this, we make the
number of subdomains vary for a fixed global system size. In our test case the system
37 size is fixed to 50 millions unknowns (d.o.f) in 3D and to 100 millions unknowns
(d.o.f) in 2D, as we can show in figure 6, from 1024 subdomains to 8192 subdomains
we get a quite good speed up. In the three dimensional case, we pass from 387.5s

[«

ot QU QOU Ot Ut Ut Ut Ut Ot
W W W W W W w w w
oo

=)
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FIGURE 6. Timings of various simulations Stokes.

N Factorization Deflation Solution # of it. Total  # of d.o.f.

1024 79.2s 229.0s 76.35s 45 387.5s

2048 29.5s 76.5s 34.8s 42 143.9s 6
3D 4096 11.1s 45.8s 19.8s 42 80.9s 50.63 - 10

8192 4.7s 26.1s 14.9s 41 56.8's

1024 5.2s 37.9s 51.5s 51 95.6s

2048 2.4s 19.3s 22.1s 42 44.55s 6
2D 4096 1.1s 10.4s 10.2s 35 22.6s 100.13 - 10

8192 0.5s 4.6s 6.9s 38 12.7s

FIGURE 7. Strong scaling experiments Stokes.

540 using 1024 subdomains to 56.8s when using 8192 subdomains. In figure table 7 we
541 display all timings relative to this test, column “Factorization” gives the time spent
542 in the factorization of the local submatrices, column “Deflation” corresponds to local
543 eigenvalue solvers and the coarse space correction construction, column “Solution”
544 is the time taken by the GMRES solve of the global linear system by the domain
545 decomposition algorithm.

546 7. Conclusion. We developed a theory for the overlapping P.L. Lions’ algorithm
547 similar to the existing one for the Schwarz algorithm in that we show how to build
548 adaptively a coarse space so that the two-level preconditioner achieves a targeted
49 condition number. The theory is based on the introduction of the SORAS (14) algo-

ot

550 rithm which is a new symmetric variant of the ORAS preconditioner. The two-level
551  method is implemented in the HPDDM library that is interfaced with finite element
552 solvers such as FreeFem++ and Feel++.

553

ot

Note that for a given targeted condition number, the size of the coarse space
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554 depends on the interface condition. A small coarse space is important in order to
555 achieve good scalability results. Thus, it might be interesting to optimize this condition
556 with respect to the coarse space size.

557 Références
55 [1] P. R. AMEsTOY, I. S. DUFF, J.-Y. L’EXCELLENT, AND J. KOSTER, A fully asynchronous mul-
55

8
59 tifrontal solver using distributed dynamic scheduling, STAM J. Matrix Analysis and Appli-
50 cations, 23 (2001), pp. 15-41.

61 [2] J.-D. BENAMOU AND B. DESPRES, A domain decomposition method for the Helmholtz equation
562 and related optimal control problems, J. Comput. Phys., 136 (1997), pp. 68-82.

563 [3] M. BeEnzi, G. H. GoLUB, AND J. LIESEN, Numerical solution of saddle point problems, Acta
564 Numer., 14 (2005), pp. 1-137.

565 [4] M. BENzI AND V. SIMONCINI, On the eigenvalues of a class of saddle point matrices, Numer.
566 Math., 103 (2006), pp. 173-196.

567 [5] S. C. BRENNER AND L. R. ScoTT, The Mathematical Theory of Finite Element Methods,
568 Springer, New York, Applied Mathematics ed., 2008.

569 [6] X.-C. Car AND M. SARKIS, A restricted additive Schwarz preconditioner for general sparse
570 linear systems, STAM Journal on Scientific Computing, 21 (1999), pp. 239-247.

571 [7] L. CoNEN, V. DOLEAN, R. KRAUSE, AND F. NATAF, A coarse space for heterogeneous Helmholtz
572 problems based on the Dirichlet-to-Neumann operator, J. Comput. Appl. Math., 271 (2014),

3 pp. 83-99.
4 [8] B. DESPRES, Décomposition de domaine et probléme de Helmholtz, C.R. Acad. Sci. Paris, 1
5 (1990), pp. 313-316.

576 [9] ———, Domain decomposition method and the Helmholtz problem.II, in Second International
577 Conference on Mathematical and Numerical Aspects of Wave Propagation (Newark, DE,
578 1993), Philadelphia, PA, 1993, SIAM, pp. 197-206.

579  [10] B. DESPRES, P. JoLy, AND J. E. ROBERTS, A domain decomposition method for the harmonic
580 Mazwell equations, in Iterative methods in linear algebra (Brussels, 1991), Amsterdam,
581 1992, North-Holland, pp. 475-484.

582 [11] V. DoLEAN, L. G. GIORDA, AND M. J. GANDER, Optimized Schwarz methods for Mazwell
583 equations, STAM J. Scient. Comp., 31 (2009), pp. 2193-2213.

584  [12] V. DOLEAN, P. JOLIVET, AND F. NATAF, An Introduction to Domain Decomposition Methods :
585 algorithms, theory and parallel implementation, SIAM, 2015.

586 [13] O. DuBoIs, M. J. GANDER, S. LOISEL, A. ST-CYR, AND D. B. SzyLD, The optimized Schwarz
587 method with a coarse grid correction, STAM J. Sci. Comput., 34 (2012), pp. A421-A458.
588  [14] Y. EFENDIEV, J. GALvIS, R. LAZAROV, AND J. WILLEMS, Robust domain decomposition pre-
589 conditioners for abstract symmetric positive definite bilinear forms, ESAIM Math. Model.
590 Numer. Anal., 46 (2012), pp. 1175-1199.

591 [15] E. EFSTATHIOU AND M. J. GANDER, RAS : Understanding restricted additive Schwarz, Tech.
592 Rep. 06, McGill University, 2002.

593 [16] E. ErsTaTHIOU AND M. J. GANDER, Why restricted additive Schwarz converges faster than
594 additive Schwarz, BIT, 43 (2003), pp. 945-959.

595  [17] C. FARHAT, A. MACEDO, AND M. LESOINNE, A two-level domain decomposition method for the
596 iterative solution of high-frequency exterior Helmholtz problems, Numer. Math., 85 (2000),
597 pp. 283-303.

598  [18] A. FROMMER AND D. B. SzYLD, An algebraic convergence theory for restricted additive Schwarz
599 methods using weighted maz norms, SIAM J. Numer. Anal., 39 (2001), pp. 463-479 (elec-
600 tronic).

601 [19] J. GALvis AND Y. EFENDIEV, Domain decomposition preconditioners for multiscale flows in

2 high contrast media : reduced dimension coarse spaces, Multiscale Model. Simul., 8 (2010),
3 pp. 1621-1644.

1 [20] M. J. GANDER, Optimized Schwarz methods, SIAM J. Numer. Anal., 44 (2006), pp. 699-731.
5

605  [21] M. J. GANDER, F. MAGOULES, AND F. NATAF, Optimized Schwarz methods without overlap for
606 the Helmholtz equation, STAM J. Sci. Comput., 24 (2002), pp. 38-60.

607  [22] R. HAFERSSAS, Espaces grossiers pour les méthodes de décomposition de domaine avec condi-
608 tions d’interface optimisées, PhD thesis, UPMC, 2016.

This manuscript is for review purposes only.



609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667

[40]
[41]

[42]

[44]

(45]

[46]

R. HAFERSSAS, P. JOLIVET, AND F. NATAF

P. HAVE, R. MassoN, F. NATAF, M. SzyDLARSKI, H. X1ANG, AND T. ZHAO, Algebraic do-
main decomposition methods for highly heterogeneous problems, SIAM J. Sci. Comput., 35
(2013), pp. C284-C302.

F. HECcHT, New development in freefem++, J. Numer. Math., 20 (2012), pp. 251-265.

C. JApHET, F. NATAF, AND F.-X. RouX, The Optimized Order 2 Method with a coarse grid
preconditioner. application to convection-diffusion problems, in Ninth International Confe-
rence on Domain Decompositon Methods in Science and Engineering, P. Bjorstad, M. Es-
pedal, and D. Keyes, eds., John Wiley & Sons, 1998, pp. 382-389.

P. JoLiver, F. HECHT, F. NATAF, AND C. PRUD’HOMME, Scalable domain decomposition pre-
conditioners for heterogeneous elliptic problems, in Proceedings of the 2013 ACM/IEEE
conference on Supercomputing, SC13, ACM, 2013, pp. 80 :1-80 :11. Best paper finalist.

P. JOLIVET AND F. NATAF, Hpddm : High-Performance Unified framework for Domain Decom-
position methods, MPI-C++ library. https ://github.com/hpddm/hpddm, 2014.

J.-H. KIMN, A convergence theory for an overlapping Schwarz algorithm using discontinuous
iterates, Numer. Math., 100 (2005), pp. 117-139.

R. B. LEHOUCQ, D. C. SORENSEN, AND C. YANG, ARPACK users’ guide : solution of large-scale
etgenvalue problems with implicitly restarted Arnoldi methods, vol. 6, STAM, 1998.

J. LIESEN AND B. N. PARLETT, On nonsymmetric saddle point matrices that allow conjugate
gradient iterations, Numer. Math., 108 (2008), pp. 605-624.

P.-L. LioNs, On the Schwarz alternating method. II., in Domain Decomposition Methods,
T. Chan, R. Glowinski, J. Périaux, and O. Widlund, eds., Philadelphia, PA, 1989, SIAM,
pp. 47-70.

, On the Schwarz alternating method. III : a variant for nonoverlapping subdomains, in

Third International Symposium on Domain Decomposition Methods for Partial Differen-

tial Equations , held in Houston, Texas, March 20-22, 1989, T. F. Chan, R. Glowinski,

J. Périaux, and O. Widlund, eds., Philadelphia, PA, 1990, STAM.

, On the Schwarz alternating method. 111 : a variant for nonoverlapping subdomains, in
First International Symposium on Domain Decomposition Methods for Partial Differential
Equations, T. F. Chan, R. Glowinski, J. Périaux, and O. Widlund, eds., Philadelphia, PA,
1990, SIAM.

S. LoiseL, H. NGUYEN, AND S. R., Optimized schwarz and 2-lagrange methods for multiscale
pdes, tech. rep., Bath University, Mathematical Sciences Dept., 2014.

S. LoisEL AND D. B. SzyLD, On the geometric convergence of optimized Schwarz methods with
applications to elliptic problems, Numer. Math., 114 (2010), pp. 697-728.

J. MANDEL, Balancing domain decomposition, Comm. on Applied Numerical Methods, 9 (1992),
pp- 233-241.

F. NATAF, F. ROGIER, AND E. DE STURLER, Optimal interface conditions for domain decom-
position methods, Tech. Rep. 301, CMAP (Ecole Polytechnique), 1994.

F. Natar, H. X1ANG, V. DOLEAN, AND N. SPILLANE, A coarse space construction based on local
Dirichlet to Neumann maps, SIAM J. Sci Comput., 33 (2011), pp. 1623-1642.

S. V. NEPOMNYASCHIKH, Mesh theorems of traces, normalizations of function traces and their
inversions, Sov. J. Numer. Anal. Math. Modeling, 6 (1991), pp. 1-25.

R. A. NICOLAIDES, Deflation of conjugate gradients with applications to boundary value pro-
blems, STAM J. Numer. Anal., 24 (1987), pp. 355-365.

H. A. ScuwaRz, Uber einen Grenziibergang durch alternierendes Verfahren, Vierteljahrsschrift
der Naturforschenden Gesellschaft in Ziirich, 15 (1870), pp. 272-286.

N. SPILLANE, V. DOLEAN, P. HAURET, F. NATAF, C. PECHSTEIN, AND R. SCHEICHL, Abstract
robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps,
Numer. Math., 126 (2014), pp. 741-770.

N. SPILLANE, V. DOLEAN, P. HAURET, F. NATAF, AND D. RIXEN, Solving generalized eigenvalue
problems on the interfaces to build a robust two-level FETI method, C. R. Math. Acad.
Sci. Paris, 351 (2013), pp. 197-201.

A. ST-CYR, M. J. GANDER, AND S. J. THOMAS, Optimized Multiplicative, Additive, and Res-
tricted Additive Schwarz Preconditioning, SIAM J. Sci. Comput., 29 (2007), pp. 2402-2425
(electronic).

A. ToseELLI AND O. WIDLUND, Domain Decomposition Methods - Algorithms and Theory,
vol. 34 of Springer Series in Computational Mathematics, Springer, 2005.

X. Tu AND J. L1, A FETI-DP type domain decomposition algorithm for three-dimensional
incompressible Stokes equations, SIAM J. Numer. Anal., 53 (2015), pp. 720-742.

This manuscript is for review purposes only.



	Introduction
	Short introduction to ASM theory
	Symmetrized ORAS method
	Two-level SORAS algorithm
	Mathematical framework
	SORAS with GenEO-2
	Coarse Space for the lower bound
	Coarse space for the upper bound

	SORAS-GENEO-2 method

	Saddle point problems
	GenEO eigenvalue problem for saddle point problems

	Application to the systems of Stokes and of Nearly Incompressible elasticity
	Variational formulations
	Interface conditions
	Numerical results
	Tests against other algorithms
	3D and 2D highly heterogeneous linear elasticity equations

	3D and 2D incompressible Stokes system

	Conclusion
	References

