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Résumé. Optimized Schwarz methods (OSM) are very popular methods which were introduced6
by P.L. Lions in [32] for elliptic problems and by B. Després in [8] for propagative wave phenomena.7
We give here a theory for Lions’ algorithm that is the genuine counterpart of the theory developed8
over the years for the Schwarz algorithm. The first step is to introduce a symmetric variant of the9
ORAS (Optimized Restricted Additive Schwarz) algorithm [44] that is suitable for the analysis of10
a two-level method. Then we build a coarse space for which the convergence rate of the two-level11
method is guaranteed regardless of the regularity of the coefficients. We show scalability results for12
thousands of cores for nearly incompressible elasticity and the Stokes systems with a continuous13
discretization of the pressure.14

1. Introduction. Substructuring algorithms such as BNN or FETI are defi-15

ned for nonoverlapping domain decompositions but not for overlapping subdomains.16

Schwarz method [41] is defined only for overlapping subdomains. With the help of a17

coarse space correction, the two-level versions of both type of methods are weakly sca-18

lable, see [45] and references therein. The domain decomposition method introduced19

by P.L. Lions [32] is a third type of methods. It can be applied to both overlapping20

and nonoverlapping subdomains. It is based on improving Schwarz methods by repla-21

cing the Dirichlet interface conditions by Robin interface conditions. This algorithm22

was extended to Helmholtz problem by Després [9]. Robin interface conditions can23

be replaced by more general interface conditions that can be optimized (Optimized24

Schwarz methods, OSM) for a better convergence, see [21, 20] and references therein.25

P.L. Lions proved the convergence of his algorithm in the elliptic case for a no-26

noverlapping domain decomposition. The proof is based on energy estimates and a27

summation technique. These results were extended to Helmholtz and Maxwell equa-28

tions in [2, 10]. Over the last years, a lot of results have been obtained for different29

classes of equations and optimized algorithms based on carefully chosen parameters in30

the transmission conditions, have been derived, see e.g. [25, 20, 21, 11] and references31

therein. Most of these works are valid for nonoverlapping decomposition or for simple32

overlapping domain decompositions as in [28, 35] for the two-subdomain case. When33

the domain is decomposed into a large number of subdomains, these methods are, on34

a practical point of view, scalable if a second level is added to the algorithm via the35

introduction of a coarse space [25, 17, 7, 13, 34]. But there is no systematic proce-36

dure to build coarse spaces with a provable efficiency for general symmetric positive37

definite systems.38

The purpose of this article is to define a general framework for building adaptive39

coarse space for OSM methods for decomposition into overlapping subdomains. We40

prove that we can achieve the same robustness that what was done for Schwarz [42] and41

FETI-BDD [43] domain decomposition methods with so called GenEO (Generalized42
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2 R. HAFERSSAS, P. JOLIVET, AND F. NATAF

Eigenvalue in the Overlap) coarse spaces. Compared to these previous works, we have43

to introduce SORAS (symmetrized ORAS) a non standard symmetric variant of the44

ORAS method as well as two generalized eigenvalue problems. As numerical results45

will show in § 6.3, the method scales very well for saddle point problems such as46

highly heterogeneous nearly incompressible elasticity problems as well as the Stokes47

system. More precisely, in § 2, we give a short presentation of the current theory for48

the additive Schwarz method. Then, in section 3, we present algebraic variants to the49

P.L. Lions’ domain decomposition method. In § 4, we build a coarse space so that the50

two-level SORAS method achieves a targeted condition number. In § 5, the method51

is applied to saddle point problems.52

2. Short introduction to ASM theory. In order to appraise the theory de-53

veloped in § 3, we first give a short presentation of the current theory for two-level54

additive Schwarz methods. The starting point was the original Schwarz algorithm [41]55

for proving the well-posedness of the Poisson problem −∆u = f with Dirichlet boun-56

dary conditions in some domain Ω decomposed into two subdomains Ω1 and Ω2,57

Ω = Ω1 ∪ Ω2.58

Definition 2.1 (Original Schwarz algorithm). The Schwarz algorithm is an ite-59

rative method based on solving alternatively sub-problems in domains Ω1 and Ω2. It60

updates (un1 , u
n
2 )→ (un+1

1 , un+1
2 ) by :61

(1)
−∆(un+1

1 ) = f in Ω1

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω
un+1

1 = un2 on ∂Ω1 ∩ Ω2.

then,
−∆(un+1

2 ) = f in Ω2

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω
un+1

2 = un+1
1 on ∂Ω2 ∩ Ω1.

62

H. Schwarz proved the convergence of the algorithm and thus the well-posedness of63

the Poisson problem in complex geometries. A small modification of the algorithm64

[33] makes it suited to parallel architectures. Its convergence can be proved using the65

maximum principle [31].66

Definition 2.2 (Parallel Schwarz algorithm). Iterative method which solves concur-67

rently in all subdomains, i = 1, 2 :68

(2)
−∆(un+1

i ) = f in Ωi
un+1
i = 0 on ∂Ωi ∩ ∂Ω
un+1
i = un3−i on ∂Ωi ∩ Ω3−i.

69

The discretization of this algorithm yields a parallel algebraic method for solving the70

linear system AU = F ∈ R#N (N is the set of degrees of freedom) arising from the71

discretization of the original Poisson problem set on domain Ω. Due to the duplication72

of the unknowns in the overlapping region Ω1 ∩Ω2, this direct discretization involves73

a matrix of size larger than that of matrix A, see e.g. [23] for more details. Actually,74

it is much simpler and as efficient to use the RAS preconditioner [6]75

(3) M−1
RAS :=

N∑
i=1

RTi DiA
−1
i Ri ,76

where N is the number of subdomains, Ri for some 1 ≤ i ≤ N is the Boolean matrix77

that restricts a global vector to its degrees of freedom in subdomain Ωi, matrix78

Ai := RiAiR
T
i79

This manuscript is for review purposes only.



AN ADDITIVE SCHWARZ METHOD TYPE THEORY FOR LIONS’ ALGORITHMAND A SYMMETRIZED OPTIMIZED RESTRICTED ADDITIVE SCHWARZ METHOD3

is the Dirichlet matrix of subdomain Ωi and Di is a local diagonal matrix that yields80

an algebraic partition of unity on R#N :81

(4) Id =

N∑
i=1

RTi DiRi .82

Indeed, it is proved in [16] that the following fixed point algorithm83

(5) Un+1 = Un +M−1
RAS(F−AUn)84

yields iterates that are equivalent to that of the discretization of Algorithm (2). Note85

that our analysis is the same whether Di is Boolean or not.86

The RAS preconditioner (3) is not symmetric. For M -matrices a general conver-87

gence result is given in [18]. In order to develop a general theory for it when used as88

preconditioner in a Krylov method, its symmetric variant, the ASM preconditioner :89

(6) M−1
ASM =

N∑
i=1

RTi A
−1
i Ri ,90

was studied extensively, see [45] and references therein. Starting with the pioneering91

work [40], a lot of effort has been devoted to the design and analysis of two-level92

methods that are the key ingredient to scalable methods. In adaptive methods, the93

coarse space in the two-level method is built by solving local generalized eigenvalue94

problems [19, 14, 38, 42] . This way, it is possible to target a user defined condition95

number of the preconditioned system. Here we focus on the GenEO approach [42]96

where the coarse space is based on solving Generalized Eigenvalue problems for the97

set of degrees of freedom Nj of subdomain 1 ≤ j ≤ N . Let ANeuj denote the matrix98

of the local Neumann problem, we have to find the eigenpairs (Vj,k, λj,k)k such that :99

Vj,k ∈ RNj and λj,k ≥ 0 :100

(7) Dj AjDjVj,k = λj,k A
Neu
j Vj,k101

By combining the eigenvectors corresponding to eigenvalues larger than some given102

threshold τ > 0 into a coarse space, it is proved in [42, 12] that the eigenvalues of the103

hybrid Schwarz preconditioned system satisfy the following estimate104

(8)
1

1 + k1 τ
≤ λ(M−1

HSM A) ≤ k0 .105

where k0 is the maximum number of neighbors of a subdomain and k1 is the maximum106

multiplicity of the intersections of subdomains.107

108

To sum up, the current theory for the two-level Schwarz method is based on the109

following four steps :110

1. Schwarz algorithm at the continuous level (1)111

2. An equivalent algebraic formulation (5) with the introduction of the RAS112

preconditioner (3)113

3. A symmetrized variant named ASM (6) of the RAS preconditioner114

4. A two-level method with an adaptive coarse space with prescribed targeted115

convergence rate .116
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4 R. HAFERSSAS, P. JOLIVET, AND F. NATAF

3. Symmetrized ORAS method. Our goal here is to develop a theory and117

computational framework for P.L. Lions algorithm similar to what was done for the118

Schwarz algorithm for a symmetric positive definite (SPD) matrix A. We follow the119

steps recalled above.120

121

First we introduce the P.L. Lions’ algorithm which is based on improving Schwarz122

methods by replacing the Dirichlet interface conditions by Robin interface conditions.123

Let α be a positive number, the modified algorithm reads124

(9)

−∆(un+1
1 ) = f in Ω1,
un+1

1 = 0 on ∂Ω1 ∩ ∂Ω,(
∂

∂n1
+ α

)
(un+1

1 ) =

(
∂

∂n1
+ α

)
(un2 ) on ∂Ω1 ∩ Ω2 ,

125

and126

(10)

−∆(un+1
2 ) = f in Ω2,
un+1

2 = 0 on ∂Ω2 ∩ ∂Ω(
∂

∂n2
+ α

)
(un+1

2 ) =

(
∂

∂n2
+ α

)
(un1 ) on ∂Ω2 ∩ Ω1

127

where n1 and n2 are the outward normals on the boundary of the subdomains.128

The second step is an algebraic equivalent formulation of the P.L. Lions algorithm129

in the case of overlapping subdomains. It is based on the introduction of the ORAS130

(Optimized Restricted Additive Schwarz) [44] preconditioner :131

(11) M−1
ORAS :=

N∑
i=1

RTi DiB
−1
i Ri ,132

where (Bi)1≤i≤N is the discretization matrix of the Robin problem in subdomain Ωi.133

The following fixed point method134

(12) Un+1 = Un +M−1
ORAS(F−AUn)135

yields iterates that are equivalent to that of the discretization of P.L. Lions’ Algo-136

rithm (9)-(10), see [44].137

The third step is the introduction of a symmetric variant that allows for a com-138

prehensive theoretical study. It seems at first glance that we should mimic what was139

done for the RAS algorithm and study the following symmetrized variant :140

(13) M−1
OAS,1 :=

N∑
i=1

RTi B
−1
i Ri .141

For reasons explained in Remark 1, we introduce another non standard variant of the142

ORAS preconditioner (11), the symmetrized ORAS (SORAS) algorithm :143

(14) M−1
SORAS,1 :=

N∑
i=1

RTi DiB
−1
i DiRi .144

This variant is reminiscent of the RASH [6] algorithm. Note also that the symmetric145

variant of ORAS is not equivalent to Lions’ algorithm exactly as neither ASM nor146

RASH are equivalent to RAS which is itself equivalent the Schwarz algorithm, see [15].147

The missing step is the fourth one, namely to build an adaptive coarse space for148

a two-level SORAS method. it is done in the next section.149
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4. Two-level SORAS algorithm. Before designing and analyzing the two-150

level SORAS method, we precise our mathematical framework.151

152

4.1. Mathematical framework. The problem to be solved is defined via a153

variational formulation on a domain Ω ⊂ Rd for d ∈ N :154

Find u ∈ V such that : aΩ(u, v) = l(v) , ∀v ∈ V ,155

where V is a Hilbert space of functions from Ω with real values. The problem we156

consider is given through a symmetric positive definite bilinear form aΩ that is defined157

in terms of an integral over any open set ω ⊂ Ω. Typical examples are the Darcy158

equation (K is a diffusion tensor)159

aω(u, v) :=

∫
ω

K∇u · ∇v dx ,160

or the elasticity system (C is the fourth-order stiffness tensor and ε(u) is the strain161

tensor of a displacement field u) :162

aω(u, v) :=

∫
ω

C : ε(u) : ε(v) dx .163

The problem is discretized by a finite element method. Let N denote the set of degrees164

of freedom and (φk)k∈N be a finite element basis on a mesh Th. Let A ∈ R#N×#N165

be the associated finite element matrix, Akl := aΩ(φl, φk), k, l ∈ N . For some given166

right hand side F ∈ R#N , we have to solve a linear system in U of the form167

AU = F .168

Domain Ω is decomposed into N overlapping subdomains (Ωi)1≤i≤N so that all sub-169

domains are a union of cells of the mesh Th. This decomposition induces a natural170

decomposition of the set of indices N into N subsets of indices (Ni)1≤i≤N :171

(15) Ni := {k ∈ N | meas(supp(φk) ∩ Ωi) > 0} , 1 ≤ i ≤ N.172

For all 1 ≤ i ≤ N , let Ri be the restriction matrix from R#N to the subset R#Ni and173

Di be a diagonal matrix of size #Ni ×#Ni, so that we have a partition of unity at174

the algebraic level,175

(16)

N∑
i=1

RTi DiRi = Id ,176

where Id ∈ R#N×#N is the identity matrix.177

For all subdomains 1 ≤ i ≤ N , let Bi be a SPD matrix of size #Ni×#Ni, which comes178

typically from the discretization of boundary value local problems using optimized179

transmission conditions.180

We also define for all subdomains 1 ≤ j ≤ N , Ãj , the #Nj ×#Nj matrix defined181

by182

(17) VT
j Ã

jUj := aΩj

∑
l∈Nj

Ujlφl,
∑
l∈Nj

Vjlφl

 , Uj , Vj ∈ RNj .183
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6 R. HAFERSSAS, P. JOLIVET, AND F. NATAF

When the bilinear form a results from the variational solve of a Laplace problem, the184

previous matrix corresponds to the discretization of local Neumann boundary value185

problems. For this reason we will call it “Neumann” matrix even in a more general186

setting.187

We also make use of two numbers k0 and k1 related to the domain decomposition.188

Let189

(18) k0 := max
1≤i≤N

#
{
j | RjARTi 6= 0

}
190

be the maximum multiplicity of the interaction between subdomains plus one. Let k1191

be the maximal multiplicity of subdomains intersection, i.e. the largest integer m such192

that there exists m different subdomains whose intersection has a non zero measure.193

4.2. SORAS with GenEO-2. We now consider a two-level method based on194

enriching the one-level SORAS preconditioner (11) by introducing two generalized195

eigenvalue problems which allow us to control the spectrum of the preconditioned196

operator as written in Theorem 4.10.197

4.2.1. Coarse Space for the lower bound. More precisely, we define the198

following generalized eigenvalue problem :199

Definition 4.1 (Generalized Eigenvalue Problem for the lower bound). For each200

subdomain 1 ≤ j ≤ N , we introduce the generalized eigenvalue problem201

(19)
Find (Vjk, λjk) ∈ R#Nj \ {0} × R such that

ÃjVjk = λjkBjVjk .
202

Let τ > 0 be a user-defined threshold, we define Zτgeneo ⊂ R#N as the vector space203

spanned by the family of vectors (RTj DjVjk)λjk<τ ,1≤j≤N corresponding to eigenvalues204

smaller than τ .205

Let π̃j be the projection from R#Nj on Span{Vjk|λjk < τ} parallel to Span{Vjk|λjk ≥206

τ}. In the present case of the SORAS-2 method, Lemma 7.6, page 167 in [12] translates207

into :208

Lemma 4.2 (Intermediate Lemma for GenEO-SORAS-2). For all subdomains209

1 ≤ j ≤ N and Uj ∈ RNj , we have :210

(20) τ ((Id − π̃j)Uj)
TBj(Id − π̃j)Uj ≤ UT

j Ã
jUj .211

where by abuse of notation Id ∈ R#Nj×#Nj is the identity matrix on RNj .212

4.2.2. Coarse space for the upper bound. We introduce the following ge-213

neralized eigenvalue problem :214

Definition 4.3 (Generalized Eigenvalue Problem for the upper bound).215

(21)
Find (Uik, µik) ∈ R#Ni \ {0} × R such that

DiRiAR
T
i DiUik = µikBiUik .

216

Let γ > 0 be a user-defined threshold, we define Zγgeneo ⊂ R#N as the vector space217

spanned by the family of vectors (RTi DiUik)µik>γ ,1≤i≤N corresponding to eigenvalues218

larger than γ.219
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Now, let ξi denote the projection from R#Ni on Span {Uik | γ > µik} parallel to220

Span {Uik | γ ≤ µik}. From these definitions, Lemma 7.6, page 167 in [12] leads to :221

Lemma 4.4. For all subdomains 1 ≤ i ≤ N and Ui ∈ R#Ni , we have :222

(22)
(
RTi Di(Id − ξi)Ui

)T
ARTi Di(Id − ξi)Ui) ≤ γ UT

i BiUi .223

4.3. SORAS-GENEO-2 method. We are now ready to define the SORAS224

two level preconditioner225

Definition 4.5 (Two level SORAS-GENEO-2 preconditioner). Let P0 denote the226

a-orthogonal projection on the SORAS-GENEO-2 coarse space227

ZGenEO-2 := Zτgeneo
⊕

Zγgeneo ,228

the two-level SORAS-GENEO-2 preconditioner is defined as follows, see [36] :229

(23) M−1
SORAS,2 := P0A

−1 + (Id − P0)

N∑
i=1

RTi DiB
−1
i DiRi(Id − PT0 ) .230

Let Z0 be a matrix whose columns are a basis of ZGenEO-2 and let denote its transpose231

by R0 := ZT0 . It is easily checked that232

P0A
−1 = RT0 (R0AR

T
0 )−1R0 .233

This definition is reminiscent of the balancing domain decomposition preconditio-234

ner [36] introduced for Schur complement based methods. Note that the coarse space235

is now defined by two generalized eigenvalue problems instead of one in [42, 43] for236

ASM and FETI-BDD methods.237

238

The proof of Theorem 4.10 is based on the Fictitious Space [39] Lemma 7.4 in239

[12] , page 164.240

Definition 4.6 (Two-level SORAS in the Fictitious Space Lemma). Two Hilbert241

spaces H and HD, two other associated bilinear forms and induced scalar products as242

well as the RSORAS,2 operator between them are defined as follows.243

— Space H := R#N endowed with the standard Euclidean scalar product. We244

consider another bilinear form a defined by :245

(24) a : H ×H → R, (U,V) 7−→ a(U,V) := VTAU.246

where A is the matrix of the problem we want to solve.247

— Space HD, defined as the product space248

(25) HD := R#N0 ×
N∏
i=1

R#Ni249

is endowed with standard scalar Euclidean product. For U = (Ui)1≤i≤N , V =250

(Vi)1≤i≤N with Ui,Vi ∈ R#Ni , the bilinear form b is defined by251

(26)

b : HD ×HD −→ R

(U ,V) 7−→ b(U ,V) := (RT0 V0)TA (RT0 U0) +

N∑
i=1

VT
i BiUi,

252
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8 R. HAFERSSAS, P. JOLIVET, AND F. NATAF

Let B denote the block-diagonal operator such that for all U ,V ∈ HD, we253

have :254

(BU ,V) = b(U ,V)255

— For any U = (Ui)0≤i≤N the linear operator RSORAS,2 is defined as256

(27)

RSORAS,2 : HD −→ H, RSORAS,2(U) := RT0 U0 +

N∑
i=1

(Id − P0)RTi DiUi.257

It can easily be checked that258

M−1
SORAS,2 = RSORAS,2B−1RTSORAS,2 .259

We now check the assumptions of the Fictitious Space Lemma.260

Lemma 4.7 (Surjectivity of RSORAS,2). Operator RSORAS,2 is surjective.261

Proof. For all U ∈ H, we have :262

U = P0 U + (Id − P0)U = P0 U +

N∑
i=1

(Id − P0)RTi DiRiU .263

Since P0 U ∈ Span(RT0 ), there exists U0 ∈ R#N0 such that P0 U = RT0 U0. Thus, we264

have265

U = RT0 U0 +

N∑
i=1

(Id − P0)RTi Di(RiU) ,266

or, in other words267

RSORAS,2(U0, (RiU)1≤i≤N ) = U ,268

which proves the surjectivity.269

We now prove270

Lemma 4.8 (Continuity of RSORAS,2). Let U = (Ui)0≤i≤N ∈ HD. We have the271

following continuity estimate272

a(RSORAS,2(U),RSORAS,2(U)) ≤ max(1, k0 γ) b(U , U) .273

Proof. Since P0 and Id−P0 are a-orthogonal projections, we have by a-orthogonality :274

a(RSORAS,2(U),RSORAS,2(U)) = a
(
P0R

T
0 U0, P0R

T
0 U0

)
+ a

(
(Id − P0)

N∑
i=1

RTi DiUi, (Id − P0)

N∑
i=1

RTi DiUi

)
275

Since P0 is the a-orthogonal projection on ZGenEO-2 and that276

N∑
i=1

RTi DiξiUi ∈ Zγgeneo ⊂ ZGenEO-2 ,277

we have278

(Id − P0)

N∑
i=1

RTi DiξiUi = 0 ,279
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and thus280

a

(
(Id − P0)

N∑
i=1

RTi DiUi, (Id − P0)

N∑
i=1

RTi DiUi

)

= a

(
(Id − P0)

N∑
i=1

RTi Di (Id − ξi)Ui, (Id − P0)

N∑
i=1

RTi Di (Id − ξi)Ui

)
.

281

Finally, using k0 defined as in in Lemma 7.11, page 174 in [12] , we have282

a(RSORAS,2(U),RSORAS,2(U)) ≤ a
(
RT0 U0, R

T
0 U0

)
+a
(∑N

i=1R
T
i Di (Id − ξi)Ui,

∑N
i=1R

T
i Di (Id − ξi)Ui

)
≤ a

(
RT0 U0, R

T
0 U0

)
+k0

∑N
i=1 a

(
RTi Di (Id − ξi)Ui, R

T
i Di (Id − ξi)Ui

)
.

283

Then, using estimate (22), we have :284

a(RSORAS,2(U),RSORAS,2(U)) ≤ a(RT0 U0, R
T
0 U0) + k0 γ

N∑
i=1

(BiUi, Ui)

≤ max(1, k0 γ) b(U , U) .

285

which concludes the estimate of the continuity of RSORAS,2.286

Lemma 4.9 (Stable decomposition with RSORAS,2). Let U be a vector in H. We287

define :288

Uj := (Id − π̃j)RjU289

and U0 ∈ R#N0 such that :290

RT0 U0 = P0 U .291

We define U := (Ui)0≤i≤N .292

Then, the stable decomposition property is verified with a constant (1 + k1 τ
−1)−1,293

since we have :294 —

RSORAS,2(U) = U ,295

—

1

(1 + k1 τ−1)
b(U ,U) ≤ a(U,U).296

Proof. We first check that we have indeed a decomposition RSORAS,2(U) = U.297

Note that for all 1 ≤ j ≤ N we have298

RTj Dj π̃j RjU ∈ Zτgeneo ⊂ ZGenEO-2 ⇒ (Id − P0)RTj Dj π̃j RjU = 0 .299

We have :300

U = P0U + (Id − P0)U = P0U + (Id − P0)

N∑
j=1

RTj Dj RjU

= P0R
T
0 U0 + (Id − P0)

N∑
j=1

RTj Dj (Id − π̃j)RjU = RSORAS,2(U) .

301
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10 R. HAFERSSAS, P. JOLIVET, AND F. NATAF

The last thing to do is to check the stability of this decomposition. Using (20) and302

then Lemma 7.13, page 175 in [12] . , we have303

b(U ,U) = a(RT0 U0, R
T
0 U0)

+

N∑
j=1

((Id − π̃j)RjU)
T
Bj ((Id − π̃j)RjU))

≤ a(P0U, P0U) + τ−1
N∑
j=1

(R̃jU)T Ãj(RjU)

≤ a(U,U) + k1 τ
−1a(U,U) ≤ (1 + k1 τ

−1) a(U,U).304

The assumptions of the Fictitious Space Lemma are verified and thus we have just305

proved the following306

Theorem 4.10 (Spectral estimate for the two level SORAS-GenEO-2). Let γ be307

a chosen threshold in Definition 4.3, τ be a chosen threshold in Definition (4.1) of the308

GenEO-2 coarse space and the two-level SORAS-GenEO-2 preconditioner defined by309

(23). Then, the eigenvalues of the two-level SORAS-GenEO-2 preconditioned system310

satisfy the following estimate311

1

1 + k1
τ

≤ λ(M−1
SORAS,2A) ≤ max(1, k0 γ)312

We have the313

Remark 1. An analysis of a two-level version of the preconditioner M−1
OAS (13)314

following the same path yields the following two generalized eigenvalue problems :315

Find (Ujk, µjk) ∈ R#Ni \ {0} × R such that
AiUik = µikBiUik ,

316

and317

Find (Vjk, λjk) ∈ R#Ni \ {0} × R such that

ÃiVik = λikDiBiDiVik .
.318

In the general case for 1 ≤ i ≤ N , matrices Di may have zero entries for boundary319

degrees of freedom since they are related to a partition of unity. Moreover very often320

matrices Bi and Ai differ only by the interface conditions that is for entries corres-321

ponding to boundary degrees of freedom. Therefore, matrix DiBiDi on the right hand322

side of the last generalized eigenvalue problem is not impacted by the choice of the323

interface conditions of the one level optimized Schwarz method. This cannot lead to324

efficient adaptive coarse spaces.325

5. Saddle point problems. Many applications in science and engineering re-326

quire solving large linear algebraic systems in saddle point form ; see [3] for an ex-327

tensive survey. Although our theory does not apply in a straightforward manner to328

saddle point problems, we use it for these difficult problems for which it is not always329

possible to preserve both symmetry and positivity of the problem, see [30]. Note that330

generalized eigenvalue problems (21) and (19) still make sense if A is the matrix of a331

saddle point problem and local matrices Ai, Bi and Ãi, 1 ≤ i ≤ N , are based on a332

partition of unity and on variational formulations.333

334
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We start by the global problem defined via variational formulation see for instance335

§ 6.1 for the systems of almost incompressible elasticity and of Stokes. As in § 4.1,336

these formulations are written in terms of integrals of differential quantities (gradient,337

divergence, . . .) over some domain Ω ⊂ Rd for d ∈ N :338

Find (u, p) ∈ V × Λ such that :339

aΩ(u, v) + bΩ(v, p) = l1(v) , ∀v ∈ V ,
bΩ(u, q)− cΩ(p, q) = l2(q) , ∀q ∈ Λ ,

340

where V and Λ are Hilbert spaces of functions from Ω with real values, aΩ, bΩ and341

cΩ are bilinear forms, aΩ and bΩ being symmetric. Discretization by a finite element342

method yields a saddle point system of the form :343

(28) A :=

[
H BT

B −C

] [
u
p

]
=

[
f
g

]
,344

where H = HT is positive definite, C = CT is positive semidefinite. The set of345

degrees of freedom is decomposed into subsets (Ni)1≤i≤N . The matrices involved in346

the partition of unity (16) have a block diagonal form347

Di :=

[
Du
i 0

0 Dp
i

]
and Ri :=

[
Rui 0
0 Rpi

]
.348

The local “Dirichlet” matrices have the following block form :349

Ai := RiAR
T
i =

[
Hi BTi
Bi −Ci

]
350

where351

Hi := RuiHR
uT
i , Ci := RpiCR

p T
i and Bi := RpiBR

uT
i .352

The local “Neumann” problems arise from the variational formulation restricted the353

finite element space of a subdomain as in (17). We use the following block notation354

Ãi :=

[
H̃i B̃Ti
B̃i −C̃i

]
.355

For each subdomain 1 ≤ i ≤ N , the “Robin” matrix is356

Bi = Ãi + Zi357

where Zi = ZTi is positive semidefinite and is such that matrix Bi is symmetric358

positive definite. For sake of simplicity the “Robin” boundary condition will only359

apply to the u term, that is :360

Zi =

[
Zui 0
0 0

]
.361

5.1. GenEO eigenvalue problem for saddle point problems. Eigenvalue362

problem for saddle point problem has been considered by various authors, see [4] and363

references therein. We cannot use directly their results since we consider generalized364

eigenvalue problems where both left and right matrices have saddle point structures.365

In order to prove that the GenEO eigenvalues are real and non negative, we need the366

following assumption :367
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Assumption 1.

(29) (H̃iu, u) + (Zui u, u) + (C̃ip, p) = 0⇒ u = 0 and p = 0.368

This assumption is satisfied for the two applications we consider below in § 6. For369

instance, in the case of nearly incompressible elasticity, matrix C̃i is the mass matrix370

of subdomain Ωi weighted by the inverse of the first Lamé coefficient (λ) which is371

SPD. As for H̃i + Zui it is the sum of the stiffness matrix of subdomain Ωi and of a372

positive boundary term on the interface. This matrix is thus SPD as well.373

Consider the generalized eigenvalue problem that controls the lower bound of the374

spectrum of the preconditioned system :375

(30)

[
H̃i B̃Ti
B̃i −C̃i

] [
u
p

]
= λ

[
H̃i + Zui B̃Ti
B̃i −C̃i

] [
u
p

]
.376

By Assumption 1, it is clear that the matrix in the right part of the equality is377

invertible. In order to prove it, it suffices to take an element

[
u
p

]
in the kernel and378

take the scalar product with
[
u − p

]T
to prove that the kernel reduces to the null379

vector. Thus, left multiplying problem (30) by the inverse of this matrix reduces it to380

a standard eigenvalue problem.381

We now take the scalar product of (30) with
[
u − p

]T
. The cross product terms382

(B̃Ti u, p) cancel and we get :383

(31) (H̃iu, u) + (C̃ip, p) = λ [(H̃iu, u) + (Zui u, u) + (C̃ip, p)] .384

All terms above are non negative. From Assumption 1, the right term cannot be zero.385

Therefore, λ ∈ [0, 1].386

Consider now the eigenvalue problem that controls the upper bound of the spec-387

trum of the preconditioned system :388

(32)

[
Du
i HiD

u
i Du

i B
T
i D

p
i

Dp
iBiD

u
i −Dp

iCi D
p
i

] [
u
p

]
= µ

[
H̃i + Zui B̃Ti
B̃i −C̃i

] [
u
p

]
.389

We take the scalar product of (32) with
[
u − p

]T
and we get :390

(HiD
u
i u, D

u
i u) + (CiD

p
i p, D

p
i p) = µ [(H̃iu, u) + (Zui u, u) + (C̃ip, p)](33)391392

All terms above are non negative. From Assumption 1, the right term cannot be zero.393

Therefore, µ ≥ 0.394

6. Application to the systems of Stokes and of Nearly Incompressible395

elasticity. Mixed finite elements are often used to solve incompressible Stokes and396

nearly incompressible elasticity problems. Continuous pressures have been used in397

many mixed finite elements. However, most domain decomposition methods require398

that the pressure be discontinuous when they are used to solve the indefinite linear399

systems arising from such mixed finite element discretizations. Several domain de-400

composition algorithms allow one to use continuous pressures, see [46] and references401

therein. To our knowledge, our method is the first one to exhibit scalability for a highly402

heterogeneous nearly incompressible elasticity problems with continuous pressures.403
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6.1. Variational formulations. The mechanical properties of a solid can be404

characterized by its Young modulus E and Poisson ratio ν or alternatively by its405

Lamé coefficients λ and µ. These coefficients relate to each other by the following406

formulas :407

(34) λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
.408

The variational problem consists in finding (uh, ph) ∈ Vh := Pd2∩H1
0 (Ω)×P1 such409

that for all (vh, qh) ∈ Vh410

(35)


∫

Ω
2µε(uh) : ε(vh)dx −

∫
Ω
phdiv (vh)dx =

∫
Ω
fvhdx

−
∫

Ω
div (uh)qhdx −

∫
Ω

1
λphqh = 0

411

Let u denote the degrees of freedom of uh and p that of ph, they satisfy a linear412

system denoted as follows :413

(36) AU =

[
H BT

B −C

] [
u
p

]
=

[
f
0

]
= F.414

Matrix Ãi arises from the variational formulation (35) where the integration over415

domain Ω is replaced by the integration over subdomain Ωi and finite element space416

Vh is restricted to subdomain Ωi. Matrix Bi corresponds to a Robin problem and417

is the sum of matrix Ãi and of the matrix of the following variational formulation418

restricted to the same finite element space :419

(37)

∫
∂Ωi\∂Ω

2αµ(2µ+ λ)

λ+ 3µ
uh · vh with α = 10 in our test.420

In the next section, we explain the origin of the term (37).421

6.2. Interface conditions. We touch here another peculiarity of the P.L. Lions422

algorithm. In some situations, it is possible to choose the interface condition in order423

to have convergence in a number of steps equal to the number of subdomains, see [37].424

In our case, let the global domain Ω be the whole plane R2 decomposed into two half425

planes Ω1 := (−∞, δ) × R and Ω2 := (0, ∞) × R where δ ≥ 0 is the width of the426

overlap, k denote the Fourier transform in the y direction, the following interface427

condition yields to a convergence in two iterations :428

(38) σ · n+ F−1




2|k|µ(2µ+λ)
λ+3µ

2ikµ2

λ+3µ

−2ikµ2

λ+3µ
2|k|µ(2µ+λ)

λ+3µ


F(ux)

F(uy)


429

where σ · n is the normal component of the stress tensor, the velocity is decompo-430

sed into its normal ux and tangential component uy u = [ux, uy]T and F denotes431

the Fourier transform in the y direction. Due to the absolute value |k| this interface432

condition is non local in space and also difficult to apply in the general domain de-433

compositions and has to be approximated, see [21]. For sake of simplicity, we drop the434

extra diagonal terms which correspond to tangential derivative in the physical space.435
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Figure 1. Convergence rate vs Fourier number k for various interface conditions – Poisson
ratio ν = 0.4999 – overlap δ = 0.1.

As for the diagonal terms, we approximate them at some frequency k0. Finally, the436

optimal interface condition (38) is approximated as follows :437

σ · n+ F−1




2|k0|µ(2µ+λ)
λ+3µ 0

0 2|k0|µ(2µ+λ)
λ+3µ


F(ux)

F(uy)


438

which simplifies in :439

(39) σ · n+ |k0|
2µ(2µ+ λ)

λ+ 3µ
u .440

This approximation has an impact on the convergence rate of the P.L. Lions’ algo-441

rithm. Using similar arguments to that of [21] or [12] chapter 2, it is possible to derive442

a formula for the convergence rate as a function of the Fourier mode in the y direction.443

Since we have a system of partial differential equations, the formula is quite complex444

and was obtained with the help of Maple software. It can be found in [22]. On Fi-445

gure 1, we plot the convergence as a function of the Fourier mode in the y direction446

for various values of the parameter k0 for an almost incompressible elasticity system447

ν = 0.4999 and an overlap of size δ = 0.1. Although the Robin interface condition (39)448

is never exact even for k = k0, the convergence rate is quite close to zero (of the order449

of 10−4) for k = k0. We see on Figure 1 that taking k0 = 10 yields small convergence450

rate except for k very close to 1 and thus was chosen in our numerical tests below. Note451

that Dirichlet (cf. k0 � 1) or Neumann (cf. k0 = 0) (stress free) interface conditions452

yield the same bad convergence rates. For small Fourier numbers, the convergence453

rate is very close to 1 which is bad. Overall, Robin interface conditions perform much454

better than simple Dirichlet or Neumann interface conditions.455

As for Stokes system, it can be seen as the limit as λ tends to infinity of the456

elasticity system. As a result, the interface condition we take reads :457

σ · n+ |k0|2µu .458

The interface condition (39) can be used for arbitrary domain decompositions since its459

variational formulation is the one of a stress free BVP to which we add the variational460

formulation of (37) where α := |k0| for some chosen Fourier number k0. Thus although461

the Fourier analysis has a limited domain of validity, the interface condition (39) can462

be used for arbitrary domain decompositions.463
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Figure 2. 2D Elasticity : coefficient distribution of steel and rubber.

AS SORAS AS+ZEM SORAS +ZEM AS-GenEO SORAS GenEO2
d.o.f. N iter iter iter dim iter dim iter dim iter dim
35841 8 150 184 117 24 74 24 110 184 13 145
70590 16 276 337 170 48 136 48 153 400 17 303

141375 32 497 >1000 261 96 199 96 171 800 22 561
279561 64 >1000 >1000 333 192 329 192 496 1600 24 855
561531 128 >1000 >1000 329 384 325 384 >1000 2304 29 1220

1077141 256 >1000 >1000 330 768 321 768 >1000 3840 36 1971

Table 1
2D Elasticity. GMRES iteration counts for a solid made of steel and rubber.

6.3. Numerical results. The new coarse space was tested quite successfully on464

nearly incompressible elasticity and Stokes problems with a discretization based on465

saddle point formulations in order to avoid locking phenomena.466

6.3.1. Tests against other algorithms. We first report 2D results for a hete-467

rogeneous beam of eight layers of steel (E1, ν1) = (210 ·109, 0.3) and rubber (E2, ν2) =468

(0.1 ·109, 0.4999), see Figure 2. The beam is clamped on its left and right sides. Simu-469

lations were made with FreeFem++ [24]. Iteration counts for various domain decom-470

position methods for a relative tolerance of 10−6 are given in Table 1. We compare471

the one level Additive Schwarz (AS) and SORAS methods, the two level AS and SO-472

RAS methods with a coarse space consisting of rigid body motions which are zero473

energy modes (ZEM) and finally AS with a GenEO coarse space as defined in [42]474

and SORAS with the GenEO-2 coarse space defined in Definition 4.1 with τ = 0.4475

and γ = 103. Columns dim refer to the total size of the coarse space of a two-level476

method. Eigenvalue problem (19) accounts for roughly 90% of the GenEO-2 coarse477

space size. We see that only the last method scales well with respect to the number478

of subdomains denoted by N . We also considered the dependence on the optimized479

interface condition. We found that for SORAS+ZEM, the method is very sensitive480

to the choice of k0. Fortunately, SORAS+GenE02 yielded iteration counts that were481

very similar for k0 ranging from 4 to 60.482

6.3.2. 3D and 2D highly heterogeneous linear elasticity equations. Throu-483

ghout this section we look at a linear elasticity problem with highly heterogeneous484

Lamé coefficients corresponding to steel and rubber materials. In the case of rub-485

ber which is nearly incompressible material the Poisson ratio ν approaches 1/2 and486

λ/µ = 2ν/(1− 2ν) approaches infinity. In order to avoid the resulting locking pheno-487

mena with finite element discretization, the pure displacement problem is replaced by488

a mixed formulation as proposed in [5]. We performed a large 2D and 3D simulations,489

on an heterogeneous beam, where the Lamé (E, ν) vary discontinuously over the do-490

main in eight alternating layers of steel material with (E1, ν1) = (210× 109, 0.3) and491

rubber material with (E2, ν2) = (0.1 × 109, 0.4999) submitted to an external forces,492

see Figure 3. The system is discretized using a Taylor-Hood mixed finite element493

discretization which are inf-sup stable. P3/P2 for the 2D case and P2/P1 for the 3D494

case. The problem is solved with a minimal geometric overlap of one mesh element495

and a preconditioned GMRES is used to solve the resulting linear system where the496

stopping criteria for the relative residual norm is fixed to 10−6. All the test cases were497
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Figure 3. Material coefficient, alternating layers of steel and rubber (left) and domain decom-
position into 8 subdomains with a graph partitioner (right)
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Figure 4. Weak scaling experiments.

performed inside FreeFem++ code interfaced with the domain decomposition library498

HPDDM [26, 27]. The factorizations are computed for each local problem and also499

for the global coarse problem using MUMPS [1]. Generalized eigenvalue problems to500

generate the GenEO space are solved using ARPACK [29]. The coarse space is formed501

only with the generalized eigenvalue problem (19) since we noticed that the second502

one (21) has only a little effect on the convergence. All the results of this section were503

obtained on Turing machine which is an IBM/Blue Gene/Q machine composed of504

1024 compute nodes where each one is made of 16 cores PowerPC A2 clocked at 1.6505

GHz.506

These computations, see Figure 4, assess the weak scalability of the algorithm507

with respect to the problem size and the number of subdomains. All times are wall508

clock times. The domain is decomposed automatically into subdomains with a graph509

partitioner, ranging from 256 subdomains to 8192. and the problem size is increased510

by mesh refinement. In 3D the initial problem is about 6 millions d.o.f decomposed511

into 256 subdomains and solved in 145.2s and the final problem is about 197 millions512

of d.o.f decomposed into 8192 subdomains and solved in 196s which gives an efficiency513
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N Factorization Deflation Solution # of it. Total # of d.o.f.

3D

256 25.2 s 76.0 s 37.2 s 46 145.2 s 6.1 · 106
512 26.5 s 81.1 s 39.8 s 47 155.1 s 12.4 · 106
1 024 29.2 s 82.6 s 41.7 s 45 165.5 s 25.0 · 106
2 048 26.9 s 83.5 s 46.3 s 47 171.0 s 48.8 · 106
4 096 28.3 s 88.8 s 54.5 s 53 177.7 s 97.9 · 106
8 192 29.0 s 78.3 s 79.8 s 60 196.1 s 197.6 · 106

2D

256 4.8 s 72.9 s 39.9 s 46 123.9 s 22.1 · 106
512 4.7 s 65.9 s 45.0 s 51 121.3 s 44.0 · 106
1 024 4.8 s 70.0 s 46.1 s 51 127.0 s 88.3 · 106
2 048 4.8 s 69.0 s 46.5 s 51 127.4 s 176.8 · 106
4 096 4.8 s 65.8 s 52.8 s 56 132.6 s 351.0 · 106
8 192 4.8 s 65.4 s 53.0 s 54 134.8 s 704.1 · 106

Figure 5. Weak scaling experiments elasticity timings tab .

near to 75%. For the 2D case, the initial problem is approximately of size 22 millions514

unknowns (d.o.f) decomposed into 256 subdomains and solved in 123.9s and we end515

up with a bigger problem about 704 millions unknowns (d.o.f) decomposed into 8192516

subdomains and solved in 134s. The efficiency is close to 90%. In figure table 5, we517

report the number of GMRES iterations. They increase very slowly as the mesh is518

refined which shows the scalability of the preconditioner. We report in the same table519

all the timings concerning the algorithm, column ”Factorization” concerns the local520

subdomains, the assembling and the factorization of the coarse operator are in column521

”Deflation” and in column ”Solution” we display the time spent by GMRES.522

6.4. 3D and 2D incompressible Stokes system. Using the same libraries, we523

also performed a strong scaling test for an incompressible Stokes system of equations524

for a driven cavity problem :525

Find (u,p) ∈ H(Ω)d=2,3 × L0(Ω) such that526

(40) − divσ
F

(u,p) = 0, and div (u) = 0 in Ω,527

with528

(41)

{
σ
F

(u,p) = −pI + 2µε(u),

ε(u) = 1
2 (∇u+

(
∇u)T

)
and εi,j = 1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
.

529

As a boundary conditions, we consider a continuous velocity on the upper face and530

zero Dirichlet otherwise. The computations are done in both two and three dimensions531

on a domain Ω = [0, 1]2 and Ω = [0, 1]3, respectively. Once more the problems are532

discretized via Taylor-Hood finite element P2/P1 with a continuous pressure.533

534

We assess here the strong scalability of the algorithm. For this, we make the535

number of subdomains vary for a fixed global system size. In our test case the system536

size is fixed to 50 millions unknowns (d.o.f) in 3D and to 100 millions unknowns537

(d.o.f) in 2D, as we can show in figure 6, from 1024 subdomains to 8192 subdomains538

we get a quite good speed up. In the three dimensional case, we pass from 387.5s539
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N Factorization Deflation Solution # of it. Total # of d.o.f.

3D

1 024 79.2 s 229.0 s 76.3 s 45 387.5 s

50.63 · 1062 048 29.5 s 76.5 s 34.8 s 42 143.9 s
4 096 11.1 s 45.8 s 19.8 s 42 80.9 s
8 192 4.7 s 26.1 s 14.9 s 41 56.8 s

2D

1 024 5.2 s 37.9 s 51.5 s 51 95.6 s

100.13 · 1062 048 2.4 s 19.3 s 22.1 s 42 44.5 s
4 096 1.1 s 10.4 s 10.2 s 35 22.6 s
8 192 0.5 s 4.6 s 6.9 s 38 12.7 s

Figure 7. Strong scaling experiments Stokes.

using 1024 subdomains to 56.8s when using 8192 subdomains. In figure table 7 we540

display all timings relative to this test, column “Factorization” gives the time spent541

in the factorization of the local submatrices, column “Deflation” corresponds to local542

eigenvalue solvers and the coarse space correction construction, column “Solution”543

is the time taken by the GMRES solve of the global linear system by the domain544

decomposition algorithm.545

7. Conclusion. We developed a theory for the overlapping P.L. Lions’ algorithm546

similar to the existing one for the Schwarz algorithm in that we show how to build547

adaptively a coarse space so that the two-level preconditioner achieves a targeted548

condition number. The theory is based on the introduction of the SORAS (14) algo-549

rithm which is a new symmetric variant of the ORAS preconditioner. The two-level550

method is implemented in the HPDDM library that is interfaced with finite element551

solvers such as FreeFem++ and Feel++.552

Note that for a given targeted condition number, the size of the coarse space553

This manuscript is for review purposes only.



AN ADDITIVE SCHWARZ METHOD TYPE THEORY FOR LIONS’ ALGORITHMAND A SYMMETRIZED OPTIMIZED RESTRICTED ADDITIVE SCHWARZ METHOD19

depends on the interface condition. A small coarse space is important in order to554

achieve good scalability results. Thus, it might be interesting to optimize this condition555

with respect to the coarse space size.556
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