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We prove the convergence of a Schwarz additive method for a nonoverlap-
ping decomposition into rectangles with interface conditions of order two
in the tangential direction.

1. Introduction

The rate of convergence of Schwarz type algorithms is very sensitive to the choice of the interface conditions.
The original Schwarz method is based on the use of Dirichlet boundary conditions. In order to increase
the efficiency of the algorithm, it has been proposed to replace the Dirichlet boundary conditions by more
general boundary conditions, see [8] (or in a different context [5]). Choosing artificial boundary conditions as
interface conditions is a good choice. In [10], it is shown that using exact artificial boundary conditions leads
in some situations to the convergence of the Schwarz method in a number of steps equals to the number
of subdomains. The use of such interface conditions is then optimal. Unfortunately, the exact artificial
boundary conditions are non local in space and they have to be approximated at various orders by partial
differential operators using techniques developed for artificial boundaries, see e.g. [2]. When the interface
conditions thus obtained do not involve any derivation in the direction tangential to the boundary (low
order approximation), convergence has been proved in [1] for an arbitrary nonoverlapping decomposition of
the domain. For higher order interface conditions convergence proofs were, to our knowledge, restricted to
decompositions of the domain into strips (see [11]). Nevertheless, numerical tests of such interface conditions
for decomposition into rectangles show their superiority compared to low order interface conditions (see [9]).

In this paper, we prove the convergence of the additive Schwarz method with high order interface conditions
for a domain decomposed into rectangles. We consider the equation

Lu)= = —Au=finQq, u=0o0n Iy (1)

u
=
where 4 =]0, Lx[x]0, Hy[, ¢ > 0. We want to solve (1) by a nonoverlapping additive Schwarz method with
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interface conditions of order 2 with respect to the tangential direction

0 n 1 €d?

on € 2072
which is the local approximation of order 2 with respect to € of the exact artificial boundary condition.
The domain 24 is decomposed into rectangles: Qg = U; 51, Li[x]h;, Hj[ = U; ;€ ;.

The paper is organized as follows: in § 2, we introduce some notations used throughout the paper. In § 3,
the algorithm is defined and is proved to be well-posed. In § 4, convergence is proved by an energy method.

2. Notations

In dealing with boundary value problems on rectangles with mixed boundary conditions, we shall make a
constant use of some notations (see [4]).

Let © be the rectangle ]I, L[x]h, H[. We denote
Iy :]laL[X{h} ) I, = {L}X]haH[a Iy :]la L[X{H} ) Fy= {l}X]h,H[
and T' = U;T;. The segments are thus numbered in such a way that T;1; (I's = T'y) follows T; according to
the positive orientation.
We denote by S; the vertex which is the endpoint of [';:
Sy =(L,h), So=(L,H), S3=(I,H) and Sy = (I, h).

S+=(1,H) 3 S,=(L,H)

L

> S=(Lh) r S,=(L,h)

FIGURE 1 - Notation

r
4 @ 1

Furthermore n; (resp. 7;) is the unit outward normal (resp. tangent) vector on T; so that (n;, 7;) is positively
oriented.

We denote by (#;(0), y;(¢)) the point of T which, for small enough || is at distance ¢ (counted algebraically)
of S; along 9Q. Consequently (2;(c),y;(¢)) € I'; when o < 0 and (;(¢),y;(¢)) € ;41 when o > 0. We say
that two functions ¢; and ¢;4; defined on I'; and I';; respectively are equivalent at S; if

/0 l |6i(2i(—0), yi(=0)) — ¢iz1(wi(0), yi(0)) P /o do < .

for some é; > 0. We shall then write
(f)i = ¢z’+1 at Sz

In considering mixed boundary conditions, it will be convenient to fix a partition of {1,2,3,4} in two
subsets D and .A. The union of the T'; with ¢ € D (resp. .A) is going to be the boundary where we consider
a Dirichlet (resp. artificial) boundary conditions. We have either u=0on T; if i € D or,if i € A

ou n u € 0%u o
on; € 20717 9
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for some ¢; € L?(I';). Accordingly and concerning corners, we fix, Ac, a subset of {1,2,3,4} so that corner
conditions are written on S;, i € Ac. The set Ac is such that U;e 4.{5;} is the set of vertices which do not
touch an edge I'; with ¢ € D. We define for m =1 or 2

H™(Q) ={ue H™(Q)/ ur, € H™(I';) for i € A and ujp, = 0 for i € D}

which, endowed with its natural norm |Jul|xy= = \/||u||12qm + 2 icallur, JZLIm(F ) and the associated scalar

product, is a Hilbert space.

3. Definition of the algorithm

The Schwarz algorithm is defined by:
Definition 1. Let u;'; be an approximation to u at step n in the interior subdomain , j, u?tt is defined

by: ’
L) = fin @

o = T i on s
(Gt 5 ) = (G = e o0 T
i I L P Py
(3 + = 5 g ) = (G4 = 5 3)laly ) on T

(5 = S = (5 = o)) at (2,0) = (Lishy)

(5 + S = G+ g ) at (o) = (L, )
(=g GO = (g S ) at o) = (s )

9 K] gl 0 0

=gz~ ay)\is ) = (g, — 5, (wi-ny) at (wy) = (b hy).

For the other subdomains, the definition is similar except on 0§24 N0 ; where u?j’l =0.

The following theorem shows that the algorithm is well posed in Hi,j H2($2 ;)

Theorem 2. Let [ < L, h< H € R, Q =]l, L[x]h, H[, f € L*(Q), g; € L*(I;) fori € Aand h; € R, i € Ac.
There exists a unique u € H*(Q) satisfying:

0 1 ¢0? .
Gn T ga) W =sionlyicd
6__ g )(U):hz at S;, i € Ac.

T; Ti+1

Proof: We first consider the variational formulation in H!() of the above boundary value problem:

Find u € H(2) such that:

uv uv € Ou Ov
//QE—QJFVU.VHZ/D?+56Tia—n_//fv+z

€A icA

/r, giv + % > hiv(Si), Yo e HY(Q).  (2)

i€EAc



The term v(.S;) makes sense. Indeed, v is a continuous function on each edge since v, € HYT;),i=1,...,4.
Moreover, since v € H'(Q) we have near S; (i = 1,...,4) that

/ i s( =), 5i(=0)) — visa(2:(0), yi(@ )2/ do < oo

for some & > 0 (see e.g. [4]). Thus, v as a function of the boundary of Q is continuous at S; and (2) is well
defined.

Lemma 3. Problem (2) is well posed.
Proof: The result follows from an easy application of the Lax-Milgram theorem in the Hilbert space H(€2).

It remains to prove the H?(Q2)-regularity. Our proof follows that of [6] where the case h; = 0 was considered.
We use interpolation results of [7] and regularity results for elliptic problems on nonsmooth domains of [4].
We will proceed in three steps.

Step 1. Let u denote the solution to problem (2). On each edge I';, i =1,...,4, up, € H32(Ty).

Proof: For i € D, the statement is obvious since up, = 0.
Otherwise, in the sense of distributions, we have

L —Au=finQ
€
Since Au € L*(Q) and u € H*(2), we have (see [4]) that g—z € f]‘l/z(Fi), 1=1,...,4 where f]‘l/z(]s,t[) is

the dual of
HY?(]s, t[)—{uEHl/z(]st st u(y)/\/(t—y)(y —s) € L

Hence in the sense of distributions

ou u €d%u
et T onTy, i=1€ A
on + e 2017 gion ' €
and 0%u/07? € H™'Y/2(Iy), i € A. Let Pr? denote a right inverse to 2 T The operator Pr? is continuous

from H=L(T;) into HY(T;) and from L*(T;) into H*(I;). Thus, by mterpolatlon, Pr? is continuous from
H=Y2(T;) into H3/*(T;). Since Pr? is unique up to an affine function, ur, € H32(Ty), i € A.

Step 2. Let u denote the solution to problem (2). Then, u € H*().

Proof: It follows from the fact that u € H?’/Z(FZ»), u as a function of the boundary is continuous at the
vertices S; and regularity results for boundary value problems on polygon (see [4], p 58).

Step 3. Let u denote the solution to problem (2). ur, € H*([y),i=1,...,4.

Proof: From u € H*(Q), it follows that for i = 1,...,4, du/dn € Hl/z(Fi). Thus, §*u/dr? € L*(T;). From
standard regularity results, we have ujr, € H2(Ty).
Then, it is easy to check that u is also the solution to the problem stated in Theorem 2.

4. Convergence proof

The proof lies on the energy estimate of Lemma 6. In order to prove it, we shall need two results.
Theorem 4. H™ (]I, L[x]h, H]) "H*(JI, L[x]h, H[) is dense into H*(]l, L[x]h, H[) for m > 4.
Proof: The proof is given in the Annex.

Lemma 5. For all v € H*(]l, L[x]h, H[), we have

[ =S L= o i o
I, L[x]h,H[ 39@2 33/ 1, LIx]h,H[ dxdy r,ur, 0% dzdn r,ur, On dy?
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Proof: By Theorem 4, it suffices to prove the equality for v € H* NH%. The equality is obtained by
integrating by parts first in the @ direction and then in the y direction.

We can now prove

Lemma 6. Let u € H?(Jl, L[x]h, H[) such that

Then, we have the following energy estimate:
I (P Pt Py [0 Pu e ety
// +€((3x2) +(3 7) +2(3x3y))_ (6n+e 267’2) _(_6n+€_2672)
Ju  Ou du  Ou,, du  Ou., du  Ou.,
— | (= L, h L,h — L,H L.H
+2(<6x+6y>< )= G = GV (G = S H) = (5 4+ S )

+((§_z+ gZ) (I, H) - (g—;—g—;)z(l,ff))ﬂ(g—z— g—Z)z(lah)—(gz gz) , h))) 0.

Proof: Equation (1) is multiplied by Ju _ eAw and is integrated over I, L[x]h, H[:
€

2
//_+4|Vu| G(Au)z—/4ug—Z:0

. . 0%u 8%u .
Lemma 5 applied to the integral of the term € — —— yields:
0x? Oy?

IVUI2 Puy  Puy o Pu / du 9%u / du 0%u /4 du
24 T2 1 —9 gu 9t [ 2,9 _
// + ((61‘ ) +(6y2) + (61‘63/) )2 rur, 0 6x6n+ IoUTs “on Oy? Feuﬁn 0

By integrating by parts over I'; U I's, we obtain

|v P (P P O Oud'u 4 Ou
// +€((8x2) +(8y2) +2(8x8y) )+ 26671 arz  <'om
Ou Ou Ou Ou Ou Ou 8u ou
2 [ - — — 2L 2 Lh)) =
+€<8x6y( M= g I+ g g~ g gyt )) 0

The boundary and corner terms can be written as differences of squares:

3u? |Vul|? ?u. ., 0%, O’u ou u  €du, ou u  €du,
[ [ S G G 2 - (Gt - e Gt L )

€ €

¢ ((g“ + g;‘) (L,h) - (g—z - g—Z)Z(L,h) - ((? B g—Z) (L, H)~ (g—z - gZ)z(L’HD

2

HUG Gy P H) = G G0 = (G P = (= o)) =0

We can now prove the :

Theorem 7. Assume u) ;i € HE(Q ;).
Then, the additive Schwarz method (Definition 1) converges in H?.
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Proof: We proceed as in [1]. Equation (1) and the additive Schwarz method are linear so that it suffices to
take f = 0 and to prove the convergence to zero of u;'; as n tends to infinity. Let

2,n
0 uy;

3u? 2 |Vul;|? RTI %l
n o__ 27 27 2,0 \2 0 \2 ¢ 2
B 2[R A Gt ),

n n 2,n
Bn = / (- Ouiy Mg _ €9 Yijya
i Fz,j\aﬂd 371 € 2 67’2
and
€ oul;,  Jul; ou?. Oul.
o= < i, YN b Ll TN (L
i, 1i#0, LitLx, hi#0, Hi# Hy
du? . 8u§f . 6u§fj oul.

»J J\2 lz H. _ %0 \2 lz hi).
The estimate of Lemma 6 and the definition of the algorithm show that we have
En+1 4 Bn+1 4 Cn+1 — Bn _|_Cn

Hence, after summation over n

> EM< B 4+,

and lim,,_,, ¥, = 0.
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Annex

The goal of the annex is to prove

Theorem Al. H™ (], L[x]h, H]) "'H?(JI, L[x]h, H[) is dense into H*(]I, L[x]h, H|) for m > 4.
Proof: The proof is adapted from [4]. We first define

4
v H? — [ H*(Ty) x HY/*(Iy)
i=1
ou
U— (%’(U),%(%)hgigz}

where 7; is the trace operator on I';. We know that Ker(y) = H3(]l, L[x]h, H]). Let

4
0g;
20) = {(an hengica € [ < 0] 050 = i (5, 25 = higa at 5.
=1 '
—%Ehz at Sz’, Z':l’”.’4andgi:0f0riep}
ITip1

We know (see e.g. [4]) that Im(y) C Z*(I'). Conversely, let (g,h) = (gi, hi)1<i<a € Z*(I), there exists
u € {ue H*()l, L[x]h, H])/vi(u) = 0 on T;, i € D} such that v(u) = (g, k). Since v;(u) = g;, we have that
u € H?. Finally, Im(y) = Z*(T'). The vector space Z*(I') is endowed with the norm

= inf .
ol = inf [l

Since Ker(y) = HZ is a closed subspace of the Hilbert space H?, for each a € Z?(T) there exists a unique
u € H? such that ||al|y = ||u||lxz. Let p be a right inverse to v defined as follows

p: 72— H?
ar—u st llally = llulbe
The operator p is by definition a linear continuous operator. It is easy to check that (Z2(T), || |[|,) is a

Hilbert space.
The vector space Z%(T'), endowed with the norm

4
Il = D NlBracryy + 1Bl + 19:(S1) = gin (S0

i=1

+ [0 =) =~ b (5(0). o) o do

bi 0gi41

+
0 6TZ'_|_1

(2:i(0), yi(0)) = hi(zi(—=0), yi(—0))|* /o do,

is also a Hilbert space. We show now that the norms || || and || ||z2 are equivalent. We know (see e.g. [4])
that there exists K > 0 such that Yu € H?, ||y(u)||z2 < K||ully2. Hence, Ya € Z?2, ||a||z2 < K||al],. Since
Z*(T) is a Hilbert space, there exists ¢ > 0 such that

cllally <flallz2 < K

ally.
Thus, H? can be written as a direct sum
W = Hi @ p(Z2°),
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and any continuous linear form { on H? can be represented as
<lLu>=<lyu—p(y(u)) >+ <ly,y(u) >
where ; € H= 2 and I, € 72

Let [ be a linear form on H? that vanishes on H™ NH2, m > 4. We show that { vanishes also on H? and thus
the dense inclusion of H™ NH? in H?. The linear form ! is decomposed as above into {; and l5. The form
[ vanishes on D(]I, L[x]h, H[) C H™ N'H? and therefore we have {; = 0. In other words, < [,u > depends
only on y(u).

In order to prove that the linear form [ vanishes everywhere, it suffices to prove that y(H™ N H?) is dense
into Z2.

We first study y(H™ N'H?). We know that

4
PHT OHY) = {gshidisisa € [LA™ 700 < BT/ 0i(50) = 911 (5))
i=1

09i4+1 :hiatSZ»,a——i—a +1

da:
g hiy1 at S,

— — =0fori=1,...,4and g; =0 for i € D}.
67’2 6TZ'_|_1

67’2' 67'“_1

In order to prove the density, we only have to look at things locally near each corner S; depending on the
kind of the corner. Let (g;, ki, gi41,hiy1) € Z2 near S;.

If we assume ¢ and 7 + 1 belong to A, the functions o — ag’(xi(—a),yi(—a)) — hiy1(zi(0),yi(o)) and

aT;
o — gf;ﬁ(xi(a),yi(a)) + hi(z;(—0),yi(—0c)) belong to f[l/z(R+) near zero. There exist two sequences
(an)nen and (Bn)nen in P(Ry) which converge to gi’ — hi41 and % + h; respectively.

The function g; + g;+1 belongs to H?(R4) near zero. Let (8,)nen € D(R+) converge to g; + gix1 in H2.
The function g; — g;+1 belongs to H? N H}(Ry) near zero. We use the

Lemma A2. The space -
D.={AeDRy)/ A(0) =0 and X'(0) = 0}
is dense in H? N H}(Ry).
Proof: Let n € D, s.t. #'(0) = 1. Let u € H*(Ry). The function u — v/(0)n € HZ(Ry). Let (¢,)neN €
(

D(R, ) be a sequence that converges to u—u'(0)n in H2(Ry ). The sequence (v (0)n+@¢, )nen € D. converges
to uin H*(Ry).

Let (An)nen € D.(Ry) converge to g; — gip1 in H2 N HF(Ry).
We now define an approximating sequence (gf*, b, g7 1, h? 1) of (g, hi, giy1, hiy1) as follows:
97 = (A +6n)/2
giyr = (=An +0n)/2
hi = 8" — (=X, +&,)/2
hivy = —a" 4+ (&, +8,)/2

Let us first check that the sequence belongs to y(H™ NH?) locally near S;. The regularity of the functions
is clear. Moreover, at the corner S; we have:

gzn(Si) - 9?4-1(52') = /\n(O) =0

0¢;
S (S0) = i (Si) = (X, +6,)/2+ an = (N, + 8)/2 = s (0) = 0
0¢;
G (504 hi(S0) = =(=N, o+ 8,)/24 B+ (=X, +8)/2 = 5,(0) =0
T(S) 4 GrER(S) = B = (X4 81)/2 - ol + (N 80)/2 = X(0) = 0



The convergence of (g7, h7?, g% 1, h7y 1) to (g, hi, gig1, hig1) can easily be checked.
If we assume 7 € D and i+ 1 € A, the proof is very similar. It suffices to take § = —A.

If we assume 7 and ¢ + 1 belong to D, the proof can be found in [4].



