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We prove the convergence of a Schwarz additive method for a nonoverlap-ping decomposition into rectangles with interface conditions of order twoin the tangential direction.

1. Introduction
The rate of convergence of Schwarz type algorithms is very sensitive to the choice of the interface conditions.The original Schwarz method is based on the use of Dirichlet boundary conditions. In order to increasethe e�ciency of the algorithm, it has been proposed to replace the Dirichlet boundary conditions by moregeneral boundary conditions, see [8] (or in a di�erent context [5]). Choosing arti�cial boundary conditions asinterface conditions is a good choice. In [10], it is shown that using exact arti�cial boundary conditions leadsin some situations to the convergence of the Schwarz method in a number of steps equals to the numberof subdomains. The use of such interface conditions is then optimal. Unfortunately, the exact arti�cialboundary conditions are non local in space and they have to be approximated at various orders by partialdi�erential operators using techniques developed for arti�cial boundaries, see e.g. [2]. When the interfaceconditions thus obtained do not involve any derivation in the direction tangential to the boundary (loworder approximation), convergence has been proved in [1] for an arbitrary nonoverlapping decomposition ofthe domain. For higher order interface conditions convergence proofs were, to our knowledge, restricted todecompositions of the domain into strips (see [11]). Nevertheless, numerical tests of such interface conditionsfor decomposition into rectangles show their superiority compared to low order interface conditions (see [9]).
In this paper, we prove the convergence of the additive Schwarz method with high order interface conditionsfor a domain decomposed into rectangles. We consider the equation

L(u) � u�2 ��u = f in 
d; u = 0 on @
d (1)
where 
d =]0; LX [�]0; HY [, � > 0. We want to solve (1) by a nonoverlapping additive Schwarz method with
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interface conditions of order 2 with respect to the tangential direction
@@n + 1� � �2 @2@�2

which is the local approximation of order 2 with respect to � of the exact arti�cial boundary condition.The domain 
d is decomposed into rectangles: �
d = [i;j ]li; Li[�]hj ; Hj [ = [i;j
i;j .
The paper is organized as follows: in x 2, we introduce some notations used throughout the paper. In x 3,the algorithm is de�ned and is proved to be well-posed. In x 4, convergence is proved by an energy method.
2. Notations
In dealing with boundary value problems on rectangles with mixed boundary conditions, we shall make aconstant use of some notations (see [4]).Let 
 be the rectangle ]l; L[�]h;H[. We denote

�1 =]l; L[�fhg ; �2 = fLg�]h;H[ ; �3 =]l; L[�fHg ; �4 = flg�]h;H[
and � = [i�i. The segments are thus numbered in such a way that �i+1 (�5 = �1) follows �i according tothe positive orientation.We denote by Si the vertex which is the endpoint of �i:

S1 = (L; h); S2 = (L;H); S3 = (l;H) and S4 = (l; h):

FIGURE 1 - Notation
Furthermore ni (resp. �i) is the unit outward normal (resp. tangent) vector on �i so that (ni; �i) is positivelyoriented.We denote by (xi(�); yi(�)) the point of � which, for small enough j�j is at distance � (counted algebraically)of Si along @
. Consequently (xi(�); yi(�)) 2 �i when � < 0 and (xi(�); yi(�)) 2 �i+1 when � > 0. We saythat two functions �j and �j+1 de�ned on �i and �i+1 respectively are equivalent at Si if

Z �i
0 j�i(xi(��); yi(��))� �i+1(xi(�); yi(�))j2=� d� <1:

for some �i > 0. We shall then write �i � �i+1 at Si:
In considering mixed boundary conditions, it will be convenient to �x a partition of f1; 2; 3; 4g in twosubsets D and A. The union of the �i with i 2 D (resp. A) is going to be the boundary where we considera Dirichlet (resp. arti�cial) boundary conditions. We have either u = 0 on �i if i 2 D or, if i 2 A

@u@ni +
u� � �2 @

2u@�2i = gi
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for some gi 2 L2(�i). Accordingly and concerning corners, we �x, Ac, a subset of f1; 2; 3; 4g so that cornerconditions are written on Si, i 2 Ac. The set Ac is such that [i2AcfSig is the set of vertices which do nottouch an edge �i with i 2 D. We de�ne for m = 1 or 2
Hm(
) = fu 2 Hm(
)= uj�i 2 Hm(�i) for i 2 A and uj�i = 0 for i 2 Dg

which, endowed with its natural norm kukHm = qkuk2Hm +Pi2A kuj�ik2Hm(�i) and the associated scalar
product, is a Hilbert space.
3. De�nition of the algorithm
The Schwarz algorithm is de�ned by:De�nition 1. Let uni;j be an approximation to u at step n in the interior subdomain 
i;j , un+1i;j is de�nedby:

L(un+1i;j ) = f in 
i;j
( @@n + 1� � �2 @2@�2 )(un+1i;j ) = ( @@n + 1� � �2 @2@�2 )(uni+1;j) on �i;j;2
( @@n + 1� � �2 @2@�2 )(un+1i;j ) = ( @@n + 1� � �2 @2@�2 )(uni�1;j) on �i;j;4
( @@n + 1� � �2 @2@�2 )(un+1i;j ) = ( @@n + 1� � �2 @2@�2 )(uni;j+1) on �i;j;3
( @@n + 1� � �2 @2@�2 )(un+1i;j ) = ( @@n + 1� � �2 @2@�2 )(uni;j�1) on �i;j;1
( @@x � @@y )(un+1i;j ) = ( @@x � @@y )(uni+1;j) at (x; y) = (Li; hj)
( @@x + @@y )(un+1i;j ) = ( @@x + @@y )(uni+1;j) at (x; y) = (Li; Hj)

(� @@x + @@y )(un+1i;j ) = (� @@x + @@y )(uni�1;j) at (x; y) = (li; Hj)
(� @@x � @@y )(un+1i;j ) = (� @@x � @@y )(uni�1;j) at (x; y) = (li; hj):

For the other subdomains, the de�nition is similar except on @
d \ @
i;j where un+1i;j = 0.
The following theorem shows that the algorithm is well posed in Qi;j H2(
i;j)
Theorem 2. Let l < L; h < H 2 R, 
 =]l; L[�]h;H[, f 2 L2(
), gi 2 L2(�i) for i 2 A and hi 2 R; i 2 Ac.There exists a unique u 2 H2(
) satisfying:

L(u) = f in 

( @@n + 1� � �2 @2@�2 )(u) = gi on �i; i 2 A
(@�i �

@�i+1 )(u) = hi at Si; i 2 Ac:

Proof: We �rst consider the variational formulation in H1(
) of the above boundary value problem:
Find u 2 H1(
) such that:
Z Z
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The term v(Si) makes sense. Indeed, v is a continuous function on each edge since vj�i 2 H1(�i); i = 1; : : : ; 4.Moreover, since v 2 H1(
) we have near Si (i = 1; : : : ; 4) that
Z �
0 jvi(xi(��); yi(��))� vi+1(xi(�); yi(�))j2=� d� <1

for some � > 0 (see e.g. [4]). Thus, v as a function of the boundary of 
 is continuous at Si and (2) is wellde�ned.
Lemma 3. Problem (2) is well posed.
Proof: The result follows from an easy application of the Lax-Milgram theorem in the Hilbert space H1(
).
It remains to prove the H2(
)-regularity. Our proof follows that of [6] where the case hi = 0 was considered.We use interpolation results of [7] and regularity results for elliptic problems on nonsmooth domains of [4].We will proceed in three steps.
Step 1. Let u denote the solution to problem (2). On each edge �i, i = 1; : : : ; 4, uj�i 2 H3=2(�i).Proof: For i 2 D, the statement is obvious since uj�i = 0.Otherwise, in the sense of distributions, we have

u�2 ��u = f in 
:
Since �u 2 L2(
) and u 2 H1(
), we have (see [4]) that @u@n 2 ~H�1=2(�i), i = 1; : : : ; 4 where ~H�1=2(]s; t[) isthe dual of ~H1=2(]s; t[) = fu 2 H1=20 (]s; t[) s.t. u(y)=p(t� y)(y � s) 2 L2(]s; t[)g:
Hence in the sense of distributions

@u@n + u� � �2 @
2u@�2i = gi on �i; i = 1 2 A:

and @2u=@�2i 2 ~H�1=2(�i), i 2 A. Let Pr2 denote a right inverse to @2u@�2i . The operator Pr2 is continuous
from H�1(�i) into H1(�i) and from L2(�i) into H2(�i). Thus, by interpolation, Pr2 is continuous from~H�1=2(�i) into H3=2(�i). Since Pr2 is unique up to an a�ne function, uj�i 2 H3=2(�i), i 2 A.
Step 2. Let u denote the solution to problem (2). Then, u 2 H2(
).
Proof: It follows from the fact that u 2 H3=2(�i), u as a function of the boundary is continuous at thevertices Si and regularity results for boundary value problems on polygon (see [4], p 58).
Step 3. Let u denote the solution to problem (2). uj�i 2 H2(�i), i = 1; : : : ; 4.
Proof: From u 2 H2(
), it follows that for i = 1; : : : ; 4, @u=@n 2 H1=2(�i). Thus, @2u=@�2i 2 L2(�i). Fromstandard regularity results, we have uj�i 2 H2(�i).Then, it is easy to check that u is also the solution to the problem stated in Theorem 2.
4. Convergence proof
The proof lies on the energy estimate of Lemma 6. In order to prove it, we shall need two results.
Theorem 4. Hm(]l; L[�]h;H[) \H2(]l; L[�]h;H[) is dense into H2(]l; L[�]h;H[) for m � 4.
Proof: The proof is given in the Annex.
Lemma 5. For all v 2 H2(]l; L[�]h;H[), we have

Z Z
]l;L[�]h;H[

@2v@x2 @
2v@y2 = Z Z]l;L[�]h;H[(

@2v@x@y )2 �
Z
�1[�3

@v@x @2v@x@n + Z�2[�4
@v@n @2v@y2
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Proof: By Theorem 4, it su�ces to prove the equality for v 2 H4 \ H2. The equality is obtained byintegrating by parts �rst in the x direction and then in the y direction.
We can now prove
Lemma 6. Let u 2 H2(]l; L[�]h;H[) such that

u�2 ��u = 0:
Then, we have the following energy estimate:
Z Z 3u2�3 + 4 jruj2� + �((@2u@x2 )2 + (@2u@y2 )2 + 2( @2u@x@y )2)�

Z
�(
@u@n + u� � �2 @

2u@�2 )2 � (�@u@n + u� � �2 @
2u@�2 )2

+ �2
�(@u@x + @u@y )2(L; h)� (@u@x � @u@y )2(L; h) + ((@u@x � @u@y )2(L;H)� (@u@x + @u@y )2(L;H))

+((@u@x + @u@y )2(l;H)� (@u@x � @u@y )2(l;H)) + ((@u@x � @u@y )2(l; h)� (@u@x + @u@y )2(l; h))
� = 0:

Proof: Equation (1) is multiplied by 3u� � ��u and is integrated over ]l; L[�]h;H[:
Z Z 3u2�3 + 4 jruj2� + �(�u)2 � Z 4� u@u@n = 0

Lemma 5 applied to the integral of the term � @2u@x2 @
2u@y2 yields:

Z Z 3u2�3 +4 jruj2� +�((@2u@x2 )2+(@2u@y2 )2+2( @2u@x@y )2)�2� Z�1[�3
@u@x @2u@x@n+

Z
�2[�4 2�

@u@n @2u@y2 �
Z
�
4� u@u@n = 0

By integrating by parts over �1 [ �3, we obtain
Z Z 3u2�3 + 4 jruj2� + �((@2u@x2 )2 + (@2u@y2 )2 + 2( @2u@x@y )2) +

Z
� 2�

@u@n @2u@�2 � 4� u@u@n
+2��@u@x @u@y (L; h)� @u@x @u@y (L;H) + @u@x @u@y (l;H)� @u@x @u@y (l; h)

� = 0
The boundary and corner terms can be written as di�erences of squares:
Z Z 3u2�3 + 4 jruj2� + �((@2u@x2 )2 + (@2u@y2 )2 + 2( @2u@x@y )2)�

Z
�(
@u@n + u� � �2 @

2u@�2 )2 � (�@u@n + u� � �2 @
2u@�2 )2

+ �2
�(@u@x + @u@y )2(L; h)� (@u@x � @u@y )2(L; h)� ((@u@x + @u@y )2(L;H)� (@u@x � @u@y )2(L;H))

+((@u@x + @u@y )2(l;H)� (@u@x � @u@y )2(l;H))� ((@u@x + @u@y )2(l; h)� (@u@x � @u@y )2(l; h))
� = 0

We can now prove the :
Theorem 7. Assume u0i;j 2 H2(
i;j).Then, the additive Schwarz method (De�nition 1) converges in H2.
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Proof: We proceed as in [1]. Equation (1) and the additive Schwarz method are linear so that it su�ces totake f = 0 and to prove the convergence to zero of uni;j as n tends to in�nity. Let
En =Xi;j

Z Z 3uni;j2�3 + 4 jruni;j j2� + �((@2uni;j@x2 )2 + (@2uni;j@y2 )2 + 2(@2uni;j@x@y )2) ;

Bn =Xi;j
Z
�i;jn@
d(�

@uni;j@n + uni;j� � �2
@2uni;j@�2 )2

and
Cn = �2

X
i;j;li 6=0; Li 6=LX ; hi 6=0; Hi 6=HY (

@uni;j@x + @uni;j@y )2(Li; hj) + (@uni;j@x � @uni;j@y )2(Li; Hj)
+(@uni;j@x + @uni;j@y )2(li; Hj) + (@uni;j@x � @uni;j@y )2(li; hj):

The estimate of Lemma 6 and the de�nition of the algorithm show that we have
En+1 +Bn+1 + Cn+1 = Bn + Cn:

Hence, after summation over n X
n En � B0 + C0;

and limn!1En = 0.
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Annex
The goal of the annex is to prove
Theorem A1. Hm(]l; L[�]h;H[) \H2(]l; L[�]h;H[) is dense into H2(]l; L[�]h;H[) for m � 4.
Proof: The proof is adapted from [4]. We �rst de�ne


 : H2 �! 4Y
i=1H

2(�i)�H1=2(�i)
u 7�! (
i(u); 
i( @u@ni ))1�i�4

where 
i is the trace operator on �i. We know that Ker(
) = H20 (]l; L[�]h;H[). Let
Z2(�) = f(gi; hi)1�i�4 2 4Y

i=1H
2(�i)�H1=2(�i)= gi(Si) = gi+1(Si); @gi@�i � hi+1 at Si;

�@gi+1@�i+1 � hi at Si; i = 1; : : : ; 4 and gi = 0 for i 2 Dg
We know (see e.g. [4]) that Im(
) � Z2(�). Conversely, let (g; h) = (gi; hi)1�i�4 2 Z2(�), there existsu 2 fu 2 H2(]l; L[�]h;H[)=
i(u) = 0 on �i; i 2 Dg such that 
(u) = (g; h). Since 
i(u) = gi, we have thatu 2 H2. Finally, Im(
) = Z2(�). The vector space Z2(�) is endowed with the norm

kak
 = infu2H2= 
(u)=a kukH2 :
Since Ker(
) = H20 is a closed subspace of the Hilbert space H2, for each a 2 Z2(�) there exists a uniqueu 2 H2 such that kak
 = kukH2 . Let � be a right inverse to 
 de�ned as follows

� : Z2 �! H2
a 7�! u s.t. kak
 = kukH2

The operator � is by de�nition a linear continuous operator. It is easy to check that (Z2(�); k k
) is aHilbert space.The vector space Z2(�), endowed with the norm
k(g; h)k2Z2 = 4X

i=1 kgik
2H2(�i) + khik2H1=2(�i) + jgi(Si)� gi+1(Si)j2

+Z �i
0 j@gi@�i (xi(��); yi(��))� hi+1(xi(�); yi(�))j2=� d�

+Z �i
0 j@gi+1@�i+1 (xi(�); yi(�))� hi(xi(��); yi(��))j2=� d�;

is also a Hilbert space. We show now that the norms k k
 and k kZ2 are equivalent. We know (see e.g. [4])that there exists K > 0 such that 8u 2 H2; k
(u)kZ2 � KkukH2 . Hence, 8a 2 Z2; kakZ2 � Kkak
 . SinceZ2(�) is a Hilbert space, there exists c > 0 such that
ckak
 � kakZ2 � Kkak
 :

Thus, H2 can be written as a direct sum
H2 = H20 � �(Z2);
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and any continuous linear form l on H2 can be represented as
< l; u >=< l1; u� �(
(u)) > + < l2; 
(u) >

where l1 2 H�2 and l2 2 Z20.
Let l be a linear form on H2 that vanishes on Hm\H2, m � 4. We show that l vanishes also on H2 and thusthe dense inclusion of Hm \ H2 in H2. The linear form l is decomposed as above into l1 and l2. The forml vanishes on D(]l; L[�]h;H[) � Hm \ H2 and therefore we have l1 = 0. In other words, < l; u > dependsonly on 
(u).In order to prove that the linear form l vanishes everywhere, it su�ces to prove that 
(Hm \ H2) is denseinto Z2.We �rst study 
(Hm \H2). We know that


(Hm \H2) = f(gi; hi)1�i�4 2 4Y
i=1H

m�1=2(�i)�Hm�3=2(�i)= gi(Si) = gi+1(Si);
@gi@�i = hi+1 at Si; �@gi+1@�i+1 = hi at Si; @hi@�i +

@hi+1@�i+1 = 0 for i = 1; : : : ; 4 and gi = 0 for i 2 Dg:
In order to prove the density, we only have to look at things locally near each corner Si depending on thekind of the corner. Let (gi; hi; gi+1; hi+1) 2 Z2 near Si.
If we assume i and i + 1 belong to A, the functions � 7! @gi@�i (xi(��); yi(��)) � hi+1(xi(�); yi(�)) and� 7! @gi+1@�i+1 (xi(�); yi(�)) + hi(xi(��); yi(��)) belong to ~H1=2(R+) near zero. There exist two sequences
(�n)n2N and (�n)n2N in D(R+) which converge to @gi@�i � hi+1 and @gi+1@�i+1 + hi respectively.The function gi + gi+1 belongs to H2(R+) near zero. Let (�n)n2N 2 D( �R+) converge to gi + gi+1 in H2.The function gi � gi+1 belongs to H2 \H10 (R+) near zero. We use the
Lemma A2. The space Dc = f� 2 D( �R+)= �(0) = 0 and �00(0) = 0g
is dense in H2 \H10 (R+).Proof: Let � 2 Dc s.t. �0(0) = 1. Let u 2 H2(R+). The function u � u0(0)� 2 H20 (R+). Let (�n)n2N 2D(R+) be a sequence that converges to u�u0(0)� in H20 (R+). The sequence (u0(0)�+�n)n2N 2 Dc convergesto u in H2(R+).
Let (�n)n2N 2 Dc( �R+) converge to gi � gi+1 in H2 \H10 (R+).We now de�ne an approximating sequence (gni ; hni ; gni+1; hni+1) of (gi; hi; gi+1; hi+1) as follows:

gni = (�n + �n)=2gni+1 = (��n + �n)=2hni = �n � (��0n + �0n)=2hni+1 = ��n + (�0n + �0n)=2
Let us �rst check that the sequence belongs to 
(Hm \H2) locally near Si. The regularity of the functionsis clear. Moreover, at the corner Si we have:

gni (Si)� gni+1(Si) = �n(0) = 0@gi@�i (Si)� hi+1(Si) = (�0n + �0n)=2 + �n � (�0n + �0n)=2 = �n(0) = 0
@gi+1@�i+1 (Si) + hi(Si) = �(��0n + �0n)=2 + �n + (��0n + �0n)=2 = �n(0) = 0

@hi@�i (Si) +
@hi+1@�i+1 (Si) = �0n � (��00n + �00n)=2� �0n + (�00n + �00n)=2 = �00n(0) = 0:
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The convergence of (gni ; hni ; gni+1; hni+1) to (gi; hi; gi+1; hi+1) can easily be checked.
If we assume i 2 D and i+ 1 2 A, the proof is very similar. It su�ces to take � = ��.
If we assume i and i+ 1 belong to D, the proof can be found in [4].
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