Méthode TRAC: retournement temporel avec condition aux limites absorbante.
 Recréer le passé et application aux problèmes inverses en ouverture partielle

Franck Assous ${ }^{\dagger}$, Marie Kray* and Frédéric Nataf ${ }^{\ddagger}$
${ }^{\dagger}$ Ariel University Center \& Bar-Ilan University, Israel
*Mathematisches Institut der Universität Basel (Unibas), Switzerland
\ddagger LJLL, Université Pierre-et-Marie Curie (Paris 6), France

> Séminaire LATP, 5 Mars 2013

Contents

(1) Context and motivation

- Forward Problem
- Classical Time Reversal
(2) What is the TRAC method?
- Time Reversed Absorbing Conditions (TRAC)
- Stability Estimate
- Illustration and application of the TRAC method
- TRAC in the frequency domain
(3) Application to inverse problems: objects discrimination
- Criterion of objet discrimination in full aperture
- Criterion of objet discrimination in partial aperture
- Discrimination between one and two inclusions in partial aperture
(4) Conclusion \& Prospects

Outline

(1) Context and motivation

- Forward Problem
- Classical Time Reversal
(2) What is the TRAC method?
- Time Reversed Absorbing Conditions (TRAC)
- Stability Estimate
- Illustration and application of the TRAC method
- TRAC in the frequency domain
(3) Application to inverse problems: objects discrimination
- Criterion of objet discrimination in full aperture
- Criterion of objet discrimination in partial aperture
- Discrimination between one and two inclusions in partial aperture

4 Conclusion \& Prospects

Outline

(1) Context and motivation

- Forward Problem
- Classical Time Reversal
(2) What is the TRAC method?
- Time Reversed Absorbing Conditions (TRAC)
- Stability Estimate
- Illustration and application of the TRAC method
- TRAC in the frequency domain
(3) Application to inverse problems: objects discrimination
- Criterion of objet discrimination in full aperture
- Criterion of objet discrimination in partial aperture
- Discrimination between one and two inclusions in partial aperture
(4) Conclusion \& Prospects

Forward problem

\mathcal{L} is a hyperbolic equation: Maxwell, elasticity, wave equation, ... An impinging wave U^{\prime} illuminates an unknwon inclusion D.

The total field U^{\top} satisfies:
$\left\{\begin{array}{l}\mathcal{L}\left(U^{T}\right)=0 \text { in } \mathbb{R}^{d} \\ \text { Radiation condition at infinity } \\ \text { Homogeneous Initial Conditions }\end{array}\right.$

The scattered field $U^{S}:=U^{T}-U^{\prime}$ is recorded from $t=0$ to $t=T_{f}$ on a Source-Receiver Array (SRA) located on a surface Γ_{R} that encloses a domain Ω.

Goal: Reconstruct the scattered field from the recorded data on Γ_{R}.

Simulation of a wave impinging on a fish at $\mathbf{t}=\mathbf{- 0 . 7 4}$

Numerical simulations were made using Freefem++ (F. Hecht).

Outline

(1) Context and motivation

- Forward Problem
- Classical Time Reversal
(2) What is the TRAC method?
- Time Reversed Absorbing Conditions (TRAC)
- Stability Estimate
- Illustration and application of the TRAC method
- TRAC in the frequency domain
(3) Application to inverse problems: objects discrimination
- Criterion of objet discrimination in full aperture
- Criterion of objet discrimination in partial aperture
- Discrimination between one and two inclusions in partial aperture
(4) Conclusion \& Prospects

Recreate the past from the SRA

Aim: From the recording on Γ_{R}, reconstruct the scattered field $U^{S}(t, x)$.

Problem: Inclusion D is unknown and thus \mathcal{L} is known only in the surrounding medium $\Omega \backslash D$ where it is assumed to be homogeneous.

Three options:

- Find the properties of D by solving an inverse problem
- Time Reversal techniques
- Classical Time Reversal (Larmat, Montagner, Fink, Capdeville, Tourin and Clévédé, 2006)
- our idea: Time Reversed Absorbing Conditions (TRAC)

Recreate the past from the SRA

Based on Time reversibility of hyperbolic equations.
Example: the wave equation

$$
\mathcal{L}(U)=0 \longrightarrow \rho u_{t t}-\operatorname{div}(\mu \nabla u)=0
$$

If $u(t, x)$ is a solution, $u(-t, x)$ is a solution as well since:

$$
\frac{\partial^{2} u(t, x)}{\partial t^{2}}=\frac{\partial^{2} u(-t, x)}{\partial t^{2}}
$$

TR approach: Find a BVP whose solution is the time reversed scattered field $U_{R}^{S}(t, \cdot):=U^{S}\left(T_{f}-t, \cdot\right)$. Thus, U_{R}^{S} satisfies:

$$
\left\{\begin{array}{l}
\mathcal{L}_{0}\left(U_{R}^{S}\right)=0 \text { in }\left(0, T_{f}\right) \times \Omega \backslash D \\
U_{R}^{S}(t, \cdot)=U^{S}\left(T_{f}-t, \cdot\right) \text { on }\left(0, T_{f}\right) \times \partial \Omega
\end{array}\right.
$$

Problem: No boundary condition on ∂D.
This boundary value problem is underdetermined.

Classical Time Reversal

Ignore there is an inclusion and solve in whole domain Ω

$$
\begin{aligned}
& \mathcal{L}_{0}\left(W_{R}^{S}\right)=0 \text { in }\left(0, T_{f}\right) \times \Omega \\
& W_{R}^{S}(t, \cdot)=U^{S}\left(T_{f}-t, \cdot\right) \text { on }\left(0, T_{f}\right) \times \partial \Omega
\end{aligned}
$$

This classical time-reversed solution W_{R}^{S} differs from U_{R}^{S}.

Classical Time Reversal

"Oracle" vs. classical time reversal technique: $\mathbf{t}=\mathbf{1 . 3 2}$

$$
K<\Delta \Delta \gg \mid-\cdots+
$$

Left: "Oracle" time reversal, Right: Classical time reversal (20% noise)
"Oracle" means the desired time reverse scattered field. Next

A closer look at Classical Time Reversal

Diverging only

Diverging waves

Figure : Forward problem

Converging only

Both converging and diverging waves interfere

Diverging only

Figure : Problem in the numerical TR: diffraction limit - focal spot of size $\lambda / 2$

Outline

(1) Context and motivation

- Forward Problem
- Classical Time Reversal
(2) What is the TRAC method?
- Time Reversed Absorbing Conditions (TRAC)
- Stability Estimate
- Illustration and application of the TRAC method
- TRAC in the frequency domain
(3) Application to inverse problems: objects discrimination
- Criterion of objet discrimination in full aperture
- Criterion of objet discrimination in partial aperture
- Discrimination between one and two inclusions in partial aperture
(4) Conclusion \& Prospects

Outline

(1) Context and motivation

- Forward Problem
- Classical Time Reversal
(2) What is the TRAC method?
- Time Reversed Absorbing Conditions (TRAC)
- Stability Estimate
- Illustration and application of the TRAC method
- TRAC in the frequency domain
(3) Application to inverse problems: objects discrimination
- Criterion of objet discrimination in full aperture
- Criterion of objet discrimination in partial aperture
- Discrimination between one and two inclusions in partial aperture
(4) Conclusion \& Prospects

Recreate the past

TRAC method

TRAC combines time reversal techniques (Fink, Montagner et al.) and absorbing boundary conditions (Engquist \& Majda, Bayliss \& Turkel)

TRAC works without knowing about the "scatterers"

- the shape or/and
- the location or/and
- the boundary conditions it satisfies.

Perfect Numeric Time Reversal

Converging only

No interference
\Rightarrow No diffraction limit

Recall, U_{R}^{S} satisfies :

$$
\begin{aligned}
\mathcal{L}_{0}\left(U_{R}^{S}\right) & =0 \text { in }\left(0, T_{f}\right) \times \Omega \backslash D \\
U_{R}^{S}(t, \cdot) & =U^{S}\left(T_{f}-t, \cdot\right) \text { on }\left(0, T_{f}\right) \times \partial \Omega
\end{aligned}
$$

In order to remove the underdetermination, we introduce an artificial domain B enclosing D and solve the reversed problem in $\Omega \backslash B$.

Which boundary condition on the artificial boundary ∂B ?

Note that the forward scattered field U^{S} satisfies

$$
\left\{\begin{array}{l}
\mathcal{L}_{0}\left(U^{S}\right)=0 \text { in } \mathbb{R}^{d} \backslash D \\
U^{S} \text { satisfies a radiation condition at } \infty
\end{array}\right.
$$

Let ABC denote an absorbing boundary condition, we have:

$$
\mathrm{ABC}\left(U^{S}\right)=0 \text { on } \partial B
$$

We time reverse it :

$$
\operatorname{TRAC}\left(U_{R}^{S}\right)=0 \text { on } \partial B
$$

$\operatorname{TRAC}\left(U_{R}^{S}\right)=0$ is the missing boundary condition on ∂B.

The time reversed solution U_{R}^{S} satisfies the following BVP in a restricted domain :

$$
\begin{align*}
\mathcal{L}_{0}\left(U_{R}^{S}\right) & =0 \text { in }\left(0, T_{f}\right) \times \Omega \backslash B \\
U_{R}^{S}(t, \cdot) & =U^{S}\left(T_{f}-t, \cdot\right) \text { on } \Gamma_{R} \tag{1}\\
\operatorname{TRAC}\left(U_{R}^{S}\right) & =0 \text { on } \partial B .
\end{align*}
$$

By solving (1), we are able to recreate the past, namely reconstruct U^{S} in domain $\Omega \backslash B$.

Recreate the past via TRAC

Example: the wave equation

$$
\mathcal{L}(U) \longrightarrow \rho u_{t t}-\operatorname{div}(\mu \nabla u)
$$

The TRAC problem reads

$$
\begin{cases}\rho_{0} \frac{\partial^{2} u_{R}^{S}}{\partial t^{2}}-\operatorname{div}\left(\mu_{0} \nabla u_{R}^{S}\right)=0 & \text { in } \Omega \backslash B \tag{2}\\ u_{R}^{S}(t, \cdot)=u^{S}\left(T_{f}-t, \cdot\right) & \text { on } \Gamma_{R} \\ \operatorname{TRAC}\left(u_{R}^{S}\right):=\frac{\partial u_{R}^{S}}{\partial t}+c_{0} \frac{\partial u_{R}^{S}}{\partial n}-c_{0} \kappa \frac{u_{R}^{S}}{2}=0 & \text { on } \partial B \\ \text { zero Cauchy Data } & \end{cases}
$$

where $c_{0}=\sqrt{\mu_{0} / \rho_{0}}$ and κ is the curvature of ∂B.
By solving (2), we are able to recreate the past, namely reconstruct u^{S} in domain $\Omega \backslash B$.

The outward normal to B is denoted by n_{F} whereas the outward normal to $\Omega \backslash B$ is denoted by n.

We assume that the forward scattered field, u^{S} satisfies BT1

$$
\frac{\partial}{\partial t}\left(u^{S}(t, x)\right)+c_{0} \frac{\partial}{\partial n_{F}}\left(u^{S}(t, x)\right)+\kappa \frac{c_{0}}{2}\left(u^{S}(t, x)\right)=0
$$

The outward normal to B is denoted by n_{F} whereas the outward normal to $\Omega \backslash B$ is denoted by n.

We assume that the forward scattered field, u^{S} satisfies BT1

$$
\frac{\partial}{\partial t}\left(u^{S}(t, x)\right)+c_{0} \frac{\partial}{\partial n_{F}}\left(u^{S}(t, x)\right)+\kappa \frac{c_{0}}{2}\left(u^{S}(t, x)\right)=0
$$

$u \operatorname{sing} u_{R}^{S}(t, x):=u^{S}\left(T_{f}-t, x\right)$

$$
-\frac{\partial}{\partial t}\left(u_{R}^{S}(t, x)\right)+c_{0} \frac{\partial}{\partial n_{F}}\left(u_{R}^{S}(t, x)\right)+\kappa \frac{c_{0}}{2}\left(u_{R}^{S}(t, x)\right)=0
$$

The outward normal to B is denoted by n_{F} whereas the outward normal to $\Omega \backslash B$ is denoted by n.

We assume that the forward scattered field, u^{S} satisfies BT1

$$
\frac{\partial}{\partial t}\left(u^{S}(t, x)\right)+c_{0} \frac{\partial}{\partial n_{F}}\left(u^{S}(t, x)\right)+\kappa \frac{c_{0}}{2}\left(u^{S}(t, x)\right)=0
$$

$u \operatorname{sing} u_{R}^{S}(t, x):=u^{S}\left(T_{f}-t, x\right)$

$$
-\frac{\partial}{\partial t}\left(u_{R}^{S}(t, x)\right)+c_{0} \frac{\partial}{\partial n_{F}}\left(u_{R}^{S}(t, x)\right)+\kappa \frac{c_{0}}{2}\left(u_{R}^{S}(t, x)\right)=0
$$

since $\partial / \partial n_{F}=-\partial / \partial n$

$$
\frac{\partial}{\partial t}\left(u_{R}^{S}(t, x)\right)+c_{0} \frac{\partial}{\partial n}\left(u_{R}^{S}(t, x)\right)-\kappa \frac{c_{0}}{2}\left(u_{R}^{S}(t, x)\right)=0
$$

Outline

(1) Context and motivation

- Forward Problem
- Classical Time Reversal
(2) What is the TRAC method?
- Time Reversed Absorbing Conditions (TRAC)
- Stability Estimate
- Illustration and application of the TRAC method
- TRAC in the frequency domain
(3) Application to inverse problems: objects discrimination
- Criterion of objet discrimination in full aperture
- Criterion of objet discrimination in partial aperture
- Discrimination between one and two inclusions in partial aperture
(4) Conclusion \& Prospects

Stability Estimate

The TRAC boundary condition differs from BT1 by the minus sign and well posedness might be an issue.

Let $B \in \mathbb{R}^{3}$ be a ball of radius r_{0} and let u satisfy the following equations:

$$
\begin{cases}\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \Delta u=0 & \text { in } \Omega \backslash B \tag{3}\\ u=0 & \text { on } \Gamma_{R} \\ \frac{\partial u}{\partial t}+c\left(\frac{\partial u}{\partial n}-\frac{u}{r}\right)=g & \text { on } \partial B\end{cases}
$$

with $u=u_{0}$ and $\frac{\partial u}{\partial t}=u_{1}$ at $t=0$.

Stability Estimate

Proposition

If Ω is a ball of radius R, we have the following stability estimate written for the BVP (3) in spherical coordinates :

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t}\left(\iiint r^{2} \sin \phi\left(\frac{\partial u}{\partial t}\right)^{2}+c^{2} \sin \phi\left(\frac{\partial(r u)}{\partial r}\right)^{2}+c^{2} \sin \phi\left(\frac{\partial u}{\partial \phi}\right)^{2}+\frac{c^{2}}{\sin \phi}\left(\frac{\partial u}{\partial \theta}\right)^{2}\right) \\
+\iint_{r=r_{0}} c r^{2} \sin \phi\left(\frac{\partial u}{\partial t}\right)^{2}=\iint_{r=r_{0}} c r^{2} \sin \phi \frac{\partial u}{\partial t} g
\end{gathered}
$$

This stability estimate is not the standard energy estimate.

Proof: see Time Reversed Absorbing Conditions, Assous, Kray, Nataf, Turkel, Comptes Rendus Mathématiques, Serie I (2010)

Outline

(1) Context and motivation

- Forward Problem
- Classical Time Reversal
(2) What is the TRAC method?
- Time Reversed Absorbing Conditions (TRAC)
- Stability Estimate
- Illustration and application of the TRAC method
- TRAC in the frequency domain
(3) Application to inverse problems: objects discrimination
- Criterion of objet discrimination in full aperture
- Criterion of objet discrimination in partial aperture
- Discrimination between one and two inclusions in partial aperture
(4) Conclusion \& Prospects

Time reversal with TRAC (20\% noise)

Time Reversal with TRAC recreates the past: $\mathbf{t}=\mathbf{1 . 3 2}$

Trial domain enclosing the fish \Rightarrow Perfect time reversal

Left: B encloses the inclusion D; TRAC recreates the past Right: B does not enclose D; past is not correctly recreated Next

TRAC has at least two applications in inverse problems:
(1) The first application is the reduction of the size of the computational domain by redefining the reference surface on which the receivers appear to be located. This is reminiscent of the redatuming method, see Berryhill, 1979.
(2) The second application is to identify an unknown inclusion D from boundary measurements. This is achieved by using a trial and error procedure on the trial domain B.

Signal reconstruction with TRAC

u_{R}^{T} time-reversed total field (exact) v_{R}^{T} TRAC reconstruction relative L^{2}-error :

$$
E\left(v_{R}\right)=\frac{\left\|u_{R}^{T}-v_{R}^{T}\right\|_{L^{2}(\tilde{\Omega} \backslash B)}}{\left\|u_{R}^{T}\right\|_{L^{2}(\tilde{\Omega} \backslash B)}}
$$

$\Gamma_{R}:=S R A \because \ddots$.
(D)

Noise/Test	1	2	3	4	5	6	Mean value
0%	6.28%	3.14%	1.93%	3.92%	7.37%	5.18%	4.64%
5%	6.39%	3.37%	2.31%	4.15%	7.50%	5.31%	4.84%
10%	6.72%	4.03%	3.21%	4.68%	7.84%	5.78%	5.38%
20%	8.04%	5.98%	5.32%	6.28%	8.87%	7.21%	6.95%
Mean value	6.86%	4.13%	3.19%	4.76%	7.90%	5.87%	5.45%

Remark : penetrable inclusions such as $c_{D}=3$ and $c_{0}=1$.

Outline

(1) Context and motivation

- Forward Problem
- Classical Time Reversal
(2) What is the TRAC method?
- Time Reversed Absorbing Conditions (TRAC)
- Stability Estimate
- Illustration and application of the TRAC method
- TRAC in the frequency domain
(3) Application to inverse problems: objects discrimination
- Criterion of objet discrimination in full aperture
- Criterion of objet discrimination in partial aperture
- Discrimination between one and two inclusions in partial aperture
(4) Conclusion \& Prospects

Helmholtz equation - Phase conjuguation

Example : Helmholtz equation

$$
\mathcal{L}(U) \longrightarrow-\omega^{2} \hat{u}-c^{2} \Delta \hat{u}
$$

Time Reversal amounts then to phase conjugation, see SAR.

$$
\begin{aligned}
\hat{v}_{R}(\omega, \vec{x}) & =\int v(-t, \vec{x}) e^{-i \omega t} d t=\int v(t, \vec{x}) e^{i \omega t} d t \\
& =\int v(t, \vec{x}) e^{-i \omega t} d t=\overline{\hat{v}}(\omega, \vec{x}) .
\end{aligned}
$$

TRAC Helmholtz problem :

$$
\begin{cases}-\omega^{2} \hat{u}_{R}-c^{2} \Delta \hat{u}_{R}=0 & \text { in } \Omega \backslash B \\ i \omega \hat{u}_{R}+c \frac{\partial \hat{u}_{R}}{\partial n}-\kappa \frac{c \hat{u}_{R}}{2}=0 & \text { on } \partial B \\ \hat{u}_{R}=\overline{\hat{u}} & \text { on } \Gamma_{R}\end{cases}
$$

TRAC in the frequency domain

Figure : Soft square shaped inclusion D; of length 2λ. From left to right, from top to bottom : oracle, classical phase conjugation, TRAC with B enclosing the inclusion, TRAC with B inside the inclusion.

Outline

(1) Context and motivation

- Forward Problem
- Classical Time Reversal
(2) What is the TRAC method?
- Time Reversed Absorbing Conditions (TRAC)
- Stability Estimate
- Illustration and application of the TRAC method
- TRAC in the frequency domain
(3) Application to inverse problems: objects discrimination
- Criterion of objet discrimination in full aperture
- Criterion of objet discrimination in partial aperture
- Discrimination between one and two inclusions in partial aperture

4 Conclusion \& Prospects

Inverse problem via TRAC

Principle to identify the inclusion:

- If B encloses the object D, the solution u_{R}^{S} to the time reversed BVP coincides with the time reversed of the "forward" solution u^{S} ("oracle").
- Conversely, if there is a difference between u_{R}^{S} and the reverse of the "forward" solution u^{S}, we know that domain B does not contain the inclusion.

Outline

(1) Context and motivation

- Forward Problem
- Classical Time Reversal
(2) What is the TRAC method?
- Time Reversed Absorbing Conditions (TRAC)
- Stability Estimate
- Illustration and application of the TRAC method
- TRAC in the frequency domain
(3) Application to inverse problems: objects discrimination
- Criterion of objet discrimination in full aperture
- Criterion of objet discrimination in partial aperture
- Discrimination between one and two inclusions in partial aperture
(4) Conclusion \& Prospects

Time Reversal with TRAC recreates the past: $\mathbf{t}=\mathbf{- 0 . 7 2}$

Criterion of objet discrimination

In full aperture : final time criterion

$$
J_{F T}(B):=\frac{\left\|v_{R}^{S}\left(T_{f}, \cdot\right)\right\|_{L \infty}(\Omega \backslash B)}{\sup _{t \in\left[0, T_{f}\right]}\left\|u^{\prime}(t, \cdot)\right\|_{L^{\infty}(\Omega)}}
$$

v_{R}^{S} computed time-reverse scattered field
u^{t} known forward incident wave

Robustness w.r.t noise on the recorded data

Only Final time solutions are displayed

Figure: Coeff $=10 \%, \quad$ Coeff $=30 \%, \quad$ Coeff $=50 \%$

Outline

(1) Context and motivation

- Forward Problem
- Classical Time Reversal
(2) What is the TRAC method?
- Time Reversed Absorbing Conditions (TRAC)
- Stability Estimate
- Illustration and application of the TRAC method
- TRAC in the frequency domain
(3) Application to inverse problems: objects discrimination
- Criterion of objet discrimination in full aperture
- Criterion of objet discrimination in partial aperture
- Discrimination between one and two inclusions in partial aperture
(4) Conclusion \& Prospects

Time reversal in partial aperture with TRAC (20\% noise)

Time Reversal with TRAC recreates the past: $\mathbf{t}=\mathbf{1 . 3 2}$

Trial domain enclosing the fish \Rightarrow Perfect time reversal

Not perfect time reversal \Rightarrow Trial domain not enclosing the fish $+1+$

Left: B encloses the inclusion D; TRAC recreates the past Right: B does not enclose D; past is not correctly recreated Next

Criterion of objet discrimination

In partial aperture :
cross-correlation image

$$
f(\vec{x}):=\int_{t=0}^{t=T_{f}} v_{R}^{S}\left(T_{f}-t, \vec{x}\right) \times u^{\prime}(t, \vec{x}) d t
$$

SRA
$\Gamma_{R} \quad \Omega \backslash \bar{B}$
cross-correlation criterion

$$
J_{C C}(B):=\frac{\left\|\int_{t=0}^{t=T_{f}} v_{R}^{S}\left(T_{f}-t, .\right) \times u^{\prime}(t, .) d t\right\|_{L^{\infty}(\Omega \backslash B)}}{\left\|\int_{t=0}^{t=T_{f}}\left|u^{\prime}(t, .)\right|^{2} d t\right\|_{L^{\infty}(\Omega)}},
$$

v_{R}^{S} computed time-reverse scattered field
u^{I} known forward incident wave

Resulting image with the cross-correlation function

Imaging by cross-correlation to detect the interfaces of the inclusion

Figure : Classical TR,
$J_{C C}(B)=23.01 \%$

TRAC enclosing the inclusion,

$$
J_{C C}(B)=7.95 \%
$$

TRAC missing the tail

$$
J_{C C}(B)=21.87 \%
$$

Outline

(1) Context and motivation

- Forward Problem
- Classical Time Reversal
(2) What is the TRAC method?
- Time Reversed Absorbing Conditions (TRAC)
- Stability Estimate
- Illustration and application of the TRAC method
- TRAC in the frequency domain
(3) Application to inverse problems: objects discrimination
- Criterion of objet discrimination in full aperture
- Criterion of objet discrimination in partial aperture
- Discrimination between one and two inclusions in partial aperture
(4) Conclusion \& Prospects

Objects Discrimination with Partial Aperture SRA

Four configurations: $\lambda \simeq 10 \mathrm{~cm}$,

> LER := SRA

Two distinct inclusions and a unique one, aligned and not aligned. Data from Igel'08, (12th Int. Conf. on Ground Penetrating Radar)

Objects Discrimination with Partial Aperture SRA

simplified electromagnetic waves in first approximation:

- ε the electric permittivity, μ the magnetic permeability
- $c=\sqrt{1 / \varepsilon \mu}$ the velocity.

$$
\begin{equation*}
\varepsilon \frac{\partial^{2} u(t, r)}{\partial t^{2}}-\operatorname{div}\left(\frac{1}{\mu} \nabla u(t, r)\right)=0 . \tag{EM}
\end{equation*}
$$

Properties of the mines (iron or plastic):

$$
\varepsilon=\varepsilon_{0} \varepsilon_{r}, \quad \mu=\mu_{0} \mu_{r}
$$

	soil	iron mine	plastic mine
ε_{r}	5	1	3
μ_{r}	1	10,000	1
c_{r}	0.44	0.01	0.57

See Igel'08.

Objects Discrimination with Partial Aperture SRA

Trial domains B

Criterion $J(B)$ designed such that:
$J(B) \gg 1 \Rightarrow$ domain B encloses the inclusion(s)
$J(B) \simeq 1,10 \Rightarrow$ domain B does not enclose the inclusion(s)

Discrimination between one plastic mine and two

Criterion:

$$
\begin{aligned}
& J(B) \gg 1 \Rightarrow D \subset B \\
& J(B) \simeq 1,10 \Rightarrow D \nsubseteq B
\end{aligned}
$$

$d=\lambda / 4$		aligned inclusions		non aligned inclusions	
Trial domain B	Noise	2 inclusions	1 inclusion	2 inclusions	1 inclusion
$B_{\text {ellipse }}$	0%	1513327,65	4964577,64	23816,93	90352,37
	20%	1442376,08	4668092,94	23962,34	99995,21
$B_{\text {simple }}$	0%	2,07	6,72	0,72	1,96
	20%	2,01	6,33	0,68	2,03
$B_{\text {double }}$	0%	163,33	13,68	324,33	17,87
	20%	166,14	14,02	334,11	17,97

Table : Criterion J for discriminating between one or two plastic mines distant from $\lambda / 4 \Rightarrow$ Subwavelength resolution.

Discrimination between one iron mine and two

Criterion:

$$
\begin{aligned}
& J(B) \gg 1 \Rightarrow D \subset B \\
& J(B) \simeq 1,10 \Rightarrow D \nsubseteq B
\end{aligned}
$$

non aligned inclusions

Trial domain B	Noise	2 inclusions	1 inclusion	2 inclusions	1 inclusion
$B_{\text {ellipse }}$	0%	112293,94	197912,87	6899,20	8613,34
	20%	101868,59	194473,61	6371,37	9341,23
$B_{\text {simple }}$	0%	1,90	3,97	0,99	1,48
	20%	1,73	3,83	1,00	1,46
$B_{\text {double }}$	0%	54,05	7,86	200,72	12,52
	20%	49,46	7,23	224,23	12,96

Table : Criterion J for discriminating between one or two iron mines distant from $\lambda / 8 \Rightarrow$ Subwavelength resolution.

Outline

(1) Context and motivation

- Forward Problem
- Classical Time Reversal
(2) What is the TRAC method?
- Time Reversed Absorbing Conditions (TRAC)
- Stability Estimate
- Illustration and application of the TRAC method
- TRAC in the frequency domain
(3) Application to inverse problems: objects discrimination
- Criterion of objet discrimination in full aperture
- Criterion of objet discrimination in partial aperture
- Discrimination between one and two inclusions in partial aperture
(4) Conclusion \& Prospects

Conclusion

Conclusion \& prospects

- stability and energy estimate
- time and frequency domain method
- redatuming without paraxial approximation
- for solid or penetrable object of any shape
- robust with respect to noise on the recorded data
- full and partial aperture of the SRA
- application to discrimination between one and two close inclusions

Actual work \& prospects

- combination of the TRAC method and an inverse problem technique (Work by Marie Kray and Maya de Buhan, Paris 5)
- comparison with experimental data (real data)
- other equations: Maxwell, elasticity

Thanks!

Publications:

- F. Assous, M. Kray, F. Nataf and E. Turkel, Time Reversed Absorbing Conditions, CR. Acad. Sci., (2010)
- F. Assous, M. Kray, F. Nataf and E. Turkel, Time Reversed Absorbing Condition : Application to Inverse Problems, Inverse problems (2011)
- F. Assous, M. Kray and F. Nataf, Time Reversed Absorbing Condition in the Partial Aperture Case, Wave Motion (2012)
all papers can be found on HAL.

