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Physical problem

Deflection of a laser beam by a plasma
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Equations (1/2)

• Plasma: Euler equations










∂NI

∂t
+ ∇(NI

~U) = 0

mI

(

∂

∂t
(NI

~U) + ∇(NI
~U · ~U)

)

+ ∇P = −NIγ∇|ψ|2

with: plasma velocity: ~U , Pressure: P , Electronic density:

Ne = ZNI , laser energy: |ψ|2

coupled with propagation models for the laser:

4



Equations for the laser (2/2)

• Time harmonic wave equation (Helmholtz) :

[

ε2∆ + iν + (1 −Ne)
]

ψ = 0

• Assumptions on the density Ne(x, y) = N0(x) + δN (x, y) with

δN (x, y) << N0(x)

(propagative equation) 0 < N0(x) < 1 (elliptic equation)

• and where valid: Paraxial approximation (Schroedinger type) :

Let ψ = Ψei
~k·~x

ε where the vector ~k satisfies the eikonal

equation |~k|2 = 1 −N0

ε2∆⊥Ψ + εiΨ∇ · ~k + 2εi~k · ∇Ψ + iν0ψ − δNΨ = 0
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Difficulties

• Multiscale problem in time and space

• Coupling the Euler equations with the propagative ones

• Coupling the Paraxial zone (h ' λ0) with the Helmholtz zone

(h ' λ0/10)

• Solving a very large variable coefficient Helmholtz problem in a

non symmetric form (due to the use of Perfectly Matched

Layers)

• Realistic computation ⇒ some hundreds of millions of

unknowns mostly in the Helmholtz zone.

We shall use a combination of

• Grid interpolation between the various grids (hydrodynamic,

Paraxial and Helmholtz)

• Specific solver that takes advantage of N0(x) >> δN(x, y).
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Non-matching Grids

• The mesh for the fluid is much coarser than the mesh for the

Helmholtz equations: linear interpolation gives good results

• Coupling between the paraxial and the Helmholtz zones where

equations and grids are not the same.

It is achieved via a discretized absorbing boundary condition

Figure 1: Laser intensity vs. x for two couplings between the Parax-

ial and Helmhltz zones
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Global strategy for solving the Helmholtz
problem

The most CPU and storage demanding part is the solve of the

Helmholtz problem at each time step.

In a Krylov based method, we precondition the Helmholtz operator

ε2∆ψc + iνψc + (1 −N0(x))ψc − δN (x, y)ψc

by

ε2∆ψc + iνψc + (1 −N0(x))ψc

which is solved by a cyclic reduction method.

In order to take care of boundary conditions, we use a domain

decomposition method.
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Overlapping Domain Decomposition (1/3)

The “Helmholtz” computational domain is decomposed into three

subdomains: two long PMLs and a large Helmholtz central zone.
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Overlapping domain decomposition method (2/3)
Robin interface conditions between the PMLs and Helmholtz zones















ε2
[

η(y)
∂

∂y

(

η(y)
∂

∂y

)

+
∂2

∂x2

]

ψh + iνψh + (1 −N0)ψh = 0 in Ωh

∂ψh

∂y
+ αψh =

∂ψc

∂y
+ αψc on Γ2

h























ε2∆ψc + iνψc + (1 −N0)ψc − δNψc = 0 in Ωc

∂ψc

∂y
+ αψc =

∂ψh

∂y
+ αψh on Γ1

h

∂ψc

∂y
+ αψc =

∂ψb

∂y
+ αψb on Γ1

b















ε2
[

η(y)
∂

∂y

(

η(y)
∂

∂y

)

+
∂2

∂x2

]

ψb + iνψb + (1 −N0)ψb = 0 in Ωb

∂ψb

∂y
+ αψb =

∂ψc

∂y
+ αψc on Γ2

b
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Overlapping Domain Decomposition (3/3)

• Algebraic formulation :

Let A =









AP1 C1 0

C2 AH C3

0 C4 AP2









, Solve: A









Xh

Xc

Xb









= b .

• Algebraic decomposition :

AD =









AP1 0 0

0 AG 0

0 0 AP2









and AE =









0 C1 0

C2 AδN C3

0 C4 0









• Remarks

– GMRES algorithm preconditioned by AD (the fluctuations

δN are treated iteratively)

– AG is a very large matrix but with a simple structure

– The matrices AP1, AP2 are factorized by a direct method
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Cyclic Reduction for solving ADu = f (1/2)

ADu =

2
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where T = cI. Recursively and in parallel:

• Elimination
8

>

>

<

>

>

:

−Tui−2 + Aui−1 − Tui = fi−1

− Tui−1 + Aui − Tui+1 = fi

− Tui + Aui+1 − Tui+2 = fi+1

• Reduced system

−TA
−1

Tui−2+(A−2TA
−1

T )ui−TA
−1

Tui+2 = fi+TA
−1(fi−1+fi+1)

• Redistribution

Aui−1 = fi−1 + T (ui−2 + ui)
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Cyclic Reduction for solving ADu = f (2/2)

• Via a LR (Parlett) diagonalization process (A is a tridiagonal matrix

so that the LR method is much cheaper than the QR method):

A = QΛ(0)QT , T = QΓ(0)QT et QQT = I

• Induction formulas
8

<

:

T (r) =
“

T (r−1)
”2 “

A(r−1)
”

−1

A(r) =
“

A(r−1)
”

−1

− 2T (r)
=⇒

8

<

:

Γ(r) =
“

Λ(r−1)
”2 “

Λ(r−1)
”

−1

Λ(r) =
“

Λ(r−1)
”

−1

− 2Γ(r)

• Elimination

x = (T (r−1))2(A(r−1))−1y =⇒ x = Q(T (r−1))2(Λ(r−1))−1QT y

• Redistribution

x = (A(r−1))−1(y + T (r)z) =⇒ x = (Λ(r−1))−1(y + Γ(r)z)

• Constraints

– Storage of the full nx × nx complex matrix Q

– Efficient matrix-vector products

13



Computer implementation

• HERA software (C++)

• BLAS routines

• complex LR subroutine

• Hybrid MPI (internode) / Multithreading pthread (intranode)
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Numerical simulations (I)

Discretization

• Lx = 700 λ0, Ly = 1000 λ0

• 10 points per wavelength in the Helmholtz zone

• 40 millions unknowns in the Helmholtz zone, 2.8 millions fluid

unknowns.

• Density N0 linear from 0.1 to 1 (critical density)

Solvers

• 128 processors

• 18.4s per GMRES iteration

• Elapsed time for the full simulation: 8 hours
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Deflection of the laser beams (I)

@
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Numerical simulations with a vertical plasma
velocity (II)

Discretization

• Lx = 2000 λ0, Ly = 2000 λ0

• 10 points per wavelength in the Helmholtz zone

• 200 millions unknowns in the Helmholtz zone, 16 millions fluid

unknowns.

• Density N0 linear from 0.1 to 1 (critical density)

Solvers

• 256 processors

• 348s per GMRES iteration

• Laser simulated during a physical time of 11ps

• Elapsed time for the full simulation: 8 hours
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Deflection of the laser beams (II)
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Number of GMRES iterations vs. time
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As time increases, δN increases and so the number of GMRES

iterations.
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CPU time per GMRES iteration

Fixed size problem: 40 millions unknowns

Nb Procs 16 32 64 128

CPU per GMRES iteration 492s 249s 126s 64s

Efficiency GMRES 1 0.987 0.976 0.96

Increased size problem: the number of points in both directions are

doubled

Nb Procs 1 4 16 64 256

# d.o.f. × 106 0.4 1.6 6.3 25.4 101.6

CPU LR 1s 3s 12s 48s 189s

CPU per GMRES iteration 4.8s 11.6s 24s 47s 93s
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Conclusion and prospects

++ The goal is achieved: laser-plasma interaction with hundreds of

millions of unknowns.

++ Paraxial/Helmholtz coupling

+ – Scalability in y but not in x

– – Number of GMRES iterations increases as time increases

Prospects

• More subdomains in order to

be scalable in x (smaller matrices Q)

use local averages for the density in the cyclic reduction

(break the increase in the number of iterations as the time

increases)

take advantage of laser free zones which are dead zones

(reduced CPU)
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Thanks !
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