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Saddle Point Problem

Solve

A
(

uh
ph

)
=

(
Fh
Gh

)
with A :=

(
A BT

B −C

)
.

Pervasive in scientific computing:
(nearly) incompressible fluids or solids ⇒ pressure
formulation is usually mandatory.
Coupled problems, A contains two physics and B the
coupling conditions and C = 0.
Multi Point Constraints (MPC) ⇒ Lagrange multipliers.

For small enough problems, direct solvers are the method of
choice (MUMPS, PARDISO, SUPERLU, . . .)
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Comparison with a Direct solver MUMPS on a
steel-rubber 3D beam

Timings are in seconds. OOM means: Out Of available Memory

MUMPS DD saddle point solver
n #cores setup solve total setup #It gmres total

134 000 16 7.1 0.1 7.2 27.1 18 19.7 46.8
1 058 000 32 85.7 0.8 86.5 166.2 20 137.2 303.4
1 058 000 65 71.0 0.6 71.6 91.0 21 77.1 168.1
1 058 000 131 63.2 0.5 63.7 59.7 24 49.7 109.4
3 505 000 55 477.8 3.7 481.5 404.1 24 430.1 834.2
3 505 000 110 392.3 2.3 394.6 242.5 23 212.8 455.3
3 505 000 221 387.0 2.1 389.1 134.8 23 109.4 244.2
3 505 000 442 453.9 2.2 456.1 88.2 24 68.6 156.8
8 235 000 262 OOM / / 278.5 25 264.3 542.8
8 235 000 525 1622.1 6.1 1628.2 172.1 24 136.0 308.1
8 235 000 1050 1994.3 7.4 2001.7 136.5 25 99.7 236.2

Maximum problem size with direct solver is around 10 million
unknowns.
The GenEO domain decomposition solver introduced here will
solve a problem with 1 billion unknowns.
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Iterative Solvers

Difficulty: Matrix A is symmetric but not positive. If it is made
positive, symmetry is lost ⇒ issue for iterative solvers.

A :=

(
A BT

B −C

)
.

Algebraic multigrid and Domain Decomposition solvers:

As problems get large, penalization and augmented Lagrangian
techniques may enhance convergence but at the expense of
approximation errors and round-off error issues.

For saddle point problems with 3D nearly incompressible
elasticity and arbitrary high heterogeneities, existing iterative
solvers seem not be so usable.

Here, we propose an
Extension of the GenEO DDM to saddle point problems.
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(Recall) An introduction to DDM I

Consider the discretized Poisson problem: Au = f ∈ Rn.
Given a decomposition of J1;nK, (N1,N2), define:

the restriction operator Ri from RJ1;nK into RNi ,
RT

i as the extension by 0 from RNi into RJ1;nK.
um −→ um+1 by solving concurrently:

um+1
1 = um

1 + A−1
1 R1(f − Aum) um+1

2 = um
2 + A−1

2 R2(f − Aum)

where um
i = Rium and Ai := RiART

i .

Ω
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An introduction to DDM II

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

I =
N∑

i=1

RT
i DiRi .

Then, um+1 =
N∑

i=1

RT
i Dium+1

i . M−1
RAS =

N∑
i=1

RT
i DiA−1

i Ri

+ Krylov acceleration ⇒ RAS algorithm (Cai & Sarkis, 1999)

1
2

1

1
2 1

F. Nataf Excalibur Workshop - CS for Saddle Point 9 / 33



ASM: a symmetrized version of RAS

M−1
RAS :=

N∑
i=1

RT
i Di A−1

i Ri .

A symmetrized version: Additive Schwarz Method (ASM),

M−1
ASM :=

N∑
i=1

RT
i A−1

i Ri (1)

is used as a preconditioner for the conjugate gradient (CG)
method.
Although RAS is more efficient, ASM is amenable to condition
number estimates.
Chronological curiosity: First paper on Additive Schwarz dates
back to 1989 whereas RAS paper was published in 1998
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Adding a coarse space

One level methods are not scalable: M−1
ASM :=

∑N
i=1 RT

i A−1
i Ri .

We add a coarse space correction (aka second level). Let VH
be the coarse space and Z be a basis, VH = span Z , writing
R0 = Z T we define the two level preconditioner as:

M−1
ASM,2 := RT

0 (R0ART
0 )

−1
R0 +

N∑
i=1

RT
i A−1

i Ri .

The Nicolaides approach (1987) is to use the near-kernel of the
local operators to build the coarse space:

RT
0 Z := (RT

i DiRi1)1≤i≤N ,

where Di are chosen so that we have a partition of unity:∑N
i=1 RT

i DiRi = Id . Key notion: Stable splitting (J. Xu, 1989 )
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Theoretical convergence result

Theorem (Widlund, Dryija)

Let M−1
ASM,2 be the two-level additive Schwarz method:

κ(M−1
ASM,2 A) ≤ C

(
1 +

H
δ

)
where δ is the size of the overlap between the subdomains and
H the subdomain size.

This does indeed work very well

Number of subdomains 8 16 32 64
ASM 18 35 66 128

ASM + Nicolaides 20 27 28 27

Fails for highly heterogeneous problems
You need a larger and adaptive coarse space
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Introduction to GenEO
Adaptive Coarse space for highly heterogeneous Darcy and
(compressible) elasticity problems:
A Generalized Eigenvalue problem in the Overlap per
subdomain:

Find Vj,k ∈ RNj and λj,k ≥ 0:

Dj RjART
j DjVj,k = λj,k ANeu

j Vj,k

In the two-level ASM, let τ be a user chosen parameter:
Choose eigenvectors λj,k ≥ τ per subdomain:

Z :=
(
RT

j DjVj,k
)j=1,...,N
λj,k≥τ

This automatically includes Nicolaides CS made of Zero

Energy Modes.
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Theory of GenEO

Two technical assumptions.

Theorem (Spillane, Dolean, Hauret, N., Pechstein, Scheichl
(Num. Math. 2013))
If for all j : 0 < λj,mj+1 < ∞:

κ(M−1
ASM,2A) ≤ (1 + k0)

[
2 + k0 (2k0 + 1)

(
1 + τ

)]

Possible criterion for picking τ : (used in our Numerics)

τ := min
j=1,...,N

Hj

δj

Hj . . . subdomain diameter, δj . . . overlap
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Convergence on a Highly Heterogeneous diffusion
problem
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Extension of GenEO to Saddle Point problem

Preconditioning A (e.g. Stokes, Nearly incompressible
elasticity):

A :=

(
A BT

B −C

)
.

is equivalent to preconditioning A and S := C + BA−1BT .
Starting with a Schwarz preconditioner A−1 ≈ M−1

ASM 2 as above,
we have

S ≈ C + BM−1
ASM 2BT ≈ S0 +

N∑
i=1

R̃T
i (C̃i + B̃i (RiART

i )
−1 B̃T

i )R̃i︸ ︷︷ ︸
S1

,

where S0 := B ZGenEO (Z T
GenEO A ZGenEO)

−1 Z T
GenEO BT .

The operator S1 is dense and has to be preconditioned.
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Extension of GenEO to Saddle Point problem
But as a sum of local Schur complements, S1 can be
preconditioned by a Neumann-Neumann preconditioner

M−1
S1,one level :=

∑N
i=1 R̃T

i D̃i (C̃i + B̃i (RiART
i )

−1 B̃T
i )

† D̃i R̃i .

made scalable and robust with a GenEO type correction (see
N., Num. Math., 2020):

M−1
S1

:= ZS1 (Z
T
S1

S1ZS1)
−1 Z T

S1

+
(∑N

i=1 R̃T
i D̃i (Id − ξi)(C̃i + B̃i (RiART

i )
−1 B̃T

i )
† (Id − ξT

i )D̃i R̃i

)
.

where ZS1 is populated with weighted local eigenvectors
corresponding to the largest eigenvalues of the following GEVP:

D̃i R̃iS1R̃T
i D̃i P̃ik = µik (C̃i + B̃i (RiART

i )
−1 B̃i) P̃ik , (2)

and ξi denotes an orthogonal projection on the local
contribution of the subdomain to the coarse space.
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Two Stage Algorithm
Define N−1

S a spectrally equivalent preconditioner to S:

NS := S0 + MS1 .

The application of the preconditioner N−1
S consists in solving:

NS P = G ,

by a Krylov solver with M−1
S1

as a preconditioner.

Saddle point algorithm in three solves:

INPUT:
(

FU
FP

)
∈ Rn+m OUTPUT:

(
U
P

)
the solution.

1. Solve AGU = FU by a PCG with M−1
A as a preconditioner

2. Compute GP := FP − B GU
3. Solve S P := (C + BA−1BT )P = −GP by a PCG with N−1

S
as a preconditioner (nested loops).
4. Compute GU := FU − BT P
5. Solve AU = GU by a PCG with M−1

A as a preconditioner
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Nearly incompressible elasticity

The mechanical properties of a solid are characterized by its
elastic energy: ∫

Ω
2µ ε(u) : ε(u) + λ |div (u)|2

where the Lamé coefficients λ and µ are defined in terms of the
Young modulus E and Poisson ratio ν:

λ =
Eν

(1 + ν)(1 − 2ν)
and µ =

E
2(1 + ν)

,

As ν is close to 1/2−, λ → ∞ so that div(u) → 0, but the
pressure p:

p := λdiv (u) → pincompressibility

and has thus to be introduced for stability, e.g. νrubber = 0.4999.
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Saddle point system

The resulting discretized variational formulation reads:
∫
Ω 2µ ε(uh) : ε(vh)dx −

∫
Ω ph div (vh)dx =

∫
Ω fvhdx

−
∫
Ω div (uh)qhdx −

∫
Ω

1
λphqh = 0.

(3)

where we take the lowest order Taylor-Hood finite element
C0P2 − C0P1 so that the pressure ph is continuous. In matrix
form we have:(

A BT

B −C

) (
uh
ph

)
=

(
Fh
0

)
.

with an arbitrary domain decomposition .
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Mechanical test case

Figure: Heterogeneous beam of rubber and steel. Coefficient
distribution (left) and mesh partitioning by the automatic graph
partitioner Metis (right).

Rubber is nearly incompressible νrubber = 0.4999 and soft
Erubber = 0.01GPa whereas steel is compressible νsteel = 0.35
and hard Esteel = 200.GPa.
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Weak and Strong scalability

#cores n dim(V0) dim(W̃0) setup(s) #It gmres(s) total(s) #It N−1
S

262 15 987 380 5 383 3 319 710.7 24 631.6 1342.3 11
525 27 545 495 9 959 2 669 526.6 21 519.5 1046.1 12

1 050 64 982 431 17 837 4 587 675.2 22 665.9 1341.1 11
2 100 126 569 042 32 361 7 995 689.2 25 733.8 1423.0 10
4 200 218 337 384 59 704 13 912 593.0 27 705.4 1298.4 10
8 400 515 921 881 141 421 25 949 735.8 32 1152.5 1888.3 10

16 800 1 006 250 208 260 348 41 341 819.2 29 1717.9 2537.1 12

Table: Weak scaling experiment.

#cores n dim(V0) dim(W̃0) setup(s) #It gmres(s) total(s) #It N−1
S

525 27 545 495 9 959 2 669 526.6 21 519.5 1046.1 12
1 050 27 545 495 15 078 4 082 265.7 21 224.7 490.4 11
2 100 27 545 495 23 172 6 453 168.8 23 131.1 299.9 10
4 200 27 545 495 37 768 11 152 103.8 23 91.3 195.1 9

Table: Strong scaling experiment.
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Adaptivity of the Coarse Space to the problem
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Figure: Top: Steel/Rubber beam. Bottom: Steel only beam. Inverse of
the eigenvalues of the local GenEO eigenvalue problems for both
coarse spaces, V0 for A (left) and W̃0 for S1 (right)
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Comparison with AMG GAMG (PETSc)

Comparisons on the velocity (only) formulation since we were
unable to run GAMG on the saddle point formulation.

525 cores GAMG DD solver
ν #It total(s) dim(V0) setup(s) #It gmres(s) total(s)

0.48 56 25.5 41 766 60.4 18 5.0 65.4
0.485 60 26.1 41 984 60.9 20 5.3 66.2
0.49 116 33.3 42 000 60.4 23 5.9 66.3
0.495 >2000 / 42 000 60.4 32 7.6 68.1
0.499 >2000 / 42 000 60.6 95 20.3 81.0

Table: GAMG (PETSc) versus standard GenEO for a homogeneous
beam discretized with 7.9 million unknowns.

As ν gets close to 0.5, GAMG fails to compute a solution.
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Algorithm assessment on Stokes computations

#cores n dim(V0) dim(W̃0) setup(s) #It gmres(s) total(s) #It N−1
S

4 717 837 93 4 420.0 11 107.2 527.2 6
8 717 837 151 8 197.9 11 56.2 254.1 6

16 717 838 267 16 115.2 12 35.6 150.8 7
32 717 842 420 36 71.5 13 21.9 93.4 8
64 717 838 616 65 44.0 14 15.2 59.2 9

8 2 867 499 327 8 792.7 11 236.5 1029.2 7
16 2 867 499 577 16 371.6 12 148.2 519.8 9
32 2 867 499 877 32 291.3 12 86.8 378.1 10
64 2 867 503 1 306 66 164.9 13 55.9 220.8 11

128 2 867 503 1 985 133 118.6 13 41.4 160.0 13
8 11 462 307 606 8 3365.4 11 1146.3 4511.7 8

16 11 462 307 1 133 16 1753.6 11 640.4 2394.0 11
32 11 462 307 1 827 32 1099.9 12 404.8 1504.7 13
64 11 462 307 2 760 64 628.0 12 213.9 841.9 13

128 11 462 307 4 124 134 438.5 13 162.1 600.6 15

Table: 2D Stokes – Air bubbles in Water.

Going further: Comparisons for 3D flows with multigrid solvers,
Cahouet-Chabard method on this or other problems, . . .
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Domain Specific Language for finite element method

Why use a DS(E)L (FreeFem++, Feel++, Dune, Fenics or
Firedrake) instead of C/C++/Fortran/.. ?

performances close to low-level language implementation,
hard to beat something as simple as:

varf a(u, v) = int3d(mesh)([dx(u), dy(u), dz(u)]' * [dx(v), dy(v), dz(v)])

- int3d(mesh)(f * v) + on(boundary mesh)(u = 0) ,
access to the variational formulation is then natural and
that’s what we need.

A few facts
1987: First version by O. Pironneau written in Pascal on
Macintosh
Since 1992: the main developer is Frédéric Hecht
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Some FreeFem features

Integrates many state of the art libraries.
Automatic Mesh refinement native in 2d and via the plugin
”Mmg” (Frey at al.) in 3D
Interpolate between different finite element spaces defined
on different meshes, clouds of points to mesh
Extensible via dynamic plugins
NEW: coupled FEM/BEM thanks to X. Claeys with
H-matrix compression thanks to P. Marchand
Interface to MPI, PETSc
parallel version runs on Linux, Windows, Mac since 2017
Docker on Qarnot and Rescale cloud computing platform
Web browser (Javascript port thanks to A. Le Hyaric
(LJLL))
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Data Distribution for parallel computing

Domain Partition via Metis or Scotch interface

Overlap is done by FreeFem based on the mesh connectivity

Figure: Electromagnetic chamber – Harmonic Maxwell DD solver with
Robin or PML interface conditions
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Conclusion and Prospects

Iterative solver for saddle point problem with highly
heterogeneous coefficients that works for linear elasticity,
Stokes systems
Reproducibility and availability to FreeFem users via
https://github.com/FreeFem/FreeFem-sources/
blob/develop/examples/ffddm/elasticity_
saddlepoint.edp

Preprint available on HAL:

F Nataf and P.-H. Tournier, ”A GenEO Domain
Decomposition method for Saddle Point problems”,
https://hal.archives-
ouvertes.fr/view/index/docid/3450974 , HAL Archive.

Prospects
More than 2-level
Inclusion into HPDDM for PETSc users
Multiscale finite element for saddle point problem
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