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@ After discretisation = large linear system
Au=D>b

@ Matrix A inherits the properties of the underlying PDE
(symmetric, positive definite, indefinite, etc...)

@ Aisin general sparse (a lot of zeros), large (e.g. 3d
applications - a few million unknowns) and ill conditioned.
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Need & Opportunities for massively parallel computing
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Since year 2005:

@ CPU frequency stalls at 3 GHz due to the heat dissipation
wall. The only way to improve the performance of
computer is to go parallel

@ Power consumption is an issue:

e Large machines (hundreds of thousands of cores) cost
10-15% of their price in energy every year.

e Smartphone, tablets, laptops (quad - octo cores) have
limited power supplies
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Need & Opportunities for massively parallel computing

Parallel computers are more and more available to scientists
and engineers

@ Apple, Linux and Windows laptops, 2/4 cores
@ Desktop Computers, 6/12 cores

@ Laboratory cluster, 300 cores

@ University cluster, ~ 2000 cores

@ Cloud computing on Data Mining machines

@ Supercomputers with more hundreds thousands of cores
via academic (CNRS, GENCI, IDRIS, PRACE, ...) or
commercial (BULL, HP, IBM, . ..) providers

All fields of computer science are impacted.
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Where to make effort in scientific computing

to compute right

@ in the past: Numerical analysis of discretization schemes,
a posteriori error estimates, mesh generation, reduced
basis method

@ Now: business as usual

| \

to compute faster
@ in the past: invest in a new machine every three years

@ Now: invest every five years and add an investment in
algorithmic research:

to use less energy
@ in the past: nobody cared

@ Now: communication avoiding algorithms , see J. Demmel,
L. Grigori, M. Hoemmen, J. Langou, M. Baboulin, ...

| \

A,
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Need for Communication Avoiding Algorithms CAA

A simplified view of modern architectures
@ Unlimited number of fast cores

@ Distributed data

@ Limited amount of slow and energy intensive
communication

v

Coarse Grain algorithm

@ Maximize local computations

@ Minimize communications (saves time and energy
altogether)

@ No sequential task
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? Panorama of linear solvers
Direct Solvers

MUMPS (J.Y. LExcellent), SuperLU (Demmel, .. .), PastiX,
UMFPACK, PARDISO (O. Schenk),

lterative Methods
@ Fixed point iteration: Jacobi, Gauss-Seidel, SSOR

@ Krylov type methods: Conjuguate Gradient
(Stiefel-Hestenes), GMRES (Y. Saad), QMR (R. Freund),
MinRes, BICGSTAB (van der Vorst)

| A\

\

"Hybrid Methods”

@ Multigrid (A. Brandt, Ruge-Stiben, Falgout, McCormick, A.
Ruhe, Y. Notay, . . .)

@ Domain decomposition methods (O. Widlund, C. Farhat, J.
Mandel, P.L. Lions, ) are a naturally parallel compromise
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Motivation: pro and cons of direct solvers

Complexity of the Gauss factorization

Gauss d=1] d=2 d=3

dense matrix om) | orn® | ond)
using band structure | O(n) | O(n?) | O(n’/?)
using sparsity o(n) | o(n2) | O(n?)

Different sparse direct solvers
@ PARDISO (http://www.pardiso-project.org)
@ SUPERLU (http://crd.1lbl.gov/~xiaoye/SuperLU)

@ SPOOLES
(www.netlib.org/linalg/spooles/spooles.2.2.html)

@ MUMPS (http://graal.ens—1lyon.fr/MUMPS/)

@ UMFPACK (http:
//www.cise.ufl.edu/research/sparse/umfpack)
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Why iterative solvers?

Limitations of direct solvers

In practice all direct solvers work well until a certain barrier:
@ two-dimensional problems (108 unknowns)
@ three-dimensional problems (10° unknowns).

Beyond, the factorization cannot be stored in memory any
more.
To summarize:

@ below a certain size, direct solvers are chosen.
@ beyond the critical size, iterative solvers are needed.
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Why domain decomposition?

@ Parallel processing is the only way to have faster codes, new
generation processors are parallel: dual, quadri core.

@ Large scale computations need for an "artificial” decomposition
@ Memory requirements, direct solvers are too costly.

@ lterative solvers are not robust enough.

New iterative/direct solvers are welcome : these are domain
decomposition methods

In some situations, the decomposition is natural
@ Moving domains (rotor and stator in an electric motor)
@ Strongly heterogeneous media

@ Different physics in different subdomains
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Linear Algebra from the End User point of view

Direct DDM Iterative
Cons: Memory Pro: Flexible Pros: Memory
Difficult to || Naurally || Easy to ||
Pros: Robustness Cons: Robustness

solve(MAT,RHS,SOL) | Few black box routines | solve(MAT,RHS,SOL)
Few implementations
of efficient DDM

Multigrid methods: very efficient but may lack robustness, not
always applicable (Helmholtz type problems, complex systems)
and difficult to parallelize.
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9 Schwarz algorithms essentials
@ Algebraic Schwarz Methods
@ Coarse Space correction
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The First Domain Decomposition Method

The original Schwarz Method (H.A. Schwarz, 1870)

Qo
—A(u)="f inQ

u=0 onoNQ.

Schwarz Method : (uf, ug) — (uf™!, ug™™) with

~AUTY =1 inQ ~A(uFTYy =1 inQ
Uttt =00n 9Q NN Ul = 00on 90 NN
ultt = ug  on 09 N Qy. Uttt =ut on 9 N Q.

Parallel algorithm, converges but very slowly, overlapping
subdomains only.
The parallel version is called Jacobi Schwarz method (JSM).
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Convergence in 1D

Overlap width § > 0 is sufficient and necessary to have

convergence.
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Fourier analysis in 2d - |

Let R? decomposed into two half-planes Q1 = (—o0,d) x R and
Qo = (0, 00) x R with an overlap of size § > 0 and the problem

(n—A)u) =f in R2
u is bounded at infinity ,

By linearity, the errors e := u]’ — u|q, satisfy the JSM f = O:

(n—A)e™) =0 in Q
e”+1 is bounded at infinity (1)
”*1(6 y) =e5(3y),

(n—2)(e5*") =0 in Q
eJ™ is bounded at infinity 2)
e;7(0,y) =e(0,y).
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Fourier analysis in 2d - 1|

By taking the partial Fourier transform of the equation in the y
direction we get:

(,7 - 8‘9; + k2> (&]"'(x,k)) =0 in Q.
For a given k, the solution
&1 (x, k) = A1 (k) exp(At (K)x) + ™1 (k) exp(A~ (K)x).
must be bounded at x = —cc. This implies
&1 (x, k) = 211 (k) exp(A (K)x)

and similarly,

&5+ (x, k) =71 (k) exp(A~ (K)x)
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Fourier analysis in 2d - Il|

From the interface conditions we get
VI (k) = A7 (k) exp(A~(K)6), 77T (k) = 7L (K) exp(=AT (k)d).

Combining these two and denoting A(k) = AT (k) = =\~ (k), we
getfori=1,2,

VI (K) = plk; @, 62 7171 (K)
with p the convergence rate given by:
p(k; o, 6) = exp(—=A(k)d), @)

where A(k) = /n + k2.
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Fourier analysis in 2d - IV

@ Forallk € R, p(k) < exp(—,/nd) < 1 so that~'(k) — 0
uniformly as n goes to infinity.

@ p — 0 as k tends to infinity, high frequency modes of the error
converge very fast.

@ When there is no overlap (6 = 0), p = 1 and there is stagnation
of the method.

V. Dolean, P. Jolivet & F. Nataf Domain Decomposition 20/129



An introduction to Additive Schwarz — Linear Algebra

Consider the discretized Poisson problem: Au = f € R".
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An introduction to Additive Schwarz — Linear Algebra

Consider the discretized Poisson problem: Au = f € R".
Given a decomposition of [1; n]}, (N1, N>), define:

@ the restriction operator R; from RI'" into RV,
@ R/ as the extension by 0 from RV into RI".

Q
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An introduction to Additive Schwarz — Linear Algebra

Consider the discretized Poisson problem: Au = f € R".
Given a decomposition of [1; n]}, (N1, N>), define:

@ the restriction operator R; from RI'" into RV,
@ R/ as the extension by 0 from RV into RI".
u™ — u™1 by solving concurrently:

Ut = Ul + AR (F - Au™) Ut = U+ AT Ro(f — Au™)

where Ulm = R,'Um and A; .= R,AF)’IT Q
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An introduction to Additive Schwarz Il — Linear Algebra

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

N
I=> R/DR;.
i=1

=
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An introduction to Additive Schwarz Il — Linear Algebra

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

N
I=> R/DR;.
i=1

=

Then, u™" => " R/ DU,

i=1
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An introduction to Additive Schwarz Il — Linear Algebra

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

N
| = Z R/ DiR;.
i=1
]
1
2
N N
Then, u™" => " R/ DU, Mgis = > R/ DATR;.

i=1 i=1
RAS algorithm (Cai & Sarkis, 1999). Weighted Overlapping
Block Jacobi method
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Algebraic formulation - RAS and ASM

Discrete Schwarz algorithm iterates on a pair of local functions
(U, U
RAS algorithm iterates on the global function u™
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Algebraic formulation - RAS and ASM

Discrete Schwarz algorithm iterates on a pair of local functions
(U, U
RAS algorithm iterates on the global function u™

Schwarz and RAS

Discretization of the classical Schwarz algorithm and the
iterative RAS algorithm:

+1 —1 o n
U =U"+ Mger", r" = F - AU".
are equivalent

U" = R DyU! + RI D US .

(Efstathiou and Gander, 2002).

Operator M,;/}S is used as a preconditioner in Krylov methods
for non symmetric problems.
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ASM: a symmetrized version of RAS

Mgas _ZRTDA R (4)

i=1

A symmetrized version: Additive Schwarz Method (ASM),

Mady - _ZRTA R; (5)

are used as a preconditioner for the conjugate gradient (CQG)
method. Later on, we introduce

Mgl pas = Z R’ D;B ' D; R; (6)

i=1

where (B;)1<j<n are some local invertible matrices.
Although RAS is more efficient, ASM is amenable to theory.
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Numerics on a toy problem

Figure: Uniform and Metis initial partitions

Overalps are added layer after layer

Figure: Schwarz convergence as a solver (left) and as a
preconditioner (right) for different overlaps
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Many cores : Strong and Weak scalability

How to evaluate the efficiency of a domain decomposition?

Strong scalability (Amdahl)

"How the solution time varies with the number of processors for
a fixed total problem size”

Weak scalability (Gustafson)

"How the solution time varies with the number of processors for
a fixed problem size per processor.”

Not achieved with the one level method

Number of subdomains | 8 | 16 | 32 | 64
ASM 18 | 35 | 66 | 128

| A\

The iteration number increases linearly with the number of
subdomains in one direction.

\
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Convergence curves- more subdomains

Plateaus appear in the convergence of the Krylov methods.
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Figure: Decomposition into 64 subdomains and into m x m squares
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Condition number estimate

If there exist the constants Cy and C» such that

Ci(Masx, X) < (Ax,X) < Co(Mpsx,x), Vx € R" (7)

then Amax(Maa A) < Co, Amin(MzaA) > Cy and thus

4

/-;(M;;A) independent of N (number of subdomains) = the execution
time will be independent of the number of processors.

Let col(j) € {1,...,N€} be the color of the domain j defined
such that (AR] xx, R x/) = 0 if col(k) = col(l). Then
Amax(Mad A) < .
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Why the algorithm is not scalable?

We have that AmaX(M;S‘A) < N << N (usual decomposition) BUT
Amin(M3 A) depends on N.

Numerical experiment: subdomain = square with 20 x 20
discretisation points with two layers of overlap.

Solution of a Poisson problem

Number of subdomains | 2x2 | 4x4 | 8x8
Number of iterations 20 36 64
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How to achieve scalability

Stagnation corresponds to a few very low eigenvalues in the
spectrum of the preconditioned problem. They are due to the
lack of a global exchange of information in the preconditioner.
—Au=finQ
u=0o0noN

The mean value of the solution in domain i depends on the
value of f on all subdomains.

A classical remedy consists in the introduction of a coarse
problem that couples all subdomains. This is closely related to
deflation technique classical in linear algebra (see Y. Saad,

J. Erhel, Nabben and Vuik) and multigrid techniques.
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Adding a coarse space

One level methods are not scalable for steady state
problems.

We add a coarse space correction (aka second level)

Let V be the coarse space and Z be a basis, Vi = span Z,
writing Ry = Z" we define the two level preconditioner as:

N
Mo == RS (RoAR]) 'Ro+>_ RTA-'R,.
i=1

The Nicolaides approach (1987) is to use the kernel of the
operator as a coarse space, this is the constant vectors, in local
form this writes:

Z = (RT DiR)1<i<n
where D; are chosen so that we have a partition of unity:

N
> RIDR; = Id.

i=1
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Theoretical convergence result

Theorem (Widlund, Dryija)

Let M;;.M , be the two-level additive Schwarz method:

H
K(Mady2A) < C (1 + 3>

where § is the size of the overlap between the subdomains and
H the subdomain size.

<

This does indeed work very well

Number of subdomains | 8 | 16 | 32 | 64
ASM 18 | 35 | 66 | 128
ASM + Nicolaides 20 | 27 | 28 | 27
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Other Deflation and Coarse grid correction

Let A be a SPD matrix, we want to solve
Ax=b

with a preconditioner M (for example the Schwarz method).
Let Z be a rectangular matrix so that the “bad eigenvectors”
belong to the space spanned by its columns. Define

P=I1-AQ, Q:=ZE'ZT, E-=2TAZ,
Additive correction formulas:
Pa_agg =M "+ Q  (Additive, Nicolaides, 1987)

Pewn := PTM~'P+ Q (Balanced, Mandel, 1993)

Pa_pers .= PTM~' + Q, (Deflated, Vuik et al., 20xx)

Let r, be the residual at step n of the algorithm, for any Krylov
method: Z7 r, = 0 provided Z7 ry = 0.
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e Optimized Restricted Additive Schwarz Methods
@ P.L. Lions Algorithm
@ ORAS for Helmholtz equation
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P.L. Lions’ Algorithm (1988)

~AWTY =f inQy,

Uttt =0 onaQsNoQ,

0 __
v n+1 —(_ 2 n
(5 + W) = (—5 -+ a)(Ug)  on 02 N,

(ny and n» are the outward normal on the boundary of the
subdomains)

~AUSTYy=1f  inQy,

Uttt =0 onaNe NN
%9 ) _
(a——l—a)( ”+1)—(—a—+a)(u1) on 9 N Q.

with « > 0. Overlap is not necessary for convergence.
Parameter a can be optimized for.

Extended to the Helmholtz equation (B. Despres, 1991)
a.k.a FETI 2 LM (Two-Lagrange Multiplier Method), 1998.
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A model problem

L(u):=nu—Au=FfinR% >0
The plane R? is divided into two half-planes with an overlap of
size § > 0 and the algorithm writes:
LWy =f inQy:=]—o0,d[xR,

0
v 1y (Y n —
(8m+oz)(u1 ) (8n2+a)(u2) atx =96
LWt =f inQp:=]0,00[xR,

9 nty _ (9 n _
(6nz+oz)(u2 ) = ( 8n1+a)(u1) atx=0

A Fourier analysis leads to the following convergence rate (k is
the dual variable):

/ 2 _
p(k;d,a) = |77+k .

n+ k2 + «

e~ VN + k2
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Overlapping Subdomains
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Overlapping subdomains — Implementation issues

A direct discretization of the P.L. Lions algorithm is doable but
not easy:

@ the right hand side has to be computed in the interior of the
subdomain

@ it involves normal derivatives to the interfaces

Fix ORAS preconditioner
Let B; be the matrix of the Robin subproblem in each
subdomain 1 < i < N, define

N
-1 TH.r-1m.
Mogas = Z R DB R;,
=1
Optimized multiplicative, additive, and restricted additive Schwarz
preconditioning, St Cyr, M. Gander et al, 2007
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P.L. Lions algorithm and ORAS

Provided subdomains overlap, discretization of the classical
P.L. Lions algorithm and the iterative ORAS algorithm:

+1 _ gy yn —1 n o.n._ n
Ul = UM+ Mggagr” 1" = F - AU".
are equivalent

U" = RIDyUY + RI D, UY

(St Cyr, Gander and Thomas, 2007).

@ Huge simplification in the implementation: no boundary
right hand side discretization

@ Operator M(;,;AS is used as a preconditioner in Krylov
methods for non symmetric problems.

@ First step in a global theory
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Helmholtz Equation

We want to solve

—u—Au=f inQ
u=0 onoQ.

Schwarz method is problematic:
Subproblems may be ill posed if w? is close to an eigenvalue of
the Laplace operator with Dirichlet conditions.

Fourier analysis
The convergence rate of the classical Schwarz method is:

_ eV —w2 4+ k2§

No damping for propagative modes —> very bad convergence

p
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B. Després’ Algorithm, 1991

—WPu AW = inQy,

0 __
+ lw) (Ut (—872+/w)(ug) on 99y N Qy,

(67171
(ny and n» are the outward normal on the boundary of the
subdomains)

~AUITY =f inQy,

+ lw) (Uit = (—i + lw)(uf)  on 9 N Q.

(o, o

Extended to the Mawell system (B. Despres, 1991)
a.k.a FETI 2 LM (Two-Lagrange Multiplier Method), 1998.
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Helmholtz equation — Overlapping subdomains

It is possible to study the convergence rate in the Fourier space:

Vo k2 _
W& = K = o) oo IV W2 = K28 i 1k < oy (P = 1)
Vw2 — K2 + lw
p(k) =
K — exp s _W5|f|k]>w
VK2 —w? —I—Iw

Moreover, a Krylov method (GC, GMRES, BICGSTAB, ...)
replaces the fixed point algorithm.
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Parallel Software tools : HPDDM and FreeFem++

Figure: Antennas and mesh — interior diameter 28,5 cm

Two in-house open source libraries (LGPL) linked to many
third-party libraries:
@ HPDDM (High Performance Domain Decomposition
Methods) for massively parallel computing
@ FreeFem++(-mpi) for the parallel simulation of equations
from physics by the finite element method (FEM).
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Forward problem and Synthetic data

@ Mesh with 2.3M degrees of freedom;

@ Domain decomposition methods with impedance interface
conditions, twice as fast as Dirichlet interface conditions;

@ Parallel computing on 64 cores on SGI UV2000 at UPMC :
3s per emitter, 5 mn as a whole.
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Non Overlapping
Subdomains
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Helmholtz Equation — Non Overlapping decomposition

M. Gander, F. Nataf, F. Magoulés
SIAM J. Sci. Comp., 2002.
We want to solve

—w?u—Au="f inQ
u=0 ono.
The relaxation algorithm is : (u?, u§) — (P, UB™") with
(i#j,1=12)
(2 =D WP =f inQ;

(§m+5)(u;’+1)_( ;nj+5)( ) onTy.

uPt = 00n90Q; N0
The operator S has the form
82
S=a- ’yﬁ a,y7€C
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Application: the Helmholtz Equation

By choosing carefully the coefficients « and ~, it is possible to
optimize the convergence rate of the iterative method which in
the Fourier space is given by

Ww? — K2 = (0 kK)o e = 1)

IVw? — k2 + (o + vk?)
p(Kia, ) =
2_ .2 _ 2
il Ch L [P
Vk2 —w? + (o + vk?)
Finally, we get analytic formulas for « and ~ (h is the mesh
size):

Qopt = a(w7 h) and Yopt = 'Y(‘% h),

Moreover, a Krylov method (GC, GMRES, BICGSTAB, .. .)
replaces the fixed point algorithm.
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The Helmholtz Equation — Numerical Results

Waveguide: Optimized Schwarz method with QMR compared

to ABCO (05, + lw) with relaxation on the interface

10> g+ Convergence |~

10° E{

102 L

10° & | - -
E Jacobi + Robin (Relax=0.5)

Linf Error (log)

10° £
108 L

-

| I I
500

I I | |
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300 400

Number of iterations

Chevalier and N., 1997

T ) S |
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Discretization of the two-field formulation

A direct discretization would require the computation of the
normal derivatives along the interfaces in order to evaluate the
right handsides. We introduce two new variables

6)u2 8U1

1_ Y42 2_ _ 741
A= o, +8(U2) and \ an; +S(U1).

The algorithm reads now
— AU 4 Pult = fin Q
n+1

ou;
ony
—AUTT +PUlT = fin Qp
n+1
ou,
ono

= 22" (S+8) W (AP, 6)

N2 AT (S + S) (W (02, 1)),

—I—S(U?—H) = )\1n onlqo

+8Wiy =22"on Ty

)\1 n+1
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Finite Element Discretization

A finite element discretization leads to the following linear

system:
M= X241 (S+8)B?u?
A2 = A4 (Ss+9)B'!
Kiv' = f+B"\
K22 = 24 B2 )2 (8)

where B' (resp. B?) is the trace operator of domain Q' (resp.
0?) on the interface '1». Matrix K/, i = 1,2 arises from the
discretization of the local Helmholtz subproblems along with the
interface condition 0, + a — v0;,.

K' =K — M + B (aMr, + vKr,,)B’ 9)

where K' is the stiffness matrix, M’ the mass matrix, Mr,, is the
interface mass matrix and Kr,, is the interface stiffness matrix.
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More precisely, the interface mass matrix Mr,, and the
interface stiffness matrix Kr,, are defined by

(M, lim = /r diémde and [Kr,lim = /r V., 6V, émde (10)

where ¢, et ¢, are the basis functions associated to nodes /
and m on the interface 12> and V.. ¢ is the tangential
component of V¢ on the interface.
We have

S= OéMr12 + ’)/Kr12.
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The substructured linear system of the two-field formulation has
the form

Fr=d (11)

where A = (\',\2), F is a matrix and d is the right handside

Fo_ I |- (S+8)B2K2'B2’
| 1-(8+98)B'K'"'B" /
4 (S+8)B'K''f!

(S+ S)B2K27'f2

The linear system is solved by a Krylov type method, here the
ORTHODIR algorithm. The matrix vector product amounts to
solving a subproblem in each subdomain and to send interface
data between subdomains.

V. Dolean, P. Jolivet & F. Nataf Domain Decomposition 52/129



General Interface Conditions for the Helmholtz Equation
Numerical Results
Waveguide: Optimized Schwarz method with QMR and ABCO
(On + lw) with relaxation on the interface

1022 T T —r—1 Convergence |—

[Jacobi + Robin (Relax=0.5)

Linf Error (log)

PRI ! P
300 400

Number of iterations

P
500
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General Interface Conditions for the Helmholtz Equation
Numerical Results
Acoustic in a Car : lteration Counts for various interface

conditions
Ns | ABC 0 | ABC 2 | Optimized
2 16 it 16 it 9 it
4 50 it 52 it 15 it
8 83 it 93 it 25 it
16 | 105it | 133t 34 it

ABC 0: Absorbing Boundary Conditions of Order 0 (05, + Iw)
ABC 2: Absorbing Boundary Conditions of Order 2

(On + lw —1/(2Iw)0,2)

Optimized: Optimized Interface Conditions
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Maxwell equations

Other works on Maxwell’s equations

Despres, ; Joly, ; Roberts, A domain decomposition method for the
harmonic Maxwell equations. lterative methods in linear algebra ,
1992.

Dolean, ; Gander, ; Gerardo-Giorda, Optimized Schwarz methods for
Maxwell’s equations. SISC, 2009

They are currently used in electromagnetic simulations:
LEE Jin-Fa - Ohio State University, ECE Department, USA:

Z. Peng, K. H. Lim, and J. F. Lee, Computations of Electromagnetic
Wave Scattering from Penetrable Composite Targets using a Surface
Integral Equation Method with Multiple Traces, IEEE T. ANTENNA
PROPAG., 2012.

Z. Peng, K. H. Lim, and J. F. Lee, Non-conformal Domain
Decomposition Methods for Solving Large Multi-scale
Electromagnetic Scattering Problems, Proceeding of IEEE, 2012.
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@ Muttigrid and Direct Solvers

V. Dolean, P. Jolivet & F. Nataf ain Decomposition 56/129



Multigrid Methods

Some multigrid solvers (free and commercial)

AmgX - NVIDIA Developer
(https://developer.nvidia.com/amgx)

AMG via HYPER (http://computation.llnl.gov/
project/linear_solvers/software.php)

@ PCGAMG via PETSC (http://www.mcs.anl.gov/petsc)

@ AGMG (http://homepages.ulb.ac.be/~ynotay/)

@ SAMG (http://www.scai.fraunhofer.de/en/

business—-research—-areas/numerical-software/
products/samg.html)
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Geometric Multigrid Methods

(Seen as a special case of Domain Decomposition Methods)
One subdomain equals one cell. Additive Schwarz method

reduces to the Jacobi method — Fine level preconditioner :

M .= diag(diag(A))~".

Jacobi -

High frequency modes of the error are quickly damped by the
Jacobi (or Gauss-Seidel) method.

Coarse Bpd6e Grid Correction damps Low frequency modes, a
coarser discretization is introduced. Let /5, be an interpolation
operator from a coarse grid (2h) to the fine grid (h).
Let R := /5, and
_ —1 _
My&olAl = R{ (RoAR]) ™ Ro + My,

Jacobi*

Simple Two grid method
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Multigrid Methods

More elaborate corrections:

@ More levels and Recursive approach
e Apply to (ROAROT) the same strategy by introducing a third
coarse grid (4h) and the interpolation operator R/ := /2]

—1 . . _

Myéo[RoAR] ] := R{ (R1RoARJ R])  Ry+diag(diag(RoAR])) ™.
ML (Al == Rl M7\ [RoAR{] Ro + M7 .
MG3 0 Viygal0/1g | 110 Jacobi

@ Various strategies to move across levels: V and W cycles

Decomposition in the frequency domain rather than in space.
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Multigrid Methods

Recall
P=I1-AQ, Q:=ZE'ZT, E:=2ZTAZ,
Some properties: QAZ = Z, PTZ =0and PT Q = 0.

Pa_perz = PTM]

Jacobi

+Q,

Pawn = PTM~TP + Q (Mandel, 1993)

Let r,, be the residual at step n of the algorithm: Z7 r, = 0.
Multigrid V(1,1)-cycle

1 a1 T pg—1 —1 —1
MMG =M P+ P MJacobi +Q- MJacobi P MJacobi

Jacobi
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Aggregation Multigrid Methods

When you have no access to the underlying grid, it is still
possible to aggregate d.o.f’s by exploiting the graph of the

matrix.
Two-level preconditioner, by grouping every three d.o.f’s :
110|0
110|0
110|0
0(1]0
Z= 0(11]0
001
001
0|01

Let R} := Z and

»
MameolAl = RS (RoAR{)  Ro + M,

Jacobi*
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Algebraic Multigrid Methods

Pros:

@ Optimality for Poisson or Darcy problem even with highly
heterogeneous coefficients

@ Black box implementations
@ Weakly scalable

Cons
@ Difficulties and even failures with systems of PDEs

@ Not so black box since it needs the near kernel of the
operator

@ Fails for Wave Propagation phenomena in the frequency
domain (shifted Laplacian: Erlangga, Osterlee and Vuik)

@ Less theory than for DDM (Notay)
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Direct Solvers

Gauss or LU factorization
A=LU.

where L is a lower triangular matrix and U is an upper

triangular matrix.
Different sparse direct solvers (free and commercial)

@ PARDISO (http://www.pardiso—project.org)
@ SUPERLU (http://crd.1lbl.gov/~xiaoye/SuperLU)

@ SPOOLES
(www.netlib.org/linalg/spooles/spooles.2.2.html)

@ MUMPS (http://graal.ens-1lyon.fr/MUMPS/)
@ UMFPACK (http:

//www.cise.ufl.edu/research/sparse/umfpack)
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Multifrontal : a way to break sequentiality

Figure: Degrees of freedom partition for a multifrontal method
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Multifrontal factorizations

By numbering interface equations last, this leads to a block
decomposition of the linear system which has the shape of an
arrow (pointing down to the right):

A 0 A\ (U Fi
0 Ax Ao ﬁz = |":2 . (12)
Ari Arz Arr/ \Ur Fr
A simple computation shows that we have a block factorization

of matrix A

/ Aq4 I 0 A7 A
A= 0 / Az I Ay Aor | -
ArAL ArAs | S /

S := Arr — Ar1Aj{ Air — Ar2Az) Aor

is a Schur complement matrix and it is dense. It corresponds
to an elimination of the interior unknowns U;, i = 1, 2.
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Multifrontal factorizations

The inverse of A can be easily computed from its factorization

I 0 —Aj AR (A /
Al = I —Ay Aor Ay 0 / :
_ —1 —1
/ S \-ArAL —ArAy |
1

(13)
Parallelism:

@ Recursion on blocks Aq1 and A»» is feasible.

@ k-way partitioning

Limitations Schur complement S is a dense matrix. Factorizing
systems of the form
SVr=Gr

is a bottleneck.
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Schur complement preconditioners

Pros:
@ Method of choice if it makes the job
@ Genuinely robust black box methods

Cons:
@ Worsens beyond a certain size or number of cores (20-30)
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From Direct Method to Preconditioners

Instead of factorizing Schur complement, we can solve
iteratively systems of the form

SVr=Gr.

Preconditioner for the Schur complement From a
decomposition of matrix Arr:

Arr =AY + AQ)
We can infer that for each domain i = 1, 2, local operators
S; = (Agfg - Ar,-A,y‘A,-r) and S =Sy +Ss.

and approximate S~ by

Vet o) ]
Timp (5748) 5
Exact formula if S = Sp = in general, very good for the high
frequency part of the error.
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Schur complement preconditioners

Generalizes to many subdomains.

BDD and FETI methods rely on these ideas plus Coarse space
corrections.

Pros:

@ Very popular in mechanical engineering since it is very
efficient for elasticity problems

Cons:
@ Needs elementary matrices even for the one-level method
@ Not robust for bad decompositions
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e GenEO Coarse space

@ Comparisons
@ Scalability tests
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Nicolaides Coarse Space

Theorem (Widlund, Dryija)
Let M;;M 5 be the two-level additive Schwarz method:

H
K(Magy2A) < C (1 + 3>

where § is the size of the overlap between the subdomains and
H the subdomain size. )

This does indeed work very well
Number of subdomains | 8 | 16 | 32 | 64

ASM 18 | 35 | 66 | 128
ASM + Nicolaides 20 | 27 | 28 | 27

Fails for highly heterogeneous problems
You need a larger and adaptive coarse space.
71/129
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Failure for Darcy equation with heterogeneities

~V-(a(x,y)Vu) = 0 in QCR?
u = 0 on 0Qp,
o)
on — 0 on 9.

Il B8
Decomposition a(x,y)
Jump 1 10 102 [10° [ 107
ASM 39 (45| 60 | 72 | 73

ASM + Nicolaides | 30 | 36 | 50 | 61 65

Our approach

Fix the problem by an optimal and proven choice of a coarse
space Z.
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Fix: Adaptive Coarse Space

Strategy

Define an appropriate coarse space Vi, = span(Z>) and use
the framework previously introduced, writing Ry = Z; the two
level preconditioner is:

N
_ 1 B
PA§M2 = HJ(ROAR(;-) RO + E R,'TAI- 1R,'.
i=1

The coarse space must be

@ Local (calculated on each subdomain) — parallel
@ Adaptive (calculated automatically)
@ Easy and cheap to compute

@ Robust (must lead to an algorithm whose convergence is
proven not to depend on the partition nor the jumps in
coefficients)
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Adaptive Coarse space for highly heterogeneous Darcy and
(compressible) elasticity problems:
Geneo .EVP per subdomain:

Find V; x € RN and 1 > 0:

T N
Dj RIARJ Djvjk - /j’/:kAj eu\/j’k

In the two-level ASM, let ~ be a user chosen parameter:
Choose eigenvectors 1 x > 7 per subdomain:

j=1,.,N
Hj k2T

Z .= (R/D}Vjk)
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Adaptive Coarse space for highly heterogeneous Darcy and
(compressible) elasticity problems:
Geneo .EVP per subdomain:

Find V; x € RN and 1 > 0:

T N
Dj RIARJ Djvjk = /j’/:kAj eu\/j’k

In the two-level ASM, let ~ be a user chosen parameter:
Choose eigenvectors 1 x > 7 per subdomain:

Z = (RTOV ) 1o

Hj k2T

This automatically includes Nicolaides CS made of Zero

Energy Modes.
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Theory of GenEO

Two technical assumptions.

Theorem (Spillane, Dolean, Hauret, N., Pechstein, Scheichl

(Num. Math. 2013))
Ifforallj: 0 < pjm,, <oo:

H(M;;‘M,zA) < (14 ko) |2+ ko (2ko + 1) (1 + T)}

Possible criterion for picking 7: (used in our Numerics)

Ry

r:= min -2
j=1,..N §;

H; ... subdomain diameter, ¢; . . . overlap
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Numerical results (Darcy)

Channels and inclusions: 1 < a < 1.5 x 10, the solution and
partitionings (Metis or not)
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Error

T
= = =Py 1AS + 2,

= = Py AS + 25
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Numerical results — Optimality

m; is given automatically by the strategy.

#Z per subd. | ASM |ASM+Zco | ASM+Zgeneo
max(m; —1,1) 273
m 614 543 36
m; +1 32

@ Taking one fewer eigenvalue has a huge influence on the
iteration count

@ Taking one more has only a small influence
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Eigenvalues and eigenvectors (Elasticity)

e Con
=== =

EEE=EE
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Numerical results via a Domain Specific Language

FreeFem++ (http://www.freefem.org/ff++), with:

@ Metis Karypis and Kumar 1998 @ Intel MKL

@ SCOTCH chevalier and Pellegrini 2008 @ PARDISO Schenk et al. 2004
@ UMFPACK Davis 2004 @ MUMPS Amestoy et al. 1998
@ ARPACK Lehoucq et al. 1998 @ PaStiX Hénon et al. 2005

@ MPI sniretal. 1995 @ Slepc via PETSC

Runs on PC (Linux, OSX, Windows) and HPC (Babel@CNRS,
HPC1@LJLL, Titane@CEA via GENCI PRACE)

Why use a DS(E)L instead of c/C++/Fortran/.. ?
@ performances close to low-level language implementation,
@ hard to beat something as simple as:

varf a(u, v) = int3d(mesh)([dx(u), dy(u), dz(u)]' * [dx(v), dy(v), dz(v)])
+ int3d(mesh)(f * v) + on(boundary mesh)(u = 0)
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Strong scalability in two dimensions heterogeneous

elasticity (P. Jolivet with Frefeem ++)

Elasticity problem with heterogeneous coefficients with
automatic mesh partition

|
iy
S
x Fiterations

—— Linear speedup || 10

—e—Timing relative to 1024 processes

#processes
Speed-up for a 1.2 billion unknowns 2D problem. Direct solvers
in the subdomains. Peak performance wall-clock time: 26s.
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Strong scalability in three dimensions heterogeneous

elasticity

Elasticity problem with heterogeneous coefficients with
automatic mesh partition

|
iy
S
x Fiterations

—e—Timing relative to 1024 processes

115
1 — Linear speedup || 10
1 1 I I
105, 2040 Y09, Olq,

#processes

Speed-up for a 160 million unknowns 3D problem. Direct
solvers in subdomains. Peak performance wall-clock time: 36s.
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Darcy pressure equation

-10°

Figure: Two dimensional diffusivity
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Weak scalability in two dimensions

Darcy problems with heterogeneous coefficients with automatic
mesh partition

100 % |- 15088

80% -

60 % - 7

40% -

—e—+#d.o.f. (in millions)

20% -
- 422

O % 1 1 1 1 1
Z 2 Z, & Z
094 Oqy 99 Z. 9o 99@8

#processes

—a—Weak efficiency relative to 1024 processes

Efficiency for a 2D problem. Direct solvers in the subdomains.
Final size: 22 billion unknowns. Wall-clock time: ~ 200s.
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Weak scalability in three dimensions

Darcy problems with heterogeneous coefficients with automatic
mesh partition

2

2

5

o

2,100% |- 4105

= —

g ) z

—~ 80% | S

= =
7 g

£ =

2 60% |- &

& o

5 40%| 8 3

g 3k

g +

g 20%|

6 113

= 0% I I I I I

7 2 < 6, &
+ 024 Ozs 095 "Ly 195

#processes

Efficiency for a 3D problem. Direct solvers in the subdomains.
Final size: 2 billion unknowns. Wall-clock time: ~ 200s.
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One level ASM revisited

@ H:=R#N and the a-bilinear form:
a(U,V) := VT AU. (14)

where A is the matrix of the problem we want to solve.
@ Hp is a product space and b a bilinear form defined by

N
Hp == [[ R*" and b(t, V) ZVT (RARNU;, . (15)
i=1 i=1

@ The linear operator R 5y is defined as

N
Rasm : Hp — H, Rasu) :=> _RU;. (16)

We have: M4, = Rasm B~ Rigy-
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Fictitious Space Lemma

Lemma (Fictitious Space Lemma, Nepomnyaschikh 1991)

Let H and Hp be two Hilbert spaces. Let a be a symmetric
positive bilinear form on H and b on Hp. Suppose that there
exists a linear operator R : Hp — H, such that

@ R is surjective.

@ there exists a positive constant cg such that

a(Rup, Rup) < cg- b(up,up) Yup € Hp.  (17)

@ Stable decomposition: there exists a positive constant cr
such that for all u € H there exists up € Hp with Rup = u
and

cr - b(up, up) < a(Rup, Rup) = a(u, u). (18)
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Fictitious Space Lemma (continued)

Lemma (FSL continued)

We introduce the adjoint operator R* : H — Hp by
(Rup, u) = (up, R*u)p for all up € Hp and u € H. Then we
have the following spectral estimate

cr-a(u,u)<a (RB*R*AU, u) <cg-a(u,u), Yue H (19)

which proves that the eigenvalues of operator RB~'R*A are
bounded from below by ct and from above by cg.

This Lemma is the Lax-Milgram lemma of domain
decomposition methods.

Combining FSL with GenEO techniques yields an adaptive
coarse space with a targeted spectrum for the preconditioned
system.
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Heuristic motivation for GenEO — |

Let A{\’e“ be the Neumann matrix of subdomain i, we define:

N
My = > RTDI(AY™) ' D;R;,

i=1

Lemma

Let ky denote the maximum multiplicity of subdomains
intersections, then

1 1
T < Amin(MynA) -

Recall that, (ko:the maximum number of neighbors)

Amax(Mzd,A) < ko .
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Heuristic motivation for GenEQO — Il

@ One idea would be to blend both preconditioners into a
"perfect” one: No Way

@ A second idea is to identify modes V;, responsible for bad
convergence:

D;(ANe")=1D; V;  very different from A=V
or u;x far away from 1:

A;Veu Vik = IU,,'kD,'AiDiVik
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Estimate for the one level ASM

Let ky be the maximum number of neighbors of a subdomain.
We can take cg := kg .

Let ky be the maximum multiplicity of the intersection between
subdomains and 74 be defined as:

, _ U, " Aleuy,
7{:= min  min - - .
1<i<N y;er#Vi\ {0} U; (D,R,ARI D;)U;

We can take cr := ;—1 )

We have:
T

K < AMA,A) < Ko
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Control of the lower bound

Definition (Generalized Eigenvalue Problem for the lower
bound)

For each subdomain 1 < j < N, we introduce the generalized
eigenvalue problem

Find (Vjx, \i) € R#*Vi \ {0} x R such that (20)
Let = > 0 be a user-defined threshold, we define

Zeneo.Asm © R#*N as the vector space spanned by the family of

vectors (RT DV )\, - 1<j<n corresponding to eigenvalues
iV k) A< 1<<
smaller than r.
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ASM theory for a S.P.D. matrix A.

(Recap) A; .= RART, 1 <i<N
@ Algebraic reformulation = MzAs := SN | RTD,A'R;
© Symmetric variant = M, .= SN RTA 'R,
© Adaptive Coarse space with prescribed targeted
convergence rate
= Find V;, € RN and )\, 4 > 0:

D RAR DV = A AUV,

Next develop a similar theory and computational
framework for Optimized RAS (ORAS)
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Motivation for the Goal

@ Fill a "Hole” in the theoretical framework:

e No GenEO theory for Adaptive coarse spaces for
Optimized interface conditions
o Whereas it exists for Schwarz and BNN-FET| methods.

@ Need for robust methods for nearly incompressible
elasticity with arbitrary partitions
e Combination of ASM with GenEOQ is very efficient for Darcy
and compressible elasticity with arbitrary partitions
e Combination of BNN-FETI with GenEO is very efficient for
Darcy and (in)compressible elasticity with regular partitions
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Let B; be the matrix of the Robin subproblem in each
subdomain 1 <ji< N
Q Algebraic reformulation for overlapping subdomains =
Motas = SN RTD:B " R;, Optimized multiplicative,
additive, and restricted additive Schwarz preconditioning, St Cyr
et al, 2007
Q Symmetric variant =
oM OAS =¥ 1RTB* R; (Natural but K.O.)
oM SORAS *Z: 1RTDB DiR; (O.K.)
© Adaptive Coarse space with prescribed targeted
convergence rate
= 77
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FSL and one level SORAS

@ H:=R#N and the a-bilinear form:
a(U,V) := VT AU. (21)

where A is the matrix of the problem we want to solve.
@ Hp is a product space and b a bilinear form defined by

N N
Hp := HR#N" and b(i4, V) := ZV,-TB/'U/', : (22)
i=1 i=1

@ The linear operator Rspras is defined as

N
Rsoras : Ho — H, Rsopas(U) =Y _ R/ DU;.  (23)
i=1

el 1R
We have: Mgopas = Rsoras B~ Rsoras:
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Estimate for the one level SORAS

Let ko be the maximum number of neighbors of a subdomain
and 4 be defined as:

.
— max  max (R,-TD,-U,-) A(R,-TD,-U,-)
o 1<i<N U,eR#Ni\ {0} U,-TB,-U,-

We can take cp := ko 71 -
Let k4 be the maximum multiplicity of the intersection between
subdomains and 71 be defined as:

. . U,'TAfvqui
7y = min min =
1<i<N yer#Ni\{0}y  U;' BjU;

We can take cr := ;—1 .

We have:
T

K = MMgbrasA) < ko1 -
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Control of the upper bound

Definition (Generalized Eigenvalue Problem for the upper

bound)

Find (Ui, puix) € R#Ni\ {0} x R such that
(24)
DiRAR] DUjx = pix B Ui .
Let v > 0 be a user-defined threshold, we define Zjgpeo C R#N

as the vector space spanned by the family of vectors
(R,.TD,-U,-k)meS,-SN corresponding to eigenvalues larger than

- )
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Control of the lower bound

Definition (Generalized Eigenvalue Problem for the lower
bound)

For each subdomain 1 < j < N, we introduce the generalized
eigenvalue problem

Find (Vjx, \ik) € R#Vi \ {0} x R such that (25)
Aj{\/euvjk = )\jkBjij o

Let 7 > 0 be a user-defined threshold, we define Zggpe, C R#N
as the vector space spanned by the family of vectors
(F‘l’jTDjij))\jk<T,1§j§N corresponding to eigenvalues smaller

than 7.
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Two level SORAS-GENEO-2 preconditioner

Definition (Two level SORAS-GENEO-2 preconditioner)

Let Py denote the a-orthogonal projection on the
SORAS-GENEO-2 coarse space

- v
ZLGenEO-2 == ZgTeneo @ deneo )

the two-level SORAS-GENEO-2 preconditioner is defined:

M§<13RAS,2 = PoA™" + (lg — Po) Mgpas (la — Pg)

where PoA~" = R](Ro AR])~'Ro, see J. Mandel, 1992.
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Two level SORAS-GENEO-2 preconditioner

Theorem (Haferssas, Jolivet and N., 2015)

Let~ and T be user-defined targets. Then, the eigenvalues of
the two-level SORAS-GenEQ-2 preconditioned system satisfy
the following estimate

1 _
T < )\(MSORASZA) < max(1, ko)

: . -1 .
What if one level method is MOAS'

Find (V, ,k) e R#Ni\ {0} x R such that
ANeuvy = Ny D;B:D N i .
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Nearly incompressible elasticity

Material properties: Young modulus E and Poisson ratio v or
alternatively by its Lamé coefficients A and p:

Ev E

Mooz M T i)

For v close to 1/2, the variational problem consists in finding
(Up, pn) € Vi :=Pg N H{(Q) x Py such that for all (vp, gn) € Vs

Jo2pe(up) - e(vp)dx — [ prdiv(vp)dx = [, fvpdx

— [odiv(up)gndx  — [, 1pngn =0
H BT][u] [f
:>AU—[B —cl||p _[O]_F.

A is symmetric but no longer positive.
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Comparisons (with FreeFem++)

Figure: 2D Elasticity: Sandwich of steel (E;,v4) = (210 - 10°,0.3) and
rubber (Ea, v2) = (0.1 - 10°,0.4999).

Metis partitioning

Table: 2D Elasticity. GMRES iteration counts

AS SORAS [[AS+CS(ZEM) [ SORAS +CS(ZEM)[] AS-GenEO [[ SORAS -GenEO-2

Nb DOFs [ Nb subdom [|iteration || iteration || iteration | dim || iteration dim iteration| dim || iteration dim
35841 8 150 184 117 24 79 24 110 184 13 145
70590 16 276 337 170 48 144 48 153 | 400 17 303
141375 32 497 ++1000 261 96 200 96 171 800 22 561
279561 64 ++1000 [[ ++1000 333 [ 192 335 192 496 | 1600 24 855
561531 128 ++1000 || ++1000 329 |384 400 384 ++1000 | 2304 29 1220
1077141 256 ++1000 || ++1000 369 | 768|[ ++1000 768 ++1000 | 3840 36 1971
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Strong scalability in two and three dimensions (with

FreeFem++ and HPDDM)

Stokes problem with automatic mesh partition. Driven cavity
problem

N Factorization Deflation Solution # of it. Total  # of d.o.f.

1024 79.2s 229.0s 76.3s 45 387.5s

2048 29.5s 76.5s 34.8s 42 143.9s . .. 6
3D 4096 11.1s 45.8s 19.8s 42 80.9s 506310

8192 4.7s 26.1s 14.9s 41 56.8s

1024 528 379s 51.58 51 95.65s

2048 24s 19.3s 22.1s 42 44.5s 6
2D 4096 1.1s 10.4s 10.2s 35 22.6s 100.13 - 10

8192 0.5s 4.6s 6.9s 38 12.7s

Peak performance: 50 millions d.o.f’s in 3D in 57 sec.
IBM/Blue Gene Q machine with 1.6 GHz Power A2 processors.
Hours provided by an IDRIS-GENCI project.
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Weak scalability for heterogeneous elasticity (with

FreeFem++ and HPDDM)

Rubber Steel sandwich with automatic mesh partition

8 :

S 100% | 1 704

2 E
a, b .S
2 80% | 1197 F
[a\} =
o 4

4; 60(%} [ - E
= . o
T 0% 1 2
S B k]
% 20% ——3D 3k
‘S 2D | 6

E 0% Il Il Il Il I

|
956, 5]9 ]091 901& 40(96 (?]99
# of processes

(a) Timings of various simulations

200 millions unknowns in 3D wall-clock time: 200. sec.
IBM/Blue Gene Q machine with 1.6 GHz Power A2 processors.
Hours provided by an IDRIS-GENCI project.
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© HPDDM Library
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HPDDM Library (P. Jolivet and N.)

An implementation of several Domain Decomposition Methods
@ One-and two-level Schwarz methods

@ The Finite Element Tearing and Interconnecting (FETI)
method

@ Balancing Domain Decomposition (BDD) method

Library
@ Linked with BLAS & LAPACK.

@ Linked with state of the art solvers: direct solvers
(MUMPS, SuiteSparse, MKL PARDISO, PASTIX),
multigrid: BoomerAMG

@ Linked with eigenvalue solver (ARPACK).
@ Interfaced with discretization kernel FreeFem++ & FEEL++
@ C++, C, Python and Fortran interface
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HPDDM Examples

FreeFem++

@ examples++-hpddm diffusion, elasticity, heat, Helmholtz,
Maxwell

@ Schwarz or FETI-BDD (diffusion-elasticity only)
Feel++ (C. Prud’homme)
@ doc/manual/dd/geneo.cpp FETI-BDD + Geneo
@ doc/manual/ns/nsprojRecycling.cpp
Navier-Stokes with projection + GCRODR
Stand alone examples
@ Schwarz with Geneo finite difference (C++,C Python)
@ Krylov methods in Fortran (Block and Recycling)
@ Schwarz from file (CSR format)

@ Soon : Krylov methods with Petsc preconditioners (Block
and Recycling)
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some FreeFem++ code: Schwarz.edp

mesh Th
func Pk = P1;
fespace Wh(Th,

minimalMesh ;

Pk) ;

// Mesh decomposition and distribution among processes

build (generateTh, Th, ThBorder, ThOverlap, s, D,
numberintersection, arraylntersection,
restrictionintersection, Wh, Pk, mpiCommWorld)

// Variational

formulation of the problem

macro Varf(varfName, meshName, PhName)
varf varfName(u, v) = intN (meshName) ((grad(u)’ = grad(v))) +
intN (meshName) (v) + on(1, u = 0.0);// EOM

// Distributed

matrix A

assemble (Mat, rhs, Wh, Th, ThBorder, Varf)

dschwarz A(Mat,

arraylntersection, restrictionlntersection,

scaling = D) ;
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some FreeFem++ code: Schwarz.edp

// Geneo coarse space construction

macro EVproblem (varfName, meshName, PhName)

varf varfName(u, v) = intN (meshName) ((grad(u)’ * grad(v))) + on
(1, u=0.0);// EOM

EVproblem (vPbNoPen, Th, Ph)

matrix<real> noPen = vPbNoPen(Wh, Wh, solver = CG);

attachCoarseOperator (mpiCommWorld, A, A = noPen) ;

// DDM solve
Wh<real> def(u); // this will be the solution

DDM(A, u[], rhs);
plotMPI(Th, u[], "Global solution”, Pk, def, 3, 1)

110/129
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e Unsymmetric Operators
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Convection-Diffusion Equation

More General Interface Conditions for the Convection-Diffusion
Equation
cu+a-Vu—vAu=f

where ¢ = 1/At if a backward Euler scheme is used.

The analysis of the convergence reveals that interface
conditions with second order derivatives must have the
following form

an

n
+ o+ BO; —7832

On + 2v

with a, v > 0 and where n is the outward normal to the
subdomain and 7 is tangent to the interface.
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Convection-Diffusion Equation

For a constant coefficient operator, the convergence rate in the
Fourier space is given by

\/(5- n)2 +4vc +41a- tvk + 412k2 B

— 2v
k; «, O, - = =
A B V(@-n)2 +4ve +413- Tvk + 412k2

2v

(o + 18K + vK?)

+ (o + I8k 4 vk?)

where 2 = —1.
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Convection-Diffusion Equation

Possible choices for o, 5 and ~:
@ Exact absorbing boundary conditions: limited to constant
coefficient operators (T. Hagstrom et al., 1988)
@ 5 =~ =0 (Quarteroni, 1996).
@ Approximate absorbing boundary conditions of order 0, 1
or 2, referred to as Taylor of order 0,1 or 2, (N. & F. Rogier,
1992).

@ « asin (N. & F. Rogier, 1992), optimization over 3 and ~
(C. Japhet, N. & F. Rogier).
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Schur Complement type method for
Convection-Diffusion problem

Robin-Robin Algorithm

Y.A, P. Letallec, F. Nataf, M. Vidrascu

Schur method for a two subdomain case

Find an equation whose solution is the interface value of u on
interface T
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Consider first Dirichlet local sub problems with u|r on the
interface.

Lui=Tf ingQ,

u=ulr onrl

ui=0 surdQ\r.

Consider the DtN (Dirichlet to Neumann a.k.a.
Steklov-Poincaré) map:

S L2(Q) x Ha,(T) — H3(T)
S(fuir) =% (32 +52) Ir

The interface problem reads

S(0, ulr) = —S(f,0)

After discretization, the problem is solved by a preconditioned
GMRES solver.
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Neumann-Neumann Algorithm

(R Glowinski, P. Letallec et al )
The basic idea to approximte the inverse of S(0,.) by 7

T H- %(r)éHgo(r)
T(9) = 3 (vi + v2)|r.
where
Lvi=0 ingQ;,
v

~Vap =9 on r
vi=0 suroQ\rl.

Remark In the symmetric two subdomain case, and if a is
uniform and &- i = 0, then T is the exact inverse of S(0, .).
Remark General case: if a- ii = 0, this preconditioner is
nearly optimal if a coarse space is added (multigrid
ingredient).

Remark when a- i # 0, Neumann-Neumann is too much
symmitric.
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Robin-Robin Algorithm

The basic idea is to define the preconditioner 7 as:

T H 5 (T) = HE, ()
T(9) =3 (vi + v2)|r.

where
Lvi=0 inQ,
u%— &vi=g onl
vi=0 onoQ\rl.

Remark Sub problems are well posed.

Remark Generalizes Neumann-Neumann algorithm when
a-n#0.
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Important remark

The convection diffusion equation reads

1 -, 1.2 -
(C—Ev-a)u—l- E(a-VquV-(au))—uAu:f

It can be written in a skew-symmetric form:

/Q/{yw'wjug(é'w)v—;(§~VV)U+(C—;V-(5))UV}

The above Robin condition is the natural boundary
condition of this variational formulation.

Similarity with Neumann-Neumann algorithm for the Laplacian.
Consequence Starting from a Neumann-Neumann code, the
modification is easy. For SUPG stabilization, the
preconditioner is automatically setup.

Remark Skew symmetric form plays a role only for interface
nodes.
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Convergence analysis for simple cases

Two half planes case
proof : Fourier

5(6) = T(€) = 5\ 4ve + (A2 + 4id7aew + 4202,
For more slices, if
max(fie, L\/E) >1,
|a.n| v

ToS~I.

the,

Good behvior for an advective term not too large or for a small
viscosity.
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Plus de deux sous-domaines avec convection
forte

Cas typique
@ grand pas de temps = ¢ < 1 ou c=0.
@ v arbitraire.
@ on suppose la vitesse uniforme.

@ Les sous-domaines sont des bandes et on suppose
a- n+ 0 sur les interfaces. Le nombre de bandes est N.
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Premiers tests: comparaisons - |

Rectangle [0, 1] x [0, 0.2] découpé en cing bandes 0.2 x 0.2.
Dans chaque sous-domaine, maillage uniforme 60 x 60

éléments.
parameétres : ¢ = 1 et v = 0.001 ou v = 1, et quatre vitesses :
Q a=¢.
la vitesse est ici normale aux interfaces
Q a=¢6.

la vitesse est ici paralléle aux interfaces
Q i=2(6 +&).
vitesse oblique.
o é =27 ((X1 — 05)6_:2 — (X2 — 01)6_;) .
vitesse tournante : tourbillon.
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Premiers tests: comparaisons - Il

Table: comparaisons pour différents champs de vitesse

viscosité | Precond.\ vitesse. | L | // | oblique | tournante
R-R 3|2 5 36
v = 0.001 N-N 52| 2 42 > 100
- 14 | 34 13 71
R-R 919 10 10
v=1 N-N 919 10 11
- 30 | 38 41 41
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@ La méthode de Robin-Robin est bien meilleure que celle
de Neumann-Neumann quand la viscosité est petite
alors que les performances sont équivalentes pour v
grand.

@ pour v < 1, et si la vitesse n’est pas // aux interfaces, la
méthode de Neumann-Neumann est trés mauvaise.

Au contraire, si la vitesse est //, alors Neumann-Neumann
et Robin-Robin sont équivalents et sont quasi optimaux (2
iterations).

@ Accord complet avec I'analyse de Fourier.

@ Donc la méthode de Robin-Robin s’adapte
automatiquement aux différents cas.

@ la méthode de Robin-Robin est toujours la moins chere.
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Open questions for the non symmetric case

@ Adaptive interface construction
@ Adaptive coarse space constructions
@ Non symmetric extension of the Fictitious Space Lemma
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e Conclusion
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Conclusion

@ Using two generalized eigenvalue problems and projection
preconditioning we are able to achieve a targeted
convergence rate for

o Additive Schwarz method (ASM)
@ Optimized Schwarz method
e BNN methods (see Lecture Notes)

@ Available in HPDDM C++/MPI library
@ Available in the public release of FreeFem++
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Conclusion

@ Build the coarse space on the fly, see e.g. M. Szydlarski
(2013), N. Spillane (2016).

@ Nonlinear time dependent problem (Reuse of the coarse
space)

@ Multigrid like three (or more) level methods

@ Coarse spaces for non symmetric, undefinite problems
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