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Why Domain Decomposition Methods ?

• In some situations, the decomposition is natural

- Moving domains (rotor and stator in an electric motor)

- Strongly heterogeneous media : Sliding blocks along

faults in subsurface modeling

- Different physics in different subdomains

=⇒ Tools for handling non conforming mesh are needed

“Domain connection” would be more appropriate

• Parallel processing is the only way to have faster codes

New generation processors are parallel: dual, quadri core, ....

• Large scale computations =⇒ need for an ”artificial”

decomposition

Memory requirements

Direct solvers are too costly and iterative solvers are not

robust enough =⇒ New iterative/direct solvers are

welcome : these are domain decomposition methods
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Linear Algebra from the End User point of view

Direct Solvers DDM Krylov

Cons: Memory Pro: Flexible Compromise Pros: Memory

Difficult to parallelize Parallel computer Easy to parallelize

Pros: Robustness Cons: Robustness

solve(MAT,RHS,SOL) Few black box routines solve(MAT,RHS,SOL)

Partial implementation

of efficient DDM

Multigrid methods: very efficient but may lack robustness, not

always applicable (Helmholtz type problems, complex systems) and

difficult to parallelize.
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The First Domain Decomposition Method

The original Schwarz Method (H.A. Schwarz, 1870)

−∆(u) = f in Ω

u = 0 on ∂Ω.

Schwarz Method : (un
1 , un

2 ) → (un+1
1 , un+1

2 ) with

−∆(un+1
1 ) = f in Ω1

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω

un+1
1 = un

2 on ∂Ω1 ∩ Ω2.

−∆(un+1
2 ) = f in Ω2

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω

un+1
2 = un+1

1 on ∂Ω2 ∩ Ω1.

Parallel algorithm, converges

but very slowly, overlapping subdomains only.

Improvement will come from: 1) introducing Krylov

methods, 2) Neumann or 3) more general boundary

conditions and 4) coarse grid corrections
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Introducing Krylov Methods

Fixed point methods are intrinsically slower than Krylov methods

Solve

Ax = b

by a fixed point method with a linear operator B easy to invert:

Bxn+1 = Bxn + (b − Axn)

Let r0 := b − Ax0, we have:

xn =
n∑

i=0

(Id − B−1A)i B−1r0 + x0

A preconditioned Krylov solve will generate an optimal xn
K in

Kn(B−1A, B−1r0) := x0+Span{B−1r0, B−1A B−1r0, . . . , (B
−1A)n B−1r0}

and since xn ∈ Kn(B−1A, B−1r0) as well but with “frozen”

coefficients ⇒ xn is less optimal (actually much much less) than xn
K
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Jacobi and Schwarz (I): Algebraic point of view

The set of indices is partitioned into two sets N1 and N2:

 A11 A12

A21 A22





 x1

x2


 =


 b1

b2




The block-Jacobi algorithm reads:

 A11 0

0 A22





 xk+1

1

xk+1
2


 = −


 0 A12

A21 0





 xk

1

xk
2


+


 b1

b2




It corresponds to solving a Dirichlet boundary value problem in

each subdomain with Dirichlet data taken from the other one at

the previous step ⇐⇒ Schwarz method with minimal overlap

1 2

1̄ 2̄

Figure 1: Domain decomposition with minimal overlap
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Jacobi and Schwarz (II): Larger overlap

Let δ be a non negative integer

1 2

ns ns + δ

Figure 2: Domain decomposition with overlap

A =

( )

or

( )

ns

ns + 1 ns

ns + δ

Figure 3: Matrix decomposition Without or with overlap
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Krylov - Schwarz

Schwarz method is a fixed point method of Jacobi style

T : (xk, b) 7−→ xk+1

which solves the linear system:

(Id − T (·, 0))(x) = T (0, b)

Use instead Krylov type method : CG, GMRES, BICGSTAB, . . .

Gain :

• Iteration count : κ −→ √
κ

• Robustness

In practice, you get a factor three or more.

For some time-dependent problems discretized with a small time

step, results are satisfactory. Otherwise, the method is slow.

Improvement will come from the introduction of Neumann or more

general BCs
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First family of modern methods : Substructuring
formulation

We want to solve

L(u) := −∆(u) = f in Ω

u = 0 on ∂Ω.

The domain is decomposed into

two non overlapping subdomains.

Let u1 and u2 be the solutions in

the subdomains and

Γ = ∂Ω1 ∩ ∂Ω2.
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First family of modern methods : Substructuring
formulation

Consider a non overlapping decomposition of the domain Ω into Ω1

and Ω2 and Dirichlet BVP in each subdomain with u|Γ as a

Dirichlet data

−∆(ui) = f in Ωi,

ui = u|Γ on Γ, ui = 0 sur ∂Ωi\Γ.

The jump of the normal derivative across the interface is a function

of f and u|Γ
S(f, u|Γ) =

1

2

(
∂u1

∂n1

+
∂u2

∂n2

)
|Γ

The substructured interface problem reads : Find u|Γ s.t.

S(0, u|Γ) = −S(f, 0)

The corresponding discrtized problem is solved by a Krylov type

method such as CG, GMRES, BICGSTAB, QMR, . . .
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• Gain: if κ(−∆h) = O(1/h2), then κ(Sh) = O(1/h).

• Extension : Find a good preconditioner Th s.t.

κ(Th Sh) ≃ O(1).
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Neumann-Neumann alg. for the Laplace equation

(Bourgat, Glowinski, Le Tallec and Vidrascu, 1989)

The idea is to approximate the inverse of S(0, .) by T :

T : H− 1

2 (Γ) → H
1

2

00(Γ)

T (g) =
1

2
(v1 + v2) |Γ.

where

Lvi = 0 in Ωi,
∂vi

∂ni
= g sur Γ

Optimality

The preconditioned operator T S(0, .) is a continuous operator from

H
1

2

00 → H
1

2

00. After discretization and with an adequate coarse grid,

the condition number is log(h).

Complexity

difficult to extend to arbitrary systems of PDEs, ill-posed

subproblems, needs matrix before assembly, . . .
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FETI method for the Laplace problem

We first consider Neumann problems in each subdomain

L(ui) = f in Ωi,
∂ui

∂ni
= (−1)i+1λ|Γ on Γ

ui = 0 sur ∂Ωi\Γ.

We consider the Neuman to Dirichlet (NtD) map

Tfeti : L2(Ω) × H− 1

2 (Γ) → H
1

2

00(Γ)

Tfeti(f, λ|Γ) =
1

2
(u1 − u2) |Γ

The substructured problem reads:

Tfeti(0, λ|Γ) = −Tfeti(f, 0)

The corresponding discretized problem is solved by a Krylov type

method preconditioned by S(., 0). The preconditioner consists in

solving Dirichlet problems. (Farhat, Roux, Widlund, ... )
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Another possible Improvement: other interface
conditions

(P.L. Lions, 1988)

−∆(un+1
1 ) = f in Ω1,

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω,

(
∂

∂n1

+ α)(un+1
1 ) = (− ∂

∂n2

+ α)(un
2 ) on ∂Ω1 ∩ Ω2,

(n1 and n2 are the outward normal on the boundary of the

subdomains)

−∆(un+1
2 ) = f in Ω2,

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω

(
∂

∂n2

+ α)(un+1
2 ) = (− ∂

∂n1

+ α)(un
1 ) on ∂Ω2 ∩ Ω1.

with α > 0. Overlap is not necessary for convergence.

Extended to the Helmholtz equation (B. Desprès, 1991)

a.k.a FETI 2 LM (Two-Lagrange Multiplier ) Method, 1998.
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• Gain: Much faster convergence, no need for overlaps

• Extensions:

Find even better interface conditions (Optimized Interface

Conditions)

introduce Krylov type methods in place of the above fixed

point algorithm (already seen).
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Optimized Schwarz Methods

1. Optimal Interface Conditions
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4. Optimized IC Discontinuous coefficients equations

5. Conclusion
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(Recall) One possible Improvement: other
interface conditions

(P.L. Lions, 1988)

−∆(un+1
1 ) = f in Ω1,

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω,

(
∂

∂n1

+ α)(un+1
1 ) = (− ∂

∂n2

+ α)(un
2 ) on ∂Ω1 ∩ Ω2,

(n1 and n2 are the outward normal on the boundary of the

subdomains)

−∆(un+1
2 ) = f in Ω2,

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω

(
∂

∂n2

+ α)(un+1
2 ) = (− ∂

∂n1

+ α)(un
1 ) on ∂Ω2 ∩ Ω1.

with α > 0. Overlap is not necessary for convergence.

Extended to the Helmholtz equation (B. Desprès, 1991)

a.k.a FETI 2 LM (Two-Lagrange Multiplier ) Method, 1998.
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Convergence with second order interface
conditions

(
∂

∂ni
+ α − ∂

∂τ
γ

∂

∂τ
)

Proof of convergence valid for a problem discretized by a finite

volume scheme. At the continuous level we consider the following

problem.

η(x)u − div(κ(x)∇u) = f in Ω,

u = 0 on ∂Ω,

with η(x), κ(x) > C > 0. The domain is decomposed into N

subdomains (Ωi)1≤i≤N without overlap.

Let Γij denote the interface Γij = ∂Ωi ∩ ∂Ωj .
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Convergence

The interface condition is

κ(x)
∂un+1

i

∂ni
+ αij(x)un+1

i − ∂

∂τi
(γij(x)

∂un+1
i

∂τi
)

= −κ(x)
∂un

j

∂nj
+ αij(x)un

j − ∂

∂τj
(γij(x)

∂un
j

∂τj
) on Γij .

with

αij(x) = αji(x) ≥ α0 > 0,

γ(x)ij = γ(x)ji ≥ 0 et γij(x) = 0 sur ∂Γij

Let us denote

Λij = αij(x) − ∂

∂τi
(γij(x)

∂

∂τi
), x ∈ Γij .

Lemma 1 The algorithm converges in H1 (discrete norm).

The convergence rate is very sensitive to α and γ, how to choose

them?
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Optimal Interface Conditions

(Hagstrom, 1988)

Constant coefficient Advection-Diffusion equation on a domain

decomposed into two subdomains.

(~a∇− ν∆)(un+1
1 ) = f in Ω1,

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω,

(
∂

∂n1

+ B1)(u
n+1
1 ) = (− ∂

∂n2

+ B1)(u
n
2 ) on ∂Ω1 ∩ Ω2,

(~a∇− ν∆)(un+1
2 ) = f in Ω2,

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω

(
∂

∂n2

+ B2)(u
n+1
2 ) = (− ∂

∂n1

+ B2)(u
n
1 ) on ∂Ω2 ∩ Ω1.

where Bi, i = 1, 2 are defined via a Fourier transform along the

interface

Convergence in two iterations
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Optimal Interface Conditions

Let us consider the problem

Li(Pi) = f in Ωi, i = 1, 2

P1 = P2 on Γ12,

κ1

∂P1

∂n1

+ κ2

∂P2

∂n2

= 0 on Γ12.

where

Li = ηi − div(κi∇)̇

Could be as well Fluid/Structure interaction or Plate/beam

coupling.

21



Optimal Interface Conditions

Let

ui = κi∇Pi

Let us consider a Schwarz type method:

L1(P
n+1
1 ) = f in Ω1

P n+1
1 = 0 on ∂Ω1 ∩ ∂Ω

un+1
1 .~n1 + B1(P

n+1
1 )

= −un
2 .~n2 + B1(P

n
2 ) on Γ1

L2(P
n+1
2 ) = f in Ω2

P n+1
2 = 0 on ∂Ω2 ∩ ∂Ω

un+1
2 .~n2 + B2(P

n+1
2 )

= −un
1 .~n1 + B2(P

n
1 ) on Γ2

We take

B1= DtN2.

and have convergence in two iterations.
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Optimal Interface Conditions

We introduce the DtN (Dirichlet to Neumann) map (a.k.a.

Steklov-Poincaré):

Let P0 : Γ12 → R

DtN2(P0) ≡ κ2

∂

∂n2

(P )|Γ12

(1)

where n2 is the outward normal to Ω2\Ω̄1 and P satisfies the

following boundary value problem:

L(P ) = 0 in Ω2

P = 0 on ∂Ω2\Γi

P = P0 on Γ12.

We take

B1= DtN2.
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Optimal Interface Conditions

(Rogier, de Sturler and N., 1993)

The result can be generalized to variable coefficients operators and

a decomposition of the domain Ω in more than two subdomains.

For the following geometries,

one can define interface conditions such as to have convergence in a

number of iterations equals to the number of subdomains.

For arbitrary decompositions, negative conjectures have been

formulated (F. Nier, Séminaire X-EDP, 1998).
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Conditions d’interface optimisées analytiques
dans le cas scalaire

The Steklov-Poincaré DtN is not a partial differential operator. It

is

1. non local

2. its explicit form is not known in the general case

It is approximated by a partial differential operator

DtN ≃ αopt −
∂

∂τ
(γopt

∂

∂τ
)

trying to minimize the convergence rate of the algorithm.

We speak of optimized of order 2 (opt2) interface conditions

If we take γ = 0 and optimize only with respect to α, we speak of

optimized of order 0 (opt0)
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A model problem

L(u) := ηu − ∆u = f in R
2, η > 0

The plane R2 is divided into two half-planes with an overlap of size

δ ≥ 0 and the algorithm writes:

L(un+1
1 ) = f in Ω1 :=] −∞, δ[×R ,

(
∂

∂n1

+ α)(un+1
1 ) = (− ∂

∂n2

+ α)(un
2 ) at x = δ

L(un+1
2 ) = f in Ω2 :=]0,∞[×R ,

(
∂

∂n2

+ α)(un+1
2 ) = (− ∂

∂n1

+ α)(un
1 ) at x = 0

A Fourier analysis leads to the following convergence rate (k is the

dual variable):

ρ(k; δ, α) =

∣∣∣∣∣

√
η + k2 − α√
η + k2 + α

∣∣∣∣∣ e−
√

η + k2 δ
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Optimizing the interface condition

In the physical space:

ρ(δ, α) = max
|k|≤1/h

∣∣∣∣∣

√
η + k2 − α√
η + k2 + α

∣∣∣∣∣ e−
√

η + k2 δ

When there is no overlap (δ = 0):

• if α is h independent, then ρ ≃ 1 − Ct h

• if α varies like 1/h, then ρ ≃ 1 − Ct h

• if α solves the min-max problem:

ρ(αopt) := min
α>0

max
|k|≤1/h

ρ(k; 0, α)

then αopt varies like 1/
√

h and ρopt ≃ 1 − Ct
√

h

With overlap

• Classical Schwarz: α = ∞, ρScwharz > ρα, ∀α

• Optimization for small h with δ = C h, (Gander, SISC, 2006)
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1/∆y 10 20 40 80

αsc
opt 6 7 10 16

α = 1 27 51 104 231

Table 1: Number of iterations for different values of the mesh size

and two possible choices for α, no overlap
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Application: the Helmholtz Equation
Joint work with M. Gander and F. Magoulès

SIAM J. Sci. Comp., 2002.

We want to solve

−ω2u − ∆u = f in Ω

u = 0 on ∂Ω.

The relaxation algorithm is : (up
1, u

p
2) → (up+1

1 , up+1
2 ) with

(i 6= j, i = 1, 2)

(−ω2 − ∆)(up+1
i ) = f in Ωi

(
∂

∂ni
+ S)(up+1

i ) = (− ∂

∂nj
+ S)(up

j ) on Γij .

up+1
i = 0 on ∂Ωi ∩ ∂Ω

The operator S has the form

S = α − γ
∂2

∂τ2
α, γ ∈ C
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Application: the Helmholtz Equation

By choosing carefully the coefficients α and γ, it is possible to

optimize the convergence rate of the iterative method which in the

Fourier space is given by

ρ(k; α, γ) ≡





∣∣∣∣∣
I
√

ω2 − k2 − (α + γk2)

I
√

ω2 − k2 + (α + γk2)

∣∣∣∣∣ if |k| < ω (I2 = −1)

∣∣∣∣∣

√
k2 − ω2 − (α + γk2)√
k2 − ω2 + (α + γk2)

∣∣∣∣∣ if |k| > ω

Finally, we get analytic formulas for α and γ (h is the mesh size):

αopt = α(ω, h) and γopt = γ(ω, h),

Moreover, a Krylov method (GC, GMRES, BICGSTAB, . . .)

replaces the fixed point algorithm.
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The Helmholtz Equation – Numerical Results

Waveguide: Optimized Schwarz method with QMR compared to

ABC0 (∂n + Iω) with relaxation on the interface

Number of iterations

L
in

f 
E

rr
or

 (
lo

g)

0 100 200 300 400 500 600
-1210

-1010

-810

-610

-410

-210

010

210 Convergence

Jacobi + Robin (Relax=0.5)

QMR + OO2

Chevalier and N., 1997
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Discretization of the two-field formulation

A direct discretization would require the computation of the

normal derivatives along the interfaces in order to evaluate the

right handsides.

In order to avoid this extra task, we introduce two new variables

λ1 = −∂u2

∂n2

+ S(u2) and λ2 = −∂u1

∂n1

+ S(u1).
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The algorithm reads now

−∆un+1
1 + ω2un+1

1 = f in Ω1

∂un+1
1

∂n1

+ S(un+1
1 ) = λ1n

on Γ12

−∆un+1
2 + ω2un+1

2 = f in Ω2

∂un+1
2

∂n2

+ S(un+1
2 ) = λ2n

on Γ12

λ1n+1
= −λ2n

+ (S + S)(un+1
2 (λ1p

, f))

λ2n+1
= −λ1n

+ (S + S)(un+1
1 (λ2p

, f)).

This new formulation paves the way for the replacement of the

fixed point algorithm by Krylov type methods (e.g. QMR,

ORTHODIR) which are both more efficient and more reliable.
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Finite Element Discretization

A finite element discretization leads to the following linear system:

λ1 = −λ2 + (S + S)B2u2

λ2 = −λ1 + (S + S)B1u1

K̃1u1 = f1 + B1T

λ1

K̃2u2 = f2 + B2T

λ2 (2)

where B1 (resp. B2) is the trace operator of domain Ω1 (resp. Ω2)

on the interface Γ12. Matrix K̃i, i = 1, 2 arises from the

discretization of the local Helmholtz subproblems along with the

interface condition ∂n + α − γ∂ττ .

K̃i = Ki − ω2M i + BiT

(αMΓ12
+ γKΓ12

)Bi (3)

where Ki is the stiffness matrix, M i the mass matrix, MΓ12
is the

interface mass matrix and KΓ12
is the interface stiffness matrix.
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More precisely, the interface mass matrix MΓ12
and the interface

stiffness matrix KΓ12
are defined by

[MΓ12
]lm =

∫

Γ12

φlφmdξ and [KΓ12
]lm =

∫

Γ12

∇τφl∇τφmdξ (4)

where φl et φm are the basis functions associated to nodes l and m

on the interface Γ12 and ∇τφ is the tangential component of ∇φ on

the interface.

We have

S = αMΓ12
+ γKΓ12

.
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The substructured linear system of the two-field formulation has

the form

Fλ = d (5)

where λ = (λ1, λ2), F is a matrix and d is the right handside

F =


 I I − (S + S)B2K̃2−1

B2T

I − (S + S)B1K̃1−1

B1T

I




d =


 (S + S)B1K̃1−1

f1

(S + S)B2K̃2−1

f2




The linear system is solved by a Krylov type method, here the

ORTHODIR algorithm. The matrix vector product amounts to

solving a subproblem in each subdomain and to send interface data

between subdomains.
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General Interface Conditions for the Helmholtz Equation

Numerical Results
Waveguide: Optimized Schwarz method with QMR and ABC0

(∂n + Iω) with relaxation on the interface

Number of iterations

L
in

f 
E

rr
or

 (
lo

g)

0 100 200 300 400 500 600
-1210

-1010

-810

-610

-410

-210

010

210 Convergence

Jacobi + Robin (Relax=0.5)

QMR + OO2
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General Interface Conditions for the Helmholtz Equation

Numerical Results: Acoustic in a Car

1

2
12

4 3 5
13

9

15

11

7
16

10

14 6

8
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Numerical Results: Acoustic in a Car
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General Interface Conditions for the Helmholtz Equation

Numerical Results
Acoustic in a Car : Iteration Counts for various interface conditions

Ns ABC 0 ABC 2 Optimized

2 16 it 16 it 9 it

4 50 it 52 it 15 it

8 83 it 93 it 25 it

16 105 it 133 it 34 it

ABC 0: Absorbing Boundary Conditions of Order 0 (∂n + Iω)

ABC 2: Absorbing Boundary Conditions of Order 2

(∂n + Iω − 1/(2Iω)∂y2)

Optimized: Optimized Interface Conditions

40



Motor compartment
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Optimal Interface Condition at the matrix level

When a finite element method, for instance, is used it yields a

linear system of the form AU = F , where F is a given right-hand

side and U is the set of unknowns.

Corresponding to a domain decomposition, the set of unknowns U

is decomposed into interior nodes of the subdomains U1 and U2,

and to unknowns, UΓ, associated to the interface Γ.

This leads to a block decomposition of the linear system




A11 A1Γ 0

AΓ1 AΓΓ AΓ2

0 A2Γ A22







U1

UΓ

U2


 =




F1

FΓ

F2


 . (6)
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Optimal Interface Condition at the matrix level

The DDM method reads:

A11 A1Γ

AΓ1 AΓΓ + S2





Un+1

1

Un+1
Γ,1


 =


 F1

FΓ + S2U
n
Γ,2 − AΓ2U

n
2


 (7)


A22 A2Γ

AΓ2 AΓΓ + S1





Un+1

2

Un+1
Γ,2


 =


 F2

FΓ + S1U
n
Γ,1 − AΓ1U

n
1


 (8)

where

S1 = −AΓ1A
−1
11 A1Γ

and

S2 = −AΓ2A
−1
22 A2Γ

Convergence in two iterations
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Approximate Interface Condition at the matrix
level

The matrices S1 = −AΓ1A
−1
11 A1Γ and S2 = −AΓ2A

−1
22 A2Γ are full

interface matrices (Γ × Γ).

Cons

• Costly to compute

• The subdomain matrix is partly full

Approximate S1 and S2 by sparse matrices

1. e.g. via sparse approximations to A−1
ii : SPAI

2. via local Schur complements on successive reduced “outer”

domains (γ × δ), “patches”, (Roux et al., 2006)

The first approach gives mild results. The second one is not better

than using an overlap of depth δ but is cheaper.
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Constant coefficient case

Patch

Opt2

Figure 4: Relative residual vs. iteration number for the bicgstab

algorithm
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Many layers

Very anisotropic and heterogeneous media, κM/κm = 107

Table 2: Gmres solve with TOL = 10−6

Cond. Nb Iter ‖e‖

RAS (Schwarz) 1.99 106 37 3.6 10−2

Patch 5.29 105 15 6.1 10−5

Best IC 2.1 9 1.5 10−7

Condition number of Patch method is very bad but only one

eigenvalue is very small, thus iteration count is good.
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More subdomains

The methods generalize to an arbitrary number of subdomains, it is

a matter of notations. But, performance may deteriorate with large

number of subdomains. Plateaus appear in the convergence of the

Krylov methods.
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Figure 5: Japhet, Nataf, Roux (1998)

47



More subdomains

Iteration counts for a Poisson problem on a domain decomposed

into strips.

The number of unknowns is proportional to the number of

subdomains (scalability).

N subdomains Schwarz With coarse grid

4 18 25

8 37 22

16 54 24

32 84 25

64 144 25
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More than two subdomains

This corresponds to a few very large (or low) eigenvalues in the

spectrum of the substructured problem. They are due to the lack of

a global exchange of information in the preconditioner.

Consider with η = 0:

η u − ∆u = f in Ω

u = 0 on ∂Ω

The mean value of the solution in domain i depends on the value of

f on all subdomains.

A classical remedy consists in the introduction of a coarse grid

problem that couples all subdomains. This is closely related to

deflation technique classical in linear algebra (see Nabben and

Vuik’s papers in SIAM J. Sci. Comp).
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Domain decomposition based deflation vectors

We denote by Z the deflation vectors.

Example for a 3 subdomains decomposition.

Z =




1 0 0

1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1

0 0 1




and by abuse of notation, we denote by Z the vector space spanned

by the columns of Z.
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Deflation methods

The original symmetric problem writes Ax = b ∈ RN .

Let Z ∈ RN×M be formed of M deflation column vectors.

Let P be the projection onto ZT parallel to AZ:

P = Id − AZ(ZT AZ)−1ZT

Remark that

P T = Id − Z(ZT AZ)−1ZT A and PA = AP T

We seek x in the form x = (Id − P T )x + P T x:

A((Id − P T )x) = (Id − P )b and PAP T x = Pb.

The first equation corresponds to solving a M × M problem and

the second one can be solved by a preconditioned Krylov method.

Details can be found in Nabben and Vuik “A comparison of

deflation and the balancing preconditioner.” SIAM J. Sci. Comput.

(2006).
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More subdomains
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Figure 6: 64 subdomains
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Conclusion

• Both approaches (Neumann-Neumann and optimized Schwarz

methods) are robust (thanks to Krylov methods).

• Neumann-Neumann, FETI, .. optimal but lacks generality

• optimized Schwarz methods are general but are more difficult

to tune
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Open problems

• Theory

Convergence proof or condition number estimate in a

general overlapping case

proof of the Non existence of Optimal Interface Conditions

for a general domain decomposition

• Algorithm

Algebraic Optimized Interface Conditions

Interplay between the Optimized Interface Conditions and

a Coarse Grid

Systems of PDEs (versus scalar PDEs)
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Thanks !
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