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Symmetrized Method with Optimized Second-Order
Conditions for the Helmholtz Equation
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1. Introduction

A schwarz type domain decomposition method for the Helmholtz equation is
considered. The interface conditions involve second order tangential derivatives
which are optimized (002, Optimized Order 2) for a fast convergence. The sub-
structured form of the algorithm is symmetrized so that the symmetric-QMR, al-
gorithm can be used as an accelerator of the convergence. Numerical results are
shown.

We consider the following type of problem: Find u such that

(1) L(u)=fin Q
(2) C(u) =g on 09

where £ and C are partial differential operators. We consider Schwarz-type methods
for the solving of this problem. The original Schwarz algorithm is based on a
decomposition of the domain 2 into overlapping subdomains and the solving of
Dirichlet boundary value problems in the subdomains. It has been proposed in
[15] to use of more general boundary conditions for the subproblems in order to
use a nonoverlapping decomposition of the domain. The convergence speed is also
increased dramatically.

More precisely, the computational domain €2 is decomposed into N nonover-
lapping subdomains:

N
a=Jo
i=1

Let (Bij)1<i,j<n be transmission conditions on the interfaces between the subdo-
mains (e.g. Robin BC). What we shall call here a Schwarz type method for the
problem (1) is its reformulation: Find (u;)1<;<n such that

(3) E(ul) = f in Ql
(4) C(u;) = g on 9Q; NN
(5) Bij (uz) = Bij (’U,J) on ({)Qz N 891
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The above coupled system may be solved iteratively by a Jacobi algorithm:

(6) L) = fin Q
(7) C(ul™) = g on 99; N 0N
(8) Bij (UZL—H) = Bij (’U,?) on ({)Qz N 891

It is also possible, and indeed preferable, to write the resulting linear system in the
interface unknowns H = (B;;(u;))1<i,j<n (see [18])

9) AH =G

(G is some computable right hand side) and to solve it by conjugate gradient type
methods.

Let us focus first on the interface conditions B;;. The convergence speed of
Schwarz-type domain decomposition methods is very sensitive to the choice of these
transmission conditions. The use of exact artificial (also called absorbing boundary
conditions) boundary conditions as interface conditions leads to an optimal number
of iterations, see [12, 18, 11]. Indeed, for a domain decomposed into N strips, the
number of iterations is IV, see [18]. Nevertheless, this approach has some drawbacks:

1. the explicit form of these boundary conditions is known only for constant
coefficient operators and simple geometries.

2. These boundary conditions are pseudodifferential. The cost per iteration
is high since the corresponding discretization matrix is not sparse for the
unknowns on the boundaries of the subdomains.

For this reason, it is usually preferred to use partial differential approximations
to the exact absorbing boundary conditions. This approximation problem is clas-
sical in the field of computation on unbounded domains since the seminal paper
of Engquist and Majda [6]. The approximations correspond to “low frequency”
approximations of the exact absorbing boundary conditions. In domain decom-
position methods, many authors have used them for wave propagation problems
[3, 5, 14, 4, 2, 16, 1, 19] and in fluid dynamics [17, 21, 10, 9]. Instead of
using “low frequency” approximations to the exact absorbing boundary conditions,
it has been proposed to design approximations which minimize the convergence
rate of the algorithm, see [22]. These approximations are quite different from the
“low frequency” approximations and increase dramatically the convergence speed
of the method, see [13] for a convection-diffusion equation. But, in the case of the
Helmholtz equation, the same optimization procedure cannot be done, see Sec. 4
below. This is related to the existence of both propagative and evanescent modes
for the solution of the Helmholtz equation. Roughly speaking, we will choose the
interface conditions in Sec. 4 so that the convergence rate is small for both modes.
In a different manner, in [20] overlapping decompositions are considered. In the
overlapping regions, the partial differential equation is modified smoothly.

Another important factor is the choice of the linear solver (CG, GMRES, BICG,
QMR, etc .. .) used to solve the substructured linear system (9). For such methods,
the positivity and symmetry of the linear system are important issues [7]. Since
the Helmholtz operator is not positive, it is unlikely that A is positive (and indeed,
it is not). But, the Helmholtz operator is symmetric while A is not. By a change
of unknown on H, we shall rewrite (9) such as to obtain a symmetric formulation.
It enables us to use the symmetric-QMR algorithm described in [8].
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2. Substructuring

In this section, we write the explicit form of the substructured linear problem
(9) for the problem below. This section is classical. We want to solve the Helmholtz
equation: Find u such that

(A +w?)(u) = f in Q=]0, Ly[x]0, L,
(10) (p-+iw)(u) = g on {0}x]0, L,[U{Le}x]0, L,
uw=0on]0, Ly[x{0}U]0, Ly[x{L,}

where i2 = —1, g—n is the outward normal derivative and w is positive. The domain
is decomposed into N nonoverlapping vertical strips:

Qr =]Lip—1k, Lig1[x]0,Ly[, 1<k <N

with Logy =0 < L12 < ... < Ly n41 = L. The transmission condition on the
interfaces is of the form By = ;Tk +iw —77887—12 where ;—Tk is the tangential derivative
on the boundary of 99, and n € € will be chosen in the section 4.

Problem (10) is equivalent to: Find (ug)1<r<n such that

(A +w?)(ug) = f in Q

Bk(uk) = Bk(uk_l) on 00, NON_1

(].].) Bk(uk) = Bk(uk+1) on an n an+1
(% +iw)(u) = g on ({0}x]0, Ly[U{L;}x]0, Ly[) N O
w=0on (0, L[x {0}U]0, La[x {Ly,}) N %

The continuity of the solution and its derivative on Q; N 941 are ensured by the
interface conditions By, and Byyi1. Let Xp 41 = 0Qr N 0041, 1 <k < N. Let us
define now the vector of unknowns

H = (Bi(u1)|s, 45 > Be(ur) sy Bre(uk) s s s BN(UN) sy n)
Let IT be the interchange operator on the interfaces, on each interface we have:
(12) (0, ... ,0,Af 1 AT 0,...,0) = (0,...,0,hf_1,hf,1,0,...,0)
Let T be the linear operator defined by:

(13) T'(h2, ... hi Rt RN fg) =
(Br(01)1515 - -+ Be(0k) sy s Be(Wk) sy isss - BN(UN) |y )

where Bj, = _aa_m + iw — 7)597—12 and vy, satisfies:

(14) (A +w?)(vg) = f in Qe

(15) Bi.(vg) = it on 99, N Oy

(16) By (v) = hg—H on 00 N ONy+1

(17) (% +iw)(vg) = g on ({0} x]0, Ly[U{Ls}x]0, Ly[) N O

vg = 0 on (]0, Ly[x{0}U]0, Ly[x{Ly}) N O
It can be shown that
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LEMMA 1. Finding (ur)i<k<n solution to (11) is equivalent to finding H =

(h2, ... hi R RN T such that

(18) (Id —TIT)(H) =11"(0,0,...,0,f,9) =G
where

(19) T=T(,.,...,.,00).

3. Symmetrization of the substructured system
The linear system (18) may be solved by a relaxed Jacobi algorithm
(20) H" W = oOT(H™) + (1 -0)H" + G, € (0,2)

It is more efficient to use linear solvers based on Krylov subspaces such as GMRES,
BICGSTAB or QMR. As mentioned in the introduction, the convergence rate of
such methods is very sensitive to the positivity and symmetry of the linear sys-
tem. Due to the non-positivity of the Helmholtz operator, it is unlikely that the
substructured problem (18) be positive. Nevertheless, the Helmholtz equation is
symmetric. It seems thus possible to obtain a symmetric reformulation of (18). For
this, we need

DEFINITION 2. Let
N-—
H (L2(J0, Ly [) x L*(0, L, )
be the space of complex valued traces on the interfaces. An element H € W is
denoted
H: (h%7hé7"' 7h2717h]]z+1 hN 1’h%71)
The space W is endowed with a bilinear operator from W x W to C

VG7 HEW Z/ gk lhk 1 k+1h§+1)

Let A be a linear operator from W to W. The transpose of A, denoted A” is the
linear operator from W to W such that

VG, H e W, (AGvH)b = (GaATH)b
An operator A is symmetric iff AT = A.

The notion of symmetry for complex valued linear operator corresponds to the
notion of complex symmetric linear systems studied in [8]. It is different from the
notion of Hermitian operators since we have no conjugation. We have

LEMMA 3. Let 1T be defined in (12). Then,
nr =1 ;112 = Id

and the operator I admits symmetric square roots. Let TI'/2 denote one of these.
Let T be defined in (19). Then,

(21) T =T
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PROOF. As for II, it is enough to consider one interface. The operators IT and
I1'/2 may be represented by the matrices

H_(1 0)’ == -1 1+

As for T the result comes from integration by parts of the Helmholtz operator. [

[NIEFGIEN

This enables us to propose the following symmetrization:
LEMMA 4. Problem (18) is equivalent to: Find H € W such that
(22) (Id =272y I 7y =11 /2G
Moreover
(Id — 2 TY2)7T = (1d — Y2 T11Y/?)
and the operators (Id—1I'/2 TTI'/?) and (Id—TIT) have the same set of eigenvalues.

Other possibilities for symmetrizing (18) are
(I-T)H)=1(G) or (T —TUT)(H) =T(G)

They don’t have the same eigenvalues as the original formulation and thus lead to
slower convergence, see Figure 2.

4. Optimization of the interface conditions

The optimization is performed on the parameter 7. The more (Id — IIT) is
close to the identity, the better the convergence of any iterative method will be. It
seems then natural to minimize the norm of IIT. Since II is an isometry and does
not depend on 7, this is equivalent to minimize the norm of 7. But we have

PROPOSITION 5. Let the plane IR? be decomposed into two half-spaces Q1 =
] — o0, O[xIR and Q2 =]0, co[xR.For all n € C,

1Tl =1

Indeed, a simple Fourier analysis shows that the operator T'(.,.,0,0) may be
represented as an operator valued matrix:

(5 4)

where R is a pseudo-differential operator whose symbol is
ivw? — k2 —iw — nk?
ivw? — k2 +iw + nk?
where k is the dual variable of y for the Fourier transform. For k = w, p(w,n) =1
for all n € C.

It is thus impossible to optimize the spectral radius of T'(.,.,0,0) as is done in
[13].

Nevertheless, for any value of 7, |p(0,7)| = 0. This indicates that the conver-
gence rate should be good for low frequencies as it is already the case if n = 0, see

[3]. It seems thus interesting to use n for having a good convergence rate also for
high frequencies. From (23), it is then enough to consider 7 real. The choice of 7 is

(23) p(k,n) =
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TABLE 1. Influence of the number of subdomains

Number of subdomains 2|31 4 6 10 | 15 | 20
Relaxed Jacobi + Robin BC = 0.5 | 50 | 62 | 75 | 130 | 216 | 406 | 832
QMR + Optimized BC 1018124 | 34 | 59 | 92 | 126

TABLE 2. Nbr of iterations vs. nbr of points per wavelength

10 pts / lo | 20 pts / lo | 40 pts /lo
Relaxed Jacobi + Robin BC=0.5 130 195 299
QMR + Optimized BC 34 38 41

TABLE 3. Influence of w

w=6|w=20|w=260
Relaxed Jacobi + Robin BC 130 155 664
QMR + Optimized BC 34 50 60

done by minimizing the integral of |p(k, n)| over the evanescent modes “admissible”
on the computational grid:

Emax
24 i k dk
29 mip [ o)

where kpqr ~ 1/h and h is the typical mesh size. This is all the more important
that if n =0, |p(k,0)| =1 as soon as |k| > w.

5. Numerical results

The Helmholtz equation was discretized by a 5-point finite difference scheme.
Except for Table 3, the number of points per wavelength was between 20 and 25.
The problems in the subdomains were solved exactly by LU factorization. As for
the substructured problem, we compared different iterative methods: relaxed Jacobi
algorithm and the symmetric-QMR method. The symmetric-QMR algorithm was
chosen since it is adapted to complex symmetric linear systems. We also tested
various interface conditions:

B = 0y, +iw (Robin BC)
B =0, +iw+ i@f (Order 2 BC)
B = 0, + iw — n0? (optimized real 7, cf (24))

B =0, +iw+ (é —1)02 (Order 2 4 optimized real 7, n as above)

The stopping criterion was on the maximum of the error between the converged
numeric solution and the approximation generated by the algorithm, |||/ < 107°.
Figure 1 (w = 6 <= three wavelengths per subdomain), Table 1, Table 2 and
Table 3 enable to compare the proposed method with a relaxed Jacobi algorithm.
In Figure 2, only the formulation of the substructured problem is varied while
the interface conditions are the same. Table 4 shows the importance of the interface
conditions. We have used Jacobi’s algorithm with different interface conditions.
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FIiGURE 1. Comparison of the proposed method with a Jacobi-
Robin algorithm

TABLE 4. Jacobi’s algorithm - Influence of the interface conditions

Robin | Order 2 | 5 real opt | 1 real opt
+ order 2
Nbr of iterations 195 > 1000 140 51
Best relaxation’s coefficient 0.5 any 0.6 0.9
—(Convergence}———
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FIGURE 2. Influence of the substructured formulation

6. Perspectives

We have presented a domain decomposition method for the Helmholtz equation
and a decomposition of the domain into strips. The present method has already
been extended to the Maxwell operator. We shall consider an arbitrary decompo-
sition of the domain in a forthcoming paper.
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