Domain Decomposition Methods:

Theory and Applications

Frédéric Nataf

Laboratory J.L. Lions (LJLL), CNRS, Alpines Inria and Sorbonne University

IWR Colloquium — December 2018



@ Domain Decomposition Methods
© Optimized Restricted Additive Schwarz Methods
Q Domain Specific Language for Finite Element simulation

0 Conclusion

F. Nataf DDM



@ Domain Decomposition Methods

F. Nataf DDM



Framework: Scientific computing

Large discretized system of PDEs Applications:

strongly heterogeneous coefficients flow in heterogeneous /
aly g stochastic / layered media

(high contrast, multiscale) structural mechanics
electromagnetics
graph Laplacian, . ..

E.g. Darcy pressure equation,
P-finite elements:

Au =f

cond(A) ~ "M p-2
Kmin
Goal:
Parallel iterative solvers
robust in size and heterogeneities

80% of the elapsed time for typical engineering applications
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Changes in hardware  Go parallel

Since year 2004:
@ CPU frequency stalls at 3 GHz due to the heat wall.
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@ Power consumption is an issue:
e Large machines (hundreds of thousands of cores) cost
10-15% of their price in energy every year.
e Smartphone, tablets, laptops (quad - octo cores) have
limited power supplies

All fields of computer science are impacted.
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Physical limitations of communication vs. computation

@ a 32-bit floating-point operation requires 3.1 pJ
@ whereas the same DRAM read requires 640 pJ.

@ Infiniband latency 1u sec., 3,000 operations at 3GHz

@ Minimum latency for an internode distance of 3 meters:
0.014 sec. 10 operations at 3GHz
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Need for parallel linear solvers

A simplified view of modern architectures
@ Unlimited number of fast cores

@ Distributed data

@ Limited amount of slow and energy intensive
communication

Coarse Grain algorithm

@ Maximize local computations

@ Minimize communications (saves time and energy
altogether)

@ Minimize sequential task

@ Redundant computations are welcome if they decrease
communication )
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? Panorama of linear solvers
Direct Solvers

MUMPS (J.Y. LExcellent), SuperLU (Demmel, .. .), PastiX,
UMFPACK, PARDISO (O. Schenk),
Iterative Methods
@ Fixed point iteration: Jacobi, Gauss-Seidel, SSOR
@ Krylov type methods: Conjuguate Gradient

(Stiefel-Hestenes), GMRES (Y. Saad), QMR (R. Freund),
MinRes, BICGSTAB (van der Vorst)

"Hybrid Methods”

@ Multigrid (A. Brandt, Ruge-Stiben, Falgout, McCormick, A.
Ruhe, Y. Notay, . ..) Frequency decomposition methods

@ Domain decomposition methods (O. Widlund, C. Farhat, J.
Mandel, P.L. Lions, ) are a naturally parallel compromise
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The First Domain Decomposition Method

The original Schwarz Method (H.A. Schwarz, 1870)

Ql > QQ

—A(u)=f inQ
u=0 onoAQ.

Schwarz Method : (uf, ug) — (U7, ug™) with

—AWTY=f inQq ~AUSTY=f inQp
Ut =00noQ NoQ ugtt = 00n 902 NN
UMt =ug  on 09y N Q. udtt = U™t on 90 N Q.

Parallel algorithm.
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An introduction to Additive Schwarz

Consider the discretized Poisson problem: Au = f € R".
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An introduction to Additive Schwarz

Consider the discretized Poisson problem: Au = f € R".
Given a decomposition of [1; n]}, (N1, N>), define:

@ the restriction operator R; from RI'" into RV,
@ R/ as the extension by 0 from RV into RI".

Q

F. Nataf DDM



An introduction to Additive Schwarz

Consider the discretized Poisson problem: Au = f € R".
Given a decomposition of [1; n]}, (N1, N>), define:

@ the restriction operator R; from RI'" into RV,
@ R/ as the extension by 0 from RV into RI".
u™ — u™1 by solving concurrently:

Ut = Ul + AR (F - Au™) Ut = U+ AT Ro(f — Au™)

where Ulm = R,'Um and A; .= R,AF)’IT Q
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An introduction to Additive Schwarz |l

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

N
| = Z R/ DiR;.
i=1

N —
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An introduction to Additive Schwarz |l

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

N
| = Z R/ DiR;.
i=1

N —

N
Then, u™" => " R/ DU,

i=1
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An introduction to Additive Schwarz |l

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

N
| = Z R/ DiR;.
i=1
]
1
2
N N
Then, u™" => " R/ DU, Mgis = > R/ DATR;.

i=1 i=1
RAS algorithm (Cai & Sarkis, 1999)
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An introduction to Additive Schwarz |l

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

N
| = Z R/ DiR;.
i=1
]
1
2
N N
Then, u™" => " R/ DU, Mgis = > R/ DATR;.

i=1 i=1
RAS algorithm (Cai & Sarkis, 1999) Equivalence with a
weighted Block Jacobi method with overlap
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Algebraic formulation - RAS and ASM

Schwarz algorithm iterates on a pair of local functions (u},, u2))
RAS algorithm iterates on the global function u™
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Algebraic formulation - RAS and ASM

Schwarz algorithm iterates on a pair of local functions (u},, u2))
RAS algorithm iterates on the global function u™

Schwarz and RAS

Discretization of the classical Schwarz algorithm and the
iterative RAS algorithm:

1 .
umt :U”+MASr m=~F-AU".
are equivalent

U" = R DyU + R] D, US .

(Efstathiou and Gander, 2002).

Operator M‘ =as 1S Used as a preconditioner in Krylov methods
for non symmetric problems.
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ASM: a symmetrized version of RAS

— T
Mzas fZR DA R;.
i=1

A symmetrized version: Additive Schwarz Method (ASM),

Mpdy '—ZRTA Ri (1)

is used as a preconditioner for the conjugate gradient (CG)
method.

Although RAS is more efficient, ASM is amenable to condition
number estimates.

Chronological curiosity: First paper on Additive Schwarz dates
back to 1989 whereas RAS paper was published in 1998
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Adding a coarse space

One level methods are not scalable. We add a coarse space
correction (aka second level or deflation)

Let Vi be the coarse space and Z be a basis, Vi = span Z,
writing Ry = ZT we define the two level preconditioner as:

Maau2 = Rd (RoAR] )~ +ZF?TA R.

i=1

The Nicolaides approach (1987) is to use the kernel of the
operator as a coarse space, this is the constant vectors, in local
form this writes:

Z .= (RT DiR)1<i<n

where D; are chosen so that we have a partition of unity:

N
> R/DR;=1d
=1

Key notion: Stable splitting (J. Xu, 1989 )
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Theoretical convergence result

Theorem (Widlund, Dryija)
Let M;;M 5 be the two-level additive Schwarz method:

H
K(Magy2A) < C (1 + 3>

where § is the size of the overlap between the subdomains and
H the subdomain size. )

This does indeed work very well
Number of subdomains | 8 | 16 | 32 | 64

ASM 18 | 35 | 66 | 128
ASM + Nicolaides 20 | 27 | 28 | 27

Fails for highly heterogeneous problems
You need a larger and adaptive coarse space
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Adaptive Coarse space for highly heterogeneous Darcy and
(compressible) elasticity problems:
Geneo .EVP per subdomain:

Find Vx € RN and )\« > 0:

T N
D RART D,V = Njy ANeUY;

In the two-level ASM, let ~ be a user chosen parameter:
Choose eigenvectors \; x > 7 per subdomain:
L T j=1,.,N
Z = (R D}Vjx)

A k=T
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Adaptive Coarse space for highly heterogeneous Darcy and
(compressible) elasticity problems:
Geneo .EVP per subdomain:

Find Vx € RN and )\« > 0:

T N
D RART D,V = Njy ANeUY;

In the two-level ASM, let ~ be a user chosen parameter:
Choose eigenvectors \; x > 7 per subdomain:

7 = (RjTDj\/,-,k)f:”"’N

A k=T
This automatically includes Nicolaides CS made of Zero

Energy Modes.
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Theory of GenEO

Under two technical assumptions.

Theorem (Spillane, Dolean, Hauret, N., Pechstein, Scheichl

(Num. Math. 2013))
Ifforallj: 0 <X\jm,  <oo:

H(M;;‘M,zA) < (14 ko) |2+ ko (2ko + 1) (1 + T)}

Possible criterion for picking 7: (used in our Numerics)

Ry

r:= min -2
j=1,..N §;

H; ... subdomain diameter, ¢; . . . overlap
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Numerical results (Darcy)

Channels and inclusions: 1 < a < 1.5 x 10, the solution and
partitionings (Metis or not)
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Error

T
= = =Py 1AS + 2,

= = Py AS + 25
« GMRES PBNN CAS + ZD2N

300 400
Iteration count
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e Optimized Restricted Additive Schwarz Methods
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P.L. Lions’ Algorithm (1988)

~AWTY =f inQy,

Uttt =0 onaQsNoQ,

0 _
v n+1 —(_ n
(am +a)(uthy = ( o +a)(ud) on o NQy,

(ny and n» are the outward normal on the boundary of the
subdomains)

~AUSTYy=1f  inQy,

Uttt =0 onaNe NN
8 0 _
(87"1'05)( n+1) = (—67+06)(U1) on 0o N 4.

with « > 0. Overlap is not necessary for convergence.
Parameter a can be optimized for.

Extended to the Helmholtz equation (B. Despres, 1991)
a.k.a FETI 2 LM (Two-Lagrange Multiplier ) Method, 1998.
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ORAS: Optimized RAS

@ PL. Lions algorithm at the continuous level (partial
differential equation)

© Algebraic formulation for overlapping subdomains
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ORAS: Optimized RAS

@ PL. Lions algorithm at the continuous level (partial
differential equation)

© Algebraic formulation for overlapping subdomains = Let B;
be the matrix of the Robin subproblem in each subdomain
1 < i< N, define M3}, := >N, R DB R;, Optimized
multiplicative, additive, and restricted additive Schwarz
preconditioning, St Cyr et al, 2007
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ORAS: Optimized RAS

@ PL. Lions algorithm at the continuous level (partial
differential equation)

© Algebraic formulation for overlapping subdomains = Let B;
be the matrix of the Robin subproblem in each subdomain
1 < i< N, define M3}, := >N, R DB R;, Optimized
multiplicative, additive, and restricted additive Schwarz
preconditioning, St Cyr et al, 2007

© Symmetric variant =
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ORAS: Optimized RAS

@ PL. Lions algorithm at the continuous level (partial
differential equation)

© Algebraic formulation for overlapping subdomains = Let B;
be the matrix of the Robin subproblem in each subdomain
1 < i< N, define M3}, := >N, R DB R;, Optimized
multiplicative, additive, and restricted additive Schwarz
preconditioning, St Cyr et al, 2007

Q Symmetric variant =

0 M=, RTB 'R (Natural but K.O.)
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ORAS: Optimized RAS

@ PL. Lions algorithm at the continuous level (partial
differential equation)
© Algebraic formulation for overlapping subdomains = Let B;
be the matrix of the Robin subproblem in each subdomain
1 < i< N, define M3}, := >N, R DB R;, Optimized
multiplicative, additive, and restricted additive Schwarz
preconditioning, St Cyr et al, 2007
Q Symmetric variant =
oM OAS =¥ 1 R/B 'R (Natural but K.O.)
@ Msopns = 21:1 R,TD B 'D;R (OK)
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ORAS: Optimized RAS

@ PL. Lions algorithm at the continuous level (partial
differential equation)
© Algebraic formulation for overlapping subdomains = Let B;
be the matrix of the Robin subproblem in each subdomain
1 < i< N, define M3}, := >N, R DB R;, Optimized
multiplicative, additive, and restricted additive Schwarz
preconditioning, St Cyr et al, 2007
Q Symmetric variant =
oM OAS =¥ 1 R/B 'R (Natural but K.O.)
@ Msopns = 21:1 R,TD B 'D;R (OK)
© Adaptive Coarse space with prescribed targeted

convergence rate
=
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ORAS: Optimized RAS

@ PL. Lions algorithm at the continuous level (partial
differential equation)
© Algebraic formulation for overlapping subdomains = Let B;
be the matrix of the Robin subproblem in each subdomain
1 < i< N, define M3}, := >N, R DB R;, Optimized
multiplicative, additive, and restricted additive Schwarz
preconditioning, St Cyr et al, 2007
Q Symmetric variant =
oM OAS =¥ 1 R/B 'R (Natural but K.O.)
@ Msopns = 21:1 R,TD B 'D;R (OK)
© Adaptive Coarse space with prescribed targeted

convergence rate
— 777
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Fictitious Space Lemma

Lemma (Fictitious Space Lemma, Nepomnyaschikh 1991)

Let H and Hp be two Hilbert spaces. Let a be a symmetric
positive bilinear form on H and b on Hp. Suppose that there
exists a linear operator R : Hp — H, such that

@ R is surjective.

@ there exists a positive constant cg such that

a(Rup, Rup) < cg - b(up, up) Yup € Hp. (2)

@ Stable decomposition: there exists a positive constant cr
such that for all u € H there exists up € Hp with Rup = u
and

cr - b(up, up) < a(Rup, Rup) = a(u, u). (3)
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Fictitious Space Lemma (continued)

Lemma (FSL continued)

We introduce the adjoint operator R* : H — Hp by
(Rup, u) = (up, R*u)p for all up € Hp and u € H. Then we
have the following spectral estimate

cr-a(u,u)<a (RB_1R*AU, u) <cg-a(u,u), YJue H (4)

which proves that the eigenvalues of operator RB~'R*A are
bounded from below by ct and from above by cg.
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FSL and one level SORAS

@ H:=R#N and the a-bilinear form:
a(U,V) := VT AU. (5)

where A is the matrix of the problem we want to solve.
@ Hp is a product space and b a bilinear form defined by

HR#N'andbuV Zv BU;,. (6)
i=1

@ The linear operator Rspras is defined as

N
Rsonas : Ho — H, Rsomas(U) = > R/DU;.  (7)

Y -1 R
We have: Mgopas = Rsoras B Rsopas:
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Estimate for the one level SORAS

Let ky be the maximum number of neighbors of a subdomain
and 4 be defined as:

DU;))" A(DU;
4= max  max ( ’U’)T (DY)
1<i<N U, eR#Ni\ {0} Ui B;U;
We can take cg := ko1 -
Let k1 be the maximum multiplicity of the intersection between
subdomains and 74 be defined as:

. o UTAN,
T4 = min mn ——
1<i<N yer#Nin{o} U;' B;U;

1

We can take cr := -

We have: -
= MMsgbrasA) < ko1 -
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Control of the upper bound

Definition (Generalized Eigenvalue Problem for the upper

bound)

Find (U,‘k, ,u,-k) € R#M \ {O} x R such that
(8)
DiAiDUjx = pixB;iUj .

Let v > 0 be a user-defined threshold, we define Zjgpeo C R#N
as the vector space spanned by the family of vectors
(R,TD,-U,-,()M,.P%K,-SN corresponding to eigenvalues larger than
Vo
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Control of the lower bound

Definition (Generalized Eigenvalue Problem for the lower
bound)

For each subdomain 1 < j < N, we introduce the generalized
eigenvalue problem

Find (Vjx, \ik) € R#Vi \ {0} x R such that )
Aj{\/euvjk = )\jkBjij o
Let 7 > 0 be a user-defined threshold, we define ZJ,,., C R#N
as the vector space spanned by the family of vectors
(F‘l’jTDjij))\jk<T,1§j§N corresponding to eigenvalues smaller
than .
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Two level SORAS-GENEO-2 preconditioner

Definition (Two level SORAS-GENEO-2 preconditioner)

Let Py denote the a-orthogonal projection on the
SORAS-GENEO-2 coarse space

o 2
ZGenEO-2 1= deneo @ deneo )

the two-level SORAS-GENEO-2 preconditioner is defined:

MS_éFn’AS,Z = PoA™" + (lg — Po) Mgdaas (la — Pg)

where PobA~" = R](Ro ARJ)~"Ro, see J. Mandel, (1992) and
BFGS algorithm (1970).
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Two level SORAS-GENEO-2 preconditioner

Theorem (Haferssas, Jolivet and N., 2015)

Let~ and T be user-defined targets. Then, the eigenvalues of
the two-level SORAS-GenEQO-2 preconditioned system satisfy
the following estimate

1

T )\(M§ORA32A) < max(1, ko)

What if one level method is Mg,

Find (Vjx, \i) € R#i\ {0} x R such that
ANCU = Ny DiBiDNV i -
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FSL and other DDM

GenEO technique yields adaptive coarse spaces with a
targeted condition number for:

@ Additive Schwarz method

@ Hybrid Schwarz method

@ Balancing Neumann Neumann and FETI

@ Optimized Schwarz method (Haferssas, Jolivet, N. 2017)
See also Schwarz algorithm for the Schur complement (Poirel,
Agullo & Giraud)
For a comprehensive presentation:

"An Introduction to Domain Decomposition Methods: algorithms,
theory and parallel implementation”, V. Dolean, P. Jolivet and F Nataf,
https://www.1ljll.math.upmc.fr/nataf/
OTl44DoleanJolivetNataf_ full.pdf, Lecture Notes, SIAM,
2015.
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Q Domain Specific Language for Finite Element simulation
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Neumann sub matrix and Domain Specific Language

In addition to the original matrix, we need for each subdomain j
a Neumann matrix ANev,
DD methods, access to the local Neumann matrix:
@ Ask the developer of the simulation code to provide it
(HPDDM, Jolivet & N.)
@ Infer it from some assumption on the problem at hand (e.g.
Graph Laplacian)
@ Use Domain Specific Language (DSL) for finite element (or
volume) method
Note that a related question in multigrid is the access to
the near kernel of the matrix:
@ user provided near kernel of the matrix (GAMG with
PETSc)
@ Infer it from some assumption on the problem at hand (e.g.
Graph Laplacian) (Notay-Napov 2016).
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Domain Specific Language for finite element method

Why use a DS(E)L (FreeFem++, Feel++, Dune, Fenics or
Firedrake) instead of c/C++/Fortran/.. ?

@ performances close to low-level language implementation,

@ hard to beat something as simple as:

varf a(u, v) = int3d(mesh)([dx(u), dy(u), dz(u)]’ * [dx(v), dy(v), dz(v)])

- int3d(mesh)(f * v) + on(boundary_mesh)(u = 0) ,
@ access to the variational formulation is then natural and
that’'s what we need.
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Parallel Software tools : HPDDM and FreeFem++

Figure: Antennas and mesh — interior diameter 28,5 cm

In-house open source libraries (LGPL) linked to many
third-party libraries:
@ HPDDM (High Performance Domain Decomposition
Methods) for massively parallel computing
@ FreeFem++(-mpi) for the parallel simulation of equations
from physics by the finite element method (FEM).
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Parallel Software : HPDDM, ffddm and FreeFem++

HPDDM (P. Jolivet, F.N.) and ffddm (P.-H. Tournier, F.N.)

@ Implements parallel algorithms: Domain Decomposition
methods and Block solvers

@ 2 billions unknowns in three dimension solved in 210
seconds on 8100 cores

@ Interfaced with FreeFem++ and Feel++

@ HPDDM can be interfaced with a C++, C, Fortran or
Python code

o ffddm is a pure FreeFem++ implementation of DDM

FreeFem++

@ versatile parallel simulation tools: fluid and solid
mechanics, electromagnetism, quantum physics, . ..

@ documentation in English (Franglish say), Japanese,
Spanish and Chinese wiififirreerenss

@ teaching, research, prototyping in some big companies and
in some small/medium companies as a production code
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Numerical results via a Domain Specific Language

FreeFem++ (http://www.freefem.org/ff++), F.Hecht
interfaced with

@ Metis Karypis and Kumar 1998 @ Intel MKL

@ SCOTCH chevalier and Pellegrini 2008 @ PARDISO sSchenk et al. 2004
@ UMFPACK Davis 2004 @ MUMPS Amestoy et al. 1998
@ ARPACK Lehoucq et al. 1998 @ PETSc solvers Balay et al.
@ MPI snir et al. L Slepc via PETSc

Runs on PC (Linux, OSX, Windows, Smartphones) and HPC
(Babel@CNRS, HPC1@LJLL, Titane@CEA via GENCI
PRACE)

FreeFem++ and DDM = HPC for ALL!
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http://www.freefem.org/ff++), F. Hecht

A new interface with P.-H. Tournier:

diffusion-3d-minimal-ddm.edp

meshN ThGlobal = cube(getARGV('—global”, 10), getARGV("—global”,
10), getARGV("—global”, 10),
[x, y, z], label = LL); // global mesh

macro Varf(varfName, meshName, PhName)
varf varfName(u,v) = intN (meshName) (grad(u)’ * grad(v)) +
intN (meshName) (v) + on(1, u = 1.0); // EOM

// Domain decomposition

ffddmbuildDDmesh( Lap , ThGlobal , mpiCommWorld )
ffddmbuildDDfespace( Lap , Lap , real , def , init , P1 )
ffddmsetupOperator(Lap ,Lap , Varf)
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A new interface with P.-H. Tournier:

diffusion-3d-minimal-ddm.edp

// Domain decomposition solve
real[int] rhs(LapVhi.ndof);
ffddmbuildrhs (Lap , Varf , rhs )
LapVhi def(u) ;

// Two—level Schwarz solve

ffddmsetupPrecond (Lap, Varf)

ffddmgeneosetup (Lap, Varf)

ffddmset (Lap, corr, "BNN") ;

real[int] x0(LapVhi.ndof);

x0 = 0;

u[] = LapfGMRES(x0, rhs, 1.e—6, 200, "right”);
Lapwritesummary//process 0 prints convergence history
ffddmplot (Lap,u, "Lap Global solution with fGMRES”) ;
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Weak scalability in three dimensions

Darcy problems with heterogeneous coefficients with automatic
mesh partition

40%

100% - {22311
80% |- N z
kel

60% | f2305 =
B k=)

1695 o

s

<

ES

20% |- —e—3D (P, FE) ||

—u-2D (P4 FE) |74
| | | 1 1 1
W o Loy, Co4 Yog Sig,

Efficiency relative to 256 MPI processes

0%
#£processes

Efficiency for a 3D problem. Direct solvers in the subdomains.
Final size: 2 billion unknowns. Wall-clock time: ~ 200s.
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Weak scalability for heterogeneous elasticity (with

FreeFem++ and HPDDM)

Rubber Steel sandwich with automatic mesh partition

z
% T

S 100%f | 704 .
a : 3
2 80%| 1197 2
o] =
Q -

S 60% | s =
3 . i 5
T A% 122 =
> B o
é 20% —-3D $
k3] -=-2D | 6

% O(Z) 1

Il Il Il Il Il
~
9(}6 U[Q 1021 904& 1096’ 6)1(99
# of processes

(a) Timings of various simulations

Figure: 200 millions unknowns in 3D wall-clock time: 200. sec. ,
Haferssas, Jolivet & N., 2016
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Comparison to multigrid

Comparing performance of setup and solution phases between
our solver against purely algebraic (+ near null space) solvers:

@ GASM — one-level domain decomposition method (ANL),
@ Hypre BoomerAMG — algebraic multigrid (LLNL),
@ GAMG - algebraic multrigrid (ANL/LBL).
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Solution of a linear system |

Homogeneous 3D Poisson equation discretized by Py FE
solved on 2,048 MPI processes, 111M d.o.f.

| | ‘V—V—V—VT
1001 . o . . 80| 1 |B setup
. - | |[Jsolution
o [72)
5102} | g 60 |
21074 | . 0 40
o i~
= e —e— Schwarz GenEO | 20| |
< —= PETSc GASM X
o« —— Hypre BoomerAMG I
108 | —~PETScGAMG || 0 . a6 G
| I T T I 06@ @@00)444
0 20 40 60 80 100 %7 oy O
#iterations 9’7@0 ¢
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Solution of a linear system |l

Heterogeneous 3D linear elasticity equation discretized by P»
FE solved on 4,096 MPI processes, 127M d.o.f.

10°) 100 (] | [ Setup
o - H X [] Solution
5102 2 o
= 3
3 g
21074 2 50| :
> Schwarz GenEO =
= 6| ——Schwarz Gen
=10 —« PETSc GASM XX
= —— Hypre BoomerAMG D ﬂ
10781 —— PETSc GAMG (fail) | 0 Sty Ga G G
| | I I T 6 @ o)
0 20 40 60 80 100 ”’%é{ %,j’g
#iterations G%\O G
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Give AMG another try
Solution of a linear system |l

Heterogeneous 3D linear elasticity equation discretized by P, FE
solved on 4,096 MPI processes, 262M d.o.f.

T T T T | /,
—e—Schwarz GenEO 150 ]
51071 - —=—PETSc GAMG 4
£ —+PETSc GAMG (bad 8 |
L (bad) § 100 [V v I
_g ].0 [ n g
3 .
Q 1075 1 1 = 50 |:| Setu.p
b= [ Solution
£1077 ]
0
_ S, Gy G
1079 ! L L L B 4 '~ <
0 20 40 60 80 100 "oy, G 6 %
#iterations 6’/76\0 %)
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Wave propagation phenomena

The coarse space, if necessary, is built from a coarse grid.

If a coarse problem is solved, it is approximately solved by a
one level DD method. See also I.G. Graham, E.A. Spence and J.
Zou, DD with local impedance conditions for the Helmholtz equation,

@ Mesh with 2.3M degrees of freedom;

@ Domain decomposition methods with impedance interface
conditions, twice as fast as Dirichlet interface conditions;

@ Parallel computing on 64 cores on SGI UV2000 at UPMC : 3s
per emitter, 5 mn as a whole.
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Strong Scalability test for 3D Maxwell
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Figure: Maxwell 3D with edge elements of degree 2 -
119M d.o.f.
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Maxwell’s equations — Cobra test case in FreeFem++

Bonazzoli, Dolean, Graham, Spence, Tournier, 2018.
order 2 edge elements (Nedelec), 10 pts per wavelength
f=10GHz: n~1.07 x 108 f=16GHz: n~1.98 x 108

f Ny || #1it | innerit | Total | Setup | GMRES | inner
10GHz | 1536 || 32 | 1527 | 515.8 | 383.2 | 132.6 61.8
10GHz | 3072 || 33 | 2083 | 285.0 | 201.6 83.4 40.6
16GHz | 3072 || 43 | 3610 | 549.2 | 336.8 | 2124 | 118.6
16GHz | 6144 || 46 | 4744 | 363.0 | 210.5 | 152.5 96.8
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Helmholtz equations — overthrust 3D

5 points per wave length, P2 FE Simulations réalisées sur
Occigen (CINES) noeuds Haswell

cartesian mesh adaptive mesh
f | #cores | #dofs | #it | sec. | #dofs | #it | sec.
5 384 | 22M | 167 | 58| 11M|125| 25
10 3072 | 1776 M | 340 | 121 | 85 M | 253 59
20 | 12288 —| —| — | 678M | 438 | 218

Figure: Simulations with FreeFem++ (P.H. Tournier)
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Radiative transfer problem

(s-V+B(x)I(x,s) —05(X) ?ﬁ I(x,s")D(s,s') ds’
S
— k(X)) (x) =0 VxecQ,seS

One billion unknowns in 60 seconds with 8192 MPI processes

Figure: Badria, Jolivet, Rousseau, Le Corre, Digonnet and Favennec,
2018 — FreeFem++ script

F. Nataf DDM



0 Conclusion
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Conclusion

@ DDM are naturally parallel and communication avoiding
@ Targeted convergence rate for SPD problems

@ FreeFem++ integration of GenEO via HPDDM yields a
versatile and powerful tool

Work in progress

@ Multigrid like three (or more) level methods (Stability w.r.t to
approximate coarse solves N. 2018)

@ Firedrake (yafem DSL) integration of GenEO via
geneo4PETSc

Open questions

@ Theoretical framework for saddle point, non symmetric or
undefinite problems (Graham, Spence 2017)

”
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