Homogénéisation de lois de conservation scalaires et d'équations de transport

Anne-Laure Dalibard

CEREMADE Université Paris-Dauphine

8 Octobre 2007

Plan

- 1. Introduction
- 2. Cas visqueux : étude du problème limite
- 3. Cas visqueux : preuve de convergence
- 4. Cas hyperbolique

Plan

1. Introduction

- Cas visqueux : étude du problème limite
- Cas visqueux : preuve de convergence
- 4. Cas hyperbolique

Position du problème

▶ **Objet de l'étude :** comportement lorsque $\varepsilon \to 0$ de $u^{\varepsilon} = u^{\varepsilon}(t,x)$ ($t \ge 0, x \in \mathbb{R}^N$) sol. de

$$\begin{cases}
\frac{\partial u^{\varepsilon}}{\partial t}(t,x) + \frac{\partial}{\partial x_{i}}A_{i}\left(\frac{x}{\varepsilon},u^{\varepsilon}(t,x)\right) - \varepsilon\Delta_{x}u^{\varepsilon} = 0, \\
u^{\varepsilon}(t=0) = u_{0}\left(x,\frac{x}{\varepsilon}\right) \in L^{\infty}(\mathbb{R}^{N}).
\end{cases} (1)$$

- ▶ Modèle : u^{ε} = densité de particules dans un milieu fortement oscillant.
- ho ε = taille typique des hétérogénéités dans le milieu.
- ► Hypothèse de périodicité : $A_i = A_i(y, v)$ (resp. $u_0 = u_0(x, y)$) est $[0, 1]^N$ -périodique en y ($Y = [0, 1]^N$).
- ▶ Viscosité d'ordre ε → action à un niveau microscopique uniquement.

Position du problème

▶ **Objet de l'étude :** comportement lorsque $\varepsilon \to 0$ de $u^{\varepsilon} = u^{\varepsilon}(t,x)$ ($t \ge 0, x \in \mathbb{R}^N$) sol. de

$$\begin{cases}
\frac{\partial u^{\varepsilon}}{\partial t}(t,x) + \frac{\partial}{\partial x_{i}}A_{i}\left(\frac{x}{\varepsilon},u^{\varepsilon}(t,x)\right) - \varepsilon\Delta_{x}u^{\varepsilon} = 0, \\
u^{\varepsilon}(t=0) = u_{0}\left(x,\frac{x}{\varepsilon}\right) \in L^{\infty}(\mathbb{R}^{N}).
\end{cases} (1)$$

- ▶ Modèle : u^{ε} = densité de particules dans un milieu fortement oscillant.
- ightharpoonup arepsilon = taille typique des hétérogénéités dans le milieu.
- ► Hypothèse de périodicité : $A_i = A_i(y, v)$ (resp. $u_0 = u_0(x, y)$) est $[0, 1]^N$ -périodique en y ($Y = [0, 1]^N$).
- ▶ Viscosité d'ordre ε → action à un niveau microscopique uniquement.

Position du problème

▶ **Objet de l'étude :** comportement lorsque $\varepsilon \to 0$ de $u^{\varepsilon} = u^{\varepsilon}(t,x)$ ($t \ge 0, x \in \mathbb{R}^N$) sol. de

$$\begin{cases}
\frac{\partial u^{\varepsilon}}{\partial t}(t,x) + \frac{\partial}{\partial x_{i}}A_{i}\left(\frac{x}{\varepsilon},u^{\varepsilon}(t,x)\right) - \varepsilon\Delta_{x}u^{\varepsilon} = 0, \\
u^{\varepsilon}(t=0) = u_{0}\left(x,\frac{x}{\varepsilon}\right) \in L^{\infty}(\mathbb{R}^{N}).
\end{cases} (1)$$

- ▶ Modèle : u^{ε} = densité de particules dans un milieu fortement oscillant.
- ightharpoonup arepsilon = taille typique des hétérogénéités dans le milieu.
- ▶ Hypothèse de périodicité : $A_i = A_i(y, v)$ (resp. $u_0 = u_0(x, y)$) est $[0, 1]^N$ -périodique en y ($Y = [0, 1]^N$).
- ▶ Viscosité d'ordre ε → action à un niveau microscopique uniquement.

But : montrer un résultat du type

$$u^{\varepsilon}(t,x)
ightarrow \bar{u}(t,x)$$
 lorsque $\varepsilon
ightarrow 0$

- ▶ Deux sous-problèmes :
 - Trouver la(les) équation(s) limite(s) ou le problème homogénéisé :
 - 2. Démontrer la convergence.
- ▶ **Difficulté** : pas de borne *a priori* simple !
- ➤ Clé de l'étude : existence de sol. stationnaires bornées de (1) + principe de contraction dans L¹
 - → Comparaison avec sol. stationnaires (si elles existent!)

But : montrer un résultat du type

$$u^{\varepsilon}(t,x)
ightarrow \bar{u}(t,x)$$
 lorsque $\varepsilon
ightarrow 0$

- Deux sous-problèmes :
 - Trouver la(les) équation(s) limite(s) ou le problème homogénéisé;
 - Démontrer la convergence.
- ▶ **Difficulté** : pas de borne *a priori* simple !
- Clé de l'étude : existence de sol. stationnaires bornées de (1) + principe de contraction dans L¹
 - → Comparaison avec sol. stationnaires (si elles existent!)

But : montrer un résultat du type

$$u^{\varepsilon}(t,x)
ightarrow \bar{u}(t,x)$$
 lorsque $\varepsilon
ightarrow 0$

- Deux sous-problèmes :
 - Trouver la(les) équation(s) limite(s) ou le problème homogénéisé;
 - 2. Démontrer la convergence.
- ▶ **Difficulté** : pas de borne *a priori* simple !
- Clé de l'étude : existence de sol. stationnaires bornées de (1) + principe de contraction dans L¹
 - → Comparaison avec sol. stationnaires (si elles existent!)

But : montrer un résultat du type

$$u^{\varepsilon}(t,x) \rightarrow \bar{u}(t,x)$$
 lorsque $\varepsilon \rightarrow 0$

- Deux sous-problèmes :
 - Trouver la(les) équation(s) limite(s) ou le problème homogénéisé;
 - 2. Démontrer la convergence.
- ▶ **Difficulté** : pas de borne *a priori* simple !
- Clé de l'étude : existence de sol. stationnaires bornées de (1) + principe de contraction dans L¹
 - → Comparaison avec sol. stationnaires (si elles existent!)

But : montrer un résultat du type

$$u^{\varepsilon}(t,x)
ightarrow \bar{u}(t,x)$$
 lorsque $\varepsilon
ightarrow 0$

- Deux sous-problèmes :
 - Trouver la(les) équation(s) limite(s) ou le problème homogénéisé;
 - 2. Démontrer la convergence.
- Difficulté : pas de borne a priori simple !
- Clé de l'étude : existence de sol. stationnaires bornées de (1) + principe de contraction dans L¹
 - → Comparaison avec sol. stationnaires (si elles existent!)

But : montrer un résultat du type

$$u^{\varepsilon}(t,x)
ightarrow \bar{u}(t,x)$$
 lorsque $\varepsilon
ightarrow 0$

- Deux sous-problèmes :
 - Trouver la(les) équation(s) limite(s) ou le problème homogénéisé;
 - 2. Démontrer la convergence.
- Difficulté : pas de borne a priori simple !
- ➤ Clé de l'étude : existence de sol. stationnaires bornées de (1) + principe de contraction dans L¹
 - → Comparaison avec sol. stationnaires (si elles existent!)

Plan

- 1. Introduction
- 2. Cas visqueux : étude du problème limite
 - a. Ansatz Calculs formels
 - b. Problème de la cellule
 - c. Couche initiale
- 3. Cas visqueux : preuve de convergence
- 4. Cas hyperbolique

Plan

- 1. Introduction
- 2. Cas visqueux : étude du problème limite a. Ansatz Calculs formels
 - h Problème de la collula
 - b. Problème de la cellule
 - c. Couche initiale
- 3. Cas visqueux : preuve de convergence
- 4. Cas hyperbolique

Développement limité en puissances de ε :

$$u^{\varepsilon}(t,x) \approx u^{0}\left(t,x,\frac{x}{\varepsilon}\right) + \varepsilon u^{1}\left(t,x,\frac{x}{\varepsilon}\right) + \cdots$$
 (2)

où chaque terme $u^i(t, x, y)$ est périodique en y.

Développement limité en puissances de ε :

$$u^{\varepsilon}(t,x) \approx u^{0}\left(t,x,\frac{x}{\varepsilon}\right) + \varepsilon u^{1}\left(t,x,\frac{x}{\varepsilon}\right) + \cdots$$
 (2)

où chaque terme $u^i(t, x, y)$ est périodique en y. On trouve :

$$u^0(t,x,y)=v(y,\bar{u}(t,x)),$$

où $\bar{u}=\langle u^0 \rangle$ et :

▶ $\forall p \in \mathbb{R}$, v(y, p) est sol. d'un pb. micro. "de la cellule" :

$$-\Delta_{y}v(y,p) + \operatorname{div}_{y}A(y,v(y,p)) = 0, \ \langle v(\cdot,p) \rangle = p.$$
 (3)

 $\bar{u}(t,x)$ solution entropique d'une loi de conservation scalaire (problème homogénéisé)

$$\partial_t \bar{u}(t,x) + \text{div}_X \overline{A}(\bar{u}(t,x)) = 0$$
 (4)

avec

$$\overline{A}(p) = \int_{[0,1]^N} A(y, v(y, p)) \, dy.$$

Développement limité en puissances de ε :

$$u^{\varepsilon}(t,x) \approx u^{0}\left(t,x,\frac{x}{\varepsilon}\right) + \varepsilon u^{1}\left(t,x,\frac{x}{\varepsilon}\right) + \cdots$$
 (2)

où chaque terme $u^i(t, x, y)$ est périodique en y. On trouve :

$$u^0(t,x,y)=v(y,\bar{u}(t,x)),$$

où $\bar{u}=\left\langle u^{0}\right\rangle$ et : $\forall p\in\mathbb{R},\ v(y,p)$ est sol. d'un pb. micro. "de la cellule" :

$$-\Delta_{y}\nu(y,p)+\mathrm{div}_{y}A(y,\nu(y,p))=0,\ \langle\nu(\cdot,p)\rangle=p. \tag{3}$$

 $\bar{u}(t,x)$ solution entropique d'une loi de conservation

$$\partial_t \overline{u}(t,x) + \operatorname{div}_x \overline{A}(\overline{u}(t,x)) = 0$$
 (4)

$$\overline{A}(p) = \int_{[0,1]^N} A(y,v(y,p)) dy.$$

Développement limité en puissances de ε :

$$u^{\varepsilon}(t,x) \approx u^{0}\left(t,x,\frac{x}{\varepsilon}\right) + \varepsilon u^{1}\left(t,x,\frac{x}{\varepsilon}\right) + \cdots$$
 (2)

où chaque terme $u^i(t, x, y)$ est périodique en y. On trouve :

$$u^0(t,x,y)=v(y,\bar{u}(t,x)),$$

où $\bar{u}=\left\langle u^{0}\right\rangle$ et : $\forall p\in\mathbb{R},\ v(y,p)$ est sol. d'un pb. micro. "de la cellule" :

$$-\Delta_{y}\nu(y,p)+\operatorname{div}_{y}A(y,\nu(y,p))=0,\ \langle\nu(\cdot,p)\rangle=p. \hspace{0.5cm} (3)$$

 $\bar{u}(t,x)$ solution entropique d'une loi de conservation scalaire (problème homogénéisé)

$$\partial_t \bar{u}(t,x) + \operatorname{div}_x \overline{A}(\bar{u}(t,x)) = 0$$
 (4)

avec

$$\overline{A}(p) = \int_{[0,1]^N} A(y, v(y, p)) dy.$$

Oscillations temporelles rapides

▶ Problème : que se passe-t-il si

$$u_0(x,y) \neq v(y,\bar{u}_0(x))$$
?

→ donnée mal préparée.

Solution : on introduit des échelles de temps microscopiques :

$$u^{\varepsilon}(t,x) \approx u^{0}\left(t,\frac{t}{\varepsilon},x,\frac{x}{\varepsilon}\right) + \varepsilon u^{1}\left(t,x,\frac{x}{\varepsilon}\right) + \cdots$$
 (5)

Le problème microscopique devient

$$\partial_{\tau} u^{0} + \operatorname{div}_{y} A(y, u^{0}) - \Delta_{y} u^{0} = 0.$$
 (6)

► Sol. du pb. de la cellule = sol. stationnaire de (6).

Oscillations temporelles rapides

► Problème : que se passe-t-il si

$$u_0(x,y) \neq v(y, \bar{u}_0(x))$$
?

→ donnée mal préparée.

Solution : on introduit des échelles de temps microscopiques :

$$u^{\varepsilon}(t,x) \approx u^{0}\left(t,\frac{t}{\varepsilon},x,\frac{x}{\varepsilon}\right) + \varepsilon u^{1}\left(t,x,\frac{x}{\varepsilon}\right) + \cdots$$
 (5)

Le problème microscopique devien

$$\partial_{\tau} u^{0} + \text{div}_{y} A(y, u^{0}) - \Delta_{y} u^{0} = 0.$$
 (6)

► Sol. du pb. de la cellule = sol. stationnaire de (6).

Oscillations temporelles rapides

▶ Problème : que se passe-t-il si

$$u_0(x,y) \neq v(y,\bar{u}_0(x))$$
?

→ donnée mal préparée.

Solution : on introduit des échelles de temps microscopiques :

$$u^{\varepsilon}(t,x) \approx u^{0}\left(t,\frac{t}{\varepsilon},x,\frac{x}{\varepsilon}\right) + \varepsilon u^{1}\left(t,x,\frac{x}{\varepsilon}\right) + \cdots$$
 (5)

Le problème microscopique devient

$$\partial_{\tau} u^{0} + \operatorname{div}_{y} A(y, u^{0}) - \Delta_{y} u^{0} = 0.$$
 (6)

► Sol. du pb. de la cellule = sol. stationnaire de (6).

Plan

- 1. Introduction
- 2. Cas visqueux : étude du problème limite
 - a. Ansatz Calculs formels
 - b. Problème de la cellule
 - c. Couche initiale
- 3. Cas visqueux : preuve de convergence
- 4. Cas hyperbolique

Hypothèses: $\exists n, m, C_0 > 0, n < \frac{N+2}{N-2} \text{ si } N > 2, \text{ t.q. } \forall (y, v)$

$$|\partial_{\nu}A_{i}(y,\nu)| \le C_{0}(1+|\nu|)^{m},$$

 $|\operatorname{div}_{y}A(y,\nu)| \le C_{0}(1+|\nu|)^{n},$
(7)

et m = 0, ou bien n < 1, ou bien

$$\left[n < \min\left(\frac{N+2}{N}, 2\right) \text{ et } \exists p_0 \in \mathbb{R}, \text{ div}_y A(y, p_0) \equiv 0.\right]$$
 (8)

Proposition : Sous (7), (8), pour tout $p \in \mathbb{R}$ il existe une unique solution $v(y,p) \in H^1_{per}(Y)$ du pb. de la cellule :

$$-\Delta_y v(y,p) + \operatorname{div}_y A(y,v(y,p)) = 0, \quad \langle v(\cdot,p) \rangle = p.$$

Croissance en p:

$$v(y,p) > v(y,p') \quad \forall p > p' \ \forall y \in Y.$$

Outil de la preuve : régularité elliptique.

Hypothèses : $\exists n, m, C_0 > 0, n < \frac{N+2}{N-2} \text{ si } N > 2, \text{ t.q. } \forall (y, v)$

$$|\partial_{\nu}A_{i}(y,\nu)| \leq C_{0}(1+|\nu|)^{m}, |\operatorname{div}_{y}A(y,\nu)| \leq C_{0}(1+|\nu|)^{n},$$
 (7)

et m = 0, ou bien n < 1, ou bien

$$\left[n < \min\left(\frac{N+2}{N}, 2\right) \text{ et } \exists p_0 \in \mathbb{R}, \text{ div}_y A(y, p_0) \equiv 0.\right]$$
 (8)

Proposition: Sous (7), (8), pour tout $p \in \mathbb{R}$ il existe une unique solution $v(y,p) \in H^1_{per}(Y)$ du pb. de la cellule :

$$-\Delta_y v(y,p) + \operatorname{div}_y A(y,v(y,p)) = 0, \quad \langle v(\cdot,p) \rangle = p.$$

Croissance en p:

$$v(y,p) \ge v(y,p') \quad \forall p \ge p' \ \forall y \in Y.$$

Outil de la preuve : régularité elliptique.

Hypothèses : $\exists n, m, C_0 > 0, n < \frac{N+2}{N-2} \text{ si } N > 2, \text{ t.q. } \forall (y, v)$

$$|\partial_{\nu}A_{i}(y,\nu)| \leq C_{0}(1+|\nu|)^{m},$$

 $|\operatorname{div}_{y}A(y,\nu)| \leq C_{0}(1+|\nu|)^{n},$ (7)

et m = 0, ou bien n < 1, ou bien

$$\left[n < \min\left(\frac{N+2}{N}, 2\right) \text{ et } \exists p_0 \in \mathbb{R}, \text{ div}_y A(y, p_0) \equiv 0.\right]$$
 (8)

Proposition: Sous (7), (8), pour tout $p \in \mathbb{R}$ il existe une unique solution $v(y,p) \in H^1_{per}(Y)$ du pb. de la cellule :

$$-\Delta_y v(y,p) + \operatorname{div}_y A(y,v(y,p)) = 0, \quad \langle v(\cdot,p) \rangle = p.$$

Croissance en p:

$$v(y,p) \ge v(y,p') \quad \forall p \ge p' \ \forall y \in Y.$$

Hypothèses: $\exists n, m, C_0 > 0, n < \frac{N+2}{N-2} \text{ si } N > 2, \text{ t.q. } \forall (y, v)$

$$|\partial_{\nu}A_{i}(y,\nu)| \leq C_{0}(1+|\nu|)^{m}, |\operatorname{div}_{y}A(y,\nu)| \leq C_{0}(1+|\nu|)^{n},$$
 (7)

et m = 0, ou bien n < 1, ou bien

$$\left[n < \min\left(\frac{N+2}{N}, 2\right) \text{ et } \exists p_0 \in \mathbb{R}, \text{ div}_y A(y, p_0) \equiv 0.\right]$$
 (8)

Proposition: Sous (7), (8), pour tout $p \in \mathbb{R}$ il existe une unique solution $v(y,p) \in H^1_{per}(Y)$ du pb. de la cellule :

$$-\Delta_y v(y, p) + \operatorname{div}_y A(y, v(y, p)) = 0, \quad \langle v(\cdot, p) \rangle = p.$$

Croissance en p:

$$v(y,p) > v(y,p') \quad \forall p > p' \ \forall y \in Y.$$

Outil de la preuve : régularité elliptique.

Plan

- 1. Introduction
- 2. Cas visqueux : étude du problème limite
 - a. Ansatz Calculs formels
 - b. Problème de la cellule
 - c. Couche initiale
- 3. Cas visqueux : preuve de convergence
- 4. Cas hyperbolique

Couche initiale

▶ **Proposition**: On suppose (7), (8), $\partial_{\nu}\partial_{y_{j}}A_{i} \in L^{\infty}_{loc}(Y \times \mathbb{R})$, et $\exists \beta_{1}, \beta_{2} \in \mathbb{R}$,

$$v(y, \beta_1) \le u_0(y) \le v(y, \beta_2) \quad \forall y \in Y.$$
 (9)

Soit $w = w(\tau, y)$ la sol. du pb. de Cauchy :

$$\begin{cases} \partial_{\tau} w + \operatorname{div}_{y} A(y, w) - \Delta_{y} w = 0, \\ w(\tau = 0, y) = u_{0}(y). \end{cases}$$

Alors $\exists c, \mu = \mu(N, ||\partial_V A||_{L^{\infty}_{loc}}) > 0$ t.q.

$$||w(\tau,y)-v(y,p)||_{L^{\infty}(Y)}\leq ce^{-\mu\tau},$$

où
$$p = \langle u_0 \rangle$$
.

▶ **Bilan :** C.I. mal-préparée : $u_0(x, y) \neq v(y, \bar{u}_0(x))$

⇒ Couche initiale.

Couche initiale

▶ **Proposition**: On suppose (7), (8), $\partial_{\nu}\partial_{y_{j}}A_{i} \in L^{\infty}_{loc}(Y \times \mathbb{R})$, et $\exists \beta_{1}, \beta_{2} \in \mathbb{R}$,

$$v(y, \beta_1) \le u_0(y) \le v(y, \beta_2) \quad \forall y \in Y.$$
 (9)

Soit $w = w(\tau, y)$ la sol. du pb. de Cauchy :

$$\begin{cases} \partial_{\tau} w + \operatorname{div}_{y} A(y, w) - \Delta_{y} w = 0, \\ w(\tau = 0, y) = u_{0}(y). \end{cases}$$

Alors $\exists c, \mu = \mu(N, ||\partial_{\nu}A||_{L^{\infty}_{loc}}) > 0$ t.q.

$$||w(\tau,y)-v(y,p)||_{L^{\infty}(Y)}\leq ce^{-\mu\tau},$$

où
$$p = \langle u_0 \rangle$$
.

▶ **Bilan :** C.I. mal-préparée : $u_0(x, y) \neq v(y, \bar{u}_0(x))$

⇒ Couche initiale.



Couche initiale

▶ **Proposition**: On suppose (7), (8), $\partial_{\nu}\partial_{y_{j}}A_{i} \in L^{\infty}_{loc}(Y \times \mathbb{R})$, et $\exists \beta_{1}, \beta_{2} \in \mathbb{R}$,

$$v(y, \beta_1) \le u_0(y) \le v(y, \beta_2) \quad \forall y \in Y.$$
 (9)

Soit $w = w(\tau, y)$ la sol. du pb. de Cauchy :

$$\begin{cases} \partial_{\tau} w + \operatorname{div}_{y} A(y, w) - \Delta_{y} w = 0, \\ w(\tau = 0, y) = u_{0}(y). \end{cases}$$

Alors $\exists c, \mu = \mu(\textit{N}, ||\partial_{\textit{v}}\textit{A}||_{L^{\infty}_{loc}}) > 0$ t.q.

$$||w(\tau,y)-v(y,p)||_{L^{\infty}(Y)}\leq ce^{-\mu\tau},$$

où
$$p = \langle u_0 \rangle$$
.

▶ Bilan : C.I. mal-préparée : $u_0(x, y) \neq v(y, \bar{u}_0(x))$

⇒ Couche initiale.

- ▶ **Rappel** : v(y, p) croissant en p, $\langle v(\cdot, p) \rangle = p$.
- ▶ Un cas simple : si

$$\lim_{p \to \infty} \inf_{y \in Y} v(y, p) = +\infty \tag{10}$$

$$(\exists C > 0, \ u_0 \le C \text{ p.p.}) \Rightarrow (\exists \beta_2 \in \mathbb{R}, \ u_0 \le v(\cdot, \beta_2) \text{ p.p.})$$

- ► Condition suffisante pour (10) : m = 0 (A uniformément Lipschitzien).
- ► En général (si $m \neq 0$), (10) n'est pas vérifiée...
- Autre preuve à l'aide de systèmes dynamiques ?

- ▶ **Rappel** : v(y, p) croissant en p, $\langle v(\cdot, p) \rangle = p$.
- ▶ Un cas simple : si

$$\lim_{p \to \infty} \inf_{y \in Y} v(y, p) = +\infty \tag{10}$$

$$(\exists C > 0, \ u_0 \le C \text{ p.p.}) \Rightarrow (\exists \beta_2 \in \mathbb{R}, \ u_0 \le v(\cdot, \beta_2) \text{ p.p.})$$

- ► Condition suffisante pour (10) : m = 0 (A uniformément Lipschitzien).
- ► En général (si $m \neq 0$), (10) n'est pas vérifiée...
- Autre preuve à l'aide de systèmes dynamiques ?

- ▶ **Rappel** : v(y, p) croissant en p, $\langle v(\cdot, p) \rangle = p$.
- ▶ Un cas simple : si

$$\lim_{p \to \infty} \inf_{y \in Y} v(y, p) = +\infty \tag{10}$$

$$(\exists C > 0, \ u_0 \leq C \text{ p.p.}) \Rightarrow (\exists \beta_2 \in \mathbb{R}, \ u_0 \leq v(\cdot, \beta_2) \text{ p.p.})$$

- ► Condition suffisante pour (10) : m = 0 (A uniformément Lipschitzien).
- ► En général (si $m \neq 0$), (10) n'est pas vérifiée...
- Autre preuve à l'aide de systèmes dynamiques ?

- ▶ **Rappel** : v(y, p) croissant en p, $\langle v(\cdot, p) \rangle = p$.
- ▶ Un cas simple : si

$$\lim_{\rho \to \infty} \inf_{y \in Y} v(y, \rho) = +\infty \tag{10}$$

$$(\exists C > 0, \ u_0 \leq C \text{ p.p.}) \Rightarrow (\exists \beta_2 \in \mathbb{R}, \ u_0 \leq v(\cdot, \beta_2) \text{ p.p.})$$

- ► Condition suffisante pour (10) : m = 0 (A uniformément Lipschitzien).
- ▶ En général (si $m \neq 0$), (10) n'est pas vérifiée...
- Autre preuve à l'aide de systèmes dynamiques ?

- ▶ Rappel : v(y, p) croissant en p, $\langle v(\cdot, p) \rangle = p$.
- ▶ Un cas simple : si

$$\lim_{\rho \to \infty} \inf_{y \in Y} v(y, \rho) = +\infty \tag{10}$$

$$(\exists C > 0, \ u_0 \leq C \text{ p.p.}) \Rightarrow (\exists \beta_2 \in \mathbb{R}, \ u_0 \leq v(\cdot, \beta_2) \text{ p.p.})$$

- ► Condition suffisante pour (10) : m = 0 (A uniformément Lipschitzien).
- ► En général (si $m \neq 0$), (10) n'est pas vérifiée...
- Autre preuve à l'aide de systèmes dynamiques ?

- ▶ Rappel : v(y,p) croissant en p, $\langle v(\cdot,p)\rangle = p$.
- ▶ Un cas simple : si

$$\lim_{\rho \to \infty} \inf_{y \in Y} v(y, \rho) = +\infty \tag{10}$$

$$(\exists C > 0, \ u_0 \leq C \text{ p.p.}) \Rightarrow (\exists \beta_2 \in \mathbb{R}, \ u_0 \leq v(\cdot, \beta_2) \text{ p.p.})$$

- ► Condition suffisante pour (10) : m = 0 (A uniformément Lipschitzien).
- ► En général (si $m \neq 0$), (10) n'est pas vérifiée...
- Autre preuve à l'aide de systèmes dynamiques ?

▶ Donnée initiale bien préparée : si

$$u^{\varepsilon}(t=0,x)=v\left(\frac{x}{\varepsilon},\bar{u}_0(x)\right),$$

alors on s'attend à avoir

$$u^{\varepsilon}(t,x) \approx v\left(\frac{x}{\varepsilon}, \bar{u}(t,x)\right)$$

où:

- \triangleright v(y,p) sol. d'une éq. de la cellule (microscopique)
- $\bar{u}(t,x)$ sol. d'une L.C.S. (macroscopique).
- ▶ Donnée initiale mal préparée : si

$$v\left(\frac{x}{\varepsilon},\beta_1\right) \leq u^{\varepsilon}(t=0,x) \leq v\left(\frac{x}{\varepsilon},\beta_2\right)$$
:

ightharpoonup Couche initiale (de taille typique ε) pendant laquelle u^{ε} s'adapte au profil ci-dessus.

▶ Donnée initiale bien préparée : si

$$u^{\varepsilon}(t=0,x)=v\left(\frac{x}{\varepsilon},\bar{u}_0(x)\right),$$

alors on s'attend à avoir

$$u^{\varepsilon}(t,x) \approx v\left(\frac{x}{\varepsilon}, \bar{u}(t,x)\right)$$

où:

- \triangleright v(y,p) sol. d'une éq. de la cellule (microscopique)
- $\bar{u}(t,x)$ sol. d'une L.C.S. (macroscopique).
- ▶ Donnée initiale mal préparée : si

$$v\left(\frac{x}{\varepsilon},\beta_1\right) \leq u^{\varepsilon}(t=0,x) \leq v\left(\frac{x}{\varepsilon},\beta_2\right)$$
:

 \rightarrow Couche initiale (de taille typique ε) pendant laquelle u^{ε} s'adapte au profil ci-dessus.

▶ Donnée initiale bien préparée : si

$$u^{\varepsilon}(t=0,x)=v\left(\frac{x}{\varepsilon},\bar{u}_0(x)\right),$$

alors on s'attend à avoir

$$u^{\varepsilon}(t,x) \approx v\left(\frac{x}{\varepsilon}, \bar{u}(t,x)\right)$$

où:

- \triangleright v(y,p) sol. d'une éq. de la cellule (microscopique)
- $\bar{u}(t,x)$ sol. d'une L.C.S. (macroscopique).
- ▶ Donnée initiale mal préparée : si

$$v\left(\frac{x}{\varepsilon},\beta_1\right) \leq u^{\varepsilon}(t=0,x) \leq v\left(\frac{x}{\varepsilon},\beta_2\right)$$
:

ightharpoonup Couche initiale (de taille typique ε) pendant laquelle u^{ε} s'adapte au profil ci-dessus.

▶ Donnée initiale bien préparée : si

$$u^{\varepsilon}(t=0,x)=v\left(\frac{x}{\varepsilon},\bar{u}_0(x)\right),$$

alors on s'attend à avoir

$$u^{\varepsilon}(t,x) \approx v\left(\frac{x}{\varepsilon}, \bar{u}(t,x)\right)$$

où:

- \triangleright v(y,p) sol. d'une éq. de la cellule (microscopique)
- $\bar{u}(t,x)$ sol. d'une L.C.S. (macroscopique).
- Donnée initiale mal préparée : si

$$v\left(\frac{x}{\varepsilon},\beta_1\right) \leq u^{\varepsilon}(t=0,x) \leq v\left(\frac{x}{\varepsilon},\beta_2\right)$$
:

ightharpoonup Couche initiale (de taille typique ε) pendant laquelle u^{ε} s'adapte au profil ci-dessus.

Plan

- 1. Introduction
- Cas visqueux : étude du problème limite
- 3. Cas visqueux : preuve de convergence
 - a. Résultat d'homogénéisation
 - b. Formulation cinétique
 - c. Passage à la limite données bien préparées
 - d. Données mal préparées
- 4. Cas hyperbolique

Plan

- 1. Introduction
- 2. Cas visqueux : étude du problème limite
- 3. Cas visqueux : preuve de convergence
 - a. Résultat d'homogénéisation
 - b. Formulation cinétique
 - c. Passage à la limite données bien préparées
 - d. Données mal préparées
- 4. Cas hyperbolique

Résultat d'homogénéisation

Théorème: On suppose (7), (8),
$$\partial_{\nu}\partial_{y_{j}}A_{i} \in L^{\infty}_{loc}$$
, $\partial_{\nu}^{2}A_{i}(y,\cdot) \in \mathcal{C}(\mathbb{R})$ p.p. $y \in Y$, et $\exists \beta_{1}, \beta_{2} \in \mathbb{R}, \quad v(y,\beta_{1}) \leq u_{0}(x,y) \leq v(y,\beta_{2})$

Alors

$$u^{\varepsilon}(t,x) - v\left(\frac{x}{\varepsilon}, \bar{u}(t,x)\right) \to 0 \quad \text{dans } L^1_{\text{loc}}([0,\infty) \times \mathbb{R}^N).$$

Publications

- ▶ Journal de mathématiques pures et appliquées, 2006 ;
- SIAM Journal on Mathematical Analysis, 2007;
- Archive for Rational Mechanics and Analysis, 2007.

Résultat d'homogénéisation

Théorème : On suppose (7), (8),
$$\partial_{\nu}\partial_{y_{j}}A_{i} \in L^{\infty}_{loc}$$
, $\partial_{\nu}^{2}A_{i}(y,\cdot) \in \mathcal{C}(\mathbb{R})$ p.p. $y \in Y$, et
$$\exists \beta_{1}, \beta_{2} \in \mathbb{R}, \quad v(y,\beta_{1}) \leq u_{0}(x,y) \leq v(y,\beta_{2}) \quad \text{p.p.}.$$

Alors

$$u^{\varepsilon}(t,x)-v\left(rac{x}{\varepsilon},ar{u}(t,x)
ight)
ightarrow 0 \quad {
m dans} \ L^1_{
m loc}([0,\infty) imes \mathbb{R}^N).$$

Publications:

- Journal de mathématiques pures et appliquées, 2006;
- SIAM Journal on Mathematical Analysis, 2007;
- Archive for Rational Mechanics and Analysis, 2007.

Plan

- 1. Introduction
- 2. Cas visqueux : étude du problème limite
- 3. Cas visqueux : preuve de convergence
 - a. Résultat d'homogénéisation
 - b. Formulation cinétique
 - c. Passage à la limite données bien préparées
 - d. Données mal préparées
- 4. Cas hyperbolique

- ▶ Idée : comparaison avec les sol. stat. : $(v(y, p))_{p \in \mathbb{R}}$.
- ▶ **Résultat** : $f^{\varepsilon}(t, x, p) := \mathbf{1}_{u^{\varepsilon} > V_p^{\varepsilon}} \frac{\partial v}{\partial p} \left(\frac{x}{\varepsilon}, p\right)$ vérifie

$$\frac{\partial}{\partial t} f^{\varepsilon} + \frac{\partial}{\partial x_{i}} \left[a_{i} \left(\frac{x}{\varepsilon}, v_{p}^{\varepsilon} \right) f^{\varepsilon} \right] - \varepsilon \Delta_{x} f^{\varepsilon} = \frac{\partial m^{\varepsilon}}{\partial p}$$
 (11)

où
$$V_p^{\varepsilon}(x) := V(x/\varepsilon, p)$$
.

- ▶ $m^{\varepsilon}(t,x,p) \geq 0$: mesure du défaut d'entropie. Localement bornée, uniformément en ε (pour des données bien-préparées).
- ► Intérêt : linéarité (passage à la limite faible).

- ▶ Idée : comparaison avec les sol. stat. : $(v(y, p))_{p \in \mathbb{R}}$.
- ▶ Résultat : $f^{\varepsilon}(t, x, p) := \mathbf{1}_{u^{\varepsilon} > V_p^{\varepsilon}} \frac{\partial v}{\partial p} \left(\frac{x}{\varepsilon}, p \right)$ vérifie

$$\frac{\partial}{\partial t} f^{\varepsilon} + \frac{\partial}{\partial x_{i}} \left[a_{i} \left(\frac{x}{\varepsilon}, v_{\rho}^{\varepsilon} \right) f^{\varepsilon} \right] - \varepsilon \Delta_{x} f^{\varepsilon} = \frac{\partial m^{\varepsilon}}{\partial \rho}$$
 (11)

où
$$v_p^{\varepsilon}(x) := v(x/\varepsilon, p)$$
.

- ▶ $m^{\varepsilon}(t,x,p) \ge 0$: mesure du défaut d'entropie. Localement bornée, uniformément en ε (pour des données bien-préparées).
- ► Intérêt : linéarité (passage à la limite faible).

- ▶ Idée : comparaison avec les sol. stat. : $(v(y, p))_{p \in \mathbb{R}}$.
- ▶ **Résultat** : $f^{\varepsilon}(t, x, p) := \mathbf{1}_{u^{\varepsilon} > v_{p}^{\varepsilon}} \frac{\partial v}{\partial p} \left(\frac{x}{\varepsilon}, p \right)$ vérifie

$$\frac{\partial}{\partial t} f^{\varepsilon} + \frac{\partial}{\partial x_{i}} \left[a_{i} \left(\frac{x}{\varepsilon}, v_{\rho}^{\varepsilon} \right) f^{\varepsilon} \right] - \varepsilon \Delta_{x} f^{\varepsilon} = \frac{\partial m^{\varepsilon}}{\partial \rho}$$
 (11)

où
$$v_p^{\varepsilon}(x) := v(x/\varepsilon, p)$$
.

- ▶ $m^{\varepsilon}(t,x,p) \geq 0$: mesure du défaut d'entropie. Localement bornée, uniformément en ε (pour des données bien-préparées).
- ► Intérêt : linéarité (passage à la limite faible).

- ▶ Idée : comparaison avec les sol. stat. : $(v(y, p))_{p \in \mathbb{R}}$.
- ▶ Résultat : $f^{\varepsilon}(t, x, p) := \mathbf{1}_{u^{\varepsilon} > V_p^{\varepsilon}} \frac{\partial v}{\partial p} \left(\frac{x}{\varepsilon}, p \right)$ vérifie

$$\frac{\partial}{\partial t} f^{\varepsilon} + \frac{\partial}{\partial x_{i}} \left[a_{i} \left(\frac{x}{\varepsilon}, v_{p}^{\varepsilon} \right) f^{\varepsilon} \right] - \varepsilon \Delta_{x} f^{\varepsilon} = \frac{\partial m^{\varepsilon}}{\partial p}$$
 (11)

où
$$v_p^{\varepsilon}(x) := v(x/\varepsilon, p)$$
.

- ▶ $m^{\varepsilon}(t,x,p) \geq 0$: mesure du défaut d'entropie. Localement bornée, uniformément en ε (pour des données bien-préparées).
- ▶ Intérêt : linéarité (passage à la limite faible).

Plan

- 1. Introduction
- Cas visqueux : étude du problème limite
- 3. Cas visqueux : preuve de convergence
 - a. Résultat d'homogénéisation
 - b. Formulation cinétique
 - c. Passage à la limite données bien préparées
 - d. Données mal préparées
- 4. Cas hyperbolique

Réduction du problème

► Convergence à deux-échelles :

$$\begin{aligned} \mathbf{1}_{u^{\varepsilon}>v(\frac{x}{\varepsilon},\rho)} &\overset{2-\operatorname{\acute{e}ch.}}{\rightharpoonup} g(t,x,y,\rho), \\ f^{\varepsilon}(t,x,\rho) &= \mathbf{1}_{u^{\varepsilon}>v(\frac{x}{\varepsilon},\rho)} \frac{\partial v}{\partial \rho} \left(\frac{x}{\varepsilon},\rho\right) \overset{2-\operatorname{\acute{e}ch.}}{\rightharpoonup} g(t,x,y,\rho) \frac{\partial v}{\partial \rho}. \end{aligned}$$

▶ But : montrer que $g(t, x, y, p) = \mathbf{1}_{p < \bar{u}(t, x)}$.

En effet : si

$$\mathbf{1}_{v\left(\frac{x}{\varepsilon},p\right) < u^{\varepsilon}(t,x)} \stackrel{\text{2 ech.}}{\rightharpoonup} \mathbf{1}_{p < \overline{u}(t,x)} = \mathbf{1}_{v(y,p) < v(y,\overline{u}(t,x))}.$$

alors

$$u^{\varepsilon}(t,x)-v\left(\frac{x}{\varepsilon},\bar{u}(t,x)\right)\to 0$$

dans L^1_{loc} lorsque $\varepsilon \to 0$.

(Fonction test
$$\psi(t, x, y, p) = \varphi(t, x) \frac{\partial v}{\partial p}(y, p) \mathbf{1}_{\bar{u}(t, x)).$$

► Formulation équivalente :

Réduction du problème

► Convergence à deux-échelles :

$$\begin{split} \mathbf{1}_{u^{\varepsilon}>v(\frac{x}{\varepsilon},p)} &\overset{2\text{-}\acute{e}\text{ch.}}{\overset{\sim}{\rightharpoonup}} g(t,x,y,p), \\ f^{\varepsilon}(t,x,p) &= \mathbf{1}_{u^{\varepsilon}>v(\frac{x}{\varepsilon},p)} \frac{\partial v}{\partial p} \left(\frac{x}{\varepsilon},p\right) \overset{2\text{-}\acute{e}\text{ch.}}{\overset{\sim}{\rightharpoonup}} g(t,x,y,p) \frac{\partial v}{\partial p}. \end{split}$$

▶ But : montrer que $g(t, x, y, p) = \mathbf{1}_{p < \bar{u}(t,x)}$. En effet : si

$$\mathbf{1}_{v\left(\frac{x}{\varepsilon},p\right)< u^{\varepsilon}(t,x)}\overset{\text{2 ecn.}}{\rightharpoonup}\mathbf{1}_{p<\bar{u}(t,x)}=\mathbf{1}_{v(y,p)< v(y,\bar{u}(t,x))}.$$

alors

$$u^{\varepsilon}(t,x)-v\left(\frac{x}{\varepsilon},\bar{u}(t,x)\right)\to 0$$

dans L^1_{loc} lorsque $\varepsilon \to 0$.

(Fonction test
$$\psi(t, x, y, p) = \varphi(t, x) \frac{\partial v}{\partial p}(y, p) \mathbf{1}_{\bar{u}(t, x)).$$

► Formulation équivalente :

mesure d'Young = masse de Dirac.

Réduction du problème

► Convergence à deux-échelles :

$$\begin{split} \mathbf{1}_{u^{\varepsilon}>v(\frac{x}{\varepsilon},p)} &\overset{2\text{-}\acute{e}\text{ch.}}{\overset{\sim}{\rightharpoonup}} g(t,x,y,p), \\ f^{\varepsilon}(t,x,p) &= \mathbf{1}_{u^{\varepsilon}>v(\frac{x}{\varepsilon},p)} \frac{\partial v}{\partial p} \left(\frac{x}{\varepsilon},p\right) \overset{2\text{-}\acute{e}\text{ch.}}{\overset{\sim}{\rightharpoonup}} g(t,x,y,p) \frac{\partial v}{\partial p}. \end{split}$$

▶ **But** : montrer que $g(t, x, y, p) = \mathbf{1}_{p < \bar{u}(t,x)}$. En effet : si

$$\mathbf{1}_{v\left(\frac{x}{\varepsilon},\rho\right)< u^{\varepsilon}(t,x)}\overset{\text{2 ecn.}}{\rightharpoonup}\mathbf{1}_{\rho<\bar{u}(t,x)}=\mathbf{1}_{v(y,\rho)< v(y,\bar{u}(t,x))}.$$

alors

$$u^{\varepsilon}(t,x)-v\left(\frac{x}{\varepsilon},\bar{u}(t,x)\right)\to 0$$

dans L^1_{loc} lorsque $\varepsilon \to 0$. (Fonction test $\psi(t, x, y, p) = \varphi(t, x) \frac{\partial v}{\partial p}(y, p) \mathbf{1}_{\bar{u}(t, x)).$

Formulation équivalente :

But : passer à la limite (à 2 échelles) dans

$$\partial_t f^{\varepsilon} + \operatorname{div}_{X} \left(a \left(\frac{x}{\varepsilon}, v \left(\frac{x}{\varepsilon}, p \right) \right) f^{\varepsilon} \right) - \varepsilon \Delta_{X} f^{\varepsilon} = \frac{\partial m^{\varepsilon}}{\partial p}$$

Rappel:

$$f^{\varepsilon} \stackrel{\text{2 ech.}}{\rightharpoonup} g(t,x,y,p) \frac{\partial v}{\partial p}, \quad m^{\varepsilon} \rightharpoonup m(t,x,p) \quad w-M^1.$$

- ▶ **Profil microscopique** : fonction test $\varepsilon \phi$ ($t, x, \frac{x}{\varepsilon}, p$).
- **Profil macroscopique :** fonction test $\phi(t, x, p)$.

$$\partial_t g + \operatorname{div}_X(\bar{a}(p)g) = \partial_p m, \quad \bar{a} = \partial_p \bar{A}.$$

- \rightarrow Données bien préparées : $g(t=0)=\mathbf{1}_{p<\bar{\nu}_0}$.
- ightarrow [Di Perna, Perthame] $g=\mathbf{1}_{p<ar{u}(t,x)}.$

But : passer à la limite (à 2 échelles) dans

$$\partial_t f^{\varepsilon} + \operatorname{div}_{x} \left(a \left(\frac{x}{\varepsilon}, v \left(\frac{x}{\varepsilon}, p \right) \right) f^{\varepsilon} \right) - \varepsilon \Delta_{x} f^{\varepsilon} = \frac{\partial m^{\varepsilon}}{\partial p}$$

Rappel :

$$f^{\varepsilon} \stackrel{\text{2 ech.}}{\rightharpoonup} g(t,x,y,p) \frac{\partial v}{\partial p}, \quad m^{\varepsilon} \rightharpoonup m(t,x,p) \quad w-M^{1}.$$

- ▶ **Profil microscopique** : fonction test $\varepsilon \phi$ ($t, x, \frac{x}{\varepsilon}, p$).
- **Profil macroscopique :** fonction test $\phi(t, x, p)$.

$$\partial_t g + \operatorname{div}_X(\bar{a}(p)g) = \partial_p m, \quad \bar{a} = \partial_p \bar{A}.$$

- \rightarrow Données bien préparées : $g(t=0)=\mathbf{1}_{p<\bar{\nu}_0}$.
- ightarrow [Di Perna, Perthame] $g=\mathbf{1}_{p<ar{u}(t,x)}.$

But : passer à la limite (à 2 échelles) dans

$$\partial_t f^{\varepsilon} + \operatorname{div}_{x} \left(a \left(\frac{x}{\varepsilon}, v \left(\frac{x}{\varepsilon}, p \right) \right) f^{\varepsilon} \right) - \varepsilon \Delta_{x} f^{\varepsilon} = \frac{\partial m^{\varepsilon}}{\partial p}$$

Rappel :

$$f^{\varepsilon} \stackrel{\text{2 ech.}}{\rightharpoonup} g(t,x,y,p) \frac{\partial v}{\partial p}, \quad m^{\varepsilon} \rightharpoonup m(t,x,p) \quad w - M^{1}.$$

- ▶ **Profil microscopique**: fonction test $\varepsilon \phi$ ($t, x, \frac{x}{\varepsilon}, p$).
 - \rightarrow g est solution d'une équation elliptique linéaire;
 - \rightarrow [Krein-Rutman] g ne dépend pas de y.
- ▶ **Profil macroscopique :** fonction test ϕ (t, x, p).

$$\partial_t g + \operatorname{div}_X(\bar{a}(p)g) = \partial_p m, \quad \bar{a} = \partial_p \bar{A}.$$

- \rightarrow Données bien préparées : $g(t=0) = \mathbf{1}_{p < \bar{\nu}_0}$.
- ightarrow [Di Perna, Perthame] $g=\mathbf{1}_{p<ar{u}(t,x)}.$

▶ But : passer à la limite (à 2 échelles) dans

$$\partial_t f^{\varepsilon} + \operatorname{div}_{x} \left(a \left(\frac{x}{\varepsilon}, v \left(\frac{x}{\varepsilon}, p \right) \right) f^{\varepsilon} \right) - \varepsilon \Delta_{x} f^{\varepsilon} = \frac{\partial m^{\varepsilon}}{\partial p}$$

► Rappel:

$$f^{\varepsilon} \stackrel{\text{2 ech.}}{\rightharpoonup} g(t,x,y,p) \frac{\partial v}{\partial p}, \quad m^{\varepsilon} \rightharpoonup m(t,x,p) \quad w - M^{1}.$$

- ▶ **Profil microscopique :** fonction test $\varepsilon \phi \left(t, x, \frac{x}{\varepsilon}, p\right)$.
 - ightarrow g est solution d'une équation elliptique linéaire ;
 - \rightarrow [Krein-Rutman] g ne dépend pas de y.
- ▶ **Profil macroscopique :** fonction test ϕ (t, x, p).
 - \rightarrow *g* est solution de

$$\partial_t g + \operatorname{div}_X (\bar{a}(p)g) = \partial_p m, \quad \bar{a} = \partial_p \bar{A}.$$

- ightarrow Données bien préparées : $g(t=0)=\mathbf{1}_{p<\bar{u}_0}$.
- \rightarrow [Di Perna, Perthame] $g = \mathbf{1}_{p < \bar{u}(t,x)}$.

Plan

- 1. Introduction
- 2. Cas visqueux : étude du problème limite
- 3. Cas visqueux : preuve de convergence
 - a. Résultat d'homogénéisation
 - b. Formulation cinétique
 - c. Passage à la limite données bien préparées
 - d. Données mal préparées
- 4. Cas hyperbolique

Nouvelle hypothèse : $\exists \beta_1, \beta_2 \in \mathbb{R}$, p.p. $(x, y) \in \mathbb{R}^N \times Y$,

$$v(y,\beta_1) \leq u_0(x,y) \leq v(y,\beta_2),$$

mais
$$u_0(x, y) \neq v(y, \bar{u}_0(x))$$
!

Intuition : (motivée par le développement asymptotique formel) :

$$u^{\varepsilon}(t,x) pprox w\left(rac{t}{arepsilon},x,rac{x}{arepsilon}
ight) ext{ si } t = \mathcal{O}(arepsilon),$$
 $u^{arepsilon}(t,x) pprox v\left(rac{x}{arepsilon},ar{u}(t,x)
ight) ext{ si } t \gg arepsilon,$

où $w = w(\tau, x, y)$ est solution de :

$$\begin{cases} \partial_{\tau} W + \operatorname{div}_{y} A(y, W) - \Delta_{y} W = 0, \\ W(\tau = 0, x, y) = u_{0}(x, y). \end{cases}$$

Nouvelle hypothèse : $\exists \beta_1, \beta_2 \in \mathbb{R}$, p.p. $(x, y) \in \mathbb{R}^N \times Y$,

$$v(y,\beta_1) \leq u_0(x,y) \leq v(y,\beta_2),$$

mais
$$u_0(x, y) \neq v(y, \bar{u}_0(x))$$
!

Intuition: (motivée par le développement asymptotique formel):

$$u^{\varepsilon}(t,x) \approx w\left(\frac{t}{\varepsilon}, x, \frac{x}{\varepsilon}\right) \quad \text{si } t = \mathcal{O}(\varepsilon),$$
 $u^{\varepsilon}(t,x) \approx v\left(\frac{x}{\varepsilon}, \bar{u}(t,x)\right) \quad \text{si } t \gg \varepsilon,$

où $w = w(\tau, x, y)$ est solution de :

$$\begin{cases} \partial_{\tau} w + \operatorname{div}_{y} A(y, w) - \Delta_{y} w = 0, \\ w(\tau = 0, x, y) = u_{0}(x, y). \end{cases}$$

Idée de preuve

Le schéma de preuve suit le développement asymptotique. **Quelques outils :**

- 1. Convergence exponentielle de w vers $v(y, \bar{u}_0(x))$;
- 2. Résultat dans le cas de données bien préparées ;
- 3. Principe de contraction dans L^1 .

Problème ouvert : comportement si l'hypothèse sur la donnée initiale n'est pas vérifiée ?

Idée de preuve

Le schéma de preuve suit le développement asymptotique. **Quelques outils :**

- 1. Convergence exponentielle de w vers $v(y, \bar{u}_0(x))$;
- 2. Résultat dans le cas de données bien préparées ;
- 3. Principe de contraction dans L^1 .

Problème ouvert : comportement si l'hypothèse sur la donnée initiale n'est pas vérifiée ?

Plan

- 1. Introduction
- 2. Cas visqueux : étude du problème limite
- 3. Cas visqueux : preuve de convergence
- 4. Cas hyperbolique
 - a. Position du problème
 - b. Un exemple générique : le cas "à divergence nulle"

Plan

- 1. Introduction
- 2. Cas visqueux : étude du problème limite
- Cas visqueux : preuve de convergence
- 4. Cas hyperbolique
 - a. Position du problème
 - b. Un exemple générique : le cas "à divergence nulle"

$$\begin{cases}
\frac{\partial u^{\varepsilon}}{\partial t}(t,x) + \frac{\partial}{\partial x_{i}}A_{i}\left(\frac{x}{\varepsilon},u^{\varepsilon}(t,x)\right) = 0, \\
u^{\varepsilon}(t=0) = u_{0}\left(x,\frac{x}{\varepsilon}\right) \in L^{\infty}(\mathbb{R}^{N}).
\end{cases} (12)$$

- ▶ **Même Ansatz** que précédemment : $u^{\varepsilon}(t,x) \approx u^{0}(t,x,x/\varepsilon)$
- ► Le problème de la cellule devient :

$$\operatorname{div}_{y} A(y, u^{0}(y)) = 0, \quad \left\langle u^{0} \right\rangle = \rho. \tag{13}$$

- → Pas d'unicité
- \rightarrow Existence = problème ouvert dès que $N \ge 2$.
- Conclusion : situation beaucoup plus compliquée !

$$\begin{cases}
\frac{\partial u^{\varepsilon}}{\partial t}(t,x) + \frac{\partial}{\partial x_{i}}A_{i}\left(\frac{x}{\varepsilon},u^{\varepsilon}(t,x)\right) = 0, \\
u^{\varepsilon}(t=0) = u_{0}\left(x,\frac{x}{\varepsilon}\right) \in L^{\infty}(\mathbb{R}^{N}).
\end{cases} (12)$$

- ▶ Même Ansatz que précédemment : $u^{\varepsilon}(t,x) \approx u^{0}(t,x,x/\varepsilon)$.
- ► Le problème de la cellule devient :

$$\operatorname{div}_{y} A(y, u^{0}(y)) = 0, \quad \left\langle u^{0} \right\rangle = \rho. \tag{13}$$

- → Pas d'unicité
- \rightarrow Existence = problème ouvert dès que $N \ge 2$.
- Conclusion : situation beaucoup plus compliquée !

$$\begin{cases}
\frac{\partial u^{\varepsilon}}{\partial t}(t,x) + \frac{\partial}{\partial x_{i}}A_{i}\left(\frac{x}{\varepsilon},u^{\varepsilon}(t,x)\right) = 0, \\
u^{\varepsilon}(t=0) = u_{0}\left(x,\frac{x}{\varepsilon}\right) \in L^{\infty}(\mathbb{R}^{N}).
\end{cases} (12)$$

- ▶ Même Ansatz que précédemment : $u^{\varepsilon}(t,x) \approx u^{0}(t,x,x/\varepsilon)$.
- Le problème de la cellule devient :

$$\operatorname{div}_{y} A(y, u^{0}(y)) = 0, \quad \left\langle u^{0} \right\rangle = \rho. \tag{13}$$

- → Pas d'unicité :
- \rightarrow Existence = problème ouvert dès que $N \ge 2$.
- Conclusion : situation beaucoup plus compliquée !

$$\begin{cases}
\frac{\partial u^{\varepsilon}}{\partial t}(t,x) + \frac{\partial}{\partial x_{i}}A_{i}\left(\frac{x}{\varepsilon},u^{\varepsilon}(t,x)\right) = 0, \\
u^{\varepsilon}(t=0) = u_{0}\left(x,\frac{x}{\varepsilon}\right) \in L^{\infty}(\mathbb{R}^{N}).
\end{cases} (12)$$

- ▶ Même Ansatz que précédemment : $u^{\varepsilon}(t,x) \approx u^{0}(t,x,x/\varepsilon)$.
- Le problème de la cellule devient :

$$\operatorname{div}_{y} A(y, u^{0}(y)) = 0, \quad \left\langle u^{0} \right\rangle = \rho. \tag{13}$$

- → Pas d'unicité ;
- \rightarrow Existence = problème ouvert dès que $N \ge 2$.
- Conclusion : situation beaucoup plus compliquée !

$$\begin{cases}
\frac{\partial u^{\varepsilon}}{\partial t}(t,x) + \frac{\partial}{\partial x_{i}}A_{i}\left(\frac{x}{\varepsilon},u^{\varepsilon}(t,x)\right) = 0, \\
u^{\varepsilon}(t=0) = u_{0}\left(x,\frac{x}{\varepsilon}\right) \in L^{\infty}(\mathbb{R}^{N}).
\end{cases} (12)$$

- ▶ Même Ansatz que précédemment : $u^{\varepsilon}(t,x) \approx u^{0}(t,x,x/\varepsilon)$.
- Le problème de la cellule devient :

$$\operatorname{div}_{y} A(y, u^{0}(y)) = 0, \quad \left\langle u^{0} \right\rangle = \rho. \tag{13}$$

- → Pas d'unicité;
- \rightarrow Existence = problème ouvert dès que $N \ge 2$.
- Conclusion : situation beaucoup plus compliquée !

$$\begin{cases}
\frac{\partial u^{\varepsilon}}{\partial t}(t,x) + \frac{\partial}{\partial x_{i}}A_{i}\left(\frac{x}{\varepsilon},u^{\varepsilon}(t,x)\right) = 0, \\
u^{\varepsilon}(t=0) = u_{0}\left(x,\frac{x}{\varepsilon}\right) \in L^{\infty}(\mathbb{R}^{N}).
\end{cases} (12)$$

- ▶ Même Ansatz que précédemment : $u^{\varepsilon}(t,x) \approx u^{0}(t,x,x/\varepsilon)$.
- Le problème de la cellule devient :

$$\operatorname{div}_{y} A(y, u^{0}(y)) = 0, \quad \left\langle u^{0} \right\rangle = \rho. \tag{13}$$

- → Pas d'unicité;
- \rightarrow Existence = problème ouvert dès que $N \ge 2$.
- ► Conclusion : situation beaucoup plus compliquée!

Autour du problème de la cellule

Problème ouvert : existence de solutions entropiques de

$$\operatorname{div}_{y} A(y, u(y)) = 0, \quad \langle u \rangle = p \in \mathbb{R}, \ y \in [0, 1]^{N}.$$

- ▶ Si on dispose de **bornes** *a priori* **dans** L^{∞} :
 - Formulation cinétique de l'équation ;
 - Compacité grâce à des lemmes de moyenne si le flux est non-linéaire.
 - → Démontrer l'existence devient possible...
- ▶ **Point clé :** obtention de bornes *a priori* dans L^{∞} .
- ➤ **Difficulté** : il faut intégrer la divergence...
 - $\rightarrow N = 1$ joue un rôle particulier

Autour du problème de la cellule

Problème ouvert : existence de solutions entropiques de

$$\operatorname{div}_{y} A(y, u(y)) = 0, \quad \langle u \rangle = p \in \mathbb{R}, \ y \in [0, 1]^{N}.$$

- ▶ Si on dispose de **bornes** *a priori* **dans** L^{∞} :
 - Formulation cinétique de l'équation ;
 - Compacité grâce à des lemmes de moyenne si le flux est non-linéaire.
 - → Démontrer l'existence devient possible...
- ▶ Point clé : obtention de bornes *a priori* dans L^{∞} .
- ▶ **Difficulté :** il faut intégrer la divergence...
 - $\rightarrow N = 1$ joue un rôle particulier

$$\operatorname{div}_{y} A(y, u(y)) = 0, \quad \langle u \rangle = p \in \mathbb{R}, \ y \in [0, 1]^{N}.$$

- ▶ Si on dispose de **bornes** *a priori* **dans** L^{∞} :
 - Formulation cinétique de l'équation;
 - Compacité grâce à des lemmes de moyenne si le flux est non-linéaire.
 - → Démontrer l'existence devient possible...
- ▶ Point clé : obtention de bornes *a priori* dans L^{∞} .
- ▶ **Difficulté :** il faut intégrer la divergence...
 - $\rightarrow N = 1$ joue un rôle particulier

$$\operatorname{div}_{y} A(y, u(y)) = 0, \quad \langle u \rangle = p \in \mathbb{R}, \ y \in [0, 1]^{N}.$$

- ▶ Si on dispose de **bornes** *a priori* **dans** L^{∞} :
 - Formulation cinétique de l'équation ;
 - Compacité grâce à des lemmes de moyenne si le flux est non-linéaire.
 - → Démontrer l'existence devient possible...
- Point clé : obtention de bornes a priori dans L∞.
- ▶ **Difficulté :** il faut intégrer la divergence...
 - $\rightarrow N = 1$ joue un rôle particulier

$$\operatorname{div}_{y} A(y, u(y)) = 0, \quad \langle u \rangle = p \in \mathbb{R}, \ y \in [0, 1]^{N}.$$

- ▶ Si on dispose de **bornes** *a priori* **dans** L^{∞} :
 - Formulation cinétique de l'équation ;
 - Compacité grâce à des lemmes de moyenne si le flux est non-linéaire.
 - → Démontrer l'existence devient possible...
- Point clé : obtention de bornes a priori dans L∞.
- Difficulté : il faut intégrer la divergence...
 - $\rightarrow N = 1$ joue un rôle particulier.

$$\operatorname{div}_{y} A(y, u(y)) = 0, \quad \langle u \rangle = p \in \mathbb{R}, \ y \in [0, 1]^{N}.$$

- ▶ Si on dispose de **bornes** *a priori* **dans** L^{∞} :
 - Formulation cinétique de l'équation ;
 - Compacité grâce à des lemmes de moyenne si le flux est non-linéaire.
 - → Démontrer l'existence devient possible...
- Point clé : obtention de bornes a priori dans L∞.
- ▶ Difficulté : il faut intégrer la divergence...
 - $\rightarrow N = 1$ joue un rôle particulier.

• *N* = 1 : équivalence avec les éq. de Hamilton-Jacobi P.L. Lions, G. Papanicolaou, S.R.S. Varadhan (1987) :

• N=1: équivalence avec les éq. de Hamilton-Jacobi P.L. Lions, G. Papanicolaou, S.R.S. Varadhan (1987): Si

$$\inf_{y\in Y} A(y,p) \to +\infty \quad \text{lorsque } |p| \to \infty,$$

alors $\forall p \in \mathbb{R}$, $\exists v$ sol. du problème de la cellule.

De plus, $\exists ! \ \overline{A}(p) \in \mathbb{R}, \forall v \text{ sol. du pb. de la cellule t.q. } \langle v \rangle = p$,

$$\frac{1}{|Y|}\int_Y A(y,v(y))\ dy=\bar{A}(p).$$

• N=1 : équivalence avec les éq. de Hamilton-Jacobi P.L. Lions, G. Papanicolaou, S.R.S. Varadhan (1987) : Si

$$\inf_{y\in Y} A(y,p) \to +\infty \quad \text{lorsque } |p| \to \infty,$$

alors $\forall p \in \mathbb{R}$, $\exists v$ sol. du problème de la cellule.

De plus, $\exists ! \ \overline{A}(p) \in \mathbb{R}, \forall v \text{ sol. du pb. de la cellule t.q. } \langle v \rangle = p$,

$$\frac{1}{|Y|}\int_Y A(y,v(y))\ dy=\bar{A}(p).$$

- Unicité du flux homogénéisé;
- ▶ Notion de problème homogénéisé ;
- ▶ Résultats de convergence forte (W. E, D. Serre, 1992).

• N=1 : équivalence avec les éq. de Hamilton-Jacobi P.L. Lions, G. Papanicolaou, S.R.S. Varadhan (1987) : Si

$$\inf_{y\in Y} A(y,p) \to +\infty \quad \text{lorsque } |p| \to \infty,$$

alors $\forall p \in \mathbb{R}$, $\exists v$ sol. du problème de la cellule.

De plus, $\exists ! \ \bar{A}(p) \in \mathbb{R}, \forall v \text{ sol. du pb. de la cellule t.q. } \langle v \rangle = p$,

$$\frac{1}{|Y|}\int_Y A(y,v(y))\ dy=\bar{A}(p).$$

- Unicité du flux homogénéisé;
- Notion de problème homogénéisé;
- ▶ Résultats de convergence forte (W. E, D. Serre, 1992).

• N=1 : équivalence avec les éq. de Hamilton-Jacobi P.L. Lions, G. Papanicolaou, S.R.S. Varadhan (1987) : Si

$$\inf_{y\in Y} A(y,p) \to +\infty \quad \text{lorsque } |p| \to \infty,$$

alors $\forall p \in \mathbb{R}, \exists v \text{ sol. du problème de la cellule.}$

De plus, $\exists ! \ \overline{A}(p) \in \mathbb{R}, \forall v \text{ sol. du pb. de la cellule t.q. } \langle v \rangle = p$,

$$\frac{1}{|Y|}\int_Y A(y,v(y))\ dy=\bar{A}(p).$$

- Unicité du flux homogénéisé;
- Notion de problème homogénéisé;
- ▶ Résultats de convergence forte (W. E, D. Serre, 1992).

- *N* = 1 : équivalence avec les éq. de Hamilton-Jacobi P.L. Lions, G. Papanicolaou, S.R.S. Varadhan (1987) :
 - Unicité du flux homogénéisé;
 - Notion de problème homogénéisé;
 - ► Résultats de convergence forte (W. E, D. Serre, 1992).
- $A(y,\xi) = a_0(y)g(\xi)$, $\operatorname{div}_y a_0 = 0$, $g'(\xi) \neq 0 \ \forall \xi \in \mathbb{R}$; W. E (1992); T. Hou, X. Xin (1992):
 - Existence, mais pas d'unicité des solutions du pb. de la cellule ; pas de problème homogénéisé ;
 - Existence et unicité des solutions du problème limite :
 - $\partial_t u + \operatorname{div}_X \left(\tilde{a}_0(y) g(u) \right) = 0, \quad t > 0, \ X \in \mathbb{R}^N, y \in Y, \\ \operatorname{div}_Y \left(a_0(y) g(u) \right) = 0.$

- *N* = 1 : équivalence avec les éq. de Hamilton-Jacobi P.L. Lions, G. Papanicolaou, S.R.S. Varadhan (1987) :
 - Unicité du flux homogénéisé;
 - Notion de problème homogénéisé;
 - ► Résultats de convergence forte (W. E, D. Serre, 1992).
- $A(y,\xi)=a_0(y)g(\xi)$, $\mathrm{div}_y a_0=0$, $g'(\xi)\neq 0 \ \forall \xi\in\mathbb{R}$; W. E (1992); T. Hou, X. Xin (1992):
 - Existence, mais pas d'unicité des solutions du pb. de la cellule ; pas de problème homogénéisé ;
 - Existence et unicité des solutions du problème limite :
 - $\partial_t u + \operatorname{div}_X(\tilde{a_0}(y)g(u)) = 0, \quad t > 0, \ X \in \mathbb{R}^N, y \in Y,$ $\operatorname{div}_Y(a_0(y)g(u)) = 0.$

- *N* = 1 : équivalence avec les éq. de Hamilton-Jacobi P.L. Lions, G. Papanicolaou, S.R.S. Varadhan (1987) :
 - Unicité du flux homogénéisé;
 - Notion de problème homogénéisé;
 - Résultats de convergence forte (W. E, D. Serre, 1992).
- $A(y,\xi)=a_0(y)g(\xi)$, ${
 m div}_y a_0=0$, $g'(\xi)\neq 0 \ \forall \xi\in \mathbb{R}$; W. E (1992); T. Hou, X. Xin (1992):
 - Existence, mais pas d'unicité des solutions du pb. de la cellule; pas de problème homogénéisé;
 - Existence et unicité des solutions du problème limite :

$$\partial_t u + \operatorname{div}_X \left(\tilde{a}_0(y) g(u) \right) = 0, \quad t > 0, \ X \in \mathbb{R}^N, y \in Y, \\ \operatorname{div}_Y \left(a_0(y) g(u) \right) = 0.$$

Résultat de convergence forte.

- N = 1 : équivalence avec les éq. de Hamilton-Jacobi
 P.L. Lions, G. Papanicolaou, S.R.S. Varadhan (1987) :
 - Unicité du flux homogénéisé;
 - Notion de problème homogénéisé;
 - Résultats de convergence forte (W. E, D. Serre, 1992).
- $A(y,\xi)=a_0(y)g(\xi)$, ${
 m div}_y a_0=0$, $g'(\xi)\neq 0 \ \forall \xi\in \mathbb{R}$; W. E (1992); T. Hou, X. Xin (1992):
 - Existence, mais pas d'unicité des solutions du pb. de la cellule; pas de problème homogénéisé;
 - Existence et unicité des solutions du problème limite :

$$\partial_t u + \operatorname{div}_X \left(\tilde{a}_0(y) g(u) \right) = 0, \quad t > 0, \ X \in \mathbb{R}^N, y \in Y, \\ \operatorname{div}_Y \left(a_0(y) g(u) \right) = 0.$$

Résultat de convergence forte.

- N = 1 : équivalence avec les éq. de Hamilton-Jacobi
 P.L. Lions, G. Papanicolaou, S.R.S. Varadhan (1987) :
 - Unicité du flux homogénéisé;
 - Notion de problème homogénéisé;
 - ▶ Résultats de convergence forte (W. E, D. Serre, 1992).
- $A(y,\xi)=a_0(y)g(\xi)$, ${
 m div}_y a_0=0$, $g'(\xi)\neq 0 \ \forall \xi\in \mathbb{R}$; W. E (1992); T. Hou, X. Xin (1992):
 - Existence, mais pas d'unicité des solutions du pb. de la cellule; pas de problème homogénéisé;
 - Existence et unicité des solutions du problème limite :

$$\partial_t u + \operatorname{div}_X \left(\tilde{a}_0(y) g(u) \right) = 0, \quad t > 0, \ X \in \mathbb{R}^N, y \in Y, \\ \operatorname{div}_Y \left(a_0(y) g(u) \right) = 0.$$

Résultat de convergence forte.

Plan

- 1 Introduction
- 2. Cas visqueux : étude du problème limite
- Cas visqueux : preuve de convergence
- 4. Cas hyperbolique
 - a. Position du problème
 - b. Un exemple générique : le cas "à divergence nulle"

Contraintes microscopiques

▶ Si $\operatorname{div}_y A(y, p) = 0$, alors $f^{\varepsilon} = \mathbf{1}_{p < u^{\varepsilon}}$ est solution de

$$\partial_t f^{\varepsilon} + a\left(\frac{x}{\varepsilon}, p\right) \cdot \nabla_x f^{\varepsilon} = \partial_p m^{\varepsilon}, \quad m^{\varepsilon} \ge 0.$$
 (14)

- Passage à la limite dans (14) :
 À une sous-suite près, f^ε ^{2 éch.} f, m^ε ^{2 éch.} m.
- Première étape : Profil microscopique.

$$\operatorname{div}_{y}(a(y,p)f(t,x,y,p)) = 0, \\ \partial_{p}f \leq 0.$$

$$\mathbb{K} := \{ \varphi \in L^2(Y \times \mathbb{R}), \operatorname{div}_y(a(y, p)\varphi) = 0 \},$$

 $\mathbb{P} : \operatorname{projection} L^2 \operatorname{sur} \mathbb{K}.$

Contraintes microscopiques

▶ Si $\operatorname{div}_y A(y, p) = 0$, alors $f^{\varepsilon} = \mathbf{1}_{p < u^{\varepsilon}}$ est solution de

$$\partial_t f^{\varepsilon} + a\left(\frac{x}{\varepsilon}, p\right) \cdot \nabla_x f^{\varepsilon} = \partial_p m^{\varepsilon}, \quad m^{\varepsilon} \ge 0.$$
 (14)

- Passage à la limite dans (14) :
 À une sous-suite près, f^ε ^{2 éch.} f, m^ε ^{2 éch.} m.
- Première étape : Profil microscopique.

$$\operatorname{div}_{y}(a(y,p)f(t,x,y,p)) = 0, \\ \partial_{p}f \leq 0.$$

$$\mathbb{K} := \{ \varphi \in L^2(Y \times \mathbb{R}), \operatorname{div}_y(a(y, p)\varphi) = 0 \},$$

 $\mathbb{P} : \operatorname{projection} L^2 \operatorname{sur} \mathbb{K}.$

Contraintes microscopiques

▶ Si $\operatorname{div}_y A(y, p) = 0$, alors $f^{\varepsilon} = \mathbf{1}_{p < u^{\varepsilon}}$ est solution de

$$\partial_t f^{\varepsilon} + a\left(\frac{x}{\varepsilon}, p\right) \cdot \nabla_x f^{\varepsilon} = \partial_p m^{\varepsilon}, \quad m^{\varepsilon} \ge 0.$$
 (14)

- Passage à la limite dans (14) :
 À une sous-suite près, f^ε ^{2 éch.} f, m^ε ^{2 éch.} m.
- ▶ Première étape : Profil microscopique.

$$\operatorname{div}_{y}(a(y,p)f(t,x,y,p))=0, \\ \partial_{p}f\leq 0.$$

$$\mathbb{K} := \{ \varphi \in L^2(Y \times \mathbb{R}), \ \operatorname{div}_y(a(y, p)\varphi) = 0 \},$$

$$\mathbb{P} : \text{ projection } L^2 \text{ sur } \mathbb{K}.$$

▶ Si $\operatorname{div}_y A(y, p) = 0$, alors $f^{\varepsilon} = \mathbf{1}_{p < u^{\varepsilon}}$ est solution de

$$\partial_t f^{\varepsilon} + a\left(\frac{x}{\varepsilon}, p\right) \cdot \nabla_x f^{\varepsilon} = \partial_p m^{\varepsilon}, \quad m^{\varepsilon} \ge 0.$$
 (14)

- Passage à la limite dans (14) :
 À une sous-suite près, f^ε ^{2 éch.} f, m^ε ^{2 éch.} m.
- ▶ Première étape : Profil microscopique.

$$\operatorname{div}_{y}(a(y,p)f(t,x,y,p))=0, \\ \partial_{p}f\leq 0.$$

$$\mathbb{K} := \{ \varphi \in L^2(Y \times \mathbb{R}), \ \operatorname{div}_y(a(y, p)\varphi) = 0 \},$$

$$\mathbb{P} : \text{ projection } L^2 \text{ sur } \mathbb{K}.$$

► Idée : projeter l'équation (14) sur K afin de filtrer les termes fortement oscillants.

$$\rightarrow$$
 Fonctions $\varphi(t, x, x/\varepsilon, p)$ t.g. $\varphi(t, x, \cdot) \in \mathbb{K}$ p.p.

► Problème d'évolution formel :

$$\mathbb{P}\left\{\partial_t f + a(y,p) \cdot \nabla_X f - \partial_p m\right\} = 0.$$

Ré-écriture :

$$\partial_t f + \mathbf{a} \cdot \nabla_{\mathbf{x}} f = \partial_{\mathbf{p}} m + M^{\perp}$$

$$m \geq 0, M^{\perp} \in \mathbb{K}^{\perp}$$
.

- → Problème d'évolution limite! (≠ problème homogénéisé...)
- ► Questions : Existence ? Unicité ? Convergence ?

- ► Idée : projeter l'équation (14) sur K afin de filtrer les termes fortement oscillants.
 - \rightarrow Fonctions $\varphi(t, x, x/\varepsilon, p)$ t.q. $\varphi(t, x, \cdot) \in \mathbb{K}$ p.p.
- ▶ Problème d'évolution formel :

$$\mathbb{P}\left\{\partial_t f + a(y,p) \cdot \nabla_X f - \partial_p m\right\} = 0.$$

Ré-écriture :

$$\partial_t f + \mathbf{a} \cdot \nabla_{\mathbf{x}} f = \partial_{\mathbf{p}} \mathbf{m} + \mathbf{M}^{\perp},$$

 $m \geq 0, M^{\perp} \in \mathbb{K}^{\perp}.$

- → Problème d'évolution limite! (≠ problème homogénéisé...)
- ▶ Questions : Existence ? Unicité ? Convergence ?

► Idée : projeter l'équation (14) sur K afin de filtrer les termes fortement oscillants.

$$\rightarrow$$
 Fonctions $\varphi(t, x, x/\varepsilon, p)$ t.q. $\varphi(t, x, \cdot) \in \mathbb{K}$ p.p.

Problème d'évolution formel :

$$\mathbb{P}\left\{\partial_t f + a(y,p) \cdot \nabla_x f - \partial_p m\right\} = 0.$$

Ré-écriture :

$$\partial_t f + \mathbf{a} \cdot \nabla_{\mathbf{x}} f = \partial_{\mathbf{p}} \mathbf{m} + \mathbf{M}^{\perp},$$

 $m \geq 0, M^{\perp} \in \mathbb{K}^{\perp}$.

- → Problème d'évolution limite! (≠ problème homogénéisé...)
- ▶ Questions : Existence ? Unicité ? Convergence ?

► Idée : projeter l'équation (14) sur K afin de filtrer les termes fortement oscillants.

$$\rightarrow$$
 Fonctions $\varphi(t, x, x/\varepsilon, p)$ t.q. $\varphi(t, x, \cdot) \in \mathbb{K}$ p.p.

Problème d'évolution formel :

$$\mathbb{P}\left\{\partial_t f + a(y,p) \cdot \nabla_x f - \partial_p m\right\} = 0.$$

Ré-écriture:

$$\partial_t f + \mathbf{a} \cdot \nabla_{\mathbf{x}} f = \partial_{\mathbf{p}} \mathbf{m} + \mathbf{M}^{\perp},$$

$$m \geq 0$$
, $M^{\perp} \in \mathbb{K}^{\perp}$.

- ightarrow Problème d'évolution limite! (\neq problème homogénéisé...)
- ▶ Questions : Existence ? Unicité ? Convergence ?

- ► Idée : projeter l'équation (14) sur K afin de filtrer les termes fortement oscillants.
 - \rightarrow Fonctions $\varphi(t, x, x/\varepsilon, p)$ t.q. $\varphi(t, x, \cdot) \in \mathbb{K}$ p.p.
- Problème d'évolution formel :

$$\mathbb{P}\left\{\partial_t f + a(y,p) \cdot \nabla_x f - \partial_p m\right\} = 0.$$

Ré-écriture:

$$\partial_t f + \mathbf{a} \cdot \nabla_{\mathbf{x}} f = \partial_{\mathbf{p}} \mathbf{m} + \mathbf{M}^{\perp},$$

 $m \geq 0$, $M^{\perp} \in \mathbb{K}^{\perp}$.

- → Problème d'évolution limite! (≠ problème homogénéisé...)
- Questions : Existence ? Unicité ? Convergence ?

- ► Idée : projeter l'équation (14) sur K afin de filtrer les termes fortement oscillants.
 - \rightarrow Fonctions $\varphi(t, x, x/\varepsilon, p)$ t.q. $\varphi(t, x, \cdot) \in \mathbb{K}$ p.p.
- Problème d'évolution formel :

$$\mathbb{P}\left\{\partial_t f + a(y,p) \cdot \nabla_x f - \partial_p m\right\} = 0.$$

Ré-écriture:

$$\partial_t f + \mathbf{a} \cdot \nabla_{\mathbf{x}} f = \partial_{\mathbf{p}} \mathbf{m} + \mathbf{M}^{\perp},$$

 $m \geq 0$, $M^{\perp} \in \mathbb{K}^{\perp}$.

- → Problème d'évolution limite! (≠ problème homogénéisé...)
- Questions : Existence ? Unicité ? Convergence ?

Définition :(Solution du système limite) Fonction $f \in \mathcal{C}(\mathbb{R}_+, L^1(\mathbb{R}^N \times Y \times \mathbb{R})) \cap L^{\infty}$, t.q. $\exists \mathcal{M}$ distribution,

$$egin{aligned} \partial_t f + a \cdot
abla_X f &= \mathcal{M}, \quad f(t=0) = \mathbf{1}_{p < u_0}, \ \operatorname{div}_y(a(y,p)f(t,x,y,p)) &= 0, \quad \partial_p f \leq 0, \ \int_{Y imes \mathbb{R}} \mathcal{M}(t,x) \phi \leq 0 \quad orall \phi \in L^\infty_{\operatorname{loc}} \ \operatorname{t.q.} \ \partial_p \phi \geq 0, \ \operatorname{div}_y(a\phi) &= 0. \end{aligned}$$

(Représentation formelle : $\mathcal{M} = \partial_p m + M^{\perp}$.)

Théorème : Soit $u_0 \in L^1 \cap L^\infty$ t.q. $\operatorname{div}_y A(y, u_0(\cdot, y)) = 0$. Alors :

- 1. Existence et unicité des solutions du système limite
- 2. Rigidité : les sol. du système limite sont de la forme $\mathbf{1}_{p < u}$;
- 3. Convergence forte : lorsque $\varepsilon \to 0$, dans L^1_{loc}

$$u^{\varepsilon}(t,x)-u\left(t,x,\frac{x}{\varepsilon}\right)\to 0$$

Définition :(Solution du système limite) Fonction $f \in \mathcal{C}(\mathbb{R}_+, L^1(\mathbb{R}^N \times Y \times \mathbb{R})) \cap L^{\infty}$, t.q. $\exists \mathcal{M}$ distribution,

$$\begin{split} \partial_t f + a \cdot \nabla_x f &= \mathcal{M}, \quad f(t=0) = \mathbf{1}_{p < u_0}, \\ \operatorname{div}_y(a(y,p)f(t,x,y,p)) &= 0, \quad \partial_p f \leq 0, \\ \int_{Y \times \mathbb{R}} \mathcal{M}(t,x)\phi &\leq 0 \quad \forall \phi \in L^\infty_{\text{loc}} \text{ t.q. } \partial_p \phi \geq 0, \ \operatorname{div}_y(a\phi) = 0. \end{split}$$

(Représentation formelle : $\mathcal{M} = \partial_{p} m + M^{\perp}$.)

Théorème : Soit $u_0 \in L^1 \cap L^\infty$ t.q. $\operatorname{div}_y A(y, u_0(\cdot, y)) = 0$. Alors :

- 1. Existence et unicité des solutions du système limite ;
- 2. Rigidité : les sol. du système limite sont de la forme $\mathbf{1}_{p < u}$;
- 3. Convergence forte : lorsque $\varepsilon \to 0$, dans L^1_{loc} ,

$$u^{\varepsilon}(t,x)-u\left(t,x,\frac{x}{\varepsilon}\right)\to 0$$

Résumé général

Cas visqueux:

- Résultat de convergence forte pour des données initiales quelconques (mal préparées).
- Système limite :
 - Équation de la cellule ;
 - Problème homogénéisé.
 - → Découplage des échelles micro et macro.
- Couche initiale pour les données mal préparées.

Cas hyperbolique:

- Résultat de convergence forte pour des données initiales bien préparées.
- Système limite : intrinsèquement cinétique
 - Équation de la cellule ;
 - Équation d'évolution (\approx formulation cinétique).
 - ightarrow Pas de découplage des échelles micro et macro.

Résumé général

Cas visqueux:

- Résultat de convergence forte pour des données initiales quelconques (mal préparées).
- Système limite :
 - Équation de la cellule ;
 - Problème homogénéisé.
 - → Découplage des échelles micro et macro.
- Couche initiale pour les données mal préparées.

Cas hyperbolique:

- Résultat de convergence forte pour des données initiales bien préparées.
- Système limite : intrinsèquement cinétique
 - Équation de la cellule ;
 - Équation d'évolution (≈ formulation cinétique).
 - → Pas de découplage des échelles micro et macro.

Cas visqueux:

- Théorie unifiée pour l'existence de solutions du problème de la cellule ?
- Couche initiale : recherche d'hypothèses moins fortes sur la condition initiale.

Cas hyperbolique :

- Existence de solutions du problème de la cellule;
- ► Comportement de la solution lorsque la donnée initiale est mal préparée (pour des flux non-linéaires).

Cas visqueux:

- Théorie unifiée pour l'existence de solutions du problème de la cellule ?
- Couche initiale : recherche d'hypothèses moins fortes sur la condition initiale.

Cas hyperbolique:

- Existence de solutions du problème de la cellule;
- Comportement de la solution lorsque la donnée initiale est mal préparée (pour des flux non-linéaires).