Energy equality and weak-strong uniqueness in dimension 3

The purpose of this document is to provide some guidelines for the proof of the energy equality satisfied by the strong solutions (of Fujita-Kato type) of the Navier-Stokes system in dimension 3, and for the rigorous justification of the weak-strong uniqueness principle.

Useful facts/results :

- If $f \in L^{2}\left(\mathbb{R}^{3}\right)$, then $\nabla f \in H^{-1}\left(\mathbb{R}^{3}\right)$ and

$$
\|\nabla f\|_{H^{-1}\left(\mathbb{R}^{3}\right)} \leq C\|f\|_{L^{2}\left(\mathbb{R}^{3}\right)}
$$

- Sobolev embedding : $\dot{H}^{1}\left(\mathbb{R}^{3}\right) \subset L^{6}\left(\mathbb{R}^{3}\right)$

1 About the Stokes system

In this section, we work in dimension N, where $N=2$ or 3 . We consider the Stokes system

$$
\begin{array}{r}
\partial_{t} u+\nabla p-\Delta u=f, \\
\operatorname{div} u=0, \tag{1}\\
u_{\mid t=0}=u_{0},
\end{array}
$$

with $u_{0} \in L^{2}\left(\mathbb{R}^{N}\right)$ divergence free, $f \in L^{2}\left([0, T], H^{-1}\left(\mathbb{R}^{N}\right)\right)$.

1. Prove that if a solution u of (1) exists in $L^{\infty}\left([0, T], L^{2}\left(\mathbb{R}^{N}\right)\right) \cap L^{2}\left([0, T], \dot{H}^{1}\left(\mathbb{R}^{N}\right)\right)$ then u must satisfy, for a.e. $t \in[0, T]$

$$
\begin{equation*}
\hat{u}(t, \xi)=e^{-t|\xi|^{2}} \hat{u}_{0}(\xi)+\int_{0}^{t} e^{-(t-s)|\xi|^{2}} M(\xi) \hat{f}(s, \xi) d s, \tag{2}
\end{equation*}
$$

where $M(\xi)=\operatorname{Id}-(\xi \otimes \xi) /|\xi|^{2}$. In particular, if a solution exists, it is necessarily unique.
2. Now, for $u_{0} \in L^{2}\left(\mathbb{R}^{N}\right)$ such that div $u_{0}=0$, and for $f \in L^{2}\left([0, T], H^{-1}\left(\mathbb{R}^{N}\right)\right)$, define u by (2). Check that $u \in L^{\infty}\left([0, T], L^{2}\left(\mathbb{R}^{N}\right)\right) \cap L^{2}\left([0, T], \dot{H}^{1}\left(\mathbb{R}^{N}\right)\right)$ and that

$$
\|u\|_{L^{\infty}\left([0, T], L^{2}\left(\mathbb{R}^{N}\right)\right)}+\|\nabla u\|_{L^{2}\left([0, T] \times \mathbb{R}^{N}\right)} \leq C\left(\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}+\|f\|_{L^{2}\left([0, T], H^{-1}\left(\mathbb{R}^{N}\right)\right)}\right) .
$$

3. Let $u \in L^{\infty}\left([0, T], L^{2}\left(\mathbb{R}^{N}\right)\right) \cap L^{2}\left([0, T], \dot{H}^{1}\left(\mathbb{R}^{N}\right)\right)$ be the unique solution of the Stokes system (1). Show that $\partial_{t} u \in L^{2}\left([0, T], H^{-1}\right)$. Using the identity

$$
\frac{d}{d t}\|u(t)\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2}=2\left\langle\partial_{t} u(t), u(t)\right\rangle_{H^{-1}, H^{1}}
$$

prove that u satisfies the energy equality

$$
\begin{equation*}
\|u(t)\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2}+2 \int_{0}^{t}\|\nabla u(s)\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2} d s=\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}+2 \int_{0}^{t}\langle f(s), u(s)\rangle_{H^{-1}, H^{1}} d s . \tag{3}
\end{equation*}
$$

2 Energy equality

The goal of this section is to prove the following
Proposition 1. Let $u_{0} \in L^{2}\left(\mathbb{R}^{3}\right)$ be divergence free, and let $u \in L^{\infty}\left(\mathbb{R}_{+}, L^{2}\left(\mathbb{R}^{3}\right)\right) \cap L^{2}\left(\mathbb{R}_{+}, \dot{H}^{1}\left(\mathbb{R}^{3}\right)\right)$ be a Leary solution of the Navier-Stokes system. Assume that $u \in L^{4}\left([0, T], \dot{H}^{1}\left(\mathbb{R}^{3}\right)\right)$. Then for all $t \in[0, T]$, u satisfies the energy equality

$$
\begin{equation*}
\|u(t)\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}+2 \int_{0}^{t}\|\nabla u(s)\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2} d s=\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2} . \tag{4}
\end{equation*}
$$

Throughout this section, C denotes a universal constant, which may change from line to line.

1. Let $v \in L^{\infty}\left([0, T], L^{2}\left(\mathbb{R}^{3}\right)\right) \cap L^{4}\left([0, T], \dot{H}^{1}\left(\mathbb{R}^{3}\right)\right)$. Prove that for a.e. $t \in[0, T]$,

$$
\|v(t) \otimes v(t)\|_{L^{2}\left(\mathbb{R}^{3}\right)} \leq C\|v(t)\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{1 / 2}\|v(t)\|_{\dot{H}^{1}\left(\mathbb{R}^{3}\right)}^{3 / 2}
$$

and deduce that

$$
\|\operatorname{div}(v \otimes v)\|_{L^{2}\left([0, T], H^{-1}\left(\mathbb{R}^{3}\right)\right)} \leq C T^{1 / 8}\|v\|_{L^{\infty}\left([0, T], L^{2}\left(\mathbb{R}^{3}\right)\right)}\|v\|_{L^{4}\left([0, T], \dot{H}^{1}\left(\mathbb{R}^{3}\right)\right)}^{3 / 2}
$$

2. (a) Let $\psi, \phi \in \mathcal{C}^{\infty} \cap H^{1}\left(\mathbb{R}^{3}\right)^{3}$ be divergence free. Consider a cut-off $\chi_{R}:=\chi(\cdot / R)$, where $R>0$, $\chi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ is such that $\chi(z)=1$ if $|z| \leq 1$. Prove that

$$
\int_{\mathbb{R}^{3}} \chi_{R} \psi \otimes \phi: \nabla \phi=-\frac{1}{2} \int_{\mathbb{R}^{3}}\left(\nabla \chi_{R} \cdot \psi\right)|\phi|^{2} .
$$

Passing to the limit as $R \rightarrow \infty$, deduce that

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} \psi \otimes \phi: \nabla \phi=0 . \tag{5}
\end{equation*}
$$

(b) Let $\psi, \phi \in H^{1}\left(\mathbb{R}^{3}\right)^{3}$ be divergence free. Using a regularization by convolution, prove that (5) is still satisfied.
3. Let $u \in L^{\infty}\left([0, T], L^{2}\left(\mathbb{R}^{3}\right)\right) \cap L^{4}\left([0, T], \dot{H}^{1}\left(\mathbb{R}^{3}\right)\right)$ be divergence free, and set $f=-\operatorname{div}(u \otimes u)$. Recalling that $f \in L^{2}\left([0, T], H^{-1}\left(\mathbb{R}^{3}\right)\right)$, show that for almost every $t \in(0, T)$,

$$
\langle f(t), u(t)\rangle_{H^{-1}, H^{1}}=\int_{\mathbb{R}^{3}} u(t) \otimes u(t): \nabla u(t)=0 .
$$

4. Using the section on the Stokes system, prove Proposition (1).

3 Weak-strong uniqueness principle

The goal of this section is to prove the following
Théorème 2. Let u, v be two Leary solutions of the Navier-Stokes equation in dimension 3, with respective initial data u_{0}, v_{0}. Assume that $u \in L^{4}\left([0, T], \dot{H}^{1}\left(\mathbb{R}^{3}\right)\right)$. Then for a.e. $t \in[0, T]$,

$$
\|u(t)-v(t)\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}+\int_{0}^{t}\|\nabla(u-v)\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2} \leq\left\|u_{0}-v_{0}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2} \exp \left(C \int_{0}^{t}\|u(s)\|_{H^{1}}^{4} d s\right) .
$$

Throughout this section, we set $w=u-v$ and

$$
\delta(t):=\|w(t)\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}+2 \int_{0}^{t}\|\nabla w(s)\|_{L^{2}}^{2} d s .
$$

1. Using the fact that u and v are Leray solutions of the Navier-Stokes system, prove that

$$
\delta(t) \leq\left\|v_{0}\right\|_{L^{2}}^{2}+\left\|u_{0}\right\|_{L^{2}}^{2}-2 D(t),
$$

where

$$
D(t)=\int_{\mathbb{R}^{3}} u(t) \cdot v(t)+2 \int_{0}^{t} \int_{\mathbb{R}^{3}} \nabla u(s): \nabla v(s) d s .
$$

2. Define $u_{\epsilon}:=u *_{t} \rho_{\epsilon}$, where $\rho_{\epsilon}=\epsilon^{-1} \rho(\cdot / \epsilon)$, where ρ is a standard mollification kernel such that Supp $\rho \subset]-\infty, 0]$. Using u_{ϵ} as a test function in the weak formulation for v together with the equation on u, prove that for all $t \in[0, T]$,

$$
\begin{aligned}
& \int_{\mathbb{R}^{3}} u_{\epsilon}(t) \cdot v(t)+2 \int_{0}^{t} \int_{\mathbb{R}^{3}} \nabla v(s): \nabla u_{\epsilon}(s) d s \\
&=\int_{\mathbb{R}^{3}} v_{0} u_{\epsilon}(0)+\int_{0}^{t} \int_{\mathbb{R}^{3}}(u \otimes u) * \rho_{\epsilon}: \nabla v+\int_{0}^{t} \int_{\mathbb{R}^{3}}(v \otimes v): \nabla u_{\epsilon} .
\end{aligned}
$$

3. Pass to the limit as $\epsilon \rightarrow 0$ and prove that

$$
D(t)=\int_{\mathbb{R}^{3}} v_{0} u_{0}+\int_{0}^{t} \int_{\mathbb{R}^{3}}(u \otimes u): \nabla v+\int_{0}^{t} \int_{\mathbb{R}^{3}}(v \otimes v): \nabla u .
$$

4. Using property (5), show that

$$
D(t)=\int_{\mathbb{R}^{3}} v_{0} u_{0}+\int_{0}^{t} \int_{\mathbb{R}^{3}}[(w \cdot \nabla) u] \cdot w .
$$

5. Deduce that

$$
\delta(t) \leq \delta(0)+C \int_{0}^{t}\|\nabla w\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{3 / 2}\|w\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{1 / 2}\|\nabla u\|_{L^{2}\left(\mathbb{R}^{3}\right)}
$$

and conclude using Young's inequality and a Gronwall argument.

