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Abstract
The strategy of the Galerkin method is the projection of a PDE onto a finite dimensional

basis. This allows the use of finite dimensional tools (such as the Cauchy-Lipschitz theorem
for ODEs) to find an sequence of approximate solutions. Here, we present this method in
the case of a transport-diffusion equation in a bounded domain.

In this note, we consider the equation

∂tu+ b · ∇u+ cu−∆u = 0 in (0, T )× Ω, u|∂Ω = 0,
u|t=0 = u0,

(TD)

where Ω ⊂ RN is a bounded C1 domain, b ∈ L∞((0, T )×Ω)N , c ∈ L∞((0, T )×Ω), and u0 ∈ L2(Ω).
We introduce the following

Definition 1. A function u ∈ L2((0, T ), H1
0 (Ω)) is a weak solution of (TD) if the following

properties are satisfied:

(i) ∂tu ∈ L2([0, T ], H−1(Ω));

(ii) u|t=0 = u0;

(iii) For any v ∈ H1
0 (Ω), for almost every t ∈ (0, T ),

〈∂tu(t), v〉H−1,H1
0

+
∫

Ω
(b(t, x) · ∇u(t, x) + c(t, x)u(t, x)) v(x)dx+

∫
Ω
∇u(t, x) ·∇v(x)dx = 0

Remark 2. Let w ∈ L2([0, T ], H1
0 (Ω)) such that ∂tw ∈ L2([0, T ], H−1(Ω)).

Then w ∈ C([0, T ], L2(Ω)) and for all 0 ≤ s ≤ t ≤ T ,

‖w(t)‖2L2(Ω) − ‖w(s)‖2L2(Ω) = 2
∫ t

s

〈∂tw(τ), w(τ)〉H−1,H1
0 (Ω)dτ.

(See Theorem 3 in Section 5.9.2 of Evans.) As a consequence, any weak solution of (TD) belongs
to C([0, T ], L2(Ω)), and point (ii) of the above definition holds in L2(Ω).

The goal of the note is to prove the following

Theorem 3. Let T > 0, b ∈ L∞((0, T ) × Ω)N , c ∈ L∞((0, T ) × Ω), and u0 ∈ L2(Ω). There
exists a unique weak solution of (TD).
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1 A priori estimate
Assume in this section that u ∈ C1([0, T ], C2(Ω̄)) is a classical solution of (TD).
(a) Show that for all t ∈ [0, T ],

d

dt
‖u(t)‖2L2(Ω) +

∫
Ω
|∇u(t, x)|2dx ≤ (2‖c‖∞ + ‖b‖∞) ‖u(t)‖2L2(Ω).

(b) Let C := 2‖c‖∞ + ‖b‖∞. Show that

‖u‖2L∞([0,T ],L2(Ω)) +
∫ T

0
‖∇u(t)‖2L2(Ω) dt ≤ ‖u0‖2L2(Ω)e

CT .

(c) Deduce that

‖∂tu‖L2([0,T ],H−1(Ω)) ≤
(
‖b‖∞ + ‖c‖∞

√
T + 1

)
‖u0‖L2(Ω)e

CT
2 .

2 Construction of an approximating sequence
Let (wn)n∈N be an orthonormal basis of L2(Ω) which is orthogonal1 in H1

0 (Ω). For any n ∈ N,
let En := Vect(w0, · · · , wn), and let Pn be the orthogonal projection onto En in L2(Ω)

(a) Let n ∈ N be arbitrary. Show that there exists a unique un ∈W 1,∞([0, T ], En) such that for
a.e. t ∈ [0, T ], for all k ∈ {0, · · · , n},∫

Ω
∂tun(t, x)wk(x) dx+

∫
Ω

(b(t, x) · ∇un(t, x) + c(t, x)un(t, x))wk(x) dx

+
∫

Ω
∇un(t, x) · ∇wk(x) dx = 0,

un(0) = Pn(u0) ∈ En.

(TDn)

(Indication: write un(t) =
∑n

k=0 d
n
k (t)wn and rewrite (TDn) as a linear ODE on the

coefficients (dn
0 , · · · , dn

n).) Is un a solution of (TD)? Why?

(b) Show that for all n ∈ N,

‖un‖2L∞([0,T ],L2(Ω)) +
∫ T

0
‖∇un(t)‖2L2(Ω) dt ≤ ‖u0‖2L2(Ω)e

CT .

(c) Let v ∈ H1
0 (Ω) be arbitrary, and let vn = Pnv ∈ En, ṽn = v − vn. Show that

‖v‖2L2 = ‖vn‖2L2 + ‖ṽn‖2L2 , ‖v‖2H1 = ‖vn‖2H1 + ‖ṽn‖2H1 .

Deduce that
‖vn‖H1 ≤ ‖v‖H1 .

(d) Let v ∈ H1
0 (Ω) be arbitrary. Prove that for a.e. t ∈ [0, T ],∣∣∣〈∂tun(t), v〉H−1,H1

0

∣∣∣ ≤ ‖v‖H1
0

(
‖b‖∞‖∇un(t)‖L2(Ω) + ‖c‖∞łun(t)‖L2(Ω) + ‖∇un(t)‖L2(Ω)

)
.

Deduce that

‖∂tun‖L2([0,T ],H−1(Ω)) ≤
(
‖b‖∞ + ‖c‖∞

√
T + 1

)
‖u0‖L2(Ω)e

CT
2 .

1Take the eigenfunctions of the laplacian.
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3 Passing to the limit
(a) Show that there exists an increasing sequence of integers (nk)k∈N and a function u ∈

L2([0, T ], H1
0 (Ω)) such that ∂tu ∈ L2([0, T ], H−1) and such that

unk
⇀

k→∞
u in w − L2([0, T ], H1

0 (Ω)),

∂tunk
⇀

k→∞
∂tu in w − L2([0, T ], H−1).

(b) Prove that u satisfies (iii) of Definition 1.

(c) By using a test function v ∈ C1([0, T ], Em) such that v(T ) = 0 in (TDn) (with m ≤ n) and
in (iii) of Definition 1 and performing integration by parts, show that u(0) = u0.

(d) Conclude that u is a weak solution of (TD), and therefore the existence part of Theorem 3
is proved.

4 Uniqueness
Let u ∈ L2([0, T ], H1

0 (Ω)) be a weak solution of (TD) such that u(0) = 0. Prove that the
inequality

d

dt
‖u(t)‖2L2(Ω) ≤ C‖u(t)‖2L2(Ω)

holds for almost every t ∈ [0, T ] (both sides of the inequality belong to L1([0, T ]). Conclude.
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