The Galerkin method

October 29, 2019

Abstract

The strategy of the Galerkin method is the projection of a PDE onto a finite dimensional basis. This allows the use of finite dimensional tools (such as the Cauchy-Lipschitz theorem for ODEs) to find an sequence of approximate solutions. Here, we present this method in the case of a transport-diffusion equation in a bounded domain.

In this note, we consider the equation

$$
\begin{array}{r}
\partial_{t} u+b \cdot \nabla u+c u-\Delta u=0 \quad \text { in }(0, T) \times \Omega, u_{\mid \partial \Omega}=0 \tag{TD}\\
u_{\mid t=0}=u_{0}
\end{array}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded \mathcal{C}^{1} domain, $b \in L^{\infty}((0, T) \times \Omega)^{N}, c \in L^{\infty}((0, T) \times \Omega)$, and $u_{0} \in L^{2}(\Omega)$.
We introduce the following
Definition 1. A function $u \in L^{2}\left((0, T), H_{0}^{1}(\Omega)\right)$ is a weak solution of (TD) if the following properties are satisfied:
(i) $\partial_{t} u \in L^{2}\left([0, T], H^{-1}(\Omega)\right)$;
(ii) $u_{\mid t=0}=u_{0}$;
(iii) For any $v \in H_{0}^{1}(\Omega)$, for almost every $t \in(0, T)$,

$$
\left\langle\partial_{t} u(t), v\right\rangle_{H^{-1}, H_{0}^{1}}+\int_{\Omega}(b(t, x) \cdot \nabla u(t, x)+c(t, x) u(t, x)) v(x) d x+\int_{\Omega} \nabla u(t, x) \cdot \nabla v(x) d x=0
$$

Remark 2. Let $w \in L^{2}\left([0, T], H_{0}^{1}(\Omega)\right)$ such that $\partial_{t} w \in L^{2}\left([0, T], H^{-1}(\Omega)\right)$.
Then $w \in \mathcal{C}\left([0, T], L^{2}(\Omega)\right)$ and for all $0 \leq s \leq t \leq T$,

$$
\|w(t)\|_{L^{2}(\Omega)}^{2}-\|w(s)\|_{L^{2}(\Omega)}^{2}=2 \int_{s}^{t}\left\langle\partial_{t} w(\tau), w(\tau)\right\rangle_{H^{-1}, H_{0}^{1}(\Omega)} d \tau
$$

(See Theorem 3 in Section 5.9.2 of Evans.) As a consequence, any weak solution of (TD) belongs to $\mathcal{C}\left([0, T], L^{2}(\Omega)\right)$, and point (ii) of the above definition holds in $L^{2}(\Omega)$.

The goal of the note is to prove the following
Theorem 3. Let $T>0, b \in L^{\infty}((0, T) \times \Omega)^{N}, c \in L^{\infty}((0, T) \times \Omega)$, and $u_{0} \in L^{2}(\Omega)$. There exists a unique weak solution of (TD).

1 A priori estimate

Assume in this section that $u \in \mathcal{C}^{1}\left([0, T], \mathcal{C}^{2}(\bar{\Omega})\right)$ is a classical solution of (TD).
(a) Show that for all $t \in[0, T]$,

$$
\frac{d}{d t}\|u(t)\|_{L^{2}(\Omega)}^{2}+\int_{\Omega}|\nabla u(t, x)|^{2} d x \leq\left(2\|c\|_{\infty}+\|b\|_{\infty}\right)\|u(t)\|_{L^{2}(\Omega)}^{2}
$$

(b) Let $C:=2\|c\|_{\infty}+\|b\|_{\infty}$. Show that

$$
\|u\|_{L^{\infty}\left([0, T], L^{2}(\Omega)\right)}^{2}+\int_{0}^{T}\|\nabla u(t)\|_{L^{2}(\Omega)}^{2} d t \leq\left\|u_{0}\right\|_{L^{2}(\Omega)}^{2} e^{C T} .
$$

(c) Deduce that

$$
\left\|\partial_{t} u\right\|_{L^{2}\left([0, T], H^{-1}(\Omega)\right)} \leq\left(\|b\|_{\infty}+\|c\|_{\infty} \sqrt{T+1}\right)\left\|u_{0}\right\|_{L^{2}(\Omega)} e^{\frac{C T}{2}}
$$

2 Construction of an approximating sequence

Let $\left(w_{n}\right)_{n \in \mathbb{N}}$ be an orthonormal basis of $L^{2}(\Omega)$ which is orthogonal ${ }^{1}$ in $H_{0}^{1}(\Omega)$. For any $n \in \mathbb{N}$, let $E_{n}:=\operatorname{Vect}\left(w_{0}, \cdots, w_{n}\right)$, and let \mathbb{P}_{n} be the orthogonal projection onto E_{n} in $L^{2}(\Omega)$
(a) Let $n \in \mathbb{N}$ be arbitrary. Show that there exists a unique $u_{n} \in W^{1, \infty}\left([0, T], E_{n}\right)$ such that for a.e. $t \in[0, T]$, for all $k \in\{0, \cdots, n\}$,

$$
\begin{array}{r}
\int_{\Omega} \partial_{t} u_{n}(t, x) w_{k}(x) d x+\int_{\Omega}\left(b(t, x) \cdot \nabla u_{n}(t, x)+c(t, x) u_{n}(t, x)\right) w_{k}(x) d x \\
+\int_{\Omega} \nabla u_{n}(t, x) \cdot \nabla w_{k}(x) d x=0 \tag{TDn}\\
u_{n}(0)=\mathbb{P}_{n}\left(u_{0}\right) \in E_{n}
\end{array}
$$

(Indication: write $u_{n}(t)=\sum_{k=0}^{n} d_{k}^{n}(t) w_{n}$ and rewrite (TDn) as a linear ODE on the coefficients $\left(d_{0}^{n}, \cdots, d_{n}^{n}\right)$.) Is u_{n} a solution of (TD)? Why?
(b) Show that for all $n \in \mathbb{N}$,

$$
\left\|u_{n}\right\|_{L^{\infty}\left([0, T], L^{2}(\Omega)\right)}^{2}+\int_{0}^{T}\left\|\nabla u_{n}(t)\right\|_{L^{2}(\Omega)}^{2} d t \leq\left\|u_{0}\right\|_{L^{2}(\Omega)}^{2} e^{C T}
$$

(c) Let $v \in H_{0}^{1}(\Omega)$ be arbitrary, and let $v_{n}=\mathbb{P}_{n} v \in E_{n}, \tilde{v}_{n}=v-v_{n}$. Show that

$$
\|v\|_{L^{2}}^{2}=\left\|v_{n}\right\|_{L^{2}}^{2}+\left\|\tilde{v}_{n}\right\|_{L^{2}}^{2}, \quad\|v\|_{H^{1}}^{2}=\left\|v_{n}\right\|_{H^{1}}^{2}+\left\|\tilde{v}_{n}\right\|_{H^{1}}^{2} .
$$

Deduce that

$$
\left\|v_{n}\right\|_{H^{1}} \leq\|v\|_{H^{1}}
$$

(d) Let $v \in H_{0}^{1}(\Omega)$ be arbitrary. Prove that for a.e. $t \in[0, T]$,

$$
\left|\left\langle\partial_{t} u_{n}(t), v\right\rangle_{H^{-1}, H_{0}^{1}}\right| \leq\|v\|_{H_{0}^{1}}\left(\|b\|_{\infty}\left\|\nabla u_{n}(t)\right\|_{L^{2}(\Omega)}+\|c\|_{\infty} \not u_{n}(t)\left\|_{L^{2}(\Omega)}+\right\| \nabla u_{n}(t) \|_{L^{2}(\Omega)}\right) .
$$

Deduce that

$$
\left\|\partial_{t} u_{n}\right\|_{L^{2}\left([0, T], H^{-1}(\Omega)\right)} \leq\left(\|b\|_{\infty}+\|c\|_{\infty} \sqrt{T+1}\right)\left\|u_{0}\right\|_{L^{2}(\Omega)} e^{\frac{C T}{2}}
$$

[^0]
3 Passing to the limit

(a) Show that there exists an increasing sequence of integers $\left(n_{k}\right)_{k \in \mathbb{N}}$ and a function $u \in$ $L^{2}\left([0, T], H_{0}^{1}(\Omega)\right)$ such that $\partial_{t} u \in L^{2}\left([0, T], H^{-1}\right)$ and such that

$$
\begin{array}{r}
u_{n_{k}} \underset{k \rightarrow \infty}{\rightharpoonup} u \quad \text { in } w-L^{2}\left([0, T], H_{0}^{1}(\Omega)\right), \\
\partial_{t} u_{n_{k}} \underset{k \rightarrow \infty}{\longrightarrow} \partial_{t} u \quad \text { in } w-L^{2}\left([0, T], H^{-1}\right) .
\end{array}
$$

(b) Prove that u satisfies (iii) of Definition 1.
(c) By using a test function $v \in \mathcal{C}^{1}\left([0, T], E_{m}\right)$ such that $v(T)=0$ in (TDn) (with $m \leq n$) and in (iii) of Definition 1 and performing integration by parts, show that $u(0)=u_{0}$.
(d) Conclude that u is a weak solution of (TD), and therefore the existence part of Theorem 3 is proved.

4 Uniqueness

Let $u \in L^{2}\left([0, T], H_{0}^{1}(\Omega)\right)$ be a weak solution of (TD) such that $u(0)=0$. Prove that the inequality

$$
\frac{d}{d t}\|u(t)\|_{L^{2}(\Omega)}^{2} \leq C\|u(t)\|_{L^{2}(\Omega)}^{2}
$$

holds for almost every $t \in[0, T]$ (both sides of the inequality belong to $L^{1}([0, T])$. Conclude.

[^0]: ${ }^{1}$ Take the eigenfunctions of the laplacian.

