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Abstract

The strategy of the Galerkin method is the projection of a PDE onto a finite dimensional
basis. This allows the use of finite dimensional tools (such as the Cauchy-Lipschitz theorem
for ODEs) to find an sequence of approximate solutions. Here, we present this method in
the case of a transport-diffusion equation in a bounded domain.

In this note, we consider the equation

Ou+b-Vu+cu—Au=0 in (0,T) x Q,ujpq =0,

U|t=0 = U0,

(TD)
where Q C RY is a bounded C! domain, b € L>((0,T)xQ)N, ¢ € L>=((0,T)xQ), and ug € L3(£2).
We introduce the following

Definition 1. A function u € L2((0,7), H}(Q)) is a weak solution of (TD) if the following
properties are satisfied:

(i) O e L*([0,7], H~H(Q));
(i) Ujt=0 = U0;

(iii) For any v € Hg (), for almost every t € (0,7,

(Opu(t), v) -1 1 +/Q (b(t,z) - Vu(t,z) + c(t, x)u(t, z)) v(z) d:CJr/Q Vu(t,z) - Vo(x)dx =0

Remark 2. Let w € L([0,T], H}(Q)) such that d,w € L([0,T], H~1(12)).
Then w € C([0,T], L3(Q2)) and for all 0 < s < ¢ < T,

t
lw ()12 ) = lw()lZz) = 2/ (Orw(7), w(T)) 1,13 () 4T
(See Theorem 3 in Section 5.9.2 of Evans.) As a consequence, any weak solution of (TD) belongs
to C([0,T], L?(2)), and point (ii) of the above definition holds in L?(2).
The goal of the note is to prove the following

Theorem 3. Let T > 0, b € L>®((0,T) x Q)N, ¢ € L=((0,T) x ), and ug € L*(Q). There
exists a unique weak solution of (TD).



1 A priori estimate

Assume in this section that u € C*([0,T],C?(Q)) is a classical solution of (TD).
(a) Show that for all ¢t € [0, 7],

d
%Hu(t)ﬂiz(m + /Q Vu(t, 2)[Pde < (2]l¢]loo + [[blloo) [[u(B)[|72(q)-
(b) Let C :=2|¢||co + ||bllco. Show that
g c
el 2o (fo,7,22 () +/0 IVu(®)||72(q) dt < lluollFzq)e””

(¢) Deduce that

cT
0wl 2oy < (Iblloe + llelloo VT +1) lluoll 2oy 7

2 Construction of an approximating sequence

Let (wy,)nen be an orthonormal basis of L?(Q) which is orthogonal® in H{ (). For any n € N,
let E,, := Vect(wg, -+ ,w,), and let P, be the orthogonal projection onto E,, in L?(£2)

(a) Let n € N be arbitrary. Show that there exists a unique u,, € W°°([0, T, E,,) such that for
a.e. t € [0,T], for all k € {0,--- ,n},
/ Oytun (t, @) we () d + / (bt 2) - Vun(t, 7) + c(t, 2)n (b, ) wi (@) da
Q Q

+ | Vuy(t,z) - Vwg(z) dz =0,
Q

un(0) = Pp(uo) € E,.

(Indication: write u,(t) = > p_,dp(t)w, and rewrite (TDn) as a linear ODE on the
coefficients (dj,---,d?).) Is u, a solution of (TD)? Why?

r'n

(b) Show that for all n € N,
T
[unllZ oo 10,77, 22(52)) +/0 IVun ()] 72(q) dt < HUOH%z(Q)eCT-

(c) Let v € H}(Q) be arbitrary, and let v,, = P,v € E,, ¥, = v — v,. Show that
[0lZ2 = llvnll7e + 15all72s  0lFn = llvallFn + [1all7-

Deduce that
vl < (o]l

(d) Let v € H}(Q) be arbitrary. Prove that for a.e. t € [0,T],

(Orun(t), v) 1,13 | < ol (blloo I Vun (@)l z2(0) + llellsctun (t)ll22() + [ Vun (0l L2(0)) -

Deduce that
cr
10etnll 20,1, 51 (02)) < (Hb”oo +llelle VT + 1) ol L2 (aye T

1Take the eigenfunctions of the laplacian.




3 Passing to the limit

(a) Show that there exists an increasing sequence of integers (ng)reny and a function u €
L2([0,T), HE(£2)) such that dyu € L2([0,T], H~!) and such that
Up, — u inw— L*([0,T], Hy(Q)),
k—o0
Ortin, . O inw— L*([0,T], HY).
—00

(b) Prove that u satisfies (iii) of Definition 1.

(c) By using a test function v € C'([0,T], E,,) such that v(T) = 0 in (TDn) (with m < n) and
in (iii) of Definition 1 and performing integration by parts, show that «(0) = ug.

(d) Conclude that u is a weak solution of (TD), and therefore the existence part of Theorem 3
is proved.

4 Uniqueness

Let w € L%([0,T], H}(Q)) be a weak solution of (TD) such that u(0) = 0. Prove that the
inequality

d
%Hu(t)H%?(Q) < Cllu(t)[172(q)

holds for almost every ¢ € [0, T] (both sides of the inequality belong to L'([0,T]). Conclude.



