CHAPTER 2: HOMOGENIZATION

Hany physical or engineered makerials have a
mall peak Atmediure : e.g. composite materials :
alternate, stamiussopic level, two a more matrices with typepeeties
(c.g. electrical conductivity) to obtain a macassopic material with "blue" popels.
The goal of homogenization theory is to analyze the
sull properties of physical quenchities in materials
having media small scale Atmetice.
The material with conductivity
$$\lambda_1$$

 $=$ material with conductivity λ_2
 \Rightarrow Conductivity $\lambda(\frac{\pi}{\epsilon})$, with
 $\lambda(y) = \int_{2}^{2} \lambda_2$ if $y \in [0, \frac{1}{2}[$
extended by physicality over R :
 $\frac{1}{2}$ and $\frac{1}{2}$ or $\frac{1}{2}$ if $\frac{1}{2} + \frac{1}{2}[$
extended by physicality over R :
 $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{1}{2}$ if $\frac{1}{2} + \frac{1}{2}[$
 $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{1}{2}$ if $\frac{1}{2} + \frac{1}{2}[$
extended by physicality over R :
 $\frac{1}{2}$ or $\frac{1}{2}$.

Consider the differential equation
(HE)
$$\left\{ \frac{d}{dx} \left(\frac{\chi}{\xi} \right) T_{\xi}'(x) \right\} = 0$$
 in $\left[\frac{\chi}{\chi_{0}}, x_{5} \right] \left[T_{\xi}(x_{5}) = T_{5} \right]$

$$\frac{\operatorname{Querhion}}{\operatorname{In}\operatorname{His}} : \operatorname{How} \operatorname{des} \operatorname{T}_{\mathcal{E}} \operatorname{behave} \operatorname{as} \mathcal{E} \to 0?$$

$$\operatorname{In}\operatorname{His} \operatorname{particular} \operatorname{case}, \operatorname{he} \operatorname{solution} \operatorname{is} \operatorname{simple}:$$

$$\operatorname{max} \left(\operatorname{d} \left(\frac{\alpha}{\mathcal{E}} \right) \operatorname{T}_{\mathcal{E}}'(\alpha) \right) = 0 \quad \operatorname{in} \left[\operatorname{ao}, \alpha_{\mathcal{I}} \mathcal{I}, \right]$$

$$\operatorname{we} \operatorname{infer} \operatorname{het} \operatorname{here} \operatorname{exists} \operatorname{a} \operatorname{constant} \operatorname{C}_{\mathcal{E}} \operatorname{mch}$$

$$\operatorname{Hat} \quad \operatorname{d} \left(\frac{\alpha}{\mathcal{E}} \right) \operatorname{T}_{\mathcal{E}}'(\alpha) = \operatorname{C}_{\mathcal{E}}$$

Hence
$$T_{\varepsilon}'(x) = \frac{C_{\varepsilon}}{\lambda(\frac{x}{\varepsilon})}$$

Integrate between
$$x_0$$
 and x :
 $T_{\mathcal{E}}(x) = T_0 + \int_{x_0}^{x} \frac{C_{\mathcal{E}}}{\lambda\left(\frac{y}{\mathcal{E}}\right)} dy$

The constant
$$C_{\varepsilon}$$
 is determined by the condition
 $T_{o} + \int_{\pi o}^{\chi_{s}} \frac{C_{\varepsilon}}{\lambda(\frac{\omega}{\varepsilon})} dy = T_{1}$

i.e.
$$C_{\varepsilon} = \frac{T_{1} - T_{0}}{\int_{x_{0}}^{x_{1}} \frac{1}{\lambda} \left(\frac{y}{\varepsilon}\right) dy}$$

Lemma: Let $f: R \to R$ be a piecewise continuous and speciodic function. Let $x_0, x_s \in R$, $x_0 < x_s$ Then $\lim_{\epsilon \to 0} \int_{x_0}^{x_s} f\left(\frac{x}{\epsilon}\right) dx = (x_s - x_0) < f>$, where $< f > = \int_0^s f$.

More precisely:

$$\int_{\overline{z}}^{n} f(y) dy = \sum_{k=0}^{\frac{n_s \cdot x_o}{2} - 1} \int_{\overline{z}}^{n} f(y) dy + \int_{\overline{z}}^{n} f(y) dy$$

$$= \sum_{k=0}^{n} \int_{\overline{z}}^{n} f(y) dy + \int_{\overline{z}}^{n} f(y) dy$$

• For any
$$x \in \mathbb{R}$$
,
 $\int_{x}^{x+1} f(y) dy = \int_{0}^{1} f(y) dy = \langle f \rangle$
(properly of periodic functions)
Hence $\int_{\overline{z}}^{20} f(bt)$ $f(y) dy = \langle f \rangle$ $\forall k \in \mathbb{Z}, \forall \varepsilon > 0.$
• $\left| \int_{\overline{z}}^{\frac{\pi}{2}} f(y) dy \right| \leq \sup_{y \in \mathbb{R}} |f(y)| \times \left(\frac{x_{1}}{\varepsilon} - \left(\frac{x_{0}}{\varepsilon} \right) - \left| \frac{x_{1}}{\varepsilon} \right) \right|$
 $\leq \sup_{y \in \mathbb{R}} |f(y)|$
by definition of $L = \int_{z}^{1} (x - Lx) \in [0, 1] \quad \forall x \in \mathbb{R}).$

Therefore,

$$\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} f(q) dq = \left[\frac{\pi_{1} - \pi_{0}}{\epsilon}\right] \langle f \rangle + \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} f(q) dq = \left[\frac{\pi_{1} - \pi_{0}}{\epsilon}\right] \langle f \rangle + \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} f(q) dq = \left[\frac{\pi_{1} - \pi_{0}}{\epsilon}\right] \langle f \rangle$$

$$= \frac{\alpha_{1} - \alpha_{0}}{\varepsilon} < f >$$

$$+ \left(\left[\frac{\alpha_{1} - \alpha_{0}}{\varepsilon} \right] - \frac{\alpha_{1} - \alpha_{0}}{\varepsilon} \right] < f >$$

$$+ \int_{\frac{\alpha_{0}}{\varepsilon}}^{\frac{\alpha_{1}}{\varepsilon}} \frac{\alpha_{1} - \alpha_{0}}{\varepsilon} \int_{\varepsilon}^{\varepsilon} f + \int_{\varepsilon}^{\frac{\alpha_{1}}{\varepsilon}} \frac{\alpha_{1} - \alpha_{0}}{\varepsilon} \int_{\varepsilon}^{\varepsilon} f + \int_{\varepsilon}^{\varepsilon} \frac{\alpha_{1} - \alpha_{0}}{\varepsilon} \int_{\varepsilon}^{\varepsilon} \frac{\beta_{1}}{\varepsilon} \int_{\varepsilon}^{\varepsilon} \frac{\beta_{1}}$$

Back to
$$(H_{E})$$
: we deduce that

$$\lim_{E \to 0} C_{E} = \frac{T_{1} - T_{0}}{a_{1} - a_{0}} \frac{J}{\langle \frac{1}{\Delta} \rangle},$$
and for all $x \in [x_{0}, x_{3}],$

$$\lim_{E \to 0} T_{E}(x) = T_{0} + \frac{x - x_{0}}{a_{3} - x_{0}} (T_{1} - T_{0})$$

$$\lim_{E \to 0} T_{E}(x) = T_{0} + \frac{x - x_{0}}{a_{3} - x_{0}} (T_{1} - T_{0})$$
Then:. Let $T(x) = T_{0} + \frac{x - x_{0}}{a_{3} - x_{0}} (T_{1} - T_{0})$
Then:. lime $T_{E}(x) = T(x) \quad \forall x \in [x_{0}, a_{1}]$
(Simple convergence)
The fact, looking note clockly at the proof, it
can be proved that there exists a constant C, depending
on $T_{0}, T_{1}, x_{0}, x_{1}, t_{3}, t_{2}$ and that

$$\lim_{x \in [a_{0}, h_{1}]} (T_{E}(x) - T(x)) \leq CE$$
(Uniform convergence AND error chimate).
The limit \overline{T} satisfies
(Ho) $\{T(x_{0}) = T_{0}, T(x_{3}) = T_{1}\}$

• The derivative
$$T_{\mathcal{E}}'(x)$$
 is scallahing!
 $T_{\mathcal{E}}'(x) \simeq \frac{\overline{C}}{\lambda(\frac{\pi}{\mathcal{E}})}$, where $\overline{C} = \lim_{\mathcal{E} \to 0} C_{\mathcal{E}}$
(Ho) is called the homogenized problem for (HE)
Remark: The computations above can be
entitled to the case when there is a right-hand
ride: let $g \in \mathcal{B}((T_{AO}, \alpha_{S}))$, and let $S_{\mathcal{E}}$ be the
rotunian of
(HE) $\begin{cases} \frac{d}{dx}(\lambda(\frac{\pi}{\mathcal{E}}) S_{\mathcal{E}}'(x)) = g(x) & \forall x \in]x_{O}x_{S}] \\ S_{\mathcal{E}}(x_{O}) = T_{O}, & S_{\mathcal{E}}(x_{S}) = T_{I} \end{cases}$
Then $\lim_{\mathcal{E} \to 0} |S_{\mathcal{E}}(x) - \overline{S}(x)| = O, where \overline{S}$ is
the rotunian of
 $\begin{cases} \frac{d}{dx}(\overline{T} \overline{S}'(x)) = g(x) \\ \overline{S}(x_{O}) = T_{O}, & \overline{S}(x_{S}) = T_{I} \end{cases}$
and $\overline{X} = \frac{1}{\langle + \rangle}$ (Proof left to the
 $\overline{X} = \frac{1}{\langle + \rangle}$ (Proof left to the
 $\overline{X} = \langle -X \rangle$!

Even in this setting, where computations are
explicit, non minial phenomena accur. The
homogenized problem for
$$(H_{\Xi})$$
 is not the one one
would expect intuitively.
 $T)$ The queral (linear, $1d$) cax:
In this paragraph, we consider equations of
the form
 $(E_{\Xi}) \begin{cases} -\frac{d}{dx} \left(a(x, \frac{\pi}{\Xi}) u_{\Xi}^{c}(x) \right) + c(x, \frac{\pi}{\Xi}) u_{\Xi}(x) = f(x) \\ u_{\Xi}(x_{0}) = 0, \quad u_{\Xi}(x_{0}) = 0 \end{cases}$
where the functions a, c, f satisfy the following
amoughions:
 $(a, c) \in B(f_{0}x_{1}] \times \mathbb{R});$
 $(a, c) are priodic with repect to their acound
variable: $a(x, y+s) = a(x, y) + (x, y) \in f_{0}x_{1} + \mathbb{R}$
 (H)
 $Tinf_{\Xi} a(x, y) = :a_{0} > 0$
 $y \in \mathbb{R}$
 $Tinf_{\Xi} c(x, y) = :a_{0} > 0$$

•
$$f \in \mathcal{C}((\Gamma_{0}, \chi, J))$$
.
Remark: To simplify the perturbion, we have
drown not to include a kin of the form
 $\frac{d}{dx}(b(\pi, \frac{\chi}{E}) u_{E}(\pi))$
but it is possible to do so, under suitable conditions
on $b(for intrance, b \in \mathbb{C}^{4}(\mathbb{R} \times \mathbb{R}), periodic in its$
accord variable, and such that
Sup $1b(\pi, \chi) \leq C$ as
 $\chi \in \mathbb{R}$ for some contract C depending only on $\chi_{3} - \chi_{0}$.
In the case of equation (\mathbb{E}_{E}) , it is hopeles to
obtain a general sepremetation formula. Therefore
another strategy needs to be developed.
I dea:
• $\lambda fine nigorously and compute an approximate
rolution $u_{-\pi}$, such that
 $\left(\sum_{e=0}^{equ}\int_{-\frac{1}{2}}^{-\frac{1}{2}}u_{eq}(\pi) + c(\pi, \frac{\chi}{E})u_{eq}(\pi) = f(\pi) + \tau_{E}(\pi)$
 $\left(\sum_{e=0}^{equ}\int_{-\frac{1}{2}}^{-\frac{1}{2}}u_{eqp}(\pi_{0}) = \lim_{E \to 0}u_{ep}(\chi_{0}) = 0$
with $\tau_{E} \xrightarrow{\geq 0} (in a sense to be determined)$$

• Prove that
$$u_{\varepsilon} - u_{\varepsilon}^{eff} = 0$$
 in a suitable
sense.
a) Contraction of an approximate solution:
Looking at the example of paragraph 1), we
recall that: $T_{\varepsilon} \to T$ uniformly in ε as $\varepsilon \to 0$
• T_{ε}' is oscillating with respect to ε .
The same type of behavior can be expected for
the solution u^{ε} of $(\varepsilon_{\varepsilon})$. Therefore, we propose
an "Ansatz" of the form
(A) $u_{\varepsilon} \simeq u_{0}(z) + \varepsilon u_{s}(z, \frac{z}{\varepsilon}) + \cdots$
(see lemma below) oscillating
Prategy:
• Ata formal level, identify the equations on
 u_{0}, u_{s} , etc.;

- · Rigorously define us, us, us;
- · Compute the remainder dem re;

Lemma: Let
$$u \in \mathcal{B}^{\Delta}(\mathbb{R} \times \mathbb{R})$$

 $\Sigma > 0.$
Then $\frac{d}{dx} \left(u\left(x, \frac{x}{\varepsilon}\right) \right) = \partial_{s} u\left(x, \frac{x}{\varepsilon}\right) + \frac{1}{\varepsilon} \left(\partial_{s} u\right) \left(x, \frac{x}{\varepsilon}\right)$
Proof: We go back to the definition.
Let $x_{0} \in \mathbb{R}$ adviting, and let $h > 0.$
 $\frac{u(x_{0}+h, \frac{x_{0}k}{\varepsilon}) - u\left(x_{0}, \frac{x_{0}}{\varepsilon}\right)}{h}$
 $= \frac{u\left(x_{0}+h, \frac{x_{0}}{\varepsilon} + \frac{x}{\varepsilon}\right) - u\left(x_{0}+h, \frac{x_{0}}{\varepsilon}\right)}{h} = \frac{1}{\varepsilon}$
 $+ \frac{u(x_{0}+h, \frac{x_{0}}{\varepsilon}) - u\left(x_{0}, \frac{x_{0}}{\varepsilon}\right)}{h}$.
By definition,
 $\lim_{h \to 0} \frac{u(x_{0}+h, \frac{x_{0}}{\varepsilon}) - u\left(x_{0}, \frac{x_{0}}{\varepsilon}\right)}{h} = \partial_{s} u\left(x_{0}, \frac{x_{0}}{\varepsilon}\right)$

Moreover,

$$u(n_{o}+h, \frac{n_{o}}{\epsilon} + \frac{h}{\epsilon}) - u(n_{o}+h, \frac{n_{o}}{\epsilon}) = \int_{\epsilon}^{\frac{n_{o}}{\epsilon} + \frac{h}{\epsilon}} \partial_{\epsilon} u(n_{o}+h, y) dy$$

 $y = \frac{n_{o}}{\epsilon} + \frac{h}{\epsilon} \int_{0}^{1} \partial_{\epsilon} u(n_{o}+h, \frac{n_{o}}{\epsilon} + \frac{h}{\epsilon}) dt$

Thus

$$\frac{u(x_{0}+k_{1},\frac{x_{0}}{\epsilon}+\frac{k_{0}}{\epsilon})-u(x_{0}+k_{1},\frac{x_{0}}{\epsilon})}{\frac{k_{0}}{\epsilon}} = \partial_{2}u(x_{0},\frac{x_{0}}{\epsilon})$$

$$= \int_{0}^{1} \left(\partial_{2}u(x_{0}+k_{1},\frac{x_{0}}{\epsilon}+t+\frac{k_{0}}{\epsilon})-\partial_{2}u(x_{0},\frac{x_{0}}{\epsilon})\right) dt$$
Let $y > 0$ be arbitrary.
Since $\partial_{2}u$ is a continuous function on \mathbb{R}^{2} , there exists
 $S > 0$ (depending on x_{0} , S and y) and that
for any h_{2} , $h_{2} \in \mathbb{R}$
 $|h_{2}| \leq \delta$ and $|h_{2}| \leq \delta \Longrightarrow \left(\partial_{2}u(x_{0}+k_{0},\frac{x_{0}}{\epsilon}+k_{0})-\partial_{2}u(x_{0}\frac{x_{0}}{\epsilon})\right) \leq \gamma$.
In the present case, if $|h| \leq S \varepsilon$, we infer that
 $\frac{u(x_{0}+k_{1},\frac{x_{0}}{\epsilon}+\frac{k_{0}}{\epsilon})-u(x_{0}+k_{1},\frac{x_{0}}{\epsilon})}{\frac{k_{0}}{\epsilon}} = \partial_{2}u(x_{0},\frac{x_{0}}{\epsilon}) \leq \gamma$.
Thus $\lim_{k\to\infty} \frac{u(x_{0}+k_{1},x_{0}+\frac{k_{0}}{\epsilon})-u(x_{0}+k_{1},\frac{x_{0}}{\epsilon})}{\frac{k_{0}}{\epsilon}}$
Galhering the prove terms, we obtain the result
announced initially.

Now, amme that

$$u_{\varepsilon}(x) \simeq u_{o}(x) + \varepsilon u_{s}(x, \frac{\eta}{\varepsilon}) + \varepsilon^{2}u_{\varepsilon}(x, \frac{\eta}{\varepsilon}) + \cdots$$
$$u_{\varepsilon}'(x) \simeq u_{s}'(x) + (\partial_{g}u_{s})(x, \frac{\eta}{\varepsilon})$$
$$+ \varepsilon \left[\partial_{x}u_{s}(x, \frac{\eta}{\varepsilon}) + \partial_{y}u_{\varepsilon}(x, \frac{\eta}{\varepsilon})\right] + \cdots$$

$$\mathcal{E}^{-1}\left(-\frac{\partial}{\partial y}\left(\alpha(x,y)\left(u_{o}(n)+\partial yu_{y}(x,y)\right)\right)\right)$$

$$+ \mathcal{E} \circ \int_{\partial \mathbf{x}} \frac{\partial}{\partial \mathbf{x}} \left(a(n,y) \left(u_0(n) + \partial y u_1 (n,y) \right) \right)$$

$$- \frac{\partial}{\partial y} \left(a(n,y) \left(\partial_{\mathbf{x}} u_0(n,y) + \partial y u_0(n,y) \right) \right)$$

$$+ c(n,y) u_0(\mathbf{x},y) - f(n) \int_{\partial \mathbf{y}} \frac{\partial}{\partial \mathbf{y}} = \frac{n}{\mathcal{E}}$$

$$+ \cdots = 0$$

b) Rigorous contruction of
$$u_0, u_0$$
 and u_0 :
(1) Consider the equation
 $\frac{\partial}{\partial y} (a(a,y)(u_0'(a) + \partial_y u_0(x,y))) = 0$ (C)
This is in fact an ODE in y in which x is a
parameter. In other words, for any $x \in [a_0, a_0]$,
we are obving this ODE in y, whose unknown is
 u_s .
Remark: (C) is called the corrector problem
Indeed its purpox is to determine u_0 (=the corrector)
interms of u_0 .
If u_0 is a solution of (C), then there exists
a function $P(a)$ such that
 $a(a, y) (u_0'(a) + \partial_y u_0(a, y)) = P(a)$
 $\rightarrow \quad \partial_y u_0(x, y) = \frac{P(a)}{a(x, y)} - u_0'(a)$
If u_0 is periodic in its second variable,
then $\int_0^1 \partial_y u_0(x, y) dy = u_0(x, b) - u_0(x, 0) = 0$.

Therefore
$$\mathcal{L}(n) < \frac{1}{a(n,\cdot)} > = u_0^{1}(n)$$

$$\partial_{y} u_{2}(n, y) = u_{0}'(n) g(n, y),$$

where $g(n, y) = \frac{1}{\alpha(n, y)} \left(\int_{0}^{2} \frac{1}{\alpha(n, 2)} dz\right)^{-1} - 1$
to that $\int_{0}^{2} g(n, y) dy = 0 \quad \forall x \in [n_{0}, n_{1}].$

Then we can define

$$u_{j}(a, y) = u_{o}'(a) G(a, y)$$
, where $G(a, y) = \int_{0}^{y} g(a, z) dz$
so that G is periodic.

There remains to define up.
(a) Consider now
$$\iint \iint :$$

we want to define up, up to that
 $-\frac{\partial}{\partial n} (a(n,y) u'(n) (1 + dy G(n,y)))$
 $-\frac{\partial}{\partial y} (a(n,y) (\partial_n u_n (n,y) + dy u_n (n,y)))$
 $+ C(n,y) u_n(n) = f(n).$

First dep: Take the average of the equation
in y over
$$[0, 5]$$
:
Then the ∂_y derivative disappears:
there remains only
 $(E) - \frac{d}{dx} (\overline{a}(x) u_0^2(x)) + \overline{c}(x) u_0(x) = f(x)$
where: $\overline{a}(x) = \int_0^{\Delta} a(x, y) (\Delta + \lambda_y G(x, y)) dy$
 $= \int_0^{\Delta} a(x, y) (\Delta + g(x, y)) dy$
 $= (\int_0^{\Delta} -\frac{1}{a(x, 2)} dz)^{-1}$

and
$$\overline{c}(n) = \int_{0}^{1} c(n, y) dy$$
.

Note that
$$\overline{a}(x) \ge Inf a$$
 $\forall x \in [x_0, x_3]$.
Therefore, we obtain the following result:
Proposition: There enists a unique function
 $u_0 \in B^2([x_0, x_3]) \cap B([x_0, x_3])$ solution of (\overline{E})
on $[x_0, x_3]$ and mode that $u_0(x_0)=u_0(x_3)=0$
 (\overline{E}) is the homogenized problem for $(\overline{E_E})$.

OAt this stage, up (and therefore up) are well defined. There remains to define up. To that end, we notice that if we require that f{ }} = 0, we obtain an equation of the hype $\frac{\partial}{\partial y} \left(a(n,y) \frac{\partial u_2}{\partial y} (n,y) \right) = h(n,y),$ where the right-hand mide h is much that $\int_{-\infty}^{\infty} h(x,y) \, dy = 0 \quad \forall x \in [x_0, x_1]$ by definition of wo. Hence, we define up so that $a(n,y) \frac{\partial u_{2}}{\partial y}(n,y) = \int_{-\infty}^{y} h(n,z)dz + \Psi(z)$ and tis determined by the condition $\int_{0}^{2} \frac{1}{a(n,y)} \left(H(n,y) + \Psi(n) \right) dy = 0$ c) Error ettimate. Define $u_{app}(x) = u_0(x) + E u_1(x, \frac{x}{E}) + E u_2(x, \frac{x}{E})$

Then the computations above show that:
•
$$-\frac{d}{d\alpha} \left(\alpha(\alpha, \frac{\alpha}{\epsilon}) u_{app}(\alpha) \right) + C(\alpha, \frac{\alpha}{\epsilon}) u_{app}(\alpha)$$

 $= f(\alpha) + r^{\epsilon}(\alpha),$
where $\alpha u_{eff}(\alpha) = r^{\epsilon}(\alpha) \leq C \epsilon$
for some constant C, independent of ϵ .
• $|u_{app}(\alpha_{0})|$, $|u_{app}(\alpha_{0})| \leq C'\epsilon$.
As a consequence, the difference
 $w_{\epsilon}(\alpha) = u_{\epsilon}(\alpha) - u_{app}(\alpha)$
is a solution of
 $\int -\frac{d}{d\alpha} \left(\alpha(\alpha, \frac{\alpha}{\epsilon}) w_{\epsilon}'(\alpha) \right) + C(\alpha, \frac{\alpha}{\epsilon}) w_{\epsilon}(\alpha) = r_{\epsilon}(\alpha)$
 $w_{\epsilon}(\alpha) = -u_{app}(\alpha_{0}), w_{\epsilon}(\alpha_{0}) = -u_{app}(\alpha_{0})$
Therefore, the theorem from chapter ϵ
 $u_{\epsilon}(\alpha_{0}, \frac{\alpha}{\epsilon}) w_{\epsilon}(\alpha) + C(\alpha_{0}, \frac{\alpha}{\epsilon}) w_{\epsilon}(\alpha)$

As a consequence,

$$\begin{aligned} & \sup_{x \in T_{0}, x_{3}} \left\{ u_{\varepsilon}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & u_{\varepsilon}(x_{0}) - u_{\varepsilon}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{\varepsilon}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{\varepsilon}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{\varepsilon}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{\varepsilon}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{\varepsilon}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{\varepsilon}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{\varepsilon}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{\varepsilon}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{\varepsilon}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{\varepsilon}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{\varepsilon}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{\varepsilon}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{\varepsilon}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{\varepsilon}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{\varepsilon}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{\varepsilon}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{\varepsilon}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{\varepsilon}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{\varepsilon}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{\varepsilon}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{0}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{0}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{0}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{0}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{0}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{0}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{0}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{0}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{0}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{0}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{0}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{0}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{0}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{0}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{0}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{0}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{0}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{0}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{0}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{0}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{0}(x) - u_{0}(x) \right\} \leq C'' \varepsilon \\ & (u_{0}) \left\{ u_{0}(x) - u_{0}(x) \right\} \leq C$$

• Non trivial phenomena occur (the limit
is not a solution of
$$-\frac{1}{d\alpha} (\langle \alpha(n, \cdot) \rangle u_o'(n)) + \langle c(n, \cdot) \rangle u_o = f.$$

Theorem: Assume that a, c satisfy the st of assumptions).
Let
$$u_{\Sigma}$$
 be the solution of E_{Σ} , and let u_{0} be the solution of the homogenized public (E).
Then $\sup_{\Sigma \in \{\alpha, n\}} \{u_{\varepsilon}(n) - u_{0}(n)\} \leq \overline{C} \Sigma$,
where \overline{C} is a constraint depending only on
the deficients a and c.