
CHAPTER MOGENIEATION1

Many physical or engineered materials have a

small scale structure e g composite materials
alternate a ta microscopielevel two amore materialswith properties
eg electricalconductivity to obtain a macroscopicmaterialwithbetterproperties
The goal of homogenization theory is to analyze the
bulk properties of physical quantities in materials

leaving mdr a small scale structure
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Consider the differential equation
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In this particular case the solution is simple
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More precisely
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Going back to the original expression we infer
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Backto Ltd we deduce that
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simple convergence
In fact looking more closely at the proof it
can be proved that there exists a constante depending

on To T no xp dz dz such that
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The derivative TE x is oscillating
Tae ln y

where E figée

Adis called the homogenizedproble fortte
Remack The computations above can be
entended to the case when there is a right hand
side let g E b no xD and let Se be the
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Even in this setting where computations are

explicit non trivial phenomena occur The
homogenized problem for Etg is not the one one

would expect intuitively
I Thegeneralclineancasinthis paragraph we consider equations of
the form
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Remonte To simplify the presentation we have
chosen motto include a kun of the forme

bcm E uchi
but it is possible to do so under suitable conditions
orb for instance b E ETR NR periodic in its
second variable and such that
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for some constant c depending only ou as no

In the case ofequation it is hopeless to
obtain a general representation formula Therefore
another strategy needs to be developed

Idea
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Prove that ne créer 0 in a suitable
sense
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Construdrionofanapproximatesolutiolaookingat the example of paragraph a we
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The same type of behavior can be enpeded for
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Plugging this asymptotic expansion into the
équation and using the above lemma leadsto
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Consider the equation
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Fin Take the average ofthe equation
in y over 0,1

Then the dy derivative disappears
there remains only
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At this stage no and therefore us are

well defined There remains to defining
Tolhat end we notice that if we require
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Then the computations above show that
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Asa consequence
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uniform convergence with rate

conclusion
Convergence theorem without computing the
actual solution

Non trivial phenomena occur the limit
is not a solution of
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Theory Assume that a c satisfy theset ofassumphiadH

Let be the solution of te and let no
be the solution ofthe homogenized problem CÉ
Then Snp
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where I is a constant depending only on
the coefficients a and c


