CHAPTER 1: Generalities a hour differential equations
I) Notion of derivative, bl function:

Definition: (Derivative)
Let $a<b$ berealmmbes,

$$
\begin{aligned}
& f \in C([a, b], \mathbb{R}) \\
& x_{0} \in[a, b]
\end{aligned}
$$

Difference quotient
A sum that the $\operatorname{limit}_{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$ exits in \mathbb{R}. Then this $h \neq 0$ aratect is io denoted by $f^{\prime}\left(x_{0}\right)$, and called the derivative of f at x_{0} The function f is said to be differentiable at x_{0}.

Pictrue: Graph off:

$=$ dope of the tanguy line.

Examples:

- If f is a polynomial, then f is differentiable every where:

$$
\begin{aligned}
& f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \quad \forall x \in \mathbb{R} \\
& f^{\prime}(x)=a_{1}+2 a_{2} x+\cdots+n a_{n} x^{n-1} \forall x \in \mathbb{R}
\end{aligned}
$$

- The function $x \mapsto|x|$ is not differentiable at $x=0$ (the difference quotients on the leftand on the right have different limits).
- The function $x \mapsto \operatorname{sgn}(x) \sqrt{|x|}$ is not differentiable at $x=0$ (the limit of the difference quotient is $+\infty$).

Definition: ($1 \perp$ function).
let $a<b$ be real numbers

$$
f \in U([a, b])
$$

Then $f \in C^{1}([a, b])$ iff f is differentiable everywhere on $[a, b]$, and if the function
$x \in[a, b] \mapsto f^{\prime}(x)$ is continuous.
Higher order derivatives define by induction
Let $k \geqslant 1$; assume that the derivative of order k of f, denoted by $f^{(k)}$, exists on $[a, b]$ and that it is continuous on this interval.
let $x_{0} \in[a, b]$. Assume that $f^{(b)}$ is differentiable at x_{0}. Then

$$
f^{(k+1)}\left(x_{0}\right) \cong\left(f^{(k)}\right)^{\prime}\left(x_{0}\right)
$$

Definition: (Clef functions, co functions)

- Let $k \geqslant 1$;
$a<b$ real numbers
Let $f \in C([a, b])$
Then f is a b^{k} function on $[a, b]$ if all derivatives up to order k (included) exist on $[a, b]$, and are continuous.
- f is a cos fundion on $[a, b]$ iff $\left.f \in C^{b}(a, b]\right)$ for all $k \geqslant 1$.
Examples:
- Polynomials are \mathcal{C}^{∞} functions on \mathbb{R} : if

$$
f(x)=a_{n} x^{n}
$$

then for $k \leqslant n, x \in \mathbb{R}$

$$
f^{(k)}(x)=a_{n} n(n-1) \cdots(n-k+1) x^{n-k}
$$

and for $k \geqslant n+1, f^{(k)}(n)=0$

- exp is a b^{∞} function on \mathbb{R}, \ln is a b^{∞} function on $] 0,+\infty[$.
Functions of several variables:
Definition Let $d \geqslant 1$, and let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.
- (Partial derivative): let $i \in\{1, \ldots, d\}$, and let $y_{0} \in \mathbb{R}^{d}$. Assume that the limit

$$
\lim _{\substack{h \rightarrow 0 \\ h \in \mathbb{R}\{0\}}} \frac{f\left(y_{0}+h e_{i}\right)-f\left(y_{0}\right)}{h} \quad\left(e_{i}=(0, \cdots, 0,1,0,0)\right.
$$

exits. Then we say that f admits an i the partial derivative at y_{0}, and we denote it by $\frac{\partial f}{\partial x_{i}}\left(y_{0}\right)$ or $\partial_{i} f\left(y_{0}\right)$

- (ζ^{1} function): $f \in \varphi^{\perp}\left(\mathbb{R}^{d}\right)$ if $\frac{\partial f}{\partial x_{1}}(x), \cdots, \frac{f_{x}}{\partial x_{1}}(x)$ exit for all $x \in \mathbb{R}^{d}$ and if all these partial derivatives are continuous.
Example Let $f_{1}, f_{2} \in C^{1}(\mathbb{R})$. Define $\begin{array}{ll}\mathbb{R}^{2} & \rightarrow \mathbb{R} \\ f(x, y) \mapsto f_{2}(x)+f_{2}(y) \quad, ~ \\ \mathbb{R}^{2}:(x, y) & \mapsto \mathbb{R}\end{array}$

$$
f_{:}(x, y) \mapsto f_{2}(x)+f_{2}(y) \quad, g:(x, y) \mapsto f_{1}(x) f_{2}(y)
$$

Then $f, g \in C^{1}\left(\mathbb{R}^{2}\right)$.

Integral
Definition let $f \in C([a, b])$. Then $\int_{a}^{b} f=\frac{{ }^{b} f(x) d x}{\text { (ink gal of }}$ from a to b) is the algebraic area between the graph off, the axis $y=0$, and the lines $x=a, x=b$.

$$
\int_{a}^{b} f=\lim _{n \rightarrow \infty} \sum_{k=0}^{n-1} \frac{b-a}{n} f\left(a+k \frac{b-a}{n}\right)
$$

Remark: If $f \in l f[[a, b]), \quad \int_{a}^{b} f^{\prime}=f(b)-f(a)$
II) Crash course on differential equations

A differential equation is an equation relating a function f and its derivatives:
(DE) $F\left(r, f(r), \cdots, f^{(x)}(r)\right)=0$, where $F:[a, b] \times \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ such equations are ubiquitous in physics, bidogy, social sciences... Here are a few examples.

* Electronics: Consider an electronic RLC circuit $R=$ resit
$L=$ inductor
$C=$ capacitor

Then the electric current $I(t)$ obap the differentrial equation

$$
L I^{\prime \prime}(r)+R I^{\prime}(t)+\frac{1}{C} I(r)=V^{\prime}(t)
$$

He, $n=2$ and

$$
f(r, x, y, z)=L z+R y+\frac{1}{c} x-v^{\prime}(r)
$$

(*) Mechanics: many examples are provided by the application of Newton's law. Consider a particle of mass moving on a straight line Cor a circle...) and let $x(t)$ be the poriron of itscerten of mas on the line at rime t. Then

$$
\begin{equation*}
m x^{\prime \prime}(t)=w \tag{N}
\end{equation*}
$$

where \mathcal{F} is the rum of all forces applied to the particle at lime r. In particular, if I depends only on $r, x(r)$ and $x^{\prime}(t)$ (speed of the particle), then (N) becomes a differential equation.

Example: Pendulum:

The equation governing the evolution of θ is

$$
\begin{equation*}
\theta^{\prime \prime}(r)+\frac{g}{L} \sin \theta=0 \tag{P}
\end{equation*}
$$

Remark: This equation is non linear: if θ_{1}, θ_{2} are solutions of (P), then in general, $\theta_{1}+\theta_{2}$ is not ra solution.

* Ecology (population dynamics): a simple model for the evolution of a population of rife $N(t)$ is the logistic equation (Verkult)

$$
N^{\prime}(r)=r N(r)\left(1-\frac{N(t)}{K}\right)
$$

$r>0$: growth parameter
$K>0$: accounts for the limited resources of the environment: if $N(r)>K$, then $N^{\prime}(t)<0: N$ decrease

Quetions (from the mathematical point of view):

1) Solve the differential equation (DE).

But what does "solve" mean? Proving that there exits a unique solution of (DE)? Finding an explicit formula for the solutions?
a) In general, there is no formula for solutions of non linear differential equations:

Example: Liouville:
(*) $u^{\prime}(t)=r+u^{2}(t)$
Solutions of (*) cannot be expressed as a combination of a finite number of usual fundious (polynomial, exponential, logarithm...)
b) However, it is passible to prove that solutions exist and are unique (without computing them)
Theorem (Cauchy -Lipschitr): Let $n \geqslant 1$. Let $G: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}, G \in C \perp\left(\mathbb{R} \times \mathbb{R}^{n}\right)$ $u_{0}, u_{1}, \cdots, u_{n-1} \in \mathbb{R}$
Consider the differential equation
$(C L) u^{(n)}(t)=G\left(r, u(t), \cdots, u^{(n-1)}(t)\right)$
together with the "initial condition"

$$
(I C) u(0)=u_{0}, \cdots, u^{(m-1)}(0)=u_{m-1}
$$

Then there exist $T_{+}>0, T_{-}<0$, such that $(C L)-(I C)$ has a unique solution on the intruval $] T_{-}, T_{+}[$.

Examples of application: all examples above!
Remark: This theorem provides a local (global) solution: the solution is not defined on \mathbb{R} in general. Blow up phenomena may occur.
Example: $\left\{\begin{array}{l}u^{\prime}(t)=u(t)^{2} \\ u(0)=1\end{array}\right.$
exercise: check that the unique pollution is given by the formula

$$
\left.u(r)=\frac{1}{1-r}, r \in\right]-\infty, 1[
$$

and therefore $\lim _{r \rightarrow 1^{-}} u(r)=+\infty$: the solution cannot be extended beyond $t=1$.
2) Investigate the "qualita rive" properties of the solution:

- Is the solution global (ie defined on \mathbb{R})?
- Dee it blow -up?
- Is it increasing I decreasing?
- In it prioduc?
- Are there equilibrium prints? (ie .initial data $\left(u_{0}, \cdots, u_{n-1}\right)$ m ch that the associated solution is constant)
- If there are equilibrium points, are they "table"? (This may have different meanings: stacking from an initial data clos to the equilibrium point, the associated soution is global and
(i) converges as $t \rightarrow \infty$ to the eq. point
(ii) remains clos to the eq. point for all hives.
etc.

3) When the exact solution is not known (ie mots of the hive...), compute (either withe a computer on by hand...) an approxmate solution, and prove that the exact and the approximate solutions are indeed dore.
\leadsto Numerical analysis (not discussed in these lectures)
\leadsto Asymptotic analysis, when the equation involves a small parameter \rightarrow subject of ledrues 2 and 3 .

Remark: The Caudny-Lipsohity theorem is an initial value problem: given the initial data $\left(u_{0}, \cdots, u_{n-1}\right)$, find the value of $u(r)$ for $r \in] T, T_{t}[$.
In other cases (re inparticilar lectme 2) it will be relevant to look at boundary value problems
Example: consider a Id heat conducting material, with thermal condu divily $\lambda(x)$, $x \in] 0,1[$. Anmme that the temperature at $x=0$ and $x=1$ is fixed by thermostats, and that a stationary regime has been reached (the temperature dobs not evolve with time). Then the temperature within the material obsup Fowler's law:

$$
\left\{\begin{array}{l}
\frac{d}{d x}\left(\lambda(x) T^{\prime}(x)\right)=0 \\
T(0)=T_{0}, T(1)=T_{1} \quad(\text { theurostato })
\end{array}\right.
$$

The existence of solutions of such problems is not prided by the Cauchy-lipschity theorem. For mach equations, we will rathe use the following result:

Theorem: Let $x_{0}, x_{1} \in \mathbb{R}, x_{0}<x_{1}$

$$
\begin{aligned}
& u_{0}, u_{2} \in \mathbb{R} \\
& f \in C\left(\left[x_{0}, x_{1}\right]\right) \\
& a, b \in C^{2}\left(\left[x_{0}, x_{1}\right]\right), c \in \zeta\left(\left[x_{0}, x_{1}\right]\right)
\end{aligned}
$$

Consider the boundary value problem

$$
\text { (BVP) }\left\{\begin{array}{c}
\left.-\left(a u^{\prime}\right)^{\prime}+(b u)^{\prime}+c u=f \quad \text { in }\right] x_{0}, x_{1}[\\
u\left(x_{0}\right)=u_{0}, u\left(x_{1}\right)=x_{1} .
\end{array}\right.
$$

Assume that $\left.I_{\left[0, x_{2}\right.}\right]^{2}>0$ and that one of the following assumptions is satisfied:

$$
\text { - } c+\frac{1}{2} b^{\prime} \geqslant 0
$$

- Inf $\left[x_{0}, x_{1}\right] \quad c \geqslant 0$ and $\operatorname{Sup}_{\left[x_{0}, x_{1}\right]}|b| \leqslant C_{1}(\text { Info })^{1 / 2}(I n p a)^{1 / 2}$
or $\operatorname{Inf}_{\left[x_{0}, x_{2}\right]} c \geqslant 0$ and $\operatorname{sinp}_{\left[x_{0}, x_{2}\right]}|b| \leqslant c_{2}$ Inf
or $\operatorname{simp}_{\left[x_{0}, x_{1}\right]}(|b|+|c|) \leqslant c_{3}$ Inf a
where C_{1}, C_{2}, C_{3} are universal contracts deppding only on $x_{1}-x_{0}$.

Then (BVP) has a unique solution non $\left(x_{0}, x_{1}\right)$ mech that $u \in \mathscr{G}\left(\left[x_{0}, x_{1}\right]\right) \cap \zeta^{2}(] x_{0}, x_{1}[)$ and $\int_{x_{0}}^{x_{1}} u^{\prime}(x)^{2} d x<+\infty$.
Furthermore, if $b=0$ and Inf $c>0$, then

$$
\operatorname{Sup}_{x \in\left[x_{0}, x_{1}\right]}|u(x)| \leqslant \max \left(\operatorname{Sup}_{x \in[,]}\left|\frac{f(x)}{c(x)}\right|,\left|u_{0}\right|,\left|u_{1}\right|\right)
$$

III. Measuring the distance between functions:

Consider a differential equation

$$
\left(D E^{\varepsilon}\right) \mathscr{L}^{\varepsilon}\left[\omega^{\varepsilon}\right]=0
$$

possibly depending on a mall parameter E>0. Let us assume that:

- We know that a solution of ($D E^{E}$) exits (for instance tanks to one of the two theorems above), BUT we are not able to compateit.
- We are able to compute, either numerically or theoretically, an approximate solution $u_{\text {app }}^{\varepsilon}$, in the suse that

$$
\mathscr{L}^{\varepsilon}\left[u_{\text {app }}^{\varepsilon}\right]=r^{\varepsilon}
$$

where r^{ε} is "mall" (in a suse to be made precia)

Quehious:

- What does " r^{ε} is mall "mean?
- Ane we able to prove that $u^{\varepsilon}-u^{\varepsilon}$ app is small, in oder to have a goad description of $u^{\varepsilon 7}$. If yes, in which sense?
Mathematically, claiming that " f " is mall when the parameter $\varepsilon>0$ is mall" means that f^{ε} converges touruds zero as $\varepsilon \rightarrow 0$. Therefore, one of the central questions of these lecrues is: how r dos one characterize the convergence towards zee of a family of funchious?

Different notions of convergence:
In what follows, $\left(f_{\varepsilon}\right)_{\varepsilon>0}$ is a family of continuous funchious on an interval $[a, b] C R$.
Definition (Simple convergence) The family $\left(f_{\varepsilon}\right)_{\varepsilon>0}$ simply converges tourands zero if $\lim _{\varepsilon \rightarrow 0} f_{\varepsilon}(x)=0$ for all $x \in[a, b]$.
Definition: (Uniform convergence) The family $\left(f_{\varepsilon}\right)_{\varepsilon>0}$ uniformly converges tourards zero iff

$$
\lim _{\varepsilon \rightarrow 0} \lim _{x \in[d, b]}\left|f_{\varepsilon}(x)\right|=0
$$

Remark: Uniform convergence \Rightarrow Simple convergence, but the convene is not true.

Example: on $[0,1]$:

It is easily checked that $(f \sim)_{n \in \mathbb{N}}$ converges simply, mut not uniformly towards zero.

In differential equations, it is also useful to look of convergences in "average", for example:
Definition:

- (Ls convergence): the family $\left(f_{\varepsilon}\right)_{\varepsilon>0}$ converges rourards zero in L1 iff

$$
\lim _{\varepsilon \rightarrow 0} \int_{a}^{b}\left|f_{\varepsilon}(x)\right| d x=0
$$

- L^{2} convergence): the family $\left(f_{\varepsilon}\right)_{\varepsilon>0}$ converges towards zero in L^{2} iff

$$
\lim _{\varepsilon \rightarrow 0} \int_{a}^{b} f_{\varepsilon}(x)^{2} d x=0
$$

Remark:

- Uniform convergence $\Rightarrow L^{2}$ convergence $\Rightarrow L^{\prime}$ convergence (But the convex is not true, see example above)
- L' convergence \Rightarrow simple convergence" almost every where" for a subsequence.

Remark: We can extend these notions to ck functions for $k \geqslant 1$ by taking into account the convergence of the derivatives.
For instance, for 61 functions, one can look at the following (different) notions of convergence:

- $\lim _{\varepsilon \rightarrow 0} \operatorname{Sup}_{x \in[a, b]}\left(\left|f_{\varepsilon}(x)\right|+\left|f_{\varepsilon}^{\prime}(x)\right|\right)=0$
- $\lim _{\varepsilon \rightarrow 0}\left(\sup _{x \in[a, b]}\left|f_{\varepsilon}(x)\right|+\int_{a}^{b}\left|f_{\varepsilon}^{\prime}(y)\right| d y\right)=0$
- $\lim _{\varepsilon \rightarrow 0} \int_{a}^{b}\left(f_{\varepsilon}(x)^{2}+f_{\varepsilon}^{\prime}(x)^{2}\right) d x=0$
etc.
When you look at a given problem, it is not obvious at first what is the good notion of
convergence (and more generally, what is the good way of meaning the size of the solution) Detunaining the appuppiate notion of convergence is a curial part of the work of mathematicians working in IDEs.

