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École thématique du GDR CHANT

Enjeux de Modélisation et Analyse Liés au Problèmes de
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Introduction

Physical motivations

Consider a fluid in a two-dimensional canal :

            

R

Boundary conditions : slip on the rough surface, no-slip on the
flat surface.
Question : does the roughness increase/decrease the slip
length at the limit ?
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Introduction

Physical answers

Experimental results :
I Zhu& Granick, PRL, 2002 : suppression of the slip by

increasing surface roughness.
I Watanabe, Udagawa,Y. & Ugadawa, H., J. Fluid Mech.

1999 : achievement of large slip on rough hydrophobic
surfaces.

Numerical simulations :
I Cottin-Bizonne et al., Nature Materials, 2003 : significant

increase of slip (starting from a system of particles).



Introduction

Previous mathematical answers

Notation : for K ⊂ Rd−1 compact,

Ωε := {x = (x ′, xd) ∈ Rd , εη(x ′/ε) < xd < 1},
Γε := {xd = εη(x ′/ε)},

Ω := {x = (x ′, xd) ∈ Rd , 0 < xd < 1}.

No-slip → no slip/small slip :
I Achdou, Pironneau, Valentin, 1998 ;
I Jäger, Mikelic, 2001 ;
I Amirat et. al., 2001 ;
I Gérard-Varet et. al., 2008.

Slip+roughness → no slip :
I Casado-Diaz, Fernandez-Cara, Simon (2002) ;
I Bucur, Feireisl et. al., 2008 ;

→ Different notions of surface roughness.
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Introduction

Goals of the present talk

Starting point : two-dimensional canal with Navier condition
(slip) on the rough boundary.

I Prove error estimates for the Dirichlet wall law.
Idea : use same kind of error estimates as Jäger&Mikelic.
Remark : Dirichlet wall law error O(ε).
Using a more refined wall law (Navier condition with slip
length of order ε), one can obtain error estimates of order
o(ε) (Gérard-Varet et.al.) (O(ε3/2) in the periodic case, see
Jäger&Mikelic).

I Derive and prove error estimates for the Navier wall law.
I Give sufficient conditions for the validity of the Dirichlet or

Navier wall law.
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The Navier-Stokes system



−∆uε + uε · ∇uε +∇pε = 0, x ∈ Ωε,

divuε = 0, x ∈ Ωε,

uε|x2=1 = 0,

∫
σε

uε
1 = φ,

(Id − ν ⊗ ν)uε|Γε = λ0(Id−ν ⊗ ν)D(uε)ν|Γε , uε · ν|Γε = 0.
(NSε)

φ : prescribed flux across a cross section.
λ0 : slip length.
ν : outward normal at the rough surface Γε.

Result : There exists φ0 > 0 s.t. (NSε) is well posed for
0 < φ < φ0 and for all ε > 0.
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Main results 1 - Dirichlet wall law

Non-degeneracy assumption on the rough boundary :

(P) ∃C > 0, s.t. ∀u ∈ C∞
c

(
R
)

satisfying u · ν|Γ = 0,

‖u‖L2(R) ≤ C ‖∇u‖L2(R)

where
R := {y ∈ R2, η(y1) < y2 < 0}.

Theorem
If λ0 = 0 or if (P) holds, one has

‖uε − u0‖H1
uloc(Ω

ε) ≤ C φ
√

ε, ‖uε − u0‖L2
uloc(Ω) ≤ C φ ε,

where u0 is the Poiseuille flow, satisfying the Navier-Stokes
equations in Ω, with no-slip boundary conditions.
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Main results 2 - Navier wall law

Lack of rotational invariance of the boundary :

(K) ∃C > 0, s.t. ∀u ∈ C∞
c

(
R
)

satisfying u · ν|Γ = 0,

‖u‖L2(R) ≤ C ‖D(u)‖L2(R)

Theorem
Let η be an ergodic stationary random process, c-Lipschitz
almost surely, for some c > 0. Assume that (K) holds almost
surely, with a uniform C. Then there exists α > 0 and φ0 > 0
such that, for all |φ| < φ0, ε ≤ 1,(

sup
R≥1

1
R

∫
Ω∩{|x1|<R}

|uε − uN |2 dx

)1/2

= o(ε), almost surely,

where uN is the solution of the NS system in Ω satisfying
uN |x2=1 = 0,

uN
2 = 0, uN

1 = αε ∂2uN
1 on x2 = 0.
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Formal derivation of the Dirichlet and Navier wall laws

Two-scale Ansatz

Rugosity modifies the behavior of the solution at the boundary

→ Apparition of boundary layer terms.

Ansatz :

uε(x) ≈ u0(x) + εuBL

(x
ε

)
+ εu1(x) + O(ε2)

where :
I u0, u1 are interior terms ;
I uBL is a boundary layer term.

Method : plug asymptotic expansion into (NSε) and identify
powers of ε.
Remark : the boundary layer terms do not modify the solution
in the interior.
→ u0 satisfies the Navier-Stokes equations and u0|x2=1 = 0.
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Formal derivation of the Dirichlet and Navier wall laws

Dirichlet wall law

At the lower (rough) boundary Γε :

u0(x) · νε = O(ε),

where νε =
[
1 + (η′(x1/ε))2]−1/2

(η′(x1/ε),−1).
For y1 ∈ R, let

ν(y1) :=
1√

1 + (η′(y1))2

(
η′(y1,−1)

)
.

The Ansatz yields

u0(x1, 0) · ν(y1) = 0 ∀x1 ∈ R, ∀y1 ∈ R.

Non-degenerate rugosity (⇔ ν non-constant) :

u0(x)|x2=0 = 0.

→ no-slip boundary condition.

Consequence : u0 is a Poiseuille flow :
u0(x) = (6φx2(1− x2), 0).
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Formal derivation of the Dirichlet and Navier wall laws

Definition of the boundary layer term

Boundary condition at next order on Γε :

6φ(y2, 0) · ν(y1) + u1(x1, 0) · ν(y1) + uBL(y) · ν(y1) = 0 on Γ,

6φ(D((y2, 0))ν)τ + (D(uBL)ν)τ = 0 on Γ.

Consequence :
I u1|x2=0 = 0 ;
I The boundary layer term uBL(y) = 6φv(y) satisfies

−∆v +∇p = 0, y ∈ Ωbl ,

divv = 0, y ∈ Ωbl ,

(D(v)ν)τ = −(D(y2)ν)τ , y ∈ ∂Ωbl ,

v · ν = −(y2, 0) · ν, y ∈ ∂Ωbl ,

(BL)

with Ωbl = {y ∈ R2, y2 > η(y1)}.
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Navier wall law

Lemma
Assume that the setting is stationary ergodic. Then there exists
a constant α such that

lim
y2→∞

v(y1, y2) = (α, 0) a. s.

Remark : in the periodic setting, the proof is relies on Fourier
decomposition and the speed of convergence is exponential.
Fact : − sup η ≤ α ≤ − inf η. (proof in the periodic setting :
Achdou, Pironneau, Valentin).
Consequence : if x2 � ε, then

uε(x) ≈ u0(x) + 6φε(α, 0) + εu1(x),

so that near x2 = 0,

uε
2 = 0, uε

1 = εα∂2uε
1.

→ Navier wall law with slip length εα.
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Functional inequalities

Sketch of proof of estimates for the Dirichlet wall law

Remark : restriction to the periodic case.
Energy inequality : v := uε− u01Ω satisfies (with Rε = Ωε \Ω)∫

Ωε

|D(v)|2 + λ−1
0

∫
Γε

|vτ |2

≤ C φ
(
‖v‖L2(Ωε) ‖D(v)‖L2(Ωε) +

√
ε ‖v‖L2(Rε) + ‖v |x2=0‖L2(R)

)
.

Standard Korn inequality in Ωε :

‖∇v‖L2(Ωε) ≤ C‖D(v)‖L2(Ωε).

Assumption (P) in the canal R + scaling :

‖v‖L2(Rε) ≤ Cε‖∇v‖L2(Rε)

‖v |x2=0‖L2(R) ≤ C
√

ε‖∇v‖L2(Rε).

Conclusion : error estimate of order O(
√

ε) in H1.
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Functional inequalities

A sufficient condition for Poincaré inequalities

Lemma
Let η ∈ W 1,∞(R) with values in (−1, 0) and such that sup η < 0.
Assume that

∃A > 0, inf
y1∈R

∫ A

0
|η′(y1 + t)|2dt > 0. (1)

Then assumption (P) is satisfied.
Periodic case and quasi-periodic case :

(1) ⇐⇒ η non constant.

→ (1) is equivalent to the non-degeneracy assumptions of
Bucur et al., Casado-Diaz et al.
Stationary ergodic case : (P) seems more stringent than the
non-degeneracy assumption of Bucur et al. (but no counter
example...)



Functional inequalities

Proof of the sufficiency of condition (1)

Idea : prove that∫
R
|u(y)|2dy ≤ CB

∫
R

∫ B

0
|u(y1, y2) · ν(y1 + t)|2 dt dy1 dy2

≤ CB

∫
R
|∇u(y)|2 dy
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R

∫ B

0
|u(y1, y2) · ν(y1 + t)|2 dt dy1 dy2

≤ CB

∫
R
|∇u(y)|2 dy

For the first inequality, use assumption (1) and write

|u(y1, y2) · ν(y1 + t)|2

=
1

1 + (η′(y1 + t))2

[
u1(y)2 + (η′(y1 + t))2u2(y)

−2u1(y)2(y)η′(y1 + t)
]
.
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Proof of the sufficiency of condition (1)

Idea : prove that∫
R
|u(y)|2dy ≤ CB

∫
R

∫ B

0
|u(y1, y2) · ν(y1 + t)|2 dt dy1 dy2

≤ CB

∫
R
|∇u(y)|2 dy

For the second inequality, choose a path ` : (0, 1) → R such
that

`(1) = y , `(0) = (y1 + t , η(y1 + t)) ∈ Γ.

Then

u(y) · ν(y1 + t) = [u(y)− u(y1 + t , η(y1 + t))] · ν(y1 + t)

= (−t , y2 − η(y1 + t)) ·
∫ 1

0
∇u(`(τ)) dτ.

Integrating with respect to y and t yields the second inequality.
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The Navier wall law : homogeneous Korn inequalities

Concluding remarks



Functional inequalities

Construction of the boundary layer term : energy
estimates

Remark : restriction to the periodic case.
Let v be a solution of (BL). Then∫

Ωbl
|D(v)|2 =

∫
R

v1|y2=0

≤ C‖v‖H1(R)

≤ C(‖v‖L2(R) + ‖D(v)‖L2(R)).

Using assumption (K), we obtain a bound on ‖D(v)‖L2(Ωbl ).
Remark : Using assumption (K) and an analyis of the Stokes
system in the upper half plane, one retrieves a bound on ∇v .



Functional inequalities

Construction of the boundary layer term : energy
estimates

Remark : restriction to the periodic case.
Let v be a solution of (BL). Then∫

Ωbl
|D(v)|2 =

∫
R

v1|y2=0

≤ C‖v‖H1(R)

≤ C(‖v‖L2(R) + ‖D(v)‖L2(R)).

Using assumption (K), we obtain a bound on ‖D(v)‖L2(Ωbl ).
Remark : Using assumption (K) and an analyis of the Stokes
system in the upper half plane, one retrieves a bound on ∇v .



Functional inequalities

A sufficient condition for homogeneous Korn
inequalities

Let R be the set of rotational invariant and Lipschitz curves.
Notice that R is closed wrt the weak - ∗ topology in W 1,∞.

Lemma
For A > 0, k ∈ Z, let γA

k : y1 ∈ [0, A] 7→ (y1, η(y1 + kA)).
Assume that there exists A > 0 such that

{γA
k , k ∈ Z} ∩ R = ∅,

where the closure is taken wrt the w-∗ topology in W 1,∞.
Then (K) holds.
Remark : same kind of assumption in a paper by Desvillettes &
Villani.



Functional inequalities

Comparison between sufficient conditions for Poincaré
and Korn inequalities

Remark : (K) ⇒ (P).
Periodic setting : both assumptions amount to

η non constant.

General case :
Poincaré inequality : measure of rugosity ;
Homogeneous Korn inequality : measure of lack of rotational
invariance.
→ Different notions.
Open problems :

I Find stationary invariant and non constant curves such that
(P) is not satisfied.

I Find quasi-periodic curves such that (P) is satisfied and (K)
is not.
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Concluding remarks

Summary

I Exhibition of sufficient conditions for the derivation of
Dirichlet/Navier wall laws :
Functional inequalities measuring the rugosity/lack of
rotational invariance of the rough boundary.

I Proof of (almost sure) error estimates.
I Slip length : αε.
I Upper and lower bounds on α (depending on η).



Concluding remarks

Back to the physical questions

I The slip length obtained with this kind of model is small
(O(ε)).
→ Rugosity does not enhance slip.

I Other model (for super hydrophobic surfaces :)
flat, periodic lower boundary with alternance of perfect
slip/no slip (period : ε).
Same analysis : the Poincaré and Korn inequalities hold for
the rescaled canal.
→ Dirichlet wall law at order zero, Navier wall law at first
order with slip length O(ε).

I Conclusion : large slip does not seem to be reachable
with this type of model (even with hydrophobic surfaces).
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