Separation for the stationary Prandtl equation

Anne-Laure Dalibard (UPMC) with Nader Masmoudi (Courant Institute, NYU)

February 13th-17th, 2017 Dynamics of Small Scales in Fluids ICERM, Brown University

European Research Council Established by the European Commission Introduction

Behaviour near separation: heuristics and formal results

Main result and ideas

Sketch of proof

Conclusion and perspectives

Introduction

Behaviour near separation: heuristics and formal results

Main result and ideas

Sketch of proof

Conclusion and perspectives

What is boundary layer separation?

Flow with low viscosity around an obstacle, in the presence of an adverse pressure gradient (=the outer flow is decreasing along the obstacle):

Figure: Cross-section of a flow past a cylinder (source: ONERA, France)

After separation: widely open problem (turbulence?) **Mathematical interest:** understand the vanishing viscosity limit in the Navier-Stokes equation. **Industrial interest:** reduce drag.

Derivation of the (stationary) Prandtl system

Starting point: stationary 2d Navier-Stokes with small viscosity $\nu \ll 1$ in a half-plane. Velocity field $\mathbf{u}^{\nu} : \mathbf{R}^2_+ \to \mathbf{R}^2$ with

$$(\mathbf{u}^{\nu} \cdot \nabla)\mathbf{u}^{\nu} + \nabla \rho^{\nu} - \nu \Delta \mathbf{u}^{\nu} = \mathbf{f} \text{ in } \mathbf{R}^{2}_{+},$$

div $\mathbf{u}^{\nu} = 0 \text{ in } \mathbf{R}^{2}_{+},$
 $\mathbf{u}^{\nu}_{|y=0} = 0.$ (1)

Ansatz:
$$\mathbf{u}^{\nu}(x, y) \simeq \begin{cases} \mathbf{u}^{E}(x, y) \text{ for } y \gg \sqrt{\nu} \text{ (sol. of 2d Euler),} \\ \left(u\left(x, \frac{y}{\sqrt{\nu}}\right), \sqrt{\nu}v\left(x, \frac{y}{\sqrt{\nu}}\right)\right) \text{ for } y \lesssim \sqrt{\nu}. \end{cases}$$

Stationary Prandtl system: with $Y = y/\sqrt{\nu}$,
 $u\partial_{x}u + v\partial_{Y}u - \partial_{YY}u = f_{1}(x, 0) - \frac{\partial p^{E}(x, 0)}{\partial x} \\ \partial_{x}u + \partial_{Y}v = 0, \\ u|_{Y=0} = 0, \quad v|_{Y=0} = 0, \quad \lim_{Y \to \infty} u = u^{E}(x, 0). \end{cases}$

Derivation of the (stationary) Prandtl system

Starting point: stationary 2d Navier-Stokes with small viscosity $\nu \ll 1$ in a half-plane. Velocity field $\mathbf{u}^{\nu} : \mathbf{R}^2_+ \to \mathbf{R}^2$ with

$$\begin{aligned} (\mathbf{u}^{\nu} \cdot \nabla) \mathbf{u}^{\nu} + \nabla p^{\nu} - \nu \Delta \mathbf{u}^{\nu} &= \mathbf{f} \text{ in } \mathbf{R}_{+}^{2}, \\ \operatorname{div} \mathbf{u}^{\nu} &= 0 \text{ in } \mathbf{R}_{+}^{2}, \\ \mathbf{u}_{|y=0}^{\nu} &= 0. \end{aligned}$$
 (1)

Ansatz:
$$\mathbf{u}^{\nu}(x,y) \simeq \begin{cases} \mathbf{u}^{E}(x,y) \text{ for } y \gg \sqrt{\nu} \text{ (sol. of 2d Euler),} \\ \left(u\left(x,\frac{y}{\sqrt{\nu}}\right), \sqrt{\nu}v\left(x,\frac{y}{\sqrt{\nu}}\right)\right) \text{ for } y \lesssim \sqrt{\nu}. \end{cases}$$

Stationary Prandtl system: with $Y = y/\sqrt{\nu}$,

$$u\partial_{x}u + v\partial_{Y}u - \partial_{YY}u = f_{1}(x,0) - \frac{\partial p^{E}(x,0)}{\partial x}$$
$$\partial_{x}u + \partial_{Y}v = 0,$$
$$u_{|Y=0} = 0, \quad v_{|Y=0} = 0, \quad \lim_{Y \to \infty} u = u^{E}(x,0).$$

Derivation of the (stationary) Prandtl system

Starting point: stationary 2d Navier-Stokes with small viscosity $\nu \ll 1$ in a half-plane. Velocity field $\mathbf{u}^{\nu} : \mathbf{R}^2_+ \to \mathbf{R}^2$ with

$$(\mathbf{u}^{\nu} \cdot \nabla)\mathbf{u}^{\nu} + \nabla p^{\nu} - \nu \Delta \mathbf{u}^{\nu} = \mathbf{f} \text{ in } \mathbf{R}^{2}_{+},$$

div $\mathbf{u}^{\nu} = 0$ in $\mathbf{R}^{2}_{+},$ (1)
 $\mathbf{u}^{\nu}_{|y=0} = 0.$

Ansatz:
$$\mathbf{u}^{\nu}(x, y) \simeq \begin{cases} \mathbf{u}^{E}(x, y) \text{ for } y \gg \sqrt{\nu} \text{ (sol. of 2d Euler),} \\ \left(u\left(x, \frac{y}{\sqrt{\nu}}\right), \sqrt{\nu}v\left(x, \frac{y}{\sqrt{\nu}}\right)\right) \text{ for } y \lesssim \sqrt{\nu}. \end{cases}$$

Stationary Prandtl system: with $Y = y/\sqrt{\nu}$,

$$\begin{aligned} u\partial_{x}u + v\partial_{Y}u - \partial_{YY}u &= f_{1}(x,0) - \frac{\partial p^{E}(x,0)}{\partial x}\\ \partial_{x}u + \partial_{Y}v &= 0, \\ u_{|Y=0} &= 0, \quad v_{|Y=0} = 0, \quad \lim_{Y \to \infty} u = u^{E}(x,0). \end{aligned}$$

The stationary Prandtl equation: general existence result

Stationary Prandtl system:

$$\begin{aligned} u\partial_{x}u + v\partial_{Y}u - \partial_{YY}u &= g(x)\\ \partial_{x}u + \partial_{Y}v &= 0, \quad u_{|x=0} = u_{0} \\ u_{|Y=0} &= 0, \quad \lim_{Y \to \infty} u = u^{E}(x,0). \end{aligned} \tag{P}$$

~ Nonlocal, scalar evolution eq. in x. Locally well-posed as long as u > 0: **Theorem** [Oleinik, 1962]: Let $u_0 \in C_b^{2,\alpha}(\mathbf{R}_+)$, $\alpha > 0$. Assume that $u_0(Y) > 0$ for Y > 0, $u'_0(0) > 0$, and that

$$\partial_{YY}u_0 + g(0) = O(Y^2) \quad \text{for } 0 < Y \ll 1.$$

Then there exists $x^* > 0$ such that (P) has a unique strong C^2 solution in $\{(x, Y) \in \mathbf{R}^2, 0 \le x < x^*, 0 \le Y\}$. If $g(x) \ge 0$, then $x^* = +\infty$.

The stationary Prandtl equation: general existence result

Stationary Prandtl system:

$$\begin{aligned} u\partial_{x}u + v\partial_{Y}u - \partial_{YY}u &= g(x)\\ \partial_{x}u + \partial_{Y}v &= 0, \quad u_{|x=0} = u_{0} \\ u_{|Y=0} &= 0, \quad \lim_{Y \to \infty} u = u^{E}(x,0). \end{aligned} \tag{P}$$

~ Nonlocal, scalar evolution eq. in x. Locally well-posed as long as u > 0: **Theorem** [Oleinik, 1962]: Let $u_0 \in C_b^{2,\alpha}(\mathbf{R}_+)$, $\alpha > 0$. Assume that $u_0(Y) > 0$ for Y > 0, $u'_0(0) > 0$, and that

$$\partial_{YY}u_0 + g(0) = O(Y^2) \quad \text{for } 0 < Y \ll 1.$$

Then there exists $x^* > 0$ such that (P) has a unique strong C^2 solution in $\{(x, Y) \in \mathbf{R}^2, 0 \le x < x^*, 0 \le Y\}$. If $g(x) \ge 0$, then $x^* = +\infty$.

The stationary Prandtl equation: monotonicity, comparison principle

Nonlinear change of variables [von Mises]: transforms (P) into a local diffusion equation (porous medium type).

 \rightarrow Maximum principle holds for the new eq. by standard tools and arguments.

- Monotonicity is preserved by (P).
- Comparison principle for the Prandtl equation:
 - Consider a super-solution \bar{u} for Prandtl;
 - ▶ Von Mises \rightsquigarrow sub/super solution \bar{w} for the eq. in new variables;
 - Maximum principle for the new eq.: $w \leq \bar{w}$.
 - ODE arguments: $u \leq \bar{u}$.

Remark: we will consider strictly increasing solutions only: ensures that separation happens at the boundary.

General mechanism behind separation

For $x > x^*$, $Y \lesssim 1$, u takes negative values: reversed flow near the boundary.

 \rightarrow There exists a curve Y = F(x) such that u(x, F(x)) = 0: separation of the boundary layer.

Definition: x^* is called the separation point.

Questions

- 1. Does separation really happen? Can you cook-up solutions of (P) such that $\partial_Y u_{|Y=0}(x) \to 0$ as $x \to x^*$ for some finite x^* ?
- 2. If you can, what is the rate at which $\partial_Y u_{|Y=0}(x)$ vanishes?

Related results

Instability results (time dependent version):

Local well-posedness in high regularity spaces (analytic, Gevrey) [Sammartino& Caflisch; Gérard-Varet& Masmoudi...] or for monotonic data [Oleinik; Masmoudi&Wong; Alexandre, Wang, Xu& Yang...] BUT instabilities develop in short time in Sobolev spaces [Grenier; Gérard-Varet&Dormy...]

Formation of singularities (time dependent version): [Kukavica, Vicol, Wang](van Dommelen-Shen singularity) Starting from real analytic initial data, for specific outer Euler flow, some solutions display singularities in finite time .

Justification of the Prandtl Ansatz when $\nu \ll 1$: [Guo& Nguyen, Iyer] Starting from stationary Navier-Stokes above a moving plate (non-zero boundary condition on the wall), local convergence/global convergence for small data (\rightarrow no singularity).

Plan

Introduction

Behaviour near separation: heuristics and formal results

Main result and ideas

Sketch of proof

Conclusion and perspectives

Formal derivations of the self similar rate

• Formal computations of an exact solution to (P) by [Goldstein '48, Stewartson '58] thanks to Taylor expansions in self-similar variables.

Self similar change of variables: rely on the observation that (P) is invariant by the scaling

$$\begin{split} u(x,Y) &\to \frac{1}{\sqrt{\mu}} u(\mu x, \mu^{1/4} Y), \\ v(x,y) &\to \mu^{1/4} v(\mu x, \mu^{1/4} Y), \end{split} \text{ with } \mu > 0. \end{split}$$

Remark: the coefficients of the asymptotic expansion are never entirely determined (dependence on initial data?)

• Heuristic argument by Landau: $\partial_Y u_{|Y=0}(x) \sim \sqrt{x^* - x}$. (same as Goldstein& Stewartson.)

Statement by Luis Caffarelli and Weinan E

In a paper published in 2000, Weinan E announces a joint result with Luis Caffarelli, stating:

Theorem [Caffarelli, E, 1995]: Assume that g(x) = -1, and that u_0 satisfies

$$u_0^2-\frac{3}{2}\partial_Y u_0\int_0^Y u_0\geq 0.$$

Then:

- There exists x* > 0 such that the solution cannot be extended beyond x*;
- The family $u_{\mu} := \frac{1}{\sqrt{\mu}} u(\mu(x^* x), \mu^{1/4}Y)$ is compact in $\mathcal{C}(\mathbf{R}^2_+)$.

The author also states two (non-trivial...) Lemmas playing a key role in the proof, relying on the maximum principle.

Unfortunately the complete proof was never published... **Goal** of the present talk: propose an alternate proof, relying on different techniques, and giving a more quantitative result.

Statement by Luis Caffarelli and Weinan E

In a paper published in 2000, Weinan E announces a joint result with Luis Caffarelli, stating:

Theorem [Caffarelli, E, 1995]: Assume that g(x) = -1, and that u_0 satisfies

$$u_0^2-\frac{3}{2}\partial_Y u_0\int_0^Y u_0\geq 0.$$

Then:

- There exists x* > 0 such that the solution cannot be extended beyond x*;
- The family $u_{\mu} := \frac{1}{\sqrt{\mu}} u(\mu(x^* x), \mu^{1/4}Y)$ is compact in $\mathcal{C}(\mathbf{R}^2_+)$.

The author also states two (non-trivial...) Lemmas playing a key role in the proof, relying on the maximum principle. Unfortunately the complete proof was never published... **Goal** of the present talk: propose an alternate proof, relying on different techniques, and giving a more quantitative result.

Introduction

Behaviour near separation: heuristics and formal results

Main result and ideas

Sketch of proof

Conclusion and perspectives

Main result

Theorem [D., Masmoudi, '16]:

Consider the equation (P) with g(x) = -1. Then for a class of initial data $u_0 = u_{|x=0}$ satisfying

- u_0 is strictly increasing with respect to Y;
- $u_0(Y) \simeq \lambda_0 Y + \frac{Y^2}{2}$ for $Y \ll 1$ and for some $\lambda_0 \ll 1$;

separation occurs at a finite distance $x^* = O(\lambda_0^2)$. Moreover for all $x \in (0, x^*)$,

$$\lambda(x) := \partial_Y u_{|Y=0}(x) \sim C\sqrt{x^* - x}$$

and for some weight w = w(x, Y),

 $\|u - u^{app}\|_{L^2(w)} = o(\|u^{app}\|_{L^2(w)})$ as $x \to x^*$,

where for $Y \lesssim (x^* - x)^{1/4}$

$$u^{app}(x, Y) = \lambda(x)Y + \frac{Y^2}{2} - \alpha Y^4 - \beta \lambda(x)^{-1} Y^7.$$

Main result

Theorem [D., Masmoudi, '16]:

Consider the equation (P) with g(x) = -1. Then for a class of initial data $u_0 = u_{|x=0}$ satisfying

- u_0 is strictly increasing with respect to Y;
- $u_0(Y) \simeq \lambda_0 Y + \frac{Y^2}{2}$ for $Y \ll 1$ and for some $\lambda_0 \ll 1$; separation occurs at a finite distance $x^* = O(\lambda_0^2)$. Moreover for all $x \in (0, x^*)$,

$$\lambda(x) := \partial_Y u_{|Y=0}(x) \sim C\sqrt{x^* - x}$$

and for some weight w = w(x, Y),

 $||u - u^{app}||_{L^{2}(w)} = o(||u^{app}||_{L^{2}(w)}) \text{ as } x \to x^{*},$

where for $Y \lesssim (x^* - x)^{1/4}$

$$u^{app}(x,Y) = \lambda(x)Y + \frac{Y^2}{2} - \alpha Y^4 - \beta \lambda(x)^{-1}Y^7.$$

Remarks

- ► Two results: asymptotic behavior of ∂_Y u_{|Y=0} and error estimate between u and u^{app}.
- The self-similar rate is the one predicted by Landau, Goldstein and Stewartson.
- Existence of other (unstable) rates?
- Comparison with result by Caffarelli and E:
 - Encompasses their result;
 - More stringent assumptions;
 - Quantitative result; the limit is identified.
- Tools and scheme of proof:
 - Inspired by study of blow-up rates for NLS [Zakharov, Sulem& Sulem; Merle& Raphaël]; successfully applied to wave and Schrödinger maps, Keller-Segel system, harmonic heat flow [Merle, Raphaël, Rodnianski, Schweyer...]
 - Perform a self-similar change of variables; approximate solution, energy estimates in rescaled variables;
 - ► Use techniques based on modulation of variables to find the self-similar rate $\lambda(x) = \partial_Y u_{|Y=0}$.

Remarks

- ► Two results: asymptotic behavior of ∂_Y u_{|Y=0} and error estimate between u and u^{app}.
- The self-similar rate is the one predicted by Landau, Goldstein and Stewartson.
- Existence of other (unstable) rates?
- Comparison with result by Caffarelli and E:
 - Encompasses their result;
 - More stringent assumptions;
 - Quantitative result; the limit is identified.
- Tools and scheme of proof:
 - Inspired by study of blow-up rates for NLS [Zakharov, Sulem& Sulem; Merle& Raphaël]; successfully applied to wave and Schrödinger maps, Keller-Segel system, harmonic heat flow [Merle, Raphaël, Rodnianski, Schweyer...]
 - Perform a self-similar change of variables; approximate solution, energy estimates in rescaled variables;
 - ► Use techniques based on modulation of variables to find the self-similar rate $\lambda(x) = \partial_Y u_{|Y=0}$.

Remarks

- ► Two results: asymptotic behavior of ∂_Y u_{|Y=0} and error estimate between u and u^{app}.
- The self-similar rate is the one predicted by Landau, Goldstein and Stewartson.
- Existence of other (unstable) rates?
- Comparison with result by Caffarelli and E:
 - Encompasses their result;
 - More stringent assumptions;
 - Quantitative result; the limit is identified.
- Tools and scheme of proof:
 - Inspired by study of blow-up rates for NLS [Zakharov, Sulem& Sulem; Merle& Raphaël]; successfully applied to wave and Schrödinger maps, Keller-Segel system, harmonic heat flow [Merle, Raphaël, Rodnianski, Schweyer...]
 - Perform a self-similar change of variables; approximate solution, energy estimates in rescaled variables;
 - ► Use techniques based on modulation of variables to find the self-similar rate λ(x) = ∂_Yu_{|Y=0}.

The self-similar change of variables

Let
$$\lambda(x) := \partial_Y u_{|Y=0}(x)$$
. Define $\tilde{u} = \tilde{u}(x,\xi)$ by
 $\tilde{u}(x,\xi) = \lambda^{-2}(x)u(x,\lambda(x)\xi).$

Then

$$\lambda^4 \left(\tilde{u}\tilde{u}_x - \tilde{u}_\xi \int_0^\xi \tilde{u}_x \right) + \lambda_x \lambda^3 \left(2\tilde{u}^2 - 3\tilde{u}_\xi \int_0^\xi \tilde{u} \right) - \tilde{u}_{\xi\xi} = -1.$$

Define s, b, U such that

$$b = -2\lambda_x\lambda^3, \quad \frac{dx}{ds} = \lambda^4, \quad U(s,\xi) = \tilde{u}(x(s),\xi).$$

Then U satisfies

$$UU_s - U_{\xi} \int_0^{\xi} U_s - bU^2 + \frac{3b}{2} U_{\xi} \int_0^{\xi} U - U_{\xi\xi} = -1.$$
 (R)

Remark: $x \to x^*$ corresponds to $s \to \infty$ provided $\int_0^{x^*} \lambda^{-4} = \infty$.

The self-similar change of variables

Let
$$\lambda(x) := \partial_Y u_{|Y=0}(x)$$
. Define $\tilde{u} = \tilde{u}(x,\xi)$ by
 $\tilde{u}(x,\xi) = \lambda^{-2}(x)u(x,\lambda(x)\xi).$

Then

$$\lambda^4 \left(\tilde{u}\tilde{u}_{\mathsf{X}} - \tilde{u}_{\xi} \int_0^{\xi} \tilde{u}_{\mathsf{X}} \right) + \lambda_{\mathsf{X}} \lambda^3 \left(2\tilde{u}^2 - 3\tilde{u}_{\xi} \int_0^{\xi} \tilde{u} \right) - \tilde{u}_{\xi\xi} = -1.$$

Define s, b, U such that

$$b = -2\lambda_x\lambda^3, \quad \frac{dx}{ds} = \lambda^4, \quad U(s,\xi) = \tilde{u}(x(s),\xi).$$

Then *U* satisfies

$$UU_s - U_{\xi} \int_0^{\xi} U_s - bU^2 + \frac{3b}{2} U_{\xi} \int_0^{\xi} U - U_{\xi\xi} = -1.$$
 (R)

Remark: $x \to x^*$ corresponds to $s \to \infty$ provided $\int_0^{x^*} \lambda^{-4} = \infty$.

The self-similar change of variables

Let
$$\lambda(x) := \partial_Y u_{|Y=0}(x)$$
. Define $\tilde{u} = \tilde{u}(x,\xi)$ by
 $\tilde{u}(x,\xi) = \lambda^{-2}(x)u(x,\lambda(x)\xi).$

Then

$$\lambda^4 \left(\tilde{u}\tilde{u}_x - \tilde{u}_\xi \int_0^\xi \tilde{u}_x \right) + \lambda_x \lambda^3 \left(2\tilde{u}^2 - 3\tilde{u}_\xi \int_0^\xi \tilde{u} \right) - \tilde{u}_{\xi\xi} = -1.$$

Define s, b, U such that

$$b = -2\lambda_x\lambda^3, \quad \frac{dx}{ds} = \lambda^4, \quad U(s,\xi) = \tilde{u}(x(s),\xi).$$

Then U satisfies

$$UU_s - U_{\xi} \int_0^{\xi} U_s - bU^2 + \frac{3b}{2} U_{\xi} \int_0^{\xi} U - U_{\xi\xi} = -1.$$
 (R)

Remark: $x \to x^*$ corresponds to $s \to \infty$ provided $\int_0^{x^*} \lambda^{-4} = \infty$.

Strategy

From now on, work only on equation on U:

$$UU_s - U_{\xi} \int_0^{\xi} U_s - bU^2 + \frac{3b}{2} U_{\xi} \int_0^{\xi} U - U_{\xi\xi} = -1.$$

 $\underline{\Lambda}$ At this stage, *b* is an unknown. The asymptotic behavior of *b* dictates the self-similar rate $\lambda(x)$.

Scheme of proof:

- 1. Construct an approximate solution;
- Choose the approximate solution with the "least possible growth" at infinity: heuristics for the modulation rate b;
- 3. Energy estimate on the remainder of the solution.

Rule of thumb: the expected rate $\lambda(x) = C\sqrt{x^* - x}$ corresponds to

$$b(s)=\frac{1}{s}\Leftrightarrow \frac{b_s}{b_s}+\frac{b^2}{b_s}=0.$$

Introduction

Behaviour near separation: heuristics and formal results

Main result and ideas

Sketch of proof

Conclusion and perspectives

Plan

Introduction

Behaviour near separation: heuristics and formal results

Main result and ideas

Sketch of proof The approximate solution Energy estimates

Conclusion and perspectives

Construction of an approximate solution

$$\underbrace{UU_{s} - U_{\xi} \int_{0}^{\xi} U_{s} - bU^{2} + \frac{3b}{2} U_{\xi} \int_{0}^{\xi} U}_{=:\mathcal{A}(U)} - U_{\xi\xi} = -1.$$

Boundary conditions at $\xi = 0$: by definition of λ ,

$$U_{|\xi=0} = 0, \ \partial_{\xi} U_{|\xi=0} = 1.$$

Case b = 0: exact stationary solution

$$U_0:=\xi+rac{\xi^2}{2}~(\sim \ ext{``ground state''}).$$

Case $b \neq 0$: Look for asymptotic expansion in the form

$$U=U_0+bT_1+b^2T_2+\cdots$$

Then T_1 is given by $b\partial_{\xi\xi}T_1 = \mathcal{A}(U_0) + 1 \Rightarrow T_1 = -\frac{\xi^4}{48}$. What about T_2 ?

Finding the ODE on b

Rule: choice of the approx. solution with the least possible growth. Remainder for $U_1 := U_0 + bT_1$:

$$\mathcal{A}(U_1) - \partial_{\xi\xi} U_1 + 1 \\ = -\alpha \left(\frac{4}{5}b_s + \frac{13}{10}b^2\right)\xi^5 - \frac{3}{10}\alpha \left(b_s + b^2\right)\xi^6 + \alpha^2 \frac{b}{5} \left(b_s + b^2\right)\xi^8.$$

"Choice" of *b* such that the ξ^6 term disappears:

 $b_s+b^2=0.$

Ansatz: in the algorithm defining T_N , replace every occurrence of b_s by $-b^2$. **Consequence:** setting $U_N := U_0 + bT_1 + \dots + b^N T_N$, $U - U_2 \sim (b_s + b^2)(c_7\xi^7 + c_8\xi^8)$ near $\xi = 0$. $\Rightarrow ||U - U_N|| \gtrsim |b_s + b^2|$ for $N \ge 2$.

Finding the ODE on b

Rule: choice of the approx. solution with the least possible growth. Remainder for $U_1 := U_0 + bT_1$:

$$\mathcal{A}(U_1) - \partial_{\xi\xi} U_1 + 1 \\ = -\alpha \left(\frac{4}{5}b_s + \frac{13}{10}b^2\right)\xi^5 - \frac{3}{10}\alpha \left(b_s + b^2\right)\xi^6 + \alpha^2 \frac{b}{5} \left(b_s + b^2\right)\xi^8.$$

"Choice" of *b* such that the ξ^6 term disappears:

 $b_s+b^2=0.$

Ansatz: in the algorithm defining T_N , replace every occurrence of b_s by $-b^2$. **Consequence:** setting $U_N := U_0 + bT_1 + \dots + b^N T_N$, $U - U_2 \sim (b_s + b^2)(c_7\xi^7 + c_8\xi^8)$ near $\xi = 0$. $\Rightarrow ||U - U_N|| \gtrsim |b_s + b^2|$ for $N \ge 2$.

Finding the ODE on b

Rule: choice of the approx. solution with the least possible growth. Remainder for $U_1 := U_0 + bT_1$:

$$\mathcal{A}(U_1) - \partial_{\xi\xi} U_1 + 1 \\ = -\alpha \left(\frac{4}{5}b_s + \frac{13}{10}b^2\right)\xi^5 - \frac{3}{10}\alpha \left(b_s + b^2\right)\xi^6 + \alpha^2 \frac{b}{5} \left(b_s + b^2\right)\xi^8.$$

"Choice" of *b* such that the ξ^6 term disappears:

 $b_s+b^2=0.$

Ansatz: in the algorithm defining T_N , replace every occurrence of b_s by $-b^2$. **Consequence:** setting $U_N := U_0 + bT_1 + \dots + b^N T_N$, $U - U_2 \sim (b_s + b^2)(c_7\xi^7 + c_8\xi^8)$ near $\xi = 0$. $\Rightarrow ||U - U_N|| \gtrsim |b_s + b^2|$ for $N \ge 2$.

Plan

Introduction

Behaviour near separation: heuristics and formal results

Main result and ideas

Sketch of proof The approximate solution Energy estimates

Conclusion and perspectives

Obtaining stability estimates

General idea: control $(b_s + b^2)^2$ via an appropriate energy $E(s) := \|U - U_N\|^2$. **Goal:** prove that

$$E(s) = O(s^{-4-\eta}) \text{ for some } \eta > 0.$$
(2)

Starting point: write eq. on $U - U_N$ for N "large" (N = 3). \rightarrow of the form

 $\partial_s(U - U_N) + \cdots =$ remainder terms.

Error estimate: prove that

$$\frac{dE}{ds} + \frac{\alpha}{s}E(s) \le \rho(s).$$

In order to achieve (2), one needs:

- $\rho(s) = O(s^{-5-\eta})$: "good" approximate solution;
- $\alpha > 4$: algebraic manipulations on the equation (R).

A transport-diffusion equation for U

Define, for $W \in L^{\infty}(\mathbf{R}_+)$,

$$L_UW := UW - U_{\xi} \int_0^{\xi} W = \left(\frac{\int_0^{\xi} W}{U}\right)_{\xi} U^2,$$

so that, if $W(\xi) = O(\xi^2)$ near $\xi = 0$,

$$L_U^{-1}W = \left(U\int_0^{\xi}\frac{W}{U^2}\right)_{\xi}.$$

Remark: $L_U^{-1} \sim \text{division by } U \simeq \xi + \xi^2/2.$ Then (R) can be written as

$$\partial_s U - bU + rac{b}{2} \xi \partial_\xi U - L_U^{-1} (\partial_{\xi\xi} U - 1) = 0.$$

Define $\mathcal{L}_U := L_U^{-1} \partial_{\xi\xi}$: diffusion operator. Then, with $V = U - U_N$

$$\partial_s V - bV + \frac{b}{2} \xi \partial_\xi V - \mathcal{L}_U V = \mathcal{R}_N$$

A transport-diffusion equation for U

Define, for $W \in L^{\infty}(\mathbf{R}_+)$,

$$L_UW := UW - U_{\xi} \int_0^{\xi} W = \left(\frac{\int_0^{\xi} W}{U}\right)_{\xi} U^2,$$

so that, if $W(\xi) = O(\xi^2)$ near $\xi = 0$,

$$L_U^{-1}W = \left(U\int_0^{\xi} \frac{W}{U^2}\right)_{\xi}$$

Remark: $L_U^{-1} \sim \text{division by } U \simeq \xi + \xi^2/2.$ Then (R) can be written as

$$\partial_s U - bU + \frac{b}{2} \xi \partial_\xi U - L_U^{-1} (\partial_{\xi\xi} U - 1) = 0.$$

Define $\mathcal{L}_U := L_U^{-1} \partial_{\xi\xi}$: diffusion operator. Then, with $V = U - U_N$ $\partial_z V - bV + \frac{b}{-\xi} \partial_\xi V - \mathcal{L}_U V = \mathcal{R}_M$

A transport-diffusion equation for U

Define, for $W \in L^{\infty}(\mathbf{R}_+)$,

$$L_UW := UW - U_{\xi} \int_0^{\xi} W = \left(\frac{\int_0^{\xi} W}{U}\right)_{\xi} U^2,$$

so that, if $W(\xi) = O(\xi^2)$ near $\xi = 0$,

$$L_U^{-1}W = \left(U\int_0^{\xi}\frac{W}{U^2}\right)_{\xi}$$

Remark: $L_U^{-1} \sim \text{division by } U \simeq \xi + \xi^2/2.$ Then (R) can be written as

$$\partial_s U - bU + \frac{b}{2} \xi \partial_\xi U - L_U^{-1} (\partial_{\xi\xi} U - 1) = 0.$$

Define $\mathcal{L}_U := L_U^{-1} \partial_{\xi\xi}$: diffusion operator. Then, with $V = U - U_N$ $\partial_s V - bV + \frac{b}{2} \xi \partial_\xi V - \mathcal{L}_U V = \mathcal{R}_N$.

Energy and dissipation terms

$$V = U - U_N, \quad \partial_s V - bV + \frac{b}{2} \xi \partial_\xi V - \mathcal{L}_U V = \mathcal{R}_N.$$

Facts:

- 1. Estimates are "almost" linear (up so some commutators...)
- 2. $V = U U_N \sim (b_s + b^2)(c_1\xi^7 + c_2\xi^8)$ for $\xi \ll 1$;
- 3. \mathcal{L}_U is a diffusion operator $(\mathcal{L}_U \sim \frac{1}{U} \partial_{\xi\xi})$.

Ideas:

Differentiate equation/use weights/apply operator LU to make the zero-order + transport term positive:

$$\partial_{\xi}^{k}\left(\partial_{s}V - bV + \frac{b}{2}\xi\partial_{\xi}V\right) = \left(\partial_{s} + \frac{k-2}{2}b + \frac{b}{2}\xi\partial_{\xi}\right)\partial_{\xi}^{k}V.$$

- ► Compromise between control of (b_s + b²)² by energy/small remainder term/positivity of transport and diffusion...
- Energy $E(s) := \|(\mathcal{L}^2_U V)_{\xi}\|^2_{H^1(w)}$ for some weight w.

Energy and dissipation terms

$$V = U - U_N, \quad \partial_s V - bV + \frac{b}{2} \xi \partial_\xi V - \mathcal{L}_U V = \mathcal{R}_N.$$

Facts:

- 1. Estimates are "almost" linear (up so some commutators...)
- 2. $V = U U_N \sim (b_s + b^2)(c_1\xi^7 + c_2\xi^8)$ for $\xi \ll 1$;
- 3. \mathcal{L}_U is a diffusion operator $(\mathcal{L}_U \sim \frac{1}{U} \partial_{\xi\xi})$.

Ideas:

Differentiate equation/use weights/apply operator LU to make the zero-order + transport term positive:

$$\partial_{\xi}^{k}\left(\partial_{s}V - bV + \frac{b}{2}\xi\partial_{\xi}V\right) = \left(\partial_{s} + \frac{k-2}{2}b + \frac{b}{2}\xi\partial_{\xi}\right)\partial_{\xi}^{k}V.$$

- ► Compromise between control of (b_s + b²)² by energy/small remainder term/positivity of transport and diffusion...
- Energy $E(s) := \|(\mathcal{L}^2_U V)_{\xi}\|^2_{H^1(w)}$ for some weight w.

Energy and dissipation terms

$$V = U - U_N, \quad \partial_s V - bV + \frac{b}{2} \xi \partial_\xi V - \mathcal{L}_U V = \mathcal{R}_N.$$

Facts:

- 1. Estimates are "almost" linear (up so some commutators...)
- 2. $V = U U_N \sim (b_s + b^2)(c_1\xi^7 + c_2\xi^8)$ for $\xi \ll 1$;
- 3. \mathcal{L}_U is a diffusion operator $(\mathcal{L}_U \sim \frac{1}{U} \partial_{\xi\xi})$.

Ideas:

Differentiate equation/use weights/apply operator LU to make the zero-order + transport term positive:

$$\partial_{\xi}^{k}\left(\partial_{s}V - bV + \frac{b}{2}\xi\partial_{\xi}V\right) = \left(\partial_{s} + \frac{k-2}{2}b + \frac{b}{2}\xi\partial_{\xi}\right)\partial_{\xi}^{k}V.$$

- ► Compromise between control of (b_s + b²)² by energy/small remainder term/positivity of transport and diffusion...
- Energy $E(s) := \|(\mathcal{L}^2_U V)_{\xi}\|^2_{H^1(w)}$ for some weight w.

Tools for the proof

- Weighted L² estimates;
- Commutator estimates;
- L[∞] estimates coming from maximum principle (sub-super solutions);
- Bootstrap argument.

Plan

Introduction

Behaviour near separation: heuristics and formal results

Main result and ideas

Sketch of proof

Conclusion and perspectives

Summary

- ▶ Proof of separation for the stationary Prandtl equation in the case of adverse pressure gradient (g(x) = −1);
- Computation of a self-similar rate compatible with Landau's predictions:

$$\partial_Y u_{|Y=0} \sim \sqrt{x^* - x};$$

- Quantitative error estimates between true solution and approximate solution (in weighted H^s spaces);
- Construction of an approximate solution, ODE on the separation rate: relies on arguments close to singularity formation for the nonlinear Schrödinger equation.
- Energy estimates rely heavily on the structure of the equation, and need to be combined with maximum principle techniques.

Perspectives

- Other (unstable) separation rates?
- Better description of the solution in the zone $Y \gtrsim (x^* x)^{1/4}$ ($\Leftrightarrow \xi \gtrsim s^{1/4}$);
- Higher dimensions?
- What happens after separation?
 - 1. <u>A</u>Both turbulent and laminar regimes are possible... But turbulent regimes are out of reach for the time being.
 - 2. <u>A</u>The validity of the Prandtl system after separation is far from clear...

THANK YOU FOR YOUR ATTENTION!