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Introduction

What is boundary layer separation?

Flow with low viscosity around an obstacle, in the presence of an
adverse pressure gradient (=the outer flow is decreasing along the
obstacle):

Figure: Cross-section of a flow past a cylinder (source: ONERA, France)

After separation: widely open problem (turbulence?)
Mathematical interest: understand the vanishing viscosity limit
in the Navier-Stokes equation.
Industrial interest: reduce drag.



Introduction

Derivation of the (stationary) Prandtl system

Starting point: stationary 2d Navier-Stokes with small viscosity
ν � 1 in a half-plane. Velocity field uν : R2

+ → R2 with

(uν · ∇)uν +∇pν − ν∆uν = f in R2
+,

divuν = 0 in R2
+,

uν|y=0 = 0.

(1)

Ansatz: uν(x , y) '

{
uE (x , y) for y �

√
ν (sol. of 2d Euler),(

u
(

x , y√
ν

)
,
√
νv
(

x , y√
ν

))
for y .

√
ν.

Stationary Prandtl system: with Y = y/
√
ν,

u∂xu + v∂Y u − ∂YY u = f1(x , 0)− ∂pE (x , 0)

∂x
∂xu + ∂Y v = 0,

u|Y=0 = 0, v|Y=0 = 0, lim
Y→∞

u = uE (x , 0).
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Introduction

The stationary Prandtl equation: general existence result

Stationary Prandtl system:

u∂xu + v∂Y u − ∂YY u = g(x)

∂xu + ∂Y v = 0, u|x=0 = u0

u|Y=0 = 0, v|Y=0 = 0, lim
Y→∞

u = uE (x , 0).

(P)

∼ Nonlocal, scalar evolution eq. in x .
Locally well-posed as long as u > 0:
Theorem [Oleinik, 1962]: Let u0 ∈ C2,αb (R+), α > 0. Assume that
u0(Y ) > 0 for Y > 0, u′0(0) > 0, and that

∂YY u0 + g(0) = O(Y 2) for 0 < Y � 1.

Then there exists x∗ > 0 such that (P) has a unique strong C2
solution in {(x ,Y ) ∈ R2, 0 ≤ x < x∗, 0 ≤ Y }. If g(x) ≥ 0, then
x∗ = +∞.
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Introduction

The stationary Prandtl equation: monotonicity, comparison
principle

Nonlinear change of variables [von Mises]: transforms (P) into a
local diffusion equation (porous medium type).
→ Maximum principle holds for the new eq. by standard tools and
arguments.
• Monotonicity is preserved by (P).
• Comparison principle for the Prandtl equation:

I Consider a super-solution ū for Prandtl;

I Von Mises  sub/super solution w̄ for the eq. in new
variables;

I Maximum principle for the new eq.: w ≤ w̄ .

I ODE arguments: u ≤ ū.

Remark: we will consider strictly increasing solutions only:
ensures that separation happens at the boundary.



Introduction

General mechanism behind separation

Setting: monotone solutions with adverse pressure gradient
(g ≤ 0).

In general there exists x∗ such that

∂u

∂Y |x=x∗,Y=0
= 0.

For x > x∗, Y . 1, u takes negative values: reversed flow near
the boundary.
→ There exists a curve Y = F (x) such that u(x ,F (x)) = 0:
separation of the boundary layer.
Definition: x∗ is called the separation point.



Introduction

Questions

1. Does separation really happen?
Can you cook-up solutions of (P) such that ∂Y u|Y=0(x)→ 0
as x → x∗ for some finite x∗?

2. If you can, what is the rate at which ∂Y u|Y=0(x) vanishes?



Introduction

Related results

Instability results (time dependent version):
Local well-posedness in high regularity spaces (analytic, Gevrey)
[Sammartino& Caflisch; Gérard-Varet& Masmoudi...] or for
monotonic data [Oleinik; Masmoudi&Wong; Alexandre, Wang,
Xu& Yang...]
BUT instabilities develop in short time in Sobolev spaces [Grenier;
Gérard-Varet&Dormy...]

Formation of singularities (time dependent version):
[Kukavica, Vicol, Wang](van Dommelen-Shen singularity)
Starting from real analytic initial data, for specific outer Euler flow,
some solutions display singularities in finite time .

Justification of the Prandtl Ansatz when ν � 1: [Guo&
Nguyen, Iyer] Starting from stationary Navier-Stokes above a
moving plate (non-zero boundary condition on the wall), local
convergence/global convergence for small data (→ no singularity).
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Behaviour near separation: heuristics and formal results

Formal derivations of the self similar rate

• Formal computations of an exact solution to (P) by [Goldstein
’48, Stewartson ’58] thanks to Taylor expansions in self-similar
variables.
Self similar change of variables: rely on the observation that (P) is
invariant by the scaling

u(x ,Y )→ 1
√
µ

u(µx , µ1/4Y ),

v(x , y)→ µ1/4v(µx , µ1/4Y ),

with µ > 0.

Remark: the coefficients of the asymptotic expansion are never
entirely determined (dependence on initial data?)
• Heuristic argument by Landau: ∂Y u|Y=0(x) ∼

√
x∗ − x . (same

as Goldstein& Stewartson.)



Behaviour near separation: heuristics and formal results

Statement by Luis Caffarelli and Weinan E

In a paper published in 2000, Weinan E announces a joint result
with Luis Caffarelli, stating:
Theorem [Caffarelli, E, 1995]: Assume that g(x) = −1, and that
u0 satisfies

u2
0 −

3

2
∂Y u0

∫ Y

0
u0 ≥ 0.

Then:
I There exists x∗ > 0 such that the solution cannot be extended

beyond x∗;
I The family uµ := 1√

µu(µ(x∗ − x), µ1/4Y ) is compact in

C(R2
+).

The author also states two (non-trivial...) Lemmas playing a key
role in the proof, relying on the maximum principle.
Unfortunately the complete proof was never published...
Goal of the present talk: propose an alternate proof, relying on
different techniques, and giving a more quantitative result.
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Main result and ideas

Main result

Theorem [D., Masmoudi, ’16]:
Consider the equation (P) with g(x) = −1. Then for a class of
initial data u0 = u|x=0 satisfying

I u0 is strictly increasing with respect to Y ;
I u0(Y ) ' λ0Y + Y 2

2 for Y � 1 and for some λ0 � 1;

separation occurs at a finite distance x∗ = O(λ20).
Moreover for all x ∈ (0, x∗),

λ(x) := ∂Y u|Y=0(x) ∼ C
√

x∗ − x

and for some weight w = w(x ,Y ),

‖u − uapp‖L2(w) = o(‖uapp‖L2(w)) as x → x∗,

where for Y . (x∗ − x)1/4

uapp(x ,Y ) = λ(x)Y +
Y 2

2
− αY 4 − βλ(x)−1Y 7.
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Main result and ideas

Remarks

I Two results: asymptotic behavior of ∂Y u|Y=0 and error
estimate between u and uapp.

I The self-similar rate is the one predicted by Landau, Goldstein
and Stewartson.

I Existence of other (unstable) rates?
I Comparison with result by Caffarelli and E:

I Encompasses their result;
I More stringent assumptions;
I Quantitative result; the limit is identified.

I Tools and scheme of proof:
I Inspired by study of blow-up rates for NLS [Zakharov, Sulem&

Sulem; Merle& Raphaël]; successfully applied to wave and
Schrödinger maps, Keller-Segel system, harmonic heat flow
[Merle, Raphaël, Rodnianski, Schweyer...]

I Perform a self-similar change of variables; approximate
solution, energy estimates in rescaled variables;

I Use techniques based on modulation of variables to find the
self-similar rate λ(x) = ∂Y u|Y=0.
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Main result and ideas

The self-similar change of variables

Let λ(x) := ∂Y u|Y=0(x). Define ũ = ũ(x , ξ) by

ũ(x , ξ) = λ−2(x)u(x , λ(x)ξ).

Then

λ4
(

ũũx − ũξ

∫ ξ

0
ũx

)
+ λxλ

3

(
2ũ2 − 3ũξ

∫ ξ

0
ũ

)
−ũξξ = −1.

Define s, b,U such that

b = −2λxλ
3,

dx

ds
= λ4, U(s, ξ) = ũ(x(s), ξ).

Then U satisfies

UUs − Uξ

∫ ξ

0
Us − bU2 +

3b

2
Uξ

∫ ξ

0
U−Uξξ = −1. (R)

Remark: x → x∗ corresponds to s →∞ provided
∫ x∗

0 λ−4 =∞.
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ũũx − ũξ
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ũ(x , ξ) = λ−2(x)u(x , λ(x)ξ).

Then

λ4
(
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Main result and ideas

Strategy

From now on, work only on equation on U:

UUs − Uξ

∫ ξ

0
Us − bU2 +

3b

2
Uξ

∫ ξ

0
U − Uξξ = −1.

BAt this stage, b is an unknown. The asymptotic behavior of b
dictates the self-similar rate λ(x).
Scheme of proof:

1. Construct an approximate solution;

2. Choose the approximate solution with the “least possible
growth” at infinity: heuristics for the modulation rate b;

3. Energy estimate on the remainder of the solution.

Rule of thumb: the expected rate λ(x) = C
√

x∗ − x corresponds
to

b(s) =
1

s
⇔ bs + b2 = 0.



Sketch of proof
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Sketch of proof

Construction of an approximate solution

UUs − Uξ

∫ ξ

0
Us − bU2 +

3b

2
Uξ

∫ ξ

0
U︸ ︷︷ ︸

=:A(U)

−Uξξ = −1.

Boundary conditions at ξ = 0: by definition of λ,

U|ξ=0 = 0, ∂ξU|ξ=0 = 1.

Case b = 0: exact stationary solution

U0 := ξ +
ξ2

2
(∼ “ground state”).

Case b 6= 0: Look for asymptotic expansion in the form

U = U0 + bT1 + b2T2 + · · ·

Then T1 is given by b∂ξξT1 = A(U0) + 1⇒ T1 = − ξ4

48 .
What about T2?



Sketch of proof

Finding the ODE on b

Rule: choice of the approx. solution with the least possible growth.
Remainder for U1 := U0 + bT1:

A(U1)− ∂ξξU1 + 1

= −α
(

4

5
bs +

13

10
b2

)
ξ5 − 3

10
α
(
bs + b2

)
ξ6 + α2 b

5

(
bs + b2

)
ξ8.

“Choice” of b such that the ξ6 term disappears:

bs + b2 = 0.

Ansatz: in the algorithm defining TN , replace every occurrence of
bs by −b2.
Consequence: setting UN := U0 + bT1 + · · ·+ bNTN ,
U − U2 ∼ (bs + b2)(c7ξ

7 + c8ξ
8) near ξ = 0.

⇒ ‖U − UN‖ & |bs + b2| for N ≥ 2.
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Sketch of proof

Obtaining stability estimates

General idea: control (bs + b2)2 via an appropriate energy
E (s) := ‖U − UN‖2.
Goal: prove that

E (s) = O(s−4−η) for some η > 0. (2)

Starting point: write eq. on U − UN for N “large” (N = 3).
→ of the form

∂s(U − UN) + · · · = remainder terms.

Error estimate: prove that

dE

ds
+
α

s
E (s) ≤ ρ(s).

In order to achieve (2), one needs:
I ρ(s) = O(s−5−η): “good” approximate solution;
I α > 4: algebraic manipulations on the equation (R).



Sketch of proof

A transport-diffusion equation for U

Define, for W ∈ L∞(R+),

LUW := UW − Uξ

∫ ξ

0
W =

(∫ ξ
0 W

U

)
ξ

U2,

so that, if W (ξ) = O(ξ2) near ξ = 0,

L−1U W =

(
U

∫ ξ

0

W

U2

)
ξ

.

Remark: L−1U ∼ division by U ' ξ + ξ2/2.
Then (R) can be written as

∂sU − bU +
b

2
ξ∂ξU − L−1U (∂ξξU − 1) = 0.

Define LU := L−1U ∂ξξ: diffusion operator. Then, with V = U −UN

∂sV − bV +
b

2
ξ∂ξV − LUV = RN .
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Sketch of proof

Energy and dissipation terms

V = U − UN , ∂sV − bV +
b

2
ξ∂ξV − LUV = RN .

Facts:

1. Estimates are “almost” linear (up so some commutators...)

2. V = U − UN ∼ (bs + b2)(c1ξ
7 + c2ξ

8) for ξ � 1;

3. LU is a diffusion operator (LU ∼ 1
U ∂ξξ).

Ideas:
I Differentiate equation/use weights/apply operator LU to

make the zero-order + transport term positive:

∂kξ

(
∂sV − bV +

b

2
ξ∂ξV

)
=

(
∂s +

k − 2

2
b +

b

2
ξ∂ξ

)
∂kξ V .

I Compromise between control of (bs + b2)2 by energy/small
remainder term/positivity of transport and diffusion...

I Energy E (s) := ‖(L2UV )ξ‖2H1(w) for some weight w .
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U ∂ξξ).

Ideas:
I Differentiate equation/use weights/apply operator LU to

make the zero-order + transport term positive:

∂kξ

(
∂sV − bV +

b

2
ξ∂ξV

)
=

(
∂s +

k − 2

2
b +

b

2
ξ∂ξ

)
∂kξ V .

I Compromise between control of (bs + b2)2 by energy/small
remainder term/positivity of transport and diffusion...

I Energy E (s) := ‖(L2UV )ξ‖2H1(w) for some weight w .
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Tools for the proof

I Weighted L2 estimates;

I Commutator estimates;

I L∞ estimates coming from maximum principle (sub-super
solutions);

I Bootstrap argument.
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Conclusion and perspectives

Summary

I Proof of separation for the stationary Prandtl equation in the
case of adverse pressure gradient (g(x) = −1);

I Computation of a self-similar rate compatible with Landau’s
predictions:

∂Y u|Y=0 ∼
√

x∗ − x ;

I Quantitative error estimates between true solution and
approximate solution (in weighted Hs spaces);

I Construction of an approximate solution, ODE on the
separation rate: relies on arguments close to singularity
formation for the nonlinear Schrödinger equation.

I Energy estimates rely heavily on the structure of the equation,
and need to be combined with maximum principle techniques.



Conclusion and perspectives

Perspectives

I Other (unstable) separation rates?

I Better description of the solution in the zone Y & (x∗ − x)1/4

(⇔ ξ & s1/4);

I Higher dimensions?

I What happens after separation?

1. BBoth turbulent and laminar regimes are possible... But
turbulent regimes are out of reach for the time being.

2. BThe validity of the Prandtl system after separation is far
from clear...

Thank you for your attention!
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