Partially congested propagation fronts in a 1d compressible Navier-Stokes model

Anne-Laure Dalibard (LJLL, Sorbonne Université) avec Charlotte Perrin (CNRS, Université d'Aix-Marseille)

8-9 novembre 2018 Rencontres Normandes sur les aspects théoriques et numériques des EDP INSA de Rouen



**European Research Council** 

Physical motivations and setting of the problem

Existence and properties of travelling fronts

Stability of travelling fronts

## Plan

#### Physical motivations and setting of the problem

Existence and properties of travelling fronts

Stability of travelling fronts

# About congestion phenomena

**Goal:** study phenomena in which congested zones are present. **Examples:** multi-phase flows; crowd motion; herding problems; etc.

**Observation:** the dynamics in the congested and non congested zones are very different (e.g. compressible vs. incompressible dynamics).

#### Issues:

- 1. Modelization of congestion effects;
- 2. Description of the transition between congested and non-congested zones.

References: [Maury; Degond, Hua; Berthelin; Bresch, Perrin, Zatorska; ...]

## General modelization of congestion phenomena

In present talk, focus on continuous models (no particle systems). Hard models: [Bouchut; Brenier&Grenier; Cavaletti et al.; Lions & Masmoudi;...] two-phase flows, e.g.

$$\begin{aligned} \partial_t \rho + \partial_x (\rho u) &= 0, \\ \partial_t (\rho u) + \partial_x (\rho u^2 + \pi) &= 0, \\ (1 - \rho)\pi &= 0, \quad \pi \geq 0, \quad 0 \leq \rho \leq 1. \end{aligned}$$

**Soft models:** [Bresch, Perrin, Zatorska; Degond et al.;...] one phase flow with singular pressure, e.g.

$$\partial_t \rho + \partial_x(\rho u) = 0,$$
  
$$\partial_t(\rho u) + \partial_x(\rho u^2 + \pi(\rho)) = 0,$$
  
$$0 \le \rho \le 1, \quad \pi(\rho) = \epsilon \frac{\rho^{\alpha}}{(1-\rho)^{\beta}}$$

Transition between soft/hard models: limit  $\epsilon \rightarrow 0$ .

## General modelization of congestion phenomena

In present talk, focus on continuous models (no particle systems). Hard models: [Bouchut; Brenier&Grenier; Cavaletti et al.; Lions & Masmoudi;...] two-phase flows, e.g.

$$\begin{aligned} \partial_t \rho + \partial_x (\rho u) &= 0, \\ \partial_t (\rho u) + \partial_x (\rho u^2 + \pi) &= 0, \\ (1 - \rho)\pi &= 0, \quad \pi \geq 0, \quad 0 \leq \rho \leq 1. \end{aligned}$$

**Soft models:** [Bresch, Perrin, Zatorska; Degond et al.;...] one phase flow with singular pressure, e.g.

$$\partial_t \rho + \partial_x(\rho u) = 0,$$
  
$$\partial_t(\rho u) + \partial_x(\rho u^2 + \pi(\rho)) = 0,$$
  
$$0 \le \rho \le 1, \quad \pi(\rho) = \epsilon \frac{\rho^\alpha}{(1-\rho)^\beta}$$

Transition between soft/hard models: limit  $\epsilon \rightarrow 0$ .

## General modelization of congestion phenomena

In present talk, focus on continuous models (no particle systems). Hard models: [Bouchut; Brenier&Grenier; Cavaletti et al.; Lions & Masmoudi;...] two-phase flows, e.g.

$$\begin{aligned} \partial_t \rho + \partial_x (\rho u) &= 0, \\ \partial_t (\rho u) + \partial_x (\rho u^2 + \pi) &= 0, \\ (1 - \rho)\pi &= 0, \quad \pi \ge 0, \quad 0 \le \rho \le 1. \end{aligned}$$

**Soft models:** [Bresch, Perrin, Zatorska; Degond et al.;...] one phase flow with singular pressure, e.g.

$$\partial_t \rho + \partial_x(\rho u) = 0,$$
  
$$\partial_t(\rho u) + \partial_x(\rho u^2 + \pi(\rho)) = 0,$$
  
$$0 \le \rho \le 1, \quad \pi(\rho) = \epsilon \frac{\rho^{\alpha}}{(1-\rho)^{\beta}}$$

Transition between soft/hard models: limit  $\epsilon \rightarrow 0$ .

### Presentation of the model

Consider the following 1d compressible Navier-Stokes model

$$\partial_t v_{\epsilon} - \partial_x u_{\epsilon} = 0$$
  
$$\partial_t u_{\epsilon} + \partial_x p_{\epsilon}(v_{\epsilon}) - \mu \partial_x \left(\frac{1}{v_{\epsilon}} \partial_x u_{\epsilon}\right) = 0$$
 (NS<sub>\epsilon</sub>)

with singular pressure  $p_{\epsilon}(v) = \epsilon(v-1)^{-\gamma}$ ,  $\gamma > 1$ ,  $0 < \epsilon \ll 1$  and endowed with the far-field conditions

$$\lim_{x\to\pm\infty}v_\epsilon(t,x)=v_\pm,\quad \lim_{x\to\pm\infty}u_\epsilon(t,x)=u_\pm.$$

Ref (non singular pressure): [Matsumura, Nishihara; Vasseur, Yao] Formal limit as  $\epsilon \rightarrow 0$ : congested model

$$\partial_t v - \partial_x u = 0,$$
  
 $\partial_t u + \partial_x \pi - \mu \partial_x \frac{\partial_x u}{v} = 0,$   
 $\pi \ge 0, \quad (v - 1)\pi = 0.$ 

## Presentation of the model

Consider the following 1d compressible Navier-Stokes model

$$\partial_t v_{\epsilon} - \partial_x u_{\epsilon} = 0$$
  
$$\partial_t u_{\epsilon} + \partial_x p_{\epsilon}(v_{\epsilon}) - \mu \partial_x \left(\frac{1}{v_{\epsilon}} \partial_x u_{\epsilon}\right) = 0$$
 (NS<sub>\epsilon</sub>)

with singular pressure  $p_{\epsilon}(v) = \epsilon(v-1)^{-\gamma}$ ,  $\gamma > 1$ ,  $0 < \epsilon \ll 1$  and endowed with the far-field conditions

$$\lim_{x\to\pm\infty}v_\epsilon(t,x)=v_\pm,\quad \lim_{x\to\pm\infty}u_\epsilon(t,x)=u_\pm.$$

Ref (non singular pressure): [Matsumura, Nishihara; Vasseur, Yao] Formal limit as  $\epsilon \rightarrow 0$ : congested model

$$\partial_t v - \partial_x u = 0,$$
  
$$\partial_t u + \partial_x \pi - \mu \partial_x \frac{\partial_x u}{v} = 0,$$
  
$$\pi \ge 0, \quad (v - 1)\pi = 0.$$

# Goals of this talk

- 1. Construct travelling wave solutions of  $(NS_{\epsilon})$ , and study their asymptotic behavior;
- 2. Construct global solutions of  $(NS_{\epsilon})$  in the vicinity of a traveling wave.

## Plan

#### Physical motivations and setting of the problem

#### Existence and properties of travelling fronts

Stability of travelling fronts

## Main result on travelling fronts

**Theorem:** [D., Perrin, '18] Let  $1 < v_- < v_+$ , and let  $u_{\pm} \in \mathbb{R}$  such that  $(u_+ - u_-)^2 = -(v_+ - v_-)(p_{\epsilon}(v_+) - p_{\epsilon}(v_-))$ .

1. There exists a unique (up to a shift) solution of  $(NS_{\epsilon})$  of the form  $(v_{\epsilon}, u_{\epsilon}) = (v_{\epsilon}, u_{\epsilon})(x - s_{\epsilon}t)$ , where

$$s_\epsilon^2 = -rac{p_\epsilon(v_+)-p_\epsilon(v_-)}{v_+-v_-}$$

2. Take  $v_{-} = 1 + \epsilon^{1/\gamma}$ ,  $v_{+} \in ]1, 2[$  independent of  $\epsilon$ . Then there exists  $v \in W^{1,\infty}(\mathbb{R})$  such that

$$\limsup_{\epsilon\to 0} \sup_{\xi\in\mathbb{R}} \inf_{C\in\mathbb{R}} \|\mathfrak{v}_{\epsilon}(\xi+C)-\mathfrak{v}\|_{\infty}=0,$$

and  $\mathfrak{v}(\xi) = 1$  if  $\xi < 0$ ,  $\mathfrak{v}' = \bar{s}\mu^{-1}\mathfrak{v}(v_+ - \mathfrak{v})$  for  $\xi > 0$ .

## Main result on travelling fronts

**Theorem:** [D., Perrin, '18] Let  $1 < v_{-} < v_{+}$ , and let  $u_{\pm} \in \mathbb{R}$  such that  $(u_{+} - u_{-})^{2} = -(v_{+} - v_{-})(p_{\epsilon}(v_{+}) - p_{\epsilon}(v_{-}))$ .

1. There exists a unique (up to a shift) solution of  $(NS_{\epsilon})$  of the form  $(v_{\epsilon}, u_{\epsilon}) = (v_{\epsilon}, u_{\epsilon})(x - s_{\epsilon}t)$ , where

$$s_\epsilon^2 = -rac{p_\epsilon(v_+)-p_\epsilon(v_-)}{v_+-v_-}$$

2. Take  $v_- = 1 + \epsilon^{1/\gamma}$ ,  $v_+ \in ]1,2[$  independent of  $\epsilon$ . Then there exists  $v \in W^{1,\infty}(\mathbb{R})$  such that

$$\lim_{\epsilon\to 0} \sup_{\xi\in\mathbb{R}} \inf_{C\in\mathbb{R}} \|\mathfrak{v}_{\epsilon}(\xi+C) - \mathfrak{v}\|_{\infty} = 0,$$

and  $v(\xi) = 1$  if  $\xi < 0$ ,  $v' = \bar{s}\mu^{-1}v(v_+ - v)$  for  $\xi > 0$ .

# Numerical simulations



# Refined behavior in the transition zone

Ansatz:

$$\mathfrak{v}_{\epsilon} \simeq egin{cases} 1 + \epsilon^{1/\gamma} \tilde{v} \left(rac{\xi - ar{\xi}}{\epsilon^{1/\gamma}}
ight) & ext{if} \quad \xi < 0 \ ar{v}(\xi + arphi^{\epsilon}) & ext{if} \quad \xi \ge 0. \end{cases}$$
(1

#### **Result:**

• 
$$\varphi^{\epsilon}, \bar{\xi} = O(\epsilon^{1/\gamma+1});$$

•  $\tilde{v}$  converges towards 1 exponentially fast.



## Sketch of proof: ODE for traveling fronts

$$\begin{cases} -s_{\epsilon}\mathfrak{v}_{\epsilon}' - \mathfrak{u}_{\epsilon}' = 0\\ -s_{\epsilon}\mathfrak{u}_{\epsilon}' + \left(p_{\epsilon}(\mathfrak{v}_{\epsilon})\right)'(\xi) - \mu\left(\frac{1}{\mathfrak{v}_{\epsilon}}\mathfrak{u}_{\epsilon}'\right)' = 0. \end{cases}$$
(2)

#### **Rankine-Hugoniot conditions:**

$$s_{\epsilon}(v_+ - v_-) = -(u_+ - u_-), \quad s_{\epsilon}(u_+ - u_-) = p_{\epsilon}(v_+) - p_{\epsilon}(v_-).$$
  
ODE for  $v_{\epsilon}$ :

$$\mathfrak{v}_\epsilon' = rac{\mathfrak{v}_\epsilon}{\mu s_\epsilon} ig( s_\epsilon^2 ( \mathfrak{v}_+ - \mathfrak{v}_\epsilon) + p_\epsilon ( \mathfrak{v}_+) - p_\epsilon (\mathfrak{v}_\epsilon) ig).$$

**Conclusion:** unique solution (up to a shift), strictly increasing from  $v_-$  to  $v_+$ . **Remark:**  $\lim_{\epsilon \to 0} s_{\epsilon} \in ]0, +\infty[ \iff v_- = 1 + c_0 \epsilon^{1/\gamma} + o(\epsilon^{1/\gamma}).$ 

## Asymptotic behavior

**Non-congested zone** ( $\xi > 0$ ): corresponds to  $p_{\epsilon}(v_{\epsilon}) \ll 1$ .  $v_{\epsilon} \rightarrow v$ , solution of the logistic equation

$$\mathfrak{v}'=rac{ar{s}}{\mu}\mathfrak{v}(v_+-\mathfrak{v}).$$

Take v(0) = 1. Then explicit solution for  $\xi > 0$ . **Congested zone** ( $\xi < 0$ ): corresponds to  $p_{\epsilon}(v_{\epsilon}) \simeq 1$ . Then  $v_{\epsilon} \rightarrow 1$ . **Remark:** the limit profile has a sharp transition! Refined description of the transition: plug-in Ansatz (1). Then

$$\tilde{\nu}' = \frac{1}{\mu \bar{s}} \left( 1 - \frac{1}{\tilde{\nu}^{\gamma}} \right).$$
 (3)

Hence  $\tilde{v}(y) - 1 = O(\exp(y\gamma/(\mu\bar{s})))$  as  $y \to -\infty$ .

## Plan

#### Physical motivations and setting of the problem

Existence and properties of travelling fronts

Stability of travelling fronts

### Effective velocity and linearization

To study stability properties, switch to variables  $(w_{\epsilon}, v_{\epsilon})$ , where  $w_{\epsilon} = u_{\epsilon} - \mu \partial_x \ln(v_{\epsilon})$  (see e.g. [Desjardins&Grenier])

$$\partial_t w_{\epsilon} + \partial_x p_{\epsilon}(v_{\epsilon}) = 0,$$
  
$$\partial_t v_{\epsilon} - \partial_x w_{\epsilon} - \mu \partial_{xx} \ln v_{\epsilon} = 0.$$
 (4)

**Idea:** look at equation on  $(W_{\epsilon}, V_{\epsilon})$ , where

$$W_\epsilon := \int_{-\infty}^x (w_\epsilon - \mathfrak{w}_\epsilon), \quad V_\epsilon := \int_{-\infty}^x (v_\epsilon - \mathfrak{v}_\epsilon).$$

Then

$$\frac{\simeq p_{\epsilon}'(\mathfrak{v}_{\epsilon})\partial_{x}V_{\epsilon}}{\partial_{t}W_{\epsilon} + \rho_{\epsilon}(\mathfrak{v}_{\epsilon} + \partial_{x}V_{\epsilon}) - \rho_{\epsilon}(\mathfrak{v}_{\epsilon})} = 0, \\ \partial_{t}V_{\epsilon} - \partial_{x}W_{\epsilon} - \mu\partial_{x} \underbrace{\ln \frac{\mathfrak{v}_{\epsilon} + \partial_{x}V_{\epsilon}}{\mathfrak{v}_{\epsilon}}}_{\simeq \frac{\partial_{x}V_{\epsilon}}{\mathfrak{v}_{\epsilon}}} = 0.$$

## Main tools for the stability analysis

- **General scheme:** Fixed point argument for small data for  $(W_{\epsilon}, V_{\epsilon})$  in a high regularity space.
- Tool # 1: weighted  $L^2$  energy estimate for the linearized operator; Tool #2: commutator estimate (linearized equation is not stable by differentiation);
- Tool #3: product laws to control the quadratic terms.

## Energy estimate for the linearized operator

Linearized equation:

$$\partial_t f + p'_{\epsilon}(\mathfrak{v}_{\epsilon})\partial_x g = 0,$$
  
$$\partial_t g - \partial_x f - \mu \partial_x \left(\frac{\partial_x g}{\mathfrak{v}_{\epsilon}}\right) = 0.$$
 (5)

Weighted  $L^2$  estimate:

$$\frac{d}{dt}\int_{\mathbb{R}}\left[-\frac{|f|^2}{p_{\epsilon}'(\mathfrak{v}_{\epsilon})}+|g|^2\right]+s_{\epsilon}\int_{\mathbb{R}}\frac{p_{\epsilon}''(\mathfrak{v}_{\epsilon})}{(p_{\epsilon}'(\mathfrak{v}_{\epsilon}))^2}\partial_{\mathsf{x}}\mathfrak{v}_{\epsilon}|f|^2+\mu\int_{\mathbb{R}}\frac{(\partial_{\mathsf{x}}g)^2}{\mathfrak{v}_{\epsilon}}\leq 0.$$

#### **Remark:**

$$-rac{1}{p_\epsilon'(\mathfrak{v}_\epsilon)}=rac{(\mathfrak{v}_\epsilon-1)^{\gamma+1}}{\gamma\epsilon}, \quad rac{p_\epsilon''(\mathfrak{v}_\epsilon)}{(p_\epsilon'(\mathfrak{v}_\epsilon))^2}=rac{\gamma}{\gamma}rac{(\mathfrak{v}_\epsilon-1)^\gamma}{\epsilon}.$$

The control of f is very good in non-congested zones, not as good in very congested zones... Source of loss in the energy estimates.

## Sequence of estimates

Let  $\mathcal{L}_{\varepsilon}$  be the linearized operator, and rewrite the equation as

$$\partial_t \begin{pmatrix} W_\epsilon \\ V_\epsilon \end{pmatrix} + \mathcal{L}_\epsilon \begin{pmatrix} W_\epsilon \\ V_\epsilon \end{pmatrix} = \mathcal{G}_\epsilon (\partial_x V_\epsilon).$$

 $\mathcal{G}_{\epsilon}$ : quadratic term.

**Step 1:** apply estimates on linearized operator, treating  $\mathcal{G}_{\epsilon}$  perturbatively.

**Step 2:** differentiate:

$$\partial_t \begin{pmatrix} \partial_x W_\epsilon \\ \partial_x V_\epsilon \end{pmatrix} + \mathcal{L}_\epsilon \begin{pmatrix} \partial_x W_\epsilon \\ \partial_x V_\epsilon \end{pmatrix} = \partial_x \mathcal{G}_\epsilon (\partial_x V_\epsilon) + [\mathcal{L}_\epsilon, \partial_x] \begin{pmatrix} W_\epsilon \\ V_\epsilon \end{pmatrix},$$

etc.

Bound on commutator term?

## Commutator result

**Lemma:** For sufficiently smooth and decaying (f, g),

$$\left| \int_{0}^{T} \int_{\mathbb{R}} \left[ \mathcal{L}_{\epsilon}, \partial_{x} \right] \begin{pmatrix} f \\ g \end{pmatrix} \cdot \begin{pmatrix} \frac{-\partial_{x}f}{p_{\epsilon}'(\mathfrak{v}_{\epsilon})} \\ \partial_{x}g \end{pmatrix} \right| \\ \leq \underbrace{\int_{0}^{T} \int_{\mathbb{R}} \partial_{x} \mathfrak{v}_{\epsilon} |\partial_{x}f|^{2}}_{\text{absorbed in dissipation term}} + C_{1} \epsilon^{-2/\gamma} \underbrace{\int_{0}^{T} \int_{\mathbb{R}} |\partial_{x}g|^{2}}_{\text{lower order dissipation term}}$$
(6)

**Consequence:** Loss of a power  $\epsilon^{1/\gamma}$  with each derivative. **Ansatz:** Form of energy:

$$E(t) = \sum_{k} \epsilon^{2k/\gamma} \int_{\mathbb{R}} \left[ -\frac{|\partial_{x}^{k} W_{\epsilon}|^{2}}{p_{\epsilon}'(\mathfrak{v}_{\epsilon})} + |\partial_{x}^{k} V_{\epsilon}|^{2} \right]$$

(In practice, because of non-linearity,  $k \in \{0, 1, 2\}$ .)

## WP result in the vicinity of travelling fronts

Theorem [D., Perrin, '18] Let  $\alpha > \frac{5}{\gamma}$  and assume that  $E(0) \le \epsilon^{\alpha}$ .

Then the non-linear system has a unique global solution, and  $E(t) \le \epsilon^{\alpha}$  for all  $t \ge 0$ . Corollary: under the same assumptions,

 $\lim_{t\to\infty}(w_\epsilon,v_\epsilon)(t)=(\mathfrak{w}_\epsilon,\mathfrak{v}_\epsilon).$ 

**Remark:** very stringent assumption, but necessary because of the pressure singularity and the loss of powers of  $\epsilon$  with each derivation.

## WP result in the vicinity of travelling fronts

Theorem [D., Perrin, '18] Let  $\alpha > \frac{5}{\gamma}$  and assume that  $E(0) \le \epsilon^{\alpha}$ .

Then the non-linear system has a unique global solution, and  $E(t) \le \epsilon^{\alpha}$  for all  $t \ge 0$ . Corollary: under the same assumptions,

```
\lim_{t\to\infty}(w_\epsilon,v_\epsilon)(t)=(\mathfrak{w}_\epsilon,\mathfrak{v}_\epsilon).
```

**Remark:** very stringent assumption, but necessary because of the pressure singularity and the loss of powers of  $\epsilon$  with each derivation.

# Summary

- Presentation of a soft congestion model with singular pressure;
- Travelling fronts for the singular model: description of a sharp transition between congested/non-congested zones;
- Stability of travelling fronts within the singular model, with quantitative analysis.

#### Perspectives

- Relaxation of assumptions for the stability analysis?
- Rates of convergence as  $t \to \infty$ ?
- Consequences on the modelization of the limit system?

THANK YOU FOR YOUR ATTENTION!