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Introduction

Main assumptions in the interior

I Starting point: Ocean = homogeneous, incompressible
fluid in a rotating frame.
→ 3D Navier-Stokes equations with Coriolis force Ω ∧ u.

I Coriolis acceleration:
→ f -plane approximation: f = 2|Ω| sin(θ) homogeneous

(“small” geographical zone, midlatitudes);
→ effect of horizontal component of Ω is neglected.

I Frictional forces F: notion of “turbulent viscosity”:

F = Av∂
2
z u + Ah∆hu, Ah,Av > 0, Ah 6= Av .

I Conclusion: the velocity u of currents inside the ocean is
described by

∂tu + (u · ∇)u + fe3 ∧ u − Av∂
2
z u − Ah∆hu +∇p = 0,

∇ · u = 0 .
(1)
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Introduction

Boundary conditions

I Bottom of the ocean: flat (hB ≡ 0).
Homogeneous Dirichlet boundary condition (no-slip):

u|z=0 = 0.

I Surface of the ocean: rigid lid approximation: h ≡ D.
Description of wind-stress:

∂zuh|z=D = σh,

u3|z=D = 0.

I Horizontal boundaries: box→ horizontal domain:
[0,La1)× [0,La2) with periodic boundary conditions.



Introduction

Scaling assumptions

I High rotation limit: Rossby number ε :=
U

f |L|
� 1.

I Horizontal and vertical viscosities:

Ah

UL
≈ 1, ν :=

LAv

UD2 � 1.

I Amplitude of wind stress: α :=
Dσ0

U
� 1.

Ω Earth rotation vector Ah Turbulent horizontal viscosity
L Horizontal length scale Av Turbulent vertical viscosity
U Horizontal velocity scale σ0 Amplitude of wind velocity
D Vertical length scale
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Scaling assumptions

I High rotation limit: Rossby number ε :=
U

f |L|
� 1.

I Horizontal and vertical viscosities:

Ah

UL
≈ 1, ν :=

LAv

UD2 � 1.

I Amplitude of wind stress: α :=
Dσ0

U
� 1.

I Conclusion: the system in rescaled variables becomes

∂tu + u · ∇u +
1
ε

e3 ∧ u +∇p −∆hu − ν∂2
z u = 0,

divu = 0, ∂zuh,z=a = ασ,
u|z=0 = 0, u3,z=a = 0.

New domain: V = [0,a1)× [0,a2)× [0,a);
Vh = [0,a1)× [0,a2).



Introduction

Modelization of the wind stress

I Full atmosphere/ocean coupled model is out of reach...
→ Effect of a given wind stress on ocean dynamics.

I Time dependance of wind stress:
Coriolis op.  fast oscillations in time (freq. ∼ 1/ε).
→ Interesting scaling: σ = σ

(
t , t
ε , xh

)
.

I First choice: σ almost-periodic: [Masmoudi, 2000]

σ(t , τ, xh) =
∑
µ∈M

∑
kh∈Z2

σ̂(t , µ, kh)eikh·xheiµτ

I Second choice: σ stationary:

σ(t , τ, xh;ω) = S(t , xh, θτω),

where
I ω ∈ E , and (E ,A, µ) is a probability space,
I (θτ )τ∈R is a measure preserving transformation group

acting on E .
Interest: introduce some randomness in the equation.
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Introduction

Brief review of results on rotating fluids

Ref: Chemin, Desjardins, Gallagher, Grenier.
I Dominant process: Coriolis operator:

L = P(e3 ∧ ·);

Spectrum {λk := −i
k ′3
|k ′|

, k ∈ Z3 \ {0} }.

→ Creation of waves propagating at speed ε−1.
I Filtering method [Grenier; Schochet]:

Equation for uL = exp
( t
εL
)

u.
→ Passage to the limit as ε, ν → 0: envelope equations;
→ Problem: uL does not match the boundary conditions.

I Construction of boundary layers[Colin-Fabrie;
Desjardins-Grenier; Grenier-Masmoudi; Masmoudi ...]
→ Creation of source terms (Ekman pumping) in envelope
equation.
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Introduction

Coupling between interior and boundary layer terms

Consider the following Ansatz

u(t , x , y , z) ≈ uint

(
t ,

t
ε
, x , y , z

)
+ uBL

(
t ,

t
ε
, x , y , z

)
,

where
I uint(t , τ) = exp (−τL) uL(t) + δuint(t , τ), δuint = o(1);

Role: uint(t , t/ε) satisfies the evolution equation (up to
o(1));

I uBL(·, z) = uT (·, (a− z)/η) + uB(·, z/η), η � 1.
Role: uBL matches the horizontal boundary conditions.

Remarks:
I The horizontal BC for uBL depend on uint;
I The vertical BC for δuint depends on uBL, and creates a

source term (Ekman pumping) in equation for uL.
→ Coupling between uint and uBL.
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Introduction

Method of resolution

Idea: define a boundary layer operator B:
I Input: arbitrary horizontal boundary conditions.
I Output: divergence-free boundary layer term, matching the

horizontal BC and equation at leading order.

and an interior operator U:
I Input: arbitrary initial data and vertical boundary

conditions.
I Output: interior term matching the vertical boundary

conditions and equation at leading order.
Elementary step: adapt inputs of U and B such that BC and
eq. are satisfied (at leading order).
Question: when should the construction stop ?
→ Answer: when all remaining boundary terms are o(ε) in L2.
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The almost-periodic, resonant case

Convergence result

Theorem:[D., Saint-Raymond, 2008]
Let u = uε,ν be the solution of

∂tu +
1
ε

e3 ∧ u − ν∂2
z u −∆hu +∇p = 0,

divu = 0,
u|z=0 = 0,

u3|z=a = 0, ∂zuh|z=a(t) =
1

(εν)κ

∑
µ,kh

σ̂(µ, kh)eiµ t
ε eikh·xh .

Let w be the solution of the envelope equation. There exists a
function using, of order (εν)−κ in L∞, and a constant κ0 > 0,
such that if ε, ν → 0 with ν = O(ε) and κ < κ0, then

uε,ν −
(

exp
(
− t
ε

L
)

w(t) + using
)
→ 0,

in L∞loc(0,∞; L2(V )) ∩ L2
loc(0,∞; H1

h (V )).



The almost-periodic, resonant case

Remarks on the convergence result

I No a priori bounds for uε,ν .
I In general, uε,ν does not remain bounded: destabilization

of the whole fluid inside the domain.
I The singular profile using is explicit. Linear response to

forcing on the mode

kh = 0, µ = ±1.

In particular, using does not depend on xh and using
3 ≡ 0.

→ No singular Ekman transpiration velocity.
I No asymptotic expansion for uε,ν with this method.

In the sequel:
I Construction of operators B (boundary layer), U (interior).
I Focus on uncommon behaviour: apparition of atypical

boundary layers, singular profile.
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The almost-periodic, resonant case

General setting

Ansatz:

uBL = uB

(
t ,

t
ε
, xh,

z√
εν

)
+ uT

(
t ,

t
ε
, xh,

a− z√
εν

)
,

and

uT/uB =
∑
kh,µ

ûT/ûB(t , kh, µ)eiµτeikh·xh exp(−λz).

Linearity: work with fixed kh and µ (λ = λ(kh, µ)).
Equation in rescaled variables:

iµû1 − λ2û1 − û2+εk2
h û1 + εν

k1k2û1 − k2
1 û2

λ2 − ενk2
h

= 0,

iµû2 − λ2û2 + û1+εk2
h û2 + εν

−k1k2û2 + k2
2 û1

λ2 − ενk2
h

= 0,

√
εν(ik1û1 + ik2û2)± λû3 = 0 .

(2)
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ûT/ûB(t , kh, µ)eiµτeikh·xh exp(−λz).

Linearity: work with fixed kh and µ (λ = λ(kh, µ)).
Equation in rescaled variables:
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The almost-periodic, resonant case

General setting - 2

Question: find λ ∈ C such that det Aλ = 0, where

Aλ =


iµ−λ2 + εk2

h +
ενk1k2

λ2 − ενk2
h

−1−
ενk2

1

λ2 − ενk2
h

1+
ενk2

2

λ2 − ενk2
h

iµ−λ2 + εk2
h −

ενk1k2

λ2 − ενk2
h


Different cases:

I µ 6= ±1: eigenvalues of
(

iµ −1
1 iµ

)
are non zero.

→ Stability by small linear perturbations.
Conclusion: λ = O(1) (bounded away from 0).

I µ = ±1: one of the eigenvalues of
(

iµ −1
1 iµ

)
is zero.

→ Two sub-cases:
• kh 6= 0: atypical boundary layer (λ = O(

√
ε+ (εν)

1
4 )).

• kh = 0: λ = 0 is a solution!→singular profile (bifurcation).
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The almost-periodic, resonant case

Classical Ekman layers: µ 6= ±1

At first order,

Aλ =

(
iµ−λ2 −1

1 iµ−λ2

)
.

Eigenvalues: λ2
± = i(µ± 1) + o(1);

Eigenvectors: w± = (1,±i) + o(1).
Conclusion: {w+,w−} basis of C2.
Method: decompose the boundary condition δh (input of B)
onto basis {w+,w−}:

δ̂h(kh, µ) = α+w+ + α−w−.

Horizontal part of the boundary layer term is given by

uB,h =
(
α+w+e−λ+z + α−w−e−λ−z

)
eiµτeikh·xh

uT ,h = (εν)
1
2−κ

(
α+

λ+
w+e−λ+z +

α+

λ−
w−e−λ−z

)
eiµτeikh·xh .
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The almost-periodic, resonant case

Atypical boundary layers: µ = ±1, kh 6= 0

det Aλ = 0⇒
{
λ2

+ = 2µi + o(1)
or λ2

− = O(ε+
√
εν).

“Eigenvectors”: w± = (1,±i) + o(1).
→ Basis of C2 for ε, ν small enough.
Method: decompose the boundary condition (input of B) onto
basis {w+,w−}.
Same formulas as before.
→ Uniform bounds in L∞, L2.
Novelty: keep exact (6= approximated) values for w+,w−.
→ No error term in the evolution equation.



The almost-periodic, resonant case

Atypical boundary layers: µ = ±1, kh 6= 0

det Aλ = 0⇒
{
λ2

+ = 2µi + o(1)
or λ2

− = O(ε+
√
εν).

“Eigenvectors”: w± = (1,±i) + o(1).
→ Basis of C2 for ε, ν small enough.
Method: decompose the boundary condition (input of B) onto
basis {w+,w−}.
Same formulas as before.
→ Uniform bounds in L∞, L2.
Novelty: keep exact (6= approximated) values for w+,w−.
→ No error term in the evolution equation.



The almost-periodic, resonant case

Apparition of a singular profile: µ = ±1, kh = 0

Choosing for example µ = 1, we derive

Aλ =

(
i−λ2 −1

1 i−λ2

)
.

Eigenvalues: λ2
− = 2i , λ2

+ = 0;
Eigenvectors: w± = (1,±i).

Remark: define ūsing :=
z

(εν)κ
ei t

ε

(
w+

0

)
. Then

ūsing
|z=0 = 0, ∂z ūsing

h|z=a =
1

(εν)κ
ei t

ε w+.

Conclusion: decompose the BC onto basis {w+,w−}.
Singular part of the “boundary layer” term is given by

uBL,h =

(
αB,+ +

αT ,+z
(εν)κ

)
w+ei t

ε .
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The almost-periodic, resonant case

Decomposition of uint for kh 6= 0

Explicit construction:

uint = U [vB, vT ,u0]

such that uint is a solution of the evolution equation and satisfies

uint(t = 0) = u0 + o(1), uint,3|z=0 =
√
ενvB, uint,3|z=a =

√
ενvT .

Decomposition: uint = exp
(

t
ε

L
)

w(t) + vint + uosc
int where

I w(t): preponderant term; matches initial data u0;
I vint: known explicitely;

vint :=
√
εν

(
∇h∆−1

h (vB − vT )
vT z + vB(1− z)

)
;

I uosc
int : oscillating term, takes into account rest of equation.
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The almost-periodic, resonant case

Derivation of equations for w and uosc
int

Functional preliminaries:define

F0 := {u ∈ L2(V ), divu = 0, u3|z=0 = u3|z=a = 0}.
P: projection on F0;
(Nk )k≥0: hilbertian basis of F0, such that LNk = λkNk .
Set

Σ := ∂tvint +
1
ε

e3 ∧ vint − ν∂2
z vint −∆hvint.

Then wint := exp (−t/εL) w + uosc
int is such that

∂twint +
1
ε

Lwint − ν∂2
z wint −∆hwint = −P(Σ) = −

∑
k

〈Nk ,Σ〉Nk .

Rules:
I All terms in 〈Nk ,Σ〉 oscillating at frequencies λk/ε become

source terms in equation on w ;
I All terms in 〈Nk ,Σ〉 oscillating at frequencies µ/ε, µ 6= λk

become source terms in equation on uosc
int .
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The almost-periodic, resonant case

Singular profile for kh = 0

Problem: recall singular profile

ūsing =
∑
±

(
αB,± +

αT ,±z
(εν)κ

)
w±e±i t

ε .

Does not match initial condition !
Idea: build using := ūsing + using

osc , where

∂tu
sing
osc +

1
ε

Lusing
osc − ν∂2

z using
osc = 0

using
osc (t = 0) = −ūsing(t = 0),

using
osc,h|z=0 = 0, ∂zusing

osc,h|z=a = 0 (t > 0),

using
osc,3 ≡ 0.

Remark: no stabilization.
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The almost-periodic, resonant case

Explicit construction of the approximate solution

I First step: define the singular profile using and the solution
of the envelope equation w , given by ∂tw −∆hw +

√
ν

ε
SEkman[w ] = 0,

w|t=0 = u|t=0,

where SEkman : F0 → F0, SEkman ≥ 0.
I Second step: define a BL term B(δ0,h, δ1,h), where

I δ0,h: trace of w on z = 0;
I δ1,h = σ (wind forcing).

I Third step: define the rest of the interior term (of order
o(1) in L2): v int + uint

osc.

I Fourth step: define one additionnal boundary layer term,
taking into account the remaining horizontal BC.

I Fifth step: use stopping Lemma.

Conclusion: evolution eq. satisfied up to o(1) terms, boundary
conditions satisfied exactly. Conclude by energy estimate.
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The almost-periodic, resonant case

Conclusion of the almost-periodic case

Linear problem:
I Apparition of atypical boundary layers due to resonant

forcing (µ = ±1) on the non-homogeneous modes
(kh 6= 0).

I Singular profile (µ = ±1, kh = 0) which destabilizes the
whole fluid for arbitrary initial data.

I Linearity of the equation enables explicit calculations.
Nonlinear problem:
Recent result [D., Saint-Raymond, ’07]: stability of singular
profile in Hs norm and when the amplitude of the wind-stress is
not too large.
Proof based on analysis of resonant modes: λk − λl = ±1.
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The random stationary, non-resonant case

The stationary setting

Recall that
σ = S

(
t , xh, θ t

ε
ω
)
.

Assumption of non-resonance: (avoid singular profile)
Define approximate Fourier transform: for γ > 0,

σ̂γ(λ, ω) :=
1

2π

∫
R

exp(−γ|τ |)e−iλτσ(τ, ω) dτ.

Assume that
(H1) ∀γ > 0, σ̂γ ∈ L∞(E ,L1(R)), and

sup
γ>0
||σ̂γ ||L∞(E ,L1(R)) < +∞.

(H2) ∃ neighbourhoods V± of ±1, independent of γ > 0, such
that

lim
γ→0

sup
λ∈V+∪V−

|σ̂γ(λ)| = 0.
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The random stationary, non-resonant case

Convergence result in the nonlinear stationary case

Theorem:[D., 2007] Let u = uε,ν be the solution of

∂tu +
1
ε

e3 ∧ u + u · ∇u − ν∂2
z u −∆hu +∇p = 0,

divu = 0,
u|z=0 = 0,

u3|z=a = 0, ∂zuh|z=a(t) =
1

(εν)
1
2

σ

(
t ,

t
ε
, xh, ω

)
.

Let w ∈ L∞(0,T ∗; Hs) (s > 5/2) be the solution of the envelope
equation, and assume that (H1)-(H2) are satisfied.
Then as ε, ν → 0 with ν = O(ε),

uε,ν −
(

exp
(

t
ε

L
)

w(t)
)
→ 0,

in L∞(0,T ; L2(V × E)) ∩ L2((0,T )× E ,H1
h (V )) for all T < T ∗.

Remark: w is random!
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The random stationary, non-resonant case

Elements of the proof

Same strategy as in almost-periodic case. Main features:
I No atypical boundary layer terms (non-resonance);
I Boundary layer terms are random stationary in time;
I Filtering methods→ need to investigate average behaviour

of oscillating functions.
Variant of ergodic Theorem:

Lemma
Let φ ∈ L1(E , µ), and let λ ∈ R. Then ∃φ̄λ ∈ L1(E),

1
T

∫ T

0
φ(θτω)e−iλτ dτ → φ̄λ

a.s. and in L1(E).
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The random stationary, non-resonant case

The envelope equation

The function w is a solution of

∂tw + Q̄(w ,w)−∆hw + S̄B(w) + S̄T (ω)︸ ︷︷ ︸
Ekman pumping

= 0,

w(t = 0) = w0 ∈ Hs, divw0 = 0,
divw = 0,
w3|z=0 = 0, w3|z=a = 0,

In general, w is random... However, w̄ = 1/a
∫ a

0 w is not! ∂t w̄ + P(w̄ · ∇w̄)−∆hw̄ + S̄B(w̄) + E
[
S̄T
]

= 0,

w̄(t = 0) = w̄0 =
1
a

∫ a

0
w0.

Question: equation on E [w ]− w̄ ? (vertical modes)
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The random stationary, non-resonant case

Limit system in the case of non-resonant torus

If the torus is non-resonant, then

Q̄(w ,w) = Q̄(w̄ , w̄) + Q̄(w̄ ,w − w̄) + Q̄(w − w̄ , w̄)︸ ︷︷ ︸
=:q(w̄ ,w−w̄)

.

→ The limit equation decouples: w = w̄ + w̃1 + w̃2, where
I w̄ : nonlinear deterministic equation;
I w̃1: linear deterministic equation:{

∂t w̃1 + q(w̄ , w̃1)−∆hw̃1 + S̄B(w̃1) = 0,
w̃1(t = 0) = w0 − w̄0;

I w̃2: linear random equation, E [w̃2] = 0:{
∂t w̃2 + q(w̄ , w̃2)−∆hw̃2 + S̄T − E [S̄T ] = 0,
w̃2(t = 0) = 0.
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Perspectives

I Include treatment of singular profile in the random case
(avoid non-resonance assumptions);

I Use β-plane instead of f -plane model (variations of Coriolis
parameter): modification of the weak limit, apparition of
vertical boundary layers on the western boundaries.

I Consider more general boundaries (different types of
boundary layers are expected).

I Work with density-dependent models.
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