Étude mathématique de fluides en rotation rapide avec forçage en surface

Anne-Laure Dalibard Travail en collaboration avec Laure Saint-Raymond

DMA - ENS & CEREMADE - Université Paris-Dauphine

> 22 Janvier 2008 Séminaire X-EDP

The almost-periodic, resonant case

The random stationary, non-resonant case

Presentation of the model General strategy

The almost-periodic, resonant case

The random stationary, non-resonant case

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Introduction Presentation of the model

General strategy

The almost-periodic, resonant case

The random stationary, non-resonant case

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

- Starting point: Ocean = homogeneous, incompressible fluid in a rotating frame.
 - ightarrow 3D Navier-Stokes equations with Coriolis force $\Omega \wedge u$.
- Coriolis acceleration:
 - → *f*-plane approximation: $f = 2|\Omega| \sin(\theta)$ homogeneous ("small" geographical zone, midlatitudes);
 - \rightarrow effect of horizontal component of Ω is neglected.
- ► Frictional forces *F*: notion of "turbulent viscosity":

$$\mathcal{F} = A_v \partial_z^2 u + A_h \Delta_h u, \quad A_h, A_v > 0, \ A_h \neq A_v.$$

 Conclusion: the velocity u of currents inside the ocean is described by

$$\partial_t u + (u \cdot \nabla)u + f e_3 \wedge u - A_v \partial_z^2 u - A_h \Delta_h u + \nabla p = 0,$$

$$\nabla \cdot u = 0.$$
 (1)

- Starting point: Ocean = homogeneous, incompressible fluid in a rotating frame.
 - ightarrow 3D Navier-Stokes equations with Coriolis force $\Omega \wedge u$.
- Coriolis acceleration:
 - → *f*-plane approximation: $f = 2|\Omega| \sin(\theta)$ homogeneous ("small" geographical zone, midlatitudes);
 - \rightarrow effect of horizontal component of Ω is neglected.
- Frictional forces *F*: notion of "turbulent viscosity":

$$\mathcal{F} = A_v \partial_z^2 u + A_h \Delta_h u, \quad A_h, A_v > 0, \ A_h \neq A_v.$$

 Conclusion: the velocity u of currents inside the ocean is described by

$$\partial_t u + (u \cdot \nabla)u + f e_3 \wedge u - A_v \partial_z^2 u - A_h \Delta_h u + \nabla p = 0, \quad \nabla \cdot u = 0.$$
(1)

- Starting point: Ocean = homogeneous, incompressible fluid in a rotating frame.
 - \rightarrow 3D Navier-Stokes equations with Coriolis force $\Omega \wedge u$.
- Coriolis acceleration:
 - → *f*-plane approximation: $f = 2|\Omega| \sin(\theta)$ homogeneous ("small" geographical zone, midlatitudes);
 - \rightarrow effect of horizontal component of Ω is neglected.
- ► Frictional forces *F*: notion of "turbulent viscosity":

$$\mathcal{F}=A_{v}\partial_{z}^{2}u+A_{h}\Delta_{h}u,\quad A_{h},A_{v}>0,\ A_{h}\neq A_{v}.$$

 Conclusion: the velocity u of currents inside the ocean is described by

$$\partial_t u + (u \cdot \nabla)u + f e_3 \wedge u - A_v \partial_z^2 u - A_h \Delta_h u + \nabla p = 0, \quad (1)$$
$$\nabla \cdot u = 0.$$

- Starting point: Ocean = homogeneous, incompressible fluid in a rotating frame.
 - \rightarrow 3D Navier-Stokes equations with Coriolis force $\Omega \wedge u$.
- Coriolis acceleration:
 - → *f*-plane approximation: $f = 2|\Omega| \sin(\theta)$ homogeneous ("small" geographical zone, midlatitudes);
 - \rightarrow effect of horizontal component of Ω is neglected.
- ► Frictional forces *F*: notion of "turbulent viscosity":

$$\mathcal{F} = A_{\nu}\partial_z^2 u + A_h \Delta_h u, \quad A_h, A_{\nu} > 0, \ A_h \neq A_{\nu}.$$

 Conclusion: the velocity u of currents inside the ocean is described by

$$\partial_t u + (u \cdot \nabla) u + f e_3 \wedge u - A_v \partial_z^2 u - A_h \Delta_h u + \nabla p = 0,$$

$$\nabla \cdot u = 0.$$
 (1)

Boundary conditions

• Bottom of the ocean: flat $(h_B \equiv 0)$.

Homogeneous Dirichlet boundary condition (no-slip):

$$u_{|z=0}=0.$$

Surface of the ocean: rigid lid approximation: h = D. Description of wind-stress:

$$\partial_z u_{h|z=D} = \sigma_h,$$
$$u_{3|z=D} = 0.$$

▶ Horizontal boundaries: box \rightarrow horizontal domain: [0, *La*₁) × [0, *La*₂) with periodic boundary conditions.

Scaling assumptions

- High rotation limit: Rossby number $\varepsilon := \frac{U}{f|U|} \ll 1$.
- Horizontal and vertical viscosities:

$$rac{A_h}{UL} pprox 1, \quad
u := rac{LA_v}{UD^2} \ll 1.$$

• Amplitude of wind stress: $\alpha := \frac{D\sigma_0}{U} \gg 1$.

 A_{v}

 σ_0

- Ω Earth rotation vector
- *L* Horizontal length scale
- U Horizontal velocity scale
- D Vertical length scale

- A_h Turbulent horizontal viscosity
 - Turbulent vertical viscosity
 - Amplitude of wind velocity

Scaling assumptions

- High rotation limit: Rossby number $\varepsilon := \frac{U}{f|U|} \ll 1$.
- Horizontal and vertical viscosities:

$$rac{A_h}{UL}pprox$$
 1, $u := rac{LA_v}{UD^2} \ll 1.$

- Amplitude of wind stress: $\alpha := \frac{D\sigma_0}{U} \gg 1$.
- Conclusion: the system in rescaled variables becomes

$$\partial_t u + u \cdot \nabla u + \frac{1}{\varepsilon} e_3 \wedge u + \nabla p - \Delta_h u - \nu \partial_z^2 u = 0,$$

div $u = 0,$ $\partial_z u_{h,z=a} = \alpha \sigma,$
 $u_{|z=0} = 0,$ $u_{3,z=a} = 0.$

New domain: $V = [0, a_1) \times [0, a_2) \times [0, a);$ as the set of the

Modelization of the wind stress

- ► Full atmosphere/ocean coupled model is out of reach... → Effect of a given wind stress on ocean dynamics.
- ► **Time dependance** of wind stress: Coriolis op. \rightsquigarrow fast oscillations in time (freq. $\sim 1/\varepsilon$). \rightarrow Interesting scaling: $\sigma = \sigma (t, \frac{t}{\varepsilon}, x_h)$.
- First choice: σ almost-periodic: [Masmoudi, 2000]

$$\sigma(t,\tau,x_h) = \sum_{\mu \in M} \sum_{k_h \in \mathbb{Z}^2} \hat{\sigma}(t,\mu,k_h) e^{ik_h \cdot x_h} e^{i\mu\tau}$$

Second choice: *σ* stationary:

$$\sigma(t,\tau,x_h;\omega)=S(t,x_h,\theta_{\tau}\omega),$$

where

- $\omega \in E$, and (E, A, μ) is a probability space,
- (θ_τ)_{τ∈ℝ} is a measure preserving transformation group acting on *E*.

Modelization of the wind stress

- ► Full atmosphere/ocean coupled model is out of reach... → Effect of a given wind stress on ocean dynamics.
- ► **Time dependance** of wind stress: Coriolis op. \rightsquigarrow fast oscillations in time (freq. $\sim 1/\varepsilon$). \rightarrow Interesting scaling: $\sigma = \sigma (t, \frac{t}{\varepsilon}, x_h)$.
- First choice: σ almost-periodic: [Masmoudi, 2000]

$$\sigma(t,\tau,x_h) = \sum_{\mu \in M} \sum_{k_h \in \mathbb{Z}^2} \hat{\sigma}(t,\mu,k_h) e^{ik_h \cdot x_h} e^{i\mu\tau}$$

Second choice: *σ* stationary:

$$\sigma(t,\tau,x_h;\omega)=S(t,x_h,\theta_{\tau}\omega),$$

where

- $\omega \in E$, and (E, A, μ) is a probability space,
- (θ_τ)_{τ∈ℝ} is a measure preserving transformation group acting on *E*.

Modelization of the wind stress

- ► Full atmosphere/ocean coupled model is out of reach... → Effect of a given wind stress on ocean dynamics.
- ► **Time dependance** of wind stress: Coriolis op. \rightsquigarrow fast oscillations in time (freq. $\sim 1/\varepsilon$). \rightarrow Interesting scaling: $\sigma = \sigma (t, \frac{t}{\varepsilon}, x_h)$.
- First choice: *σ* almost-periodic: [Masmoudi, 2000]

$$\sigma(t,\tau,x_h) = \sum_{\mu \in M} \sum_{k_h \in \mathbb{Z}^2} \hat{\sigma}(t,\mu,k_h) e^{ik_h \cdot x_h} e^{i\mu\tau}$$

Second choice: *σ* stationary:

$$\sigma(t,\tau,x_h;\omega)=S(t,x_h,\theta_{\tau}\omega),$$

where

- $\omega \in E$, and (E, A, μ) is a probability space,
- (θ_τ)_{τ∈ℝ} is a measure preserving transformation group acting on *E*.

Modelization of the wind stress

- ► Full atmosphere/ocean coupled model is out of reach... → Effect of a given wind stress on ocean dynamics.
- ► **Time dependance** of wind stress: Coriolis op. \rightsquigarrow fast oscillations in time (freq. $\sim 1/\varepsilon$). \rightarrow Interesting scaling: $\sigma = \sigma (t, \frac{t}{\varepsilon}, x_h)$.
- **First choice:** *σ* almost-periodic: [Masmoudi, 2000]

$$\sigma(t,\tau,\mathbf{x}_h) = \sum_{\mu \in M} \sum_{\mathbf{k}_h \in \mathbb{Z}^2} \hat{\sigma}(t,\mu,\mathbf{k}_h) e^{i\mathbf{k}_h \cdot \mathbf{x}_h} e^{i\mu\tau}$$

Second choice: *σ* stationary:

$$\sigma(t,\tau,\mathbf{x}_h;\omega)=\mathcal{S}(t,\mathbf{x}_h,\theta_\tau\omega),$$

where

- $\omega \in E$, and (E, A, μ) is a probability space,
- (θ_τ)_{τ∈ℝ} is a measure preserving transformation group acting on *E*.

Modelization of the wind stress

- ► Full atmosphere/ocean coupled model is out of reach... → Effect of a given wind stress on ocean dynamics.
- ► **Time dependance** of wind stress: Coriolis op. \rightsquigarrow fast oscillations in time (freq. $\sim 1/\varepsilon$). \rightarrow Interesting scaling: $\sigma = \sigma (t, \frac{t}{\varepsilon}, x_h)$.
- First choice: *σ* almost-periodic: [Masmoudi, 2000]

$$\sigma(t,\tau,\mathbf{x}_h) = \sum_{\mu \in \mathcal{M}} \sum_{\mathbf{k}_h \in \mathbb{Z}^2} \hat{\sigma}(t,\mu,\mathbf{k}_h) e^{i\mathbf{k}_h \cdot \mathbf{x}_h} e^{i\mu\tau}$$

Second choice: *σ* stationary:

$$\sigma(t,\tau,\mathbf{x}_h;\omega) = S(t,\mathbf{x}_h,\theta_\tau\omega),$$

where

• $\omega \in E$, and (E, A, μ) is a probability space,

 (θ_τ)_{τ∈ℝ} is a measure preserving transformation group acting on *E*.

Modelization of the wind stress

- ► Full atmosphere/ocean coupled model is out of reach... → Effect of a given wind stress on ocean dynamics.
- ► **Time dependance** of wind stress: Coriolis op. \rightsquigarrow fast oscillations in time (freq. $\sim 1/\varepsilon$). \rightarrow Interesting scaling: $\sigma = \sigma (t, \frac{t}{\varepsilon}, x_h)$.
- **First choice:** *σ* almost-periodic: [Masmoudi, 2000]

$$\sigma(t,\tau,\mathbf{x}_h) = \sum_{\mu \in \mathcal{M}} \sum_{\mathbf{k}_h \in \mathbb{Z}^2} \hat{\sigma}(t,\mu,\mathbf{k}_h) e^{i\mathbf{k}_h \cdot \mathbf{x}_h} e^{i\mu\tau}$$

Second choice: *σ* stationary:

$$\sigma(t,\tau,\mathbf{x}_h;\omega) = S(t,\mathbf{x}_h,\theta_\tau\omega),$$

where

- $\omega \in E$, and (E, A, μ) is a probability space,
- (θ_τ)_{τ∈ℝ} is a measure preserving transformation group acting on *E*.

Introduction Presentation of the model General strategy

The almost-periodic, resonant case

The random stationary, non-resonant case

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Brief review of results on rotating fluids

Ref: Chemin, Desjardins, Gallagher, Grenier.

Dominant process: Coriolis operator:

$$\begin{split} \boldsymbol{L} &= \mathbb{P}(\boldsymbol{e}_3 \wedge \cdot);\\ \text{Spectrum } \{\lambda_k := -i \frac{k'_3}{|k'|}, \ k \in \mathbb{Z}^3 \setminus \{\mathbf{0}\} \ \}. \end{split}$$

\rightarrow Creation of waves propagating at speed ε^{-1} .

- Filtering method [Grenier; Schochet]: Equation for u_L = exp (^t/_εL) u.
 → Passage to the limit as ε, ν → 0: envelope equations;
 → Problem: u_L does not match the boundary conditions.
 Construction of boundary layers[Colin-Fabrie; Desiardins-Grenier: Grenier-Masmoudi: Masmoudi 1
 - \rightarrow Creation of source terms (Ekman pumping) in envelope equation.

Introduction

Brief review of results on rotating fluids

Ref: Chemin, Desjardins, Gallagher, Grenier.

Dominant process: Coriolis operator:

$$\begin{split} \boldsymbol{L} &= \mathbb{P}(\boldsymbol{e}_3 \wedge \boldsymbol{\cdot});\\ \text{Spectrum} \; \{\lambda_k := -i \frac{k'_3}{|k'|}, \; k \in \mathbb{Z}^3 \setminus \{\mathbf{0}\} \; \}. \end{split}$$

 \rightarrow Creation of waves propagating at speed ε^{-1} .

► **Filtering method** [Grenier; Schochet]: Equation for $u_L = \exp(\frac{t}{\varepsilon}L) u$.

 \rightarrow Passage to the limit as $\varepsilon, \nu \rightarrow 0$: envelope equations;

- \rightarrow Problem: u_L does not match the boundary conditions.
- ▶ Construction of boundary layers[Colin-Fabrie; Desjardins-Grenier; Grenier-Masmoudi; Masmoudi ...]
 → Creation of source terms (Ekman pumping) in envelope equation.

Brief review of results on rotating fluids

Introduction

Ref: Chemin, Desjardins, Gallagher, Grenier.

Dominant process: Coriolis operator:

$$\begin{split} \boldsymbol{L} &= \mathbb{P}(\boldsymbol{e}_3 \wedge \boldsymbol{\cdot});\\ \text{Spectrum} \; \{\lambda_k := -i \frac{k'_3}{|k'|}, \; k \in \mathbb{Z}^3 \setminus \{\mathbf{0}\} \; \}. \end{split}$$

 \rightarrow Creation of waves propagating at speed ε^{-1} .

► **Filtering method** [Grenier; Schochet]: Equation for $u_L = \exp(\frac{t}{\varepsilon}L) u$.

 \rightarrow Passage to the limit as $\varepsilon, \nu \rightarrow 0$: envelope equations;

- \rightarrow Problem: u_L does not match the boundary conditions.
- ► Construction of boundary layers[Colin-Fabrie; Desjardins-Grenier; Grenier-Masmoudi; Masmoudi ...]
 → Creation of source terms (Ekman pumping) in envelope equation.

Coupling between interior and boundary layer terms

Consider the following Ansatz

$$u(t, x, y, z) \approx u_{\text{int}}\left(t, \frac{t}{\varepsilon}, x, y, z\right) + u_{\text{BL}}\left(t, \frac{t}{\varepsilon}, x, y, z\right),$$

where

- ► $u_{int}(t, \tau) = \exp(-\tau L) u_L(t) + \delta u_{int}(t, \tau), \ \delta u_{int} = o(1);$ Role: $u_{int}(t, t/\varepsilon)$ satisfies the evolution equation (up to o(1));
- *u*_{BL}(·, *z*) = *u*_T(·, (*a* − *z*)/η) + *u*_B(·, *z*/η), η ≪ 1.
 Role: *u*_{BL} matches the horizontal boundary conditions.

Remarks:

- ▶ The horizontal BC for *u*_{BL} depend on *u*_{int};
- The vertical BC for δu_{int} depends on u_{BL}, and creates a source term (Ekman pumping) in equation for u_L.

 \rightarrow Coupling between u_{int} and u_{BL}

Coupling between interior and boundary layer terms

Consider the following Ansatz

$$u(t, x, y, z) \approx u_{\text{int}}\left(t, \frac{t}{\varepsilon}, x, y, z\right) + u_{\text{BL}}\left(t, \frac{t}{\varepsilon}, x, y, z\right),$$

where

- $u_{int}(t, \tau) = \exp(-\tau L) u_L(t) + \delta u_{int}(t, \tau), \ \delta u_{int} = o(1);$ Role: $u_{int}(t, t/\varepsilon)$ satisfies the evolution equation (up to o(1));
- *u*_{BL}(·, *z*) = *u*_T(·, (*a* − *z*)/η) + *u*_B(·, *z*/η), η ≪ 1. Role: *u*_{BL} matches the horizontal boundary conditions.

Remarks:

- The horizontal BC for u_{BL} depend on u_{int};
- The vertical BC for δu_{int} depends on u_{BL}, and creates a source term (Ekman pumping) in equation for u_L.

 \rightarrow Coupling between u_{int} and u_{BL} .

Method of resolution

Idea: define a boundary layer operator B:

- Input: arbitrary horizontal boundary conditions.
- Output: divergence-free boundary layer term, matching the horizontal BC and equation at leading order.

and an interior operator \mathcal{U} :

- Input: arbitrary initial data and vertical boundary conditions.
- Output: interior term matching the vertical boundary conditions and equation at leading order.

Elementary step: adapt inputs of \mathcal{U} and \mathcal{B} such that BC and eq. are satisfied (at leading order). **Question:** when should the construction stop ? \rightarrow Answer: when all remaining boundary terms are $\rho(s)$ in L^2 .

Method of resolution

Idea: define a boundary layer operator B:

- Input: arbitrary horizontal boundary conditions.
- Output: divergence-free boundary layer term, matching the horizontal BC and equation at leading order.

and an interior operator \mathcal{U} :

- Input: arbitrary initial data and vertical boundary conditions.
- Output: interior term matching the vertical boundary conditions and equation at leading order.

Elementary step: adapt inputs of \mathcal{U} and \mathcal{B} such that BC and eq. are satisfied (at leading order).

Question: when should the construction stop ?

 \rightarrow Answer: when all remaining boundary terms are $o(\varepsilon)$ in L^2 .

Method of resolution

Idea: define a boundary layer operator B:

- Input: arbitrary horizontal boundary conditions.
- Output: divergence-free boundary layer term, matching the horizontal BC and equation at leading order.

and an interior operator \mathcal{U} :

- Input: arbitrary initial data and vertical boundary conditions.
- Output: interior term matching the vertical boundary conditions and equation at leading order.

Elementary step: adapt inputs of \mathcal{U} and \mathcal{B} such that BC and eq. are satisfied (at leading order).

Question: when should the construction stop ?

 \rightarrow Answer: when all remaining boundary terms are $o(\varepsilon)$ in L^2 .

Plan

Introduction

The almost-periodic, resonant case

Main result in the linear case The boundary layer operator The interior operator Construction of an approximate solution and conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The random stationary, non-resonant case

Plan

Introduction

The almost-periodic, resonant case Main result in the linear case

The boundary layer operator The interior operator Construction of an approximate solution and conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The random stationary, non-resonant case

Convergence result

Theorem:[D., Saint-Raymond, 2008] Let $u = u^{\varepsilon,\nu}$ be the solution of

$$\begin{cases} \partial_t u + \frac{1}{\varepsilon} e_3 \wedge u - \nu \partial_z^2 u - \Delta_h u + \nabla p = 0, \\ \operatorname{div} u = 0, \\ u_{|z=0} = 0, \\ u_{3|z=a} = 0, \quad \partial_z u_{h|z=a}(t) = \frac{1}{(\varepsilon \nu)^{\kappa}} \sum_{\mu, k_h} \hat{\sigma}(\mu, k_h) e^{i\mu \frac{t}{\varepsilon}} e^{ik_h \cdot x_h}. \end{cases}$$

Let *w* be the solution of the envelope equation. There exists a function u^{sing} , of order $(\varepsilon \nu)^{-\kappa}$ in L^{∞} , and a constant $\kappa_0 > 0$, such that if $\varepsilon, \nu \to 0$ with $\nu = O(\varepsilon)$ and $\kappa < \kappa_0$, then

$$u^{\varepsilon,\nu} - \left(\exp\left(-\frac{t}{\varepsilon}L\right)w(t) + u^{\mathrm{sing}}\right) \to 0,$$

in $L^{\infty}_{\text{loc}}(0,\infty;L^2(V)) \cap L^2_{\text{loc}}(0,\infty;H^1_h(V)).$

Remarks on the convergence result

- No *a priori* bounds for $u^{\varepsilon,\nu}$.
- In general, u^{ε,ν} does not remain bounded: destabilization of the whole fluid inside the domain.
- The singular profile u^{sing} is explicit. Linear response to forcing on the mode

 $k_h = \mathbf{0}, \mu = \pm \mathbf{1}.$

In particular, u^{sing} does not depend on x_h and $u_3^{\text{sing}} \equiv 0$. \rightarrow No singular Ekman transpiration velocity.

• No asymptotic expansion for $u^{\varepsilon,\nu}$ with this method.

In the sequel:

- Construction of operators \mathcal{B} (boundary layer), \mathcal{U} (interior).
- Focus on uncommon behaviour: apparition of atypical boundary layers, singular profile.

Remarks on the convergence result

- No *a priori* bounds for $u^{\varepsilon,\nu}$.
- In general, u^{ε,ν} does not remain bounded: destabilization of the whole fluid inside the domain.
- The singular profile u^{sing} is explicit. Linear response to forcing on the mode

 $k_h = \mathbf{0}, \mu = \pm \mathbf{1}.$

In particular, u^{sing} does not depend on x_h and $u_3^{\text{sing}} \equiv 0$. \rightarrow No singular Ekman transpiration velocity.

• No asymptotic expansion for $u^{\varepsilon,\nu}$ with this method.

In the sequel:

- ► Construction of operators B (boundary layer), U (interior).
- Focus on uncommon behaviour: apparition of atypical boundary layers, singular profile.

Plan

Introduction

The almost-periodic, resonant case

Main result in the linear case

The boundary layer operator

The interior operator Construction of an approximate solution and conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The random stationary, non-resonant case

General setting

Ansatz:

$$u_{\rm BL} = u_B\left(t, \frac{t}{\varepsilon}, x_h, \frac{z}{\sqrt{\varepsilon\nu}}\right) + u_T\left(t, \frac{t}{\varepsilon}, x_h, \frac{a-z}{\sqrt{\varepsilon\nu}}\right),$$

and

$$u_T/u_B = \sum_{k_h,\mu} \hat{u}_T/\hat{u}_B(t,k_h,\mu) e^{i\mu\tau} e^{ik_h\cdot x_h} \exp(-\lambda z).$$

Linearity: work with fixed k_h and μ ($\lambda = \lambda(k_h, \mu)$). Equation in rescaled variables:

$$i\mu\hat{u}_{1} - \lambda^{2}\hat{u}_{1} - \hat{u}_{2} + \varepsilon k_{h}^{2}\hat{u}_{1} + \varepsilon\nu \frac{k_{1}k_{2}\hat{u}_{1} - k_{1}^{2}\hat{u}_{2}}{\lambda^{2} - \varepsilon\nu k_{h}^{2}} = 0,$$

$$i\mu\hat{u}_{2} - \lambda^{2}\hat{u}_{2} + \hat{u}_{1} + \varepsilon k_{h}^{2}\hat{u}_{2} + \varepsilon\nu \frac{-k_{1}k_{2}\hat{u}_{2} + k_{2}^{2}\hat{u}_{1}}{\lambda^{2} - \varepsilon\nu k_{h}^{2}} = 0,$$

$$\sqrt{\varepsilon\nu}(ik_{1}\hat{u}_{1} + ik_{2}\hat{u}_{2}) \pm \lambda\hat{u}_{3} = 0.$$

(2)

General setting

Ansatz:

$$u_{\mathsf{BL}} = u_{\mathsf{B}}\left(t, \frac{t}{\varepsilon}, x_{\mathsf{h}}, \frac{z}{\sqrt{\varepsilon\nu}}\right) + u_{\mathsf{T}}\left(t, \frac{t}{\varepsilon}, x_{\mathsf{h}}, \frac{a-z}{\sqrt{\varepsilon\nu}}\right),$$

and

$$u_T/u_B = \sum_{k_h,\mu} \hat{u}_T/\hat{u}_B(t,k_h,\mu) e^{i\mu\tau} e^{ik_h\cdot x_h} \exp(-\lambda z).$$

Linearity: work with fixed k_h and μ ($\lambda = \lambda(k_h, \mu)$). Equation in rescaled variables:

$$i\mu\hat{u}_{1} - \lambda^{2}\hat{u}_{1} - \hat{u}_{2} + \varepsilon k_{h}^{2}\hat{u}_{1} + \varepsilon\nu\frac{k_{1}k_{2}\hat{u}_{1} - k_{1}^{2}\hat{u}_{2}}{\lambda^{2} - \varepsilon\nu k_{h}^{2}} = 0,$$

$$i\mu\hat{u}_{2} - \lambda^{2}\hat{u}_{2} + \hat{u}_{1} + \varepsilon k_{h}^{2}\hat{u}_{2} + \varepsilon\nu\frac{-k_{1}k_{2}\hat{u}_{2} + k_{2}^{2}\hat{u}_{1}}{\lambda^{2} - \varepsilon\nu k_{h}^{2}} = 0,$$

$$\sqrt{\varepsilon\nu}(ik_{1}\hat{u}_{1} + ik_{2}\hat{u}_{2}) \pm \lambda\hat{u}_{3} = 0.$$

$$(2)$$

General setting

Ansatz:

$$u_{\mathsf{BL}} = u_{\mathsf{B}}\left(t, \frac{t}{\varepsilon}, x_{\mathsf{h}}, \frac{z}{\sqrt{\varepsilon\nu}}\right) + u_{\mathsf{T}}\left(t, \frac{t}{\varepsilon}, x_{\mathsf{h}}, \frac{a-z}{\sqrt{\varepsilon\nu}}\right),$$

and

$$u_T/u_B = \sum_{k_h,\mu} \hat{u}_T/\hat{u}_B(t,k_h,\mu) e^{i\mu\tau} e^{ik_h\cdot x_h} \exp(-\lambda z).$$

Linearity: work with fixed k_h and μ ($\lambda = \lambda(k_h, \mu)$). Equation in rescaled variables:

$$i\mu\hat{u}_{1} - \lambda^{2}\hat{u}_{1} - \hat{u}_{2} + \varepsilon k_{h}^{2}\hat{u}_{1} + \varepsilon\nu \frac{k_{1}k_{2}\hat{u}_{1} - k_{1}^{2}\hat{u}_{2}}{\lambda^{2} - \varepsilon\nu k_{h}^{2}} = 0,$$

$$i\mu\hat{u}_{2} - \lambda^{2}\hat{u}_{2} + \hat{u}_{1} + \varepsilon k_{h}^{2}\hat{u}_{2} + \varepsilon\nu \frac{-k_{1}k_{2}\hat{u}_{2} + k_{2}^{2}\hat{u}_{1}}{\lambda^{2} - \varepsilon\nu k_{h}^{2}} = 0,$$

$$\sqrt{\varepsilon\nu}(ik_{1}\hat{u}_{1} + ik_{2}\hat{u}_{2}) \pm \lambda\hat{u}_{3} = 0.$$

(2)

General setting - 2

Question: find $\lambda \in \mathbb{C}$ such that det $A_{\lambda} = 0$, where

Different cases:

▶ $\mu \neq \pm 1$: eigenvalues of $\begin{pmatrix} i\mu & -1 \\ 1 & i\mu \end{pmatrix}$ are non zero.

 \rightarrow Stability by small linear perturbations. Conclusion: $\lambda = O(1)$ (bounded away from 0).

• $\mu = \pm 1$: one of the eigenvalues of $\begin{pmatrix} i\mu & -i \\ 1 & i\mu \end{pmatrix}$ is zero.

 \rightarrow Two sub-cases:

900
Question: find $\lambda \in \mathbb{C}$ such that det $A_{\lambda} = 0$, where

Different cases:

- ▶ $\mu \neq \pm 1$: eigenvalues of $\begin{pmatrix} i\mu & -1 \\ 1 & i\mu \end{pmatrix}$ are non zero. → Stability by small linear perturbations. Conclusion: $\lambda = O(1)$ (bounded away from 0).
- ▶ $\mu = \pm 1$: one of the eigenvalues of $\begin{pmatrix} i\mu & -1 \\ 1 & i\mu \end{pmatrix}$ is zero.
 - \rightarrow Two sub-cases:
 - $k_h \neq 0$: atypical boundary layer $(\lambda = \mathcal{O}(\sqrt{\varepsilon} + (\varepsilon \nu)^{\frac{1}{4}}))$.

• $k_h = 0$: $\lambda = 0$ is a solution! \rightarrow

Question: find $\lambda \in \mathbb{C}$ such that det $A_{\lambda} = 0$, where

Different cases:

• $\mu \neq \pm 1$: eigenvalues of $\begin{pmatrix} i\mu & -1 \\ 1 & i\mu \end{pmatrix}$ are non zero.

- $\mu = \pm 1$: one of the eigenvalues of $\begin{pmatrix} i\mu & -1 \\ 1 & i\mu \end{pmatrix}$ is zero.
 - \rightarrow Two sub-cases:
 - $k_h \neq 0$: atypical boundary layer $(\lambda = \mathcal{O}(\sqrt{\varepsilon} + (\varepsilon \nu)^{\frac{1}{4}}))$.
 - $k_h = 0$: $\lambda = 0$ is a solution! \rightarrow singular profile (bifurcation).

Question: find $\lambda \in \mathbb{C}$ such that det $A_{\lambda} = 0$, where

Different cases:

• $\mu \neq \pm 1$: eigenvalues of $\begin{pmatrix} i\mu & -1 \\ 1 & i\mu \end{pmatrix}$ are non zero. \rightarrow Stability by small linear perturbations.

Conclusion: $\lambda = O(1)$ (bounded away from 0).

- $\mu = \pm 1$: one of the eigenvalues of $\begin{pmatrix} i\mu & -1 \\ 1 & i\mu \end{pmatrix}$ is zero.
 - \rightarrow Two sub-cases:
 - $k_h \neq 0$: atypical boundary layer $(\lambda = \mathcal{O}(\sqrt{\varepsilon} + (\varepsilon \nu)^{\frac{1}{4}}))$.
 - $k_h = 0$: $\lambda = 0$ is a solution! \rightarrow singular profile (bifurcation).

Question: find $\lambda \in \mathbb{C}$ such that det $A_{\lambda} = 0$, where

Different cases:

• $\mu \neq \pm 1$: eigenvalues of $\begin{pmatrix} i\mu & -1 \\ 1 & i\mu \end{pmatrix}$ are non zero.

- $\mu = \pm 1$: one of the eigenvalues of $\begin{pmatrix} i\mu & -1 \\ 1 & i\mu \end{pmatrix}$ is zero.
 - \rightarrow Two sub-cases:
 - $k_h \neq 0$: atypical boundary layer $(\lambda = \mathcal{O}(\sqrt{\varepsilon} + (\varepsilon \nu)^{\frac{1}{4}}))$.
 - $k_h = 0$: $\lambda = 0$ is a solution! \rightarrow singular profile (bifurcation).

Question: find $\lambda \in \mathbb{C}$ such that det $A_{\lambda} = 0$, where

Different cases:

• $\mu \neq \pm 1$: eigenvalues of $\begin{pmatrix} i\mu & -1 \\ 1 & i\mu \end{pmatrix}$ are non zero.

- $\mu = \pm 1$: one of the eigenvalues of $\begin{pmatrix} i\mu & -1 \\ 1 & i\mu \end{pmatrix}$ is zero.
 - \rightarrow Two sub-cases:
 - $k_h \neq 0$: atypical boundary layer $(\lambda = \mathcal{O}(\sqrt{\varepsilon} + (\varepsilon \nu)^{\frac{1}{4}}))$.
 - $k_h = 0$: $\lambda = 0$ is a solution! \rightarrow singular profile (bifurcation).

Question: find $\lambda \in \mathbb{C}$ such that det $A_{\lambda} = 0$, where

Different cases:

• $\mu \neq \pm 1$: eigenvalues of $\begin{pmatrix} i\mu & -1 \\ 1 & i\mu \end{pmatrix}$ are non zero.

- $\mu = \pm 1$: one of the eigenvalues of $\begin{pmatrix} i\mu & -1 \\ 1 & i\mu \end{pmatrix}$ is zero.
 - \rightarrow Two sub-cases:
 - $k_h \neq 0$: atypical boundary layer ($\lambda = \mathcal{O}(\sqrt{\varepsilon} + (\varepsilon \nu)^{\frac{1}{4}})$).
 - $k_h = 0$: $\lambda = 0$ is a solution! \rightarrow singular profile (bifurcation).

Classical Ekman layers: $\mu \neq \pm 1$

At first order,

$$A_{\lambda} = egin{pmatrix} i\mu - \lambda^2 & -1 \ 1 & i\mu - \lambda^2 \end{pmatrix}.$$

Eigenvalues: $\lambda_{\pm}^2 = i(\mu \pm 1) + o(1);$ **Eigenvectors:** $w_{\pm} = (1, \pm i) + o(1).$ Conclusion: $\{w_{\pm}, w_{-}\}$ basis of \mathbb{C}^2 .

Method: decompose the boundary condition δ_h (input of \mathcal{B}) onto basis $\{w_+, w_-\}$:

$$\hat{\delta}_h(k_h,\mu) = \alpha_+ W_+ + \alpha_- W_-.$$

Horizontal part of the boundary layer term is given by

$$U_{B,h} = \left(\alpha_{+}W_{+}e^{-\lambda_{+}Z} + \alpha_{-}W_{-}e^{-\lambda_{-}Z}\right)e^{i\mu\tau}e^{ik_{h}\cdot x_{h}}$$
$$U_{T,h} = (\varepsilon\nu)^{\frac{1}{2}-\kappa}\left(\frac{\alpha_{+}}{\lambda_{+}}W_{+}e^{-\lambda_{+}Z} + \frac{\alpha_{+}}{\lambda_{-}}W_{-}e^{-\lambda_{-}Z}\right)e^{i\mu\tau}e^{ik_{h}\cdot x_{h}}.$$

Classical Ekman layers: $\mu \neq \pm 1$

At first order,

$$A_{\lambda} = \begin{pmatrix} i\mu - \lambda^2 & -1 \\ 1 & i\mu - \lambda^2 \end{pmatrix}.$$

Eigenvalues: $\lambda_{\pm}^2 = i(\mu \pm 1) + o(1);$ **Eigenvectors:** $w_{\pm} = (1, \pm i) + o(1).$ Conclusion: $\{w_+, w_-\}$ basis of \mathbb{C}^2 .

Method: decompose the boundary condition δ_h (input of \mathcal{B}) onto basis $\{w_+, w_-\}$:

$$\hat{\delta}_h(\mathbf{k}_h,\mu) = \alpha_+ \mathbf{w}_+ + \alpha_- \mathbf{w}_-.$$

Horizontal part of the boundary layer term is given by

$$U_{B,h} = \left(\alpha_{+}W_{+}e^{-\lambda_{+}z} + \alpha_{-}W_{-}e^{-\lambda_{-}z}\right)e^{i\mu\tau}e^{ik_{h}\cdot x_{h}}$$
$$U_{T,h} = (\varepsilon\nu)^{\frac{1}{2}-\kappa}\left(\frac{\alpha_{+}}{\lambda_{+}}W_{+}e^{-\lambda_{+}z} + \frac{\alpha_{+}}{\lambda_{-}}W_{-}e^{-\lambda_{-}z}\right)e^{i\mu\tau}e^{ik_{h}\cdot x_{h}}.$$

Classical Ekman layers: $\mu \neq \pm 1$

At first order,

$$A_{\lambda} = egin{pmatrix} i\mu - \lambda^2 & -1 \ 1 & i\mu - \lambda^2 \end{pmatrix}.$$

Eigenvalues: $\lambda_{\pm}^2 = i(\mu \pm 1) + o(1);$ **Eigenvectors:** $w_{\pm} = (1, \pm i) + o(1).$ Conclusion: $\{w_+, w_-\}$ basis of \mathbb{C}^2 .

Method: decompose the boundary condition δ_h (input of \mathcal{B}) onto basis $\{w_+, w_-\}$:

$$\hat{\delta}_h(\mathbf{k}_h,\mu) = \alpha_+ \mathbf{w}_+ + \alpha_- \mathbf{w}_-.$$

Horizontal part of the boundary layer term is given by

$$\begin{aligned} u_{B,h} &= \left(\alpha_{+} \mathbf{w}_{+} \mathbf{e}^{-\lambda_{+} \mathbf{z}} + \alpha_{-} \mathbf{w}_{-} \mathbf{e}^{-\lambda_{-} \mathbf{z}}\right) \mathbf{e}^{i\mu\tau} \mathbf{e}^{i\mathbf{k}_{h} \cdot \mathbf{x}_{h}} \\ u_{T,h} &= \left(\varepsilon\nu\right)^{\frac{1}{2}-\kappa} \left(\frac{\alpha_{+}}{\lambda_{+}} \mathbf{w}_{+} \mathbf{e}^{-\lambda_{+} \mathbf{z}} + \frac{\alpha_{+}}{\lambda_{-}} \mathbf{w}_{-} \mathbf{e}^{-\lambda_{-} \mathbf{z}}\right) \mathbf{e}^{i\mu\tau} \mathbf{e}^{i\mathbf{k}_{h} \cdot \mathbf{x}_{h}}. \end{aligned}$$

Atypical boundary layers: $\mu = \pm 1$, $k_h \neq 0$

$$\det A_{\lambda} = \mathbf{0} \Rightarrow \begin{cases} \lambda_{+}^{2} = 2\mu i + o(1) \\ \text{or } \lambda_{-}^{2} = \mathcal{O}(\varepsilon + \sqrt{\varepsilon\nu}). \end{cases}$$

"Eigenvectors":
$$w_{\pm} = (1, \pm i) + o(1)$$
.
→ Basis of \mathbb{C}^2 for ε, ν small enough.

Method: decompose the boundary condition (input of \mathcal{B}) onto basis $\{w_+, w_-\}$. Same formulas as before. \rightarrow Uniform bounds in L^{∞} , L^2 . **Novelty:** keep exact (\neq approximated) values for w_+, w_- . \rightarrow No error term in the evolution equation.

・ロト・西ト・西ト・西ト・日・ シック

Atypical boundary layers: $\mu = \pm 1$, $k_h \neq 0$

$$\det A_{\lambda} = 0 \Rightarrow \begin{cases} \lambda_{+}^{2} = 2\mu i + o(1) \\ \text{or } \lambda_{-}^{2} = \mathcal{O}(\varepsilon + \sqrt{\varepsilon\nu}). \end{cases}$$

"Eigenvectors":
$$w_{\pm} = (1, \pm i) + o(1)$$
.

 \rightarrow Basis of \mathbb{C}^2 for ε, ν small enough.

Method: decompose the boundary condition (input of \mathcal{B}) onto basis $\{w_+, w_-\}$.

Same formulas as before.

 \rightarrow Uniform bounds in L^{∞} , L^{2} .

Novelty: keep exact (\neq approximated) values for w_+ , w_- .

 \rightarrow No error term in the evolution equation.

Choosing for example $\mu = 1$, we derive

$$A_{\lambda} = \begin{pmatrix} i - \lambda^2 & -1 \\ 1 & i - \lambda^2 \end{pmatrix}$$

Eigenvalues: $\lambda_{-}^2 = 2i$, $\lambda_{+}^2 = 0$; Eigenvectors: $w_{\pm} = (1, \pm i)$.

Remark: define $ar{u}^{ ext{sing}} := rac{Z}{(arepsilon
u)^\kappa} e^{irac{L}{arepsilon}} inom{w_+}{0}$. Then

$$\bar{u}_{|z=0}^{\mathrm{sing}} = 0, \quad \partial_z \bar{u}_{h|z=a}^{\mathrm{sing}} = \frac{1}{(\varepsilon \nu)^{\kappa}} e^{i \frac{t}{\varepsilon}} W_+.$$

$$U_{\text{BL},h} = \left(\alpha_{B,+} + \frac{\alpha_{T,+}Z}{(\varepsilon\nu)^{\kappa}}\right) W_{+} e^{i\frac{t}{\varepsilon}}.$$

Choosing for example $\mu = 1$, we derive

$$A_{\lambda} = \begin{pmatrix} i - \lambda^2 & -1 \\ 1 & i - \lambda^2 \end{pmatrix}$$

Eigenvalues: $\lambda_{-}^{2} = 2i$, $\lambda_{+}^{2} = 0$; Eigenvectors: $w_{\pm} = (1, \pm i)$. Remark: define $\bar{u}^{sing} := \frac{z}{(\varepsilon \nu)^{\kappa}} e^{i \frac{t}{\varepsilon}} \begin{pmatrix} w_{+} \\ 0 \end{pmatrix}$. Then $\bar{u}_{|z=0}^{sing} = 0$, $\partial_{z} \bar{u}_{h|z=a}^{sing} = \frac{1}{(\varepsilon \nu)^{\kappa}} e^{i \frac{t}{\varepsilon}} w_{+}$

$$U_{\text{BL},h} = \left(\alpha_{B,+} + \frac{\alpha_{T,+}Z}{(\varepsilon\nu)^{\kappa}}\right) W_{+} e^{i\frac{t}{\varepsilon}}.$$

Choosing for example $\mu = 1$, we derive

$$A_{\lambda} = egin{pmatrix} i - \lambda^2 & -1 \ 1 & i - \lambda^2 \end{pmatrix}.$$

Eigenvalues:
$$\lambda_{-}^{2} = 2i, \lambda_{+}^{2} = 0$$
;
Eigenvectors: $w_{\pm} = (1, \pm i)$.
Remark: define $\bar{u}^{\text{sing}} := \frac{z}{(\varepsilon \nu)^{\kappa}} e^{i\frac{t}{\varepsilon}} \begin{pmatrix} w_{+} \\ 0 \end{pmatrix}$. Then
 $\bar{u}_{|z=0}^{\text{sing}} = 0, \quad \partial_{z} \bar{u}_{h|z=a}^{\text{sing}} = \frac{1}{(\varepsilon \nu)^{\kappa}} e^{i\frac{t}{\varepsilon}} w_{+}.$

$$U_{\text{BL},h} = \left(\alpha_{B,+} + \frac{\alpha_{T,+}Z}{(\varepsilon\nu)^{\kappa}}\right) W_{+} e^{i\frac{t}{\varepsilon}}.$$

Choosing for example $\mu = 1$, we derive

$$A_{\lambda} = \begin{pmatrix} i - \lambda^2 & -1 \\ 1 & i - \lambda^2 \end{pmatrix}$$

Eigenvalues:
$$\lambda_{-}^{2} = 2i$$
, $\lambda_{+}^{2} = 0$;
Eigenvectors: $w_{\pm} = (1, \pm i)$.
Remark: define $\bar{u}^{\text{sing}} := \frac{z}{(\varepsilon \nu)^{\kappa}} e^{i\frac{\varepsilon}{\varepsilon}} \begin{pmatrix} w_{+} \\ 0 \end{pmatrix}$. Then
 $\bar{u}_{|z=0}^{\text{sing}} = 0$, $\partial_{z} \bar{u}_{h|z=a}^{\text{sing}} = \frac{1}{(\varepsilon \nu)^{\kappa}} e^{i\frac{\varepsilon}{\varepsilon}} w_{+}$.

$$\boldsymbol{U}_{\mathsf{BL},h} = \left(\alpha_{B,+} + \frac{\alpha_{T,+} \boldsymbol{Z}}{(\varepsilon \nu)^{\kappa}}\right) \boldsymbol{W}_{+} \boldsymbol{e}^{i\frac{t}{\varepsilon}}.$$

Plan

Introduction

The almost-periodic, resonant case

Main result in the linear case The boundary layer operator **The interior operator** Construction of an approximate solution and conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The random stationary, non-resonant case

Explicit construction:

 $u_{\text{int}} = \mathcal{U}[v_B, v_T, u_0]$

such that u_{int} is a solution of the evolution equation and satisfies

$$u_{\text{int}}(t=0) = u_0 + o(1), \ u_{\text{int},3|z=0} = \sqrt{\varepsilon \nu} v_B, \ u_{\text{int},3|z=a} = \sqrt{\varepsilon \nu} v_T.$$

Decomposition:
$$u_{\text{int}} = \exp\left(\frac{t}{\varepsilon}L\right)w(t) + v_{\text{int}} + u_{\text{int}}^{\text{osc}}$$
 where

w(t): preponderant term; matches initial data u₀;
 w₁: known explicitely:

$$V_{\text{int}} := \sqrt{\varepsilon\nu} \begin{pmatrix} \nabla_h \Delta_h^{-1} (v_B - v_T) \\ v_T z + v_B (1 - z) \end{pmatrix};$$

Explicit construction:

$$u_{\text{int}} = \mathcal{U}[v_B, v_T, u_0]$$

such that uint is a solution of the evolution equation and satisfies

$$u_{\text{int}}(t=0) = u_0 + o(1), \ u_{\text{int},3|z=0} = \sqrt{\varepsilon \nu} v_B, \ u_{\text{int},3|z=a} = \sqrt{\varepsilon \nu} v_T.$$

Decomposition:
$$u_{\text{int}} = \exp\left(\frac{t}{\varepsilon}L\right)w(t) + v_{\text{int}} + u_{\text{int}}^{\text{osc}}$$
 where

- w(t): preponderant term; matches initial data u_0 ;
- *v*_{int}: known explicitely;

$$V_{\text{int}} := \sqrt{\varepsilon\nu} \begin{pmatrix} \nabla_h \Delta_h^{-1} (v_B - v_T) \\ v_T z + v_B (1 - z) \end{pmatrix};$$

► u^{osc}: oscillating term, takes into account rest of equation.

Explicit construction:

$$u_{\text{int}} = \mathcal{U}[v_B, v_T, u_0]$$

such that uint is a solution of the evolution equation and satisfies

$$u_{\text{int}}(t=0) = u_0 + o(1), \ u_{\text{int},3|z=0} = \sqrt{\varepsilon \nu} v_B, \ u_{\text{int},3|z=a} = \sqrt{\varepsilon \nu} v_T.$$

Decomposition:
$$u_{\text{int}} = \exp\left(\frac{t}{\varepsilon}L\right)w(t) + v_{\text{int}} + u_{\text{int}}^{\text{osc}}$$
 where

- w(t): preponderant term; matches initial data u_0 ;
- v_{int}: known explicitely;

$$\mathbf{v}_{\text{int}} := \sqrt{\varepsilon\nu} \begin{pmatrix} \nabla_h \Delta_h^{-1} (\mathbf{v}_B - \mathbf{v}_T) \\ \mathbf{v}_T \mathbf{z} + \mathbf{v}_B (1 - \mathbf{z}) \end{pmatrix};$$

► u^{osc}: oscillating term, takes into account rest of equation.

Explicit construction:

$$u_{\text{int}} = \mathcal{U}[v_B, v_T, u_0]$$

such that uint is a solution of the evolution equation and satisfies

$$u_{\text{int}}(t=0) = u_0 + o(1), \ u_{\text{int},3|z=0} = \sqrt{\varepsilon \nu} v_B, \ u_{\text{int},3|z=a} = \sqrt{\varepsilon \nu} v_T.$$

Decomposition:
$$u_{\text{int}} = \exp\left(\frac{t}{\varepsilon}L\right)w(t) + v_{\text{int}} + u_{\text{int}}^{\text{osc}}$$
 where

- w(t): preponderant term; matches initial data u_0 ;
- v_{int}: known explicitely;

$$v_{\text{int}} := \sqrt{\varepsilon\nu} \begin{pmatrix} \nabla_h \Delta_h^{-1} (v_B - v_T) \\ v_T z + v_B (1 - z) \end{pmatrix};$$

• u_{int}^{osc} : oscillating term, takes into account rest of equation.

Derivation of equations for w and u_{int}^{osc}

Functional preliminaries:define

$$F_0 := \{ u \in L^2(V), \text{ div} u = 0, u_{3|z=0} = u_{3|z=a} = 0 \}.$$

P: projection on F_0 ; $(N_k)_{k\geq 0}$: hilbertian basis of F_0 , such that $LN_k = \lambda_k N_k$. Set

$$\Sigma := \partial_t V_{\text{int}} + rac{1}{arepsilon} e_3 \wedge V_{\text{int}} -
u \partial_z^2 V_{\text{int}} - \Delta_h V_{\text{int}}.$$

Then $w_{int} := \exp(-t/\varepsilon L) w + u_{int}^{osc}$ is such that

 $\partial_t W_{\text{int}} + \frac{1}{\varepsilon} L W_{\text{int}} - \nu \partial_z^2 W_{\text{int}} - \Delta_h W_{\text{int}} = -\mathbb{P}(\Sigma) = -\sum_k \langle N_k, \Sigma \rangle N_k.$

Rules:

- All terms in (N_k, Σ) oscillating at frequencies λ_k/ε become source terms in equation on w;
- ► All terms in $\langle N_k, \Sigma \rangle$ oscillating at frequencies $\mu/\varepsilon, \mu \neq \lambda_k$ become source terms in equation on $u_{\text{infl}}^{\text{osc}}, \langle \sigma \rangle, \langle z \rangle, \langle z \rangle, \langle z \rangle$

Derivation of equations for w and u_{int}^{osc}

Functional preliminaries:define

$$F_0 := \{ u \in L^2(V), \text{ div} u = 0, u_{3|z=0} = u_{3|z=a} = 0 \}.$$

P: projection on F_0 ; $(N_k)_{k\geq 0}$: hilbertian basis of F_0 , such that $LN_k = \lambda_k N_k$. Set

$$\Sigma := \partial_t \mathbf{v}_{\text{int}} + \frac{1}{\varepsilon} \mathbf{e}_3 \wedge \mathbf{v}_{\text{int}} - \nu \partial_z^2 \mathbf{v}_{\text{int}} - \Delta_h \mathbf{v}_{\text{int}}.$$

Then $w_{int} := \exp(-t/\varepsilon L) w + u_{int}^{osc}$ is such that

$$\partial_t w_{\text{int}} + \frac{1}{\varepsilon} L w_{\text{int}} - \nu \partial_z^2 w_{\text{int}} - \Delta_h w_{\text{int}} = -\mathbb{P}(\Sigma) = -\sum_k \langle N_k, \Sigma \rangle N_k.$$

Rules:

- All terms in (N_k, Σ) oscillating at frequencies λ_k/ε become source terms in equation on w;
- ► All terms in $\langle N_k, \Sigma \rangle$ oscillating at frequencies $\mu/\varepsilon, \mu \neq \lambda_k$ become source terms in equation on $u_{\text{infl}}^{\text{osc}}, \langle \sigma \rangle, \langle z \rangle, \langle z \rangle, \langle z \rangle$

Derivation of equations for w and u_{int}^{osc}

Functional preliminaries:define

$$F_0 := \{ u \in L^2(V), \text{ div } u = 0, \ u_{3|z=0} = u_{3|z=a} = 0 \}.$$

P: projection on F_0 ; $(N_k)_{k\geq 0}$: hilbertian basis of F_0 , such that $LN_k = \lambda_k N_k$. Set

$$\Sigma := \partial_t \mathbf{v}_{\text{int}} + \frac{1}{\varepsilon} \mathbf{e}_3 \wedge \mathbf{v}_{\text{int}} - \nu \partial_z^2 \mathbf{v}_{\text{int}} - \Delta_h \mathbf{v}_{\text{int}}.$$

Then $w_{int} := \exp(-t/\varepsilon L) w + u_{int}^{osc}$ is such that

$$\partial_t w_{\text{int}} + \frac{1}{\varepsilon} L w_{\text{int}} - \nu \partial_z^2 w_{\text{int}} - \Delta_h w_{\text{int}} = -\mathbb{P}(\Sigma) = -\sum_k \langle N_k, \Sigma \rangle N_k.$$

Rules:

- All terms in (N_k, Σ) oscillating at frequencies λ_k/ε become source terms in equation on w;

Singular profile for $k_h = 0$

Problem: recall singular profile

$$\bar{\boldsymbol{u}}^{\mathsf{sing}} = \sum_{\pm} \left(\alpha_{\boldsymbol{B},\pm} + \frac{\alpha_{\boldsymbol{T},\pm}\boldsymbol{Z}}{(\varepsilon\nu)^{\kappa}} \right) \boldsymbol{w}_{\pm} \boldsymbol{e}^{\pm i\frac{t}{\varepsilon}}.$$

Does not match initial condition ! Idea: build $u^{sing} := \bar{u}^{sing} + u^{sing}_{osc}$, where

$$\partial_t u_{\text{osc}}^{\text{sing}} + \frac{1}{\varepsilon} L u_{\text{osc}}^{\text{sing}} - \nu \partial_z^2 u_{\text{osc}}^{\text{sing}} = 0$$
$$u_{\text{osc}}^{\text{sing}}(t=0) = -\bar{u}^{\text{sing}}(t=0),$$
$$u_{\text{osc},h|z=0}^{\text{sing}} = 0, \quad \partial_z u_{\text{osc},h|z=a}^{\text{sing}} = 0 \ (t > 0),$$
$$u_{\text{osc},3}^{\text{sing}} \equiv 0.$$

Remark: no stabilization.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Singular profile for $k_h = 0$

Problem: recall singular profile

$$\bar{\boldsymbol{u}}^{\mathsf{sing}} = \sum_{\pm} \left(\alpha_{\boldsymbol{B},\pm} + \frac{\alpha_{\boldsymbol{T},\pm}\boldsymbol{Z}}{(\varepsilon\nu)^{\kappa}} \right) \boldsymbol{w}_{\pm} \boldsymbol{e}^{\pm i\frac{t}{\varepsilon}}.$$

Does not match initial condition ! **Idea:** build $u^{sing} := \bar{u}^{sing} + u^{sing}_{osc}$, where

$$\partial_t u_{\text{osc}}^{\text{sing}} + \frac{1}{\varepsilon} L u_{\text{osc}}^{\text{sing}} - \nu \partial_z^2 u_{\text{osc}}^{\text{sing}} = 0$$

$$u_{\text{osc}}^{\text{sing}}(t=0) = -\bar{u}^{\text{sing}}(t=0),$$

$$u_{\text{osc},h|z=0}^{\text{sing}} = 0, \quad \partial_z u_{\text{osc},h|z=a}^{\text{sing}} = 0 \ (t > 0),$$

$$u_{\text{osc},3}^{\text{sing}} \equiv 0.$$

Remark: no stabilization.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Singular profile for $k_h = 0$

Problem: recall singular profile

$$\bar{\boldsymbol{u}}^{\mathsf{sing}} = \sum_{\pm} \left(\alpha_{\boldsymbol{B},\pm} + \frac{\alpha_{\boldsymbol{T},\pm}\boldsymbol{Z}}{(\varepsilon\nu)^{\kappa}} \right) \boldsymbol{w}_{\pm} \boldsymbol{e}^{\pm i\frac{t}{\varepsilon}}.$$

Does not match initial condition ! **Idea:** build $u^{sing} := \bar{u}^{sing} + u^{sing}_{osc}$, where

$$\partial_t u_{\text{osc}}^{\text{sing}} + \frac{1}{\varepsilon} L u_{\text{osc}}^{\text{sing}} - \nu \partial_z^2 u_{\text{osc}}^{\text{sing}} = 0$$
$$u_{\text{osc}}^{\text{sing}}(t=0) = -\bar{u}^{\text{sing}}(t=0),$$
$$u_{\text{osc},h|z=0}^{\text{sing}} = 0, \quad \partial_z u_{\text{osc},h|z=a}^{\text{sing}} = 0 \ (t > 0).$$
$$u_{\text{osc},3}^{\text{sing}} \equiv 0.$$

Remark: no stabilization.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Plan

Introduction

The almost-periodic, resonant case

Main result in the linear case The boundary layer operator The interior operator Construction of an approximate solution and conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The random stationary, non-resonant case

First step: define the singular profile u^{sing} and the solution of the envelope equation w, given by

$$\begin{cases} \partial_t w - \Delta_h w + \sqrt{\frac{\nu}{\varepsilon}} S_{\mathsf{Ekman}}[w] = 0, \\ w_{|t=0} = u_{|t=0}, \end{cases}$$

where S_{Ekman} : $F_0 \rightarrow F_0$, $S_{\text{Ekman}} \ge 0$.

- **Second step:** define a BL term $\mathcal{B}(\delta_{0,h}, \delta_{1,h})$, where
 - $\delta_{0,h}$: trace of *w* on *z* = 0;
 - $\delta_{1,h} = \sigma$ (wind forcing).
- ► **Third step:** define the rest of the interior term (of order o(1) in L^2): $v^{int} + u^{int}_{osc}$.

- ► **First step:** define the singular profile *u*^{sing} and the solution of the envelope equation *w*.
- **Second step:** define a BL term $\mathcal{B}(\delta_{0,h}, \delta_{1,h})$, where
 - $\delta_{0,h}$: trace of w on z = 0;
 - $\delta_{1,h} = \sigma$ (wind forcing).

At this stage: evolution eq. satisfied up to $\mathcal{O}(1)$ terms, horizontal BC are satisfied, and vertical BC are satisfied up to $\mathcal{O}((\varepsilon \nu)^{\frac{1}{2}-\kappa})$ terms.

- ► **Third step:** define the rest of the interior term (of order o(1) in L^2): $v^{int} + u^{int}_{osc}$.
- ► Fourth step: define one additionnal boundary layer term, taking into account the remaining horizontal BC.

(日) (日) (日) (日) (日) (日) (日)

Fifth step: use stopping Lemma.

- ► **First step:** define the singular profile *u*^{sing} and the solution of the envelope equation *w*.
- **Second step:** define a BL term $\mathcal{B}(\delta_{0,h}, \delta_{1,h})$, where
 - $\delta_{0,h}$: trace of w on z = 0;
 - $\delta_{1,h} = \sigma$ (wind forcing).
- ► **Third step:** define the rest of the interior term (of order o(1) in L^2): $v^{int} + u^{int}_{osc}$.

At this stage: evolution eq. satisfied up to o(1) terms, vertical BC are satisfied, and horizontal BC are satisfied up to o(1) terms (as long as κ is not too large).

- Fourth step: define one additionnal boundary layer term, taking into account the remaining horizontal BC.
- **Fifth step:** use stopping Lemma.

- ► **First step:** define the singular profile *u*^{sing} and the solution of the envelope equation *w*.
- **Second step:** define a BL term $\mathcal{B}(\delta_{0,h}, \delta_{1,h})$, where
 - $\delta_{0,h}$: trace of w on z = 0;
 - $\delta_{1,h} = \sigma$ (wind forcing).
- ► **Third step:** define the rest of the interior term (of order o(1) in L^2): $v^{int} + u^{int}_{osc}$.
- Fourth step: define one additionnal boundary layer term, taking into account the remaining horizontal BC.

At this stage: evolution eq. satisfied up to o(1) terms, horizontal BC are satisfied, and vertical BC are satisfied up to $o(\sqrt{\varepsilon\nu}) = o(\varepsilon)$ terms.

- **Fifth step:** use stopping Lemma.
- (中)<(層)<(茎)<(茎)<(茎)<(茎)<(茎)<(茎)<(茎)<(2)

- ► **First step:** define the singular profile *u*^{sing} and the solution of the envelope equation *w*.
- **Second step:** define a BL term $\mathcal{B}(\delta_{0,h}, \delta_{1,h})$, where
 - $\delta_{0,h}$: trace of w on z = 0;
 - $\delta_{1,h} = \sigma$ (wind forcing).
- ► **Third step:** define the rest of the interior term (of order o(1) in L^2): $v^{int} + u^{int}_{osc}$.
- Fourth step: define one additionnal boundary layer term, taking into account the remaining horizontal BC.
- Fifth step: use stopping Lemma.

Conclusion: evolution eq. satisfied up to o(1) terms, boundary conditions satisfied exactly. Conclude by energy estimate.

- ► **First step:** define the singular profile *u*^{sing} and the solution of the envelope equation *w*.
- **Second step:** define a BL term $\mathcal{B}(\delta_{0,h}, \delta_{1,h})$, where
 - δ_{0,h}: trace of w on z = 0;
 - $\delta_{1,h} = \sigma$ (wind forcing).
- ► Third step: define the rest of the interior term (of order o(1) in L^2): $v^{int} + u^{int}_{osc}$.
- Fourth step: define one additionnal boundary layer term, taking into account the remaining horizontal BC.
- Fifth step: use stopping Lemma.

Conclusion: evolution eq. satisfied up to o(1) terms, boundary conditions satisfied exactly. Conclude by energy estimate.

Conclusion of the almost-periodic case

Linear problem:

- Apparition of atypical boundary layers due to resonant forcing (µ = ±1) on the non-homogeneous modes (k_h ≠ 0).
- Singular profile (µ = ±1, k_h = 0) which destabilizes the whole fluid for arbitrary initial data.
- Linearity of the equation enables explicit calculations.

Nonlinear problem:

Recent result [D., Saint-Raymond, '07]: stability of singular profile in *H^s* norm and when the amplitude of the wind-stress is not too large.

Proof based on analysis of resonant modes: $\lambda_k - \lambda_l = \pm 1$.

・ロト・四ト・モー・ ヨー うへぐ

Conclusion of the almost-periodic case

Linear problem:

- Apparition of atypical boundary layers due to resonant forcing (µ = ±1) on the non-homogeneous modes (k_h ≠ 0).
- Singular profile (µ = ±1, k_h = 0) which destabilizes the whole fluid for arbitrary initial data.
- Linearity of the equation enables explicit calculations.

Nonlinear problem:

Recent result [D., Saint-Raymond, '07]: stability of singular profile in *H^s* norm and when the amplitude of the wind-stress is not too large.

Proof based on analysis of resonant modes: $\lambda_k - \lambda_l = \pm 1$.

Conclusion of the almost-periodic case

Linear problem:

- Apparition of atypical boundary layers due to resonant forcing (µ = ±1) on the non-homogeneous modes (k_h ≠ 0).
- Singular profile (µ = ±1, k_h = 0) which destabilizes the whole fluid for arbitrary initial data.
- Linearity of the equation enables explicit calculations.

Nonlinear problem:

Recent result [D., Saint-Raymond, '07]: stability of singular profile in *H^s* norm and when the amplitude of the wind-stress is not too large.

Proof based on analysis of resonant modes: $\lambda_k - \lambda_l = \pm 1$.

Introduction

The almost-periodic, resonant case

The random stationary, non-resonant case Convergence result The limit equation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The stationary setting

Recall that

$$\sigma = \mathcal{S}\left(t, \mathbf{x}_{h}, \theta_{\frac{t}{\varepsilon}}\omega\right).$$

Assumption of non-resonance: (avoid singular profile) Define approximate Fourier transform: for $\gamma > 0$,

$$\hat{\sigma}_{\gamma}(\lambda,\omega) := rac{1}{2\pi} \int_{\mathbb{R}} \exp(-\gamma | au|) e^{-i\lambda au} \sigma(au,\omega) \ d au.$$

Assume that

(H1) $\forall \gamma > 0, \ \hat{\sigma}_{\gamma} \in L^{\infty}(E, L^{1}(\mathbb{R})), \text{ and }$

$$\sup_{\gamma>0} ||\hat{\sigma}_{\gamma}||_{L^{\infty}(E,L^{1}(\mathbb{R}))} < +\infty.$$

(H2) ∃ neighbourhoods V_± of ±1, independent of γ > 0, such that

$$\lim_{\gamma \to 0} \sup_{\lambda \in V_+ \cup V_-} |\hat{\sigma}_{\gamma}(\lambda)| = 0.$$

The stationary setting

Recall that

$$\sigma = \mathcal{S}\left(t, \mathbf{x}_h, \theta_{\frac{t}{\varepsilon}}\omega\right).$$

Assumption of non-resonance: (avoid singular profile) Define approximate Fourier transform: for $\gamma > 0$,

$$\hat{\sigma}_{\gamma}(\lambda,\omega) := rac{1}{2\pi} \int_{\mathbb{R}} \exp(-\gamma | au|) oldsymbol{e}^{-i\lambda au} \sigma(au,\omega) \ oldsymbol{d} au.$$

Assume that

(H1) $\forall \gamma > 0, \ \hat{\sigma}_{\gamma} \in L^{\infty}(E, L^{1}(\mathbb{R})), \text{ and }$

$$\sup_{\gamma>0} ||\hat{\sigma}_{\gamma}||_{L^{\infty}(E,L^{1}(\mathbb{R}))} < +\infty.$$

(H2) ∃ neighbourhoods V_± of ±1, independent of γ > 0, such that

$$\lim_{\gamma \to 0} \sup_{\lambda \in V_+ \cup V_-} |\hat{\sigma}_{\gamma}(\lambda)| = 0.$$

The stationary setting

Recall that

$$\sigma = \mathcal{S}\left(t, \mathbf{x}_{h}, \theta_{\frac{t}{\varepsilon}}\omega\right).$$

Assumption of non-resonance: (avoid singular profile) Define approximate Fourier transform: for $\gamma > 0$,

$$\hat{\sigma}_{\gamma}(\lambda,\omega) := rac{1}{2\pi} \int_{\mathbb{R}} \exp(-\gamma | au|) oldsymbol{e}^{-i\lambda au} \sigma(au,\omega) \ oldsymbol{d} au.$$

Assume that

(H1)
$$\forall \gamma > 0, \, \hat{\sigma}_{\gamma} \in L^{\infty}(E, L^{1}(\mathbb{R})), \text{ and}$$

$$\sup_{\gamma > 0} ||\hat{\sigma}_{\gamma}||_{L^{\infty}(E, L^{1}(\mathbb{R}))} < +\infty.$$

(H2) \exists neighbourhoods V_{\pm} of ± 1 , independent of $\gamma > 0$, such that

$$\lim_{\gamma\to 0} \sup_{\lambda\in V_+\cup V_-} |\hat{\sigma}_{\gamma}(\lambda)| = 0.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction

The almost-periodic, resonant case

The random stationary, non-resonant case Convergence result The limit equation

Convergence result in the nonlinear stationary case

Theorem:[D., 2007] Let $u = u^{\varepsilon,\nu}$ be the solution of

$$\begin{cases} \partial_t u + \frac{1}{\varepsilon} e_3 \wedge u + u \cdot \nabla u - \nu \partial_z^2 u - \Delta_h u + \nabla p = 0, \\ \operatorname{div} u = 0, \\ u_{|z=0} = 0, \\ u_{3|z=a} = 0, \quad \partial_z u_{h|z=a}(t) = \frac{1}{(\varepsilon \nu)^{\frac{1}{2}}} \sigma\left(t, \frac{t}{\varepsilon}, x_h, \omega\right). \end{cases}$$

Let $w \in L^{\infty}(0, T^*; H^s)$ (s > 5/2) be the solution of the envelope equation, and assume that (H1)-(H2) are satisfied. Then as $\varepsilon, \nu \to 0$ with $\nu = O(\varepsilon)$,

$$u^{\varepsilon,\nu} - \left(\exp\left(\frac{t}{\varepsilon}L\right)w(t)\right) \to 0,$$

in $L^{\infty}(0, T; L^2(V \times E)) \cap L^2((0, T) \times E, H^1_h(V))$ for all $T < T^*$. Remark: *w* is random!

Convergence result in the nonlinear stationary case

Theorem:[D., 2007] Let $u = u^{\varepsilon,\nu}$ be the solution of

$$\begin{cases} \partial_t u + \frac{1}{\varepsilon} e_3 \wedge u + u \cdot \nabla u - \nu \partial_z^2 u - \Delta_h u + \nabla p = 0, \\ \operatorname{div} u = 0, \\ u_{|z=0} = 0, \\ u_{3|z=a} = 0, \quad \partial_z u_{h|z=a}(t) = \frac{1}{(\varepsilon \nu)^{\frac{1}{2}}} \sigma\left(t, \frac{t}{\varepsilon}, x_h, \omega\right). \end{cases}$$

Let $w \in L^{\infty}(0, T^*; H^s)$ (s > 5/2) be the solution of the envelope equation, and assume that (H1)-(H2) are satisfied. Then as $\varepsilon, \nu \to 0$ with $\nu = O(\varepsilon)$,

$$u^{\varepsilon,\nu} - \left(\exp\left(\frac{t}{\varepsilon}L\right)w(t)\right) \to 0,$$

in $L^{\infty}(0, T; L^2(V \times E)) \cap L^2((0, T) \times E, H^1_h(V))$ for all $T < T^*$. **Remark:** *w* is random!

Same strategy as in almost-periodic case. Main features:

- No atypical boundary layer terms (non-resonance);
- Boundary layer terms are random stationary in time;
- ► Filtering methods → need to investigate average behaviour of oscillating functions.

Variant of ergodic Theorem:

Lemma Let $\phi \in L^1(E,\mu)$, and let $\lambda \in \mathbb{R}$. Then $\exists ar{\phi}^\lambda \in L^1(E)$,

$$rac{1}{T}\int_0^T \phi(heta_ au\omega) e^{-i\lambda au} \,d au o ar\phi^\lambda$$

a.s. and in $L^1(E)$.

Same strategy as in almost-periodic case. Main features:

- No atypical boundary layer terms (non-resonance);
- Boundary layer terms are random stationary in time;
- ► Filtering methods → need to investigate average behaviour of oscillating functions.

Variant of ergodic Theorem:

Lemma Let $\phi \in L^1(E,\mu)$, and let $\lambda \in \mathbb{R}$. Then $\exists ar{\phi}^\lambda \in L^1(E)$,

$$rac{1}{T}\int_0^T \phi(heta_ au\omega) e^{-i\lambda au} \,d au o ar\phi^\lambda$$

a.s. and in $L^1(E)$.

Same strategy as in almost-periodic case. Main features:

- No atypical boundary layer terms (non-resonance);
- Boundary layer terms are random stationary in time;
- ► Filtering methods → need to investigate average behaviour of oscillating functions. Variant of ergodic Theorem:

Lemma Let $\phi \in L^1(E,\mu)$, and let $\lambda \in \mathbb{R}$. Then $\exists \bar{\phi}^\lambda \in L^1(E)$,

$$rac{1}{T}\int_0^T \phi(heta_ au\omega) e^{-i\lambda au} \,d au o ar\phi^\lambda$$

a.s. and in $L^1(E)$.

Same strategy as in almost-periodic case. Main features:

- No atypical boundary layer terms (non-resonance);
- Boundary layer terms are random stationary in time;
- ► Filtering methods → need to investigate average behaviour of oscillating functions. Variant of ergodic Theorem:

Lemma Let $\phi \in L^1(E, \mu)$, and let $\lambda \in \mathbb{R}$. Then $\exists \overline{\phi}^{\lambda} \in L^1(E)$,

$$rac{1}{T}\int_0^T \phi(heta_ au\omega) m{e}^{-i\lambda au} \, d au o ar{\phi}^\lambda$$

a.s. and in $L^1(E)$.

Introduction

The almost-periodic, resonant case

The random stationary, non-resonant case Convergence result The limit equation

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

The envelope equation

The function w is a solution of

$$\begin{cases} \partial_t w + \bar{Q}(w, w) - \Delta_h w + \underbrace{\bar{S}_B(w) + \bar{S}_T(\omega)}_{\text{Ekman pumping}} = 0, \\ w(t = 0) = w_0 \in H^s, & \text{div} w_0 = 0, \\ \text{div} w = 0, \\ w_{3|z=0} = 0, & w_{3|z=a} = 0, \end{cases}$$

In general, w is random... However, $\bar{w} = 1/a \int_0^a w$ is not!

$$\begin{cases} \partial_t \bar{w} + \mathbb{P}(\bar{w} \cdot \nabla \bar{w}) - \Delta_h \bar{w} + \bar{S}_B(\bar{w}) + E\left[\bar{S}_T\right] = 0, \\ \bar{w}(t=0) = \bar{w}_0 = \frac{1}{a} \int_0^a w_0. \end{cases}$$

Question: equation on $E[w] - \bar{w}$? (vertical modes)

<□▶ <圖▶ < 差▶ < 差▶ = 差 = のへで

The envelope equation

The function w is a solution of

$$\begin{cases} \partial_t w + \bar{Q}(w, w) - \Delta_h w + \underbrace{\bar{S}_B(w) + \bar{S}_T(\omega)}_{\text{Ekman pumping}} = 0, \\ w(t = 0) = w_0 \in H^s, \quad \text{div} w_0 = 0, \\ \text{div} w = 0, \\ w_{3|z=0} = 0, \ w_{3|z=a} = 0, \end{cases}$$

In general, w is random... However, $\bar{w} = 1/a \int_0^a w$ is not!

$$\begin{cases} \partial_t \bar{w} + \mathbb{P}(\bar{w} \cdot \nabla \bar{w}) - \Delta_h \bar{w} + \bar{S}_B(\bar{w}) + E\left[\bar{S}_T\right] = 0, \\ \bar{w}(t=0) = \bar{w}_0 = \frac{1}{a} \int_0^a w_0. \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Question: equation on $E[w] - \bar{w}$? (vertical modes)

The envelope equation

The function w is a solution of

$$\begin{cases} \partial_t w + \bar{Q}(w, w) - \Delta_h w + \underbrace{\bar{S}_B(w) + \bar{S}_T(\omega)}_{\text{Ekman pumping}} = 0, \\ w(t = 0) = w_0 \in H^s, \quad \text{div} w_0 = 0, \\ \text{div} w = 0, \\ w_{3|z=0} = 0, \ w_{3|z=a} = 0, \end{cases}$$

In general, w is random... However, $\bar{w} = 1/a \int_0^a w$ is not!

$$\begin{cases} \partial_t \bar{w} + \mathbb{P}(\bar{w} \cdot \nabla \bar{w}) - \Delta_h \bar{w} + \bar{S}_B(\bar{w}) + E\left[\bar{S}_T\right] = 0, \\ \bar{w}(t=0) = \bar{w}_0 = \frac{1}{a} \int_0^a w_0. \end{cases}$$

Question: equation on $E[w] - \bar{w}$? (vertical modes)

If the torus is non-resonant, then

$$\overline{Q}(w,w) = \overline{Q}(\overline{w},\overline{w}) + \underbrace{\overline{Q}(\overline{w},w-\overline{w}) + \overline{Q}(w-\overline{w},\overline{w})}_{=:q(\overline{w},w-\overline{w})}.$$

→ The limit equation decouples: $w = \bar{w} + \tilde{w}_1 + \tilde{w}_2$, where • \bar{w} : nonlinear deterministic equation;

• \tilde{w}_1 : linear deterministic equation:

$$\begin{cases} \partial_t \tilde{w}_1 + q(\bar{w}, \tilde{w}_1) - \Delta_h \tilde{w}_1 + \bar{S}_B(\tilde{w}_1) = 0, \\ \tilde{w}_1(t=0) = w_0 - \bar{w}_0; \end{cases}$$

• \tilde{w}_2 : linear random equation, $E[\tilde{w}_2] = 0$:

 $\begin{cases} \partial_t \tilde{w}_2 + q(\bar{w}, \tilde{w}_2) - \Delta_h \tilde{w}_2 + \bar{S}_T - E[\bar{S}_T] = 0, \\ \tilde{w}_2(t=0) = 0. \end{cases}$

(日) (日) (日) (日) (日) (日) (日)

If the torus is non-resonant, then

$$\bar{Q}(w,w) = \bar{Q}(\bar{w},\bar{w}) + \underbrace{\bar{Q}(\bar{w},w-\bar{w}) + \bar{Q}(w-\bar{w},\bar{w})}_{=:q(\bar{w},w-\bar{w})}.$$

- \rightarrow The limit equation decouples: $w = \bar{w} + \tilde{w}_1 + \tilde{w}_2$, where
 - \bar{w} : nonlinear deterministic equation;
 - \tilde{w}_1 : linear deterministic equation:

$$\begin{cases} \partial_t \tilde{w}_1 + q(\bar{w}, \tilde{w}_1) - \Delta_h \tilde{w}_1 + \bar{S}_B(\tilde{w}_1) = 0, \\ \tilde{w}_1(t=0) = w_0 - \bar{w}_0; \end{cases}$$

• \tilde{w}_2 : linear random equation, $E[\tilde{w}_2] = 0$:

$$\begin{cases} \partial_t \tilde{w}_2 + q(\bar{w}, \tilde{w}_2) - \Delta_h \tilde{w}_2 + \bar{S}_T - E[\bar{S}_T] = 0, \\ \tilde{w}_2(t=0) = 0. \end{cases}$$

(日) (日) (日) (日) (日) (日) (日)

If the torus is non-resonant, then

$$\bar{Q}(w,w) = \bar{Q}(\bar{w},\bar{w}) + \underbrace{\bar{Q}(\bar{w},w-\bar{w}) + \bar{Q}(w-\bar{w},\bar{w})}_{=:q(\bar{w},w-\bar{w})}.$$

- \rightarrow The limit equation decouples: $w = \bar{w} + \tilde{w}_1 + \tilde{w}_2$, where
 - \bar{w} : nonlinear deterministic equation;
 - \tilde{w}_1 : linear deterministic equation:

$$\begin{cases} \partial_t \tilde{w}_1 + q(\bar{w}, \tilde{w}_1) - \Delta_h \tilde{w}_1 + \bar{S}_B(\tilde{w}_1) = 0, \\ \tilde{w}_1(t=0) = w_0 - \bar{w}_0; \end{cases}$$

• \tilde{w}_2 : linear random equation, $E[\tilde{w}_2] = 0$:

$$\begin{cases} \partial_t \tilde{w}_2 + q(\bar{w}, \tilde{w}_2) - \Delta_h \tilde{w}_2 + \bar{S}_T - E[\bar{S}_T] = 0, \\ \tilde{w}_2(t=0) = 0. \end{cases}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

If the torus is non-resonant, then

$$\bar{Q}(w,w) = \bar{Q}(\bar{w},\bar{w}) + \underbrace{\bar{Q}(\bar{w},w-\bar{w}) + \bar{Q}(w-\bar{w},\bar{w})}_{=:q(\bar{w},w-\bar{w})}.$$

- \rightarrow The limit equation decouples: $w = \bar{w} + \tilde{w}_1 + \tilde{w}_2$, where
 - \bar{w} : nonlinear deterministic equation;
 - \tilde{w}_1 : linear deterministic equation:

$$\begin{cases} \partial_t \tilde{w}_1 + q(\bar{w}, \tilde{w}_1) - \Delta_h \tilde{w}_1 + \bar{S}_B(\tilde{w}_1) = 0, \\ \tilde{w}_1(t=0) = w_0 - \bar{w}_0; \end{cases}$$

• \tilde{w}_2 : linear random equation, $E[\tilde{w}_2] = 0$:

$$\begin{cases} \partial_t \tilde{w}_2 + q(\bar{w}, \tilde{w}_2) - \Delta_h \tilde{w}_2 + \bar{S}_T - E[\bar{S}_T] = 0, \\ \tilde{w}_2(t=0) = 0. \end{cases}$$

(日) (日) (日) (日) (日) (日) (日)

- Include treatment of singular profile in the random case (avoid non-resonance assumptions);
- Use β-plane instead of f-plane model (variations of Coriolis parameter): modification of the weak limit, apparition of vertical boundary layers on the western boundaries.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

- Consider more general boundaries (different types of boundary layers are expected).
- Work with density-dependent models.