Étude mathématique de fluides en rotation rapide avec forçage en surface

Anne-Laure Dalibard
 Travail en collaboration avec Laure Saint-Raymond

DMA - ENS
\& CEREMADE - Université Paris-Dauphine

22 Janvier 2008
Séminaire X-EDP

Introduction

The almost-periodic, resonant case

The random stationary, non-resonant case

Plan

Introduction
Presentation of the model General strategy

The almost-periodic, resonant case

The random stationary, non-resonant case

Introduction
Presentation of the model
General strategy

The almost-periodic, resonant case

The random stationary, non-resonant case

Main assumptions in the interior

- Starting point: Ocean = homogeneous, incompressible fluid in a rotating frame.
\rightarrow 3D Navier-Stokes equations with Coriolis force $\Omega \wedge u$.
- Coriolis acceleration:
$\rightarrow \quad f$-plane approximation: $f=2|\Omega| \sin (\theta)$ homogeneous
("small" geographical zone, midlatitudes);
\rightarrow effect of horizontal component of Ω is neglected.
- Frictional forces \mathcal{F} : notion of "turbulent viscosity"

$$
\mathcal{F}=A_{v} \partial_{z}^{2} u+A_{h} \Delta_{h} u, \quad A_{h}, A_{v}>0, A_{h} \neq A_{v} .
$$

- Conclusion: the velocity u of currents inside the ocean is described by

Main assumptions in the interior

- Starting point: Ocean = homogeneous, incompressible fluid in a rotating frame.
\rightarrow 3D Navier-Stokes equations with Coriolis force $\Omega \wedge u$.
- Coriolis acceleration:
$\rightarrow \quad f$-plane approximation: $f=2|\Omega| \sin (\theta)$ homogeneous ("small" geographical zone, midlatitudes);
\rightarrow effect of horizontal component of Ω is neglected.
- Frictional forces

$$
\mathcal{F}=A_{v} \partial_{z}^{2} u+A_{h} \Delta_{h} u, \quad A_{h}, A_{v}>0, A_{h} \neq A_{v} .
$$

- Conclusion: the velocity u of currents inside the ocean is described by

Main assumptions in the interior

- Starting point: Ocean = homogeneous, incompressible fluid in a rotating frame.
\rightarrow 3D Navier-Stokes equations with Coriolis force $\Omega \wedge u$.
- Coriolis acceleration:
$\rightarrow \quad f$-plane approximation: $f=2|\Omega| \sin (\theta)$ homogeneous
("small" geographical zone, midlatitudes);
\rightarrow effect of horizontal component of Ω is neglected.
- Frictional forces \mathcal{F} : notion of "turbulent viscosity":

$$
\mathcal{F}=A_{v} \partial_{z}^{2} u+A_{h} \Delta_{h} u, \quad A_{h}, A_{v}>0, A_{h} \neq A_{v}
$$

- Conclusion: the velocity u of currents inside the ocean is described by

Main assumptions in the interior

- Starting point: Ocean = homogeneous, incompressible fluid in a rotating frame.
\rightarrow 3D Navier-Stokes equations with Coriolis force $\Omega \wedge u$.
- Coriolis acceleration:
$\rightarrow \quad f$-plane approximation: $f=2|\Omega| \sin (\theta)$ homogeneous ("small" geographical zone, midlatitudes);
\rightarrow effect of horizontal component of Ω is neglected.
- Frictional forces \mathcal{F} : notion of "turbulent viscosity":

$$
\mathcal{F}=A_{v} \partial_{z}^{2} u+A_{h} \Delta_{h} u, \quad A_{h}, A_{v}>0, A_{h} \neq A_{v}
$$

- Conclusion: the velocity u of currents inside the ocean is described by

$$
\begin{align*}
\partial_{t} u+(u \cdot \nabla) u+f e_{3} \wedge u-A_{v} \partial_{z}^{2} u-A_{h} \Delta_{h} u+\nabla p & =0 \tag{1}\\
\nabla \cdot u & =0
\end{align*}
$$

Boundary conditions

- Bottom of the ocean: flat $\left(h_{B} \equiv 0\right)$. Homogeneous Dirichlet boundary condition (no-slip):

$$
u_{\mid z=0}=0
$$

- Surface of the ocean: rigid lid approximation: $h \equiv D$. Description of wind-stress:

$$
\begin{array}{r}
\partial_{z} u_{h \mid z=D}=\sigma_{h} \\
u_{3 \mid z=D}=0
\end{array}
$$

- Horizontal boundaries: box \rightarrow horizontal domain: $\left[0, L a_{1}\right) \times\left[0, L a_{2}\right)$ with periodic boundary conditions.

Scaling assumptions

- High rotation limit: Rossby number $\varepsilon:=\frac{U}{f|L|} \ll 1$.
- Horizontal and vertical viscosities:

$$
\frac{A_{h}}{U L} \approx 1, \quad \nu:=\frac{L A_{V}}{U D^{2}} \ll 1
$$

- Amplitude of wind stress: $\alpha:=\frac{D \sigma_{0}}{U} \gg 1$.
$\Omega \quad$ Earth rotation vector
L Horizontal length scale
U Horizontal velocity scale
D Vertical length scale
$A_{h} \quad$ Turbulent horizontal viscosity
$A_{V} \quad$ Turbulent vertical viscosity
$\sigma_{0} \quad$ Amplitude of wind velocity

Scaling assumptions

- High rotation limit: Rossby number $\varepsilon:=\frac{U}{f|L|} \ll 1$.
- Horizontal and vertical viscosities:

$$
\frac{A_{h}}{U L} \approx 1, \quad \nu:=\frac{L A_{V}}{U D^{2}} \ll 1 .
$$

- Amplitude of wind stress: $\alpha:=\frac{D \sigma_{0}}{U} \gg 1$.
- Conclusion: the system in rescaled variables becomes

$$
\begin{gathered}
\partial_{t} u+u \cdot \nabla u+\frac{1}{\varepsilon} e_{3} \wedge u+\nabla p-\Delta_{h} u-\nu \partial_{z}^{2} u=0 \\
\operatorname{div} u=0, \\
u_{\mid z=0}=0,
\end{gathered} \quad \partial_{z} u_{h, z=a}=\alpha \sigma, ~ u_{3, z=a}=0 .
$$

New domain: $V=\left[0, a_{1}\right) \times\left[0, a_{2}\right) \times[0, a) ;$

Modelization of the wind stress

- Full atmosphere/ocean coupled model is out of reach... \rightarrow Effect of a given wind stress on ocean dynamics.
- Time dependance of wind stress: Coriolis op. \rightsquigarrow fast oscillations in time (freq. $\sim 1 / \varepsilon$). \rightarrow Interesting scaling:
- First choice: σ almost-periodic: [Masmoudi, 2000]

- Second choice: σ stationary:

$$
\sigma\left(t, \tau, x_{n} \cdot \omega\right)=S\left(t, x_{h}, \theta_{\tau} \omega\right)
$$

where

Modelization of the wind stress

- Full atmosphere/ocean coupled model is out of reach... \rightarrow Effect of a given wind stress on ocean dynamics.
- Time dependance of wind stress:

Coriolis op. \rightsquigarrow fast oscillations in time (freq. $\sim 1 / \varepsilon$).
\rightarrow Interesting scaling: $\sigma=\sigma\left(t, \frac{t}{\varepsilon}, x_{h}\right)$.
> First choice: σ almost-periodic: [Masmoudi, 2000]

- Second choice: σ stationary

$$
\sigma\left(t, \tau, x_{h} ; \omega\right)=S\left(t, x_{h}, \theta_{\tau} \omega\right)
$$

where

Interest: introduce some randomness in the equation.

Modelization of the wind stress

- Full atmosphere/ocean coupled model is out of reach... \rightarrow Effect of a given wind stress on ocean dynamics.
- Time dependance of wind stress: Coriolis op. \rightsquigarrow fast oscillations in time (freq. $\sim 1 / \varepsilon$). \rightarrow Interesting scaling: $\sigma=\sigma\left(t, \frac{t}{\varepsilon}, x_{h}\right)$.
- First choice: σ almost-periodic: [Masmoudi, 2000]

$$
\sigma\left(t, \tau, x_{h}\right)=\sum_{\mu \in M} \sum_{k_{h} \in \mathbb{Z}^{2}} \hat{\sigma}\left(t, \mu, k_{h}\right) e^{i k_{h} \cdot x_{h}} e^{i \mu \tau}
$$

- Second choice: σ stationary
where

Interest: introduce some randomness in the equation.

Modelization of the wind stress

- Full atmosphere/ocean coupled model is out of reach...
\rightarrow Effect of a given wind stress on ocean dynamics.
- Time dependance of wind stress:

Coriolis op. \rightsquigarrow fast oscillations in time (freq. $\sim 1 / \varepsilon$).
\rightarrow Interesting scaling: $\sigma=\sigma\left(t, \frac{t}{\varepsilon}, x_{h}\right)$.

- First choice: σ almost-periodic: [Masmoudi, 2000]

$$
\sigma\left(t, \tau, x_{h}\right)=\sum_{\mu \in M} \sum_{k_{h} \in \mathbb{Z}^{2}} \hat{\sigma}\left(t, \mu, k_{h}\right) e^{i k_{h} \cdot x_{h}} e^{i \mu \tau}
$$

- Second choice: σ stationary:

$$
\sigma\left(t, \tau, x_{h} ; \omega\right)=S\left(t, x_{h}, \theta_{\tau} \omega\right)
$$

where

Interest: introduce some randomness in the equation.

Modelization of the wind stress

- Full atmosphere/ocean coupled model is out of reach...
\rightarrow Effect of a given wind stress on ocean dynamics.
- Time dependance of wind stress:

Coriolis op. \rightsquigarrow fast oscillations in time (freq. $\sim 1 / \varepsilon$).
\rightarrow Interesting scaling: $\sigma=\sigma\left(t, \frac{t}{\varepsilon}, x_{h}\right)$.

- First choice: σ almost-periodic: [Masmoudi, 2000]

$$
\sigma\left(t, \tau, x_{h}\right)=\sum_{\mu \in M} \sum_{k_{h} \in \mathbb{Z}^{2}} \hat{\sigma}\left(t, \mu, k_{h}\right) e^{i k_{h} \cdot x_{h}} e^{i \mu \tau}
$$

- Second choice: σ stationary:

$$
\sigma\left(t, \tau, x_{h} ; \omega\right)=S\left(t, x_{h}, \theta_{\tau} \omega\right)
$$

where

- $\omega \in E$, and (E, \mathcal{A}, μ) is a probability space,

Interest: introduce some randomness in the equation.

Modelization of the wind stress

- Full atmosphere/ocean coupled model is out of reach...
\rightarrow Effect of a given wind stress on ocean dynamics.
- Time dependance of wind stress:

Coriolis op. \rightsquigarrow fast oscillations in time (freq. $\sim 1 / \varepsilon$).
\rightarrow Interesting scaling: $\sigma=\sigma\left(t, \frac{t}{\varepsilon}, x_{h}\right)$.

- First choice: σ almost-periodic: [Masmoudi, 2000]

$$
\sigma\left(t, \tau, x_{h}\right)=\sum_{\mu \in M} \sum_{k_{h} \in \mathbb{Z}^{2}} \hat{\sigma}\left(t, \mu, k_{h}\right) e^{i k_{h} \cdot x_{h}} e^{i \mu \tau}
$$

- Second choice: σ stationary:

$$
\sigma\left(t, \tau, x_{h} ; \omega\right)=S\left(t, x_{h}, \theta_{\tau} \omega\right)
$$

where

- $\omega \in E$, and (E, \mathcal{A}, μ) is a probability space,
- $\left(\theta_{\tau}\right)_{\tau \in \mathbb{R}}$ is a measure preserving transformation group acting on E.
Interest: introduce some randomness in the equation.

Introduction
Presentation of the model
General strategy

The almost-periodic, resonant case

The random stationary, non-resonant case

Brief review of results on rotating fluids

Ref: Chemin, Desjardins, Gallagher, Grenier.

- Dominant process: Coriolis operator:

$$
\begin{gathered}
L=\mathbb{P}\left(e_{3} \wedge \cdot\right) ; \\
\text { Spectrum }\left\{\lambda_{k}:=-i \frac{k_{3}^{\prime}}{\left|k^{\prime}\right|}, k \in \mathbb{Z}^{3} \backslash\{0\}\right\} .
\end{gathered}
$$

\rightarrow Creation of waves propagating at speed ε^{-1}.
 equation.

Brief review of results on rotating fluids

Ref: Chemin, Desjardins, Gallagher, Grenier.

- Dominant process: Coriolis operator:

$$
\begin{aligned}
L & =\mathbb{P}\left(e_{3} \wedge \cdot\right) \\
\text { Spectrum }\left\{\lambda_{k}\right. & \left.:=-i \frac{k_{3}^{\prime}}{\left|k^{\prime}\right|}, k \in \mathbb{Z}^{3} \backslash\{0\}\right\}
\end{aligned}
$$

\rightarrow Creation of waves propagating at speed ε^{-1}.

- Filtering method [Grenier; Schochet]:

Equation for $u_{L}=\exp \left(\frac{t}{\varepsilon} L\right) u$.
\rightarrow Passage to the limit as $\varepsilon, \nu \rightarrow 0$: envelope equations;
\rightarrow Problem: u_{L} does not match the boundary conditions.
 equation.

Brief review of results on rotating fluids

Ref: Chemin, Desjardins, Gallagher, Grenier.

- Dominant process: Coriolis operator:

$$
\begin{aligned}
L & =\mathbb{P}\left(e_{3} \wedge \cdot\right) \\
\text { Spectrum }\left\{\lambda_{k}\right. & \left.:=-i \frac{k_{3}^{\prime}}{\left|k^{\prime}\right|}, k \in \mathbb{Z}^{3} \backslash\{0\}\right\} .
\end{aligned}
$$

\rightarrow Creation of waves propagating at speed ε^{-1}.

- Filtering method [Grenier; Schochet]:

Equation for $u_{L}=\exp \left(\frac{t}{\varepsilon} L\right) u$.
\rightarrow Passage to the limit as $\varepsilon, \nu \rightarrow 0$: envelope equations;
\rightarrow Problem: u_{L} does not match the boundary conditions.

- Construction of boundary layers[Colin-Fabrie;

Desjardins-Grenier; Grenier-Masmoudi; Masmoudi ...]
\rightarrow Creation of source terms (Ekman pumping) in envelope equation.

Coupling between interior and boundary layer terms

Consider the following Ansatz

$$
u(t, x, y, z) \approx u_{\mathrm{int}}\left(t, \frac{t}{\varepsilon}, x, y, z\right)+u_{\mathrm{BL}}\left(t, \frac{t}{\varepsilon}, x, y, z\right)
$$

where

- $u_{\text {int }}(t, \tau)=\exp (-\tau L) u_{L}(t)+\delta u_{\text {int }}(t, \tau), \delta u_{\text {int }}=o(1)$; Role: $u_{\text {int }}(t, t / \varepsilon)$ satisfies the evolution equation (up to $o(1))$;
- $u_{\mathrm{BL}}(\cdot, z)=u_{T}(\cdot,(a-z) / \eta)+u_{B}(\cdot, z / \eta), \eta \ll 1$. Role: u_{BL} matches the horizontal boundary conditions.
Remarks:
- The horizontal BC for u_{BL} depend on $u_{\text {int }}$;
- The vertical BC for $\delta u_{\text {int }}$ depends on u_{BL}, and creates a source term (Ekman pumping) in equation for u_{L}

Coupling between interior and boundary layer terms

Consider the following Ansatz

$$
u(t, x, y, z) \approx u_{\mathrm{int}}\left(t, \frac{t}{\varepsilon}, x, y, z\right)+u_{\mathrm{BL}}\left(t, \frac{t}{\varepsilon}, x, y, z\right)
$$

where

- $u_{\text {int }}(t, \tau)=\exp (-\tau L) u_{L}(t)+\delta u_{\text {int }}(t, \tau), \delta u_{\text {int }}=o(1)$; Role: $u_{\text {int }}(t, t / \varepsilon)$ satisfies the evolution equation (up to $o(1))$;
- $u_{\mathrm{BL}}(\cdot, z)=u_{T}(\cdot,(a-z) / \eta)+u_{B}(\cdot, z / \eta), \eta \ll 1$. Role: u_{BL} matches the horizontal boundary conditions.

Remarks:

- The horizontal BC for u_{BL} depend on $u_{\text {int }}$;
- The vertical BC for $\delta u_{\text {int }}$ depends on $u_{B L}$, and creates a source term (Ekman pumping) in equation for u_{L}.
\rightarrow Coupling between $u_{\text {int }}$ and u_{BL}.

Method of resolution

Idea: define a boundary layer operator \mathcal{B} :

- Input: arbitrary horizontal boundary conditions.
- Output: divergence-free boundary layer term, matching the horizontal BC and equation at leading order.
and an interior operator \mathcal{U} :
- Input: arbitrary initial data and vertical boundary conditions.
- Output: interior term matching the vertical boundary conditions and equation at leading order.

Method of resolution

Idea: define a boundary layer operator \mathcal{B} :

- Input: arbitrary horizontal boundary conditions.
- Output: divergence-free boundary layer term, matching the horizontal BC and equation at leading order.
and an interior operator \mathcal{U} :
- Input: arbitrary initial data and vertical boundary conditions.
- Output: interior term matching the vertical boundary conditions and equation at leading order.
Elementary step: adapt inputs of \mathcal{U} and \mathcal{B} such that BC and eq. are satisfied (at leading order).
Question: when should the construction stop ?

Method of resolution

Idea: define a boundary layer operator \mathcal{B} :

- Input: arbitrary horizontal boundary conditions.
- Output: divergence-free boundary layer term, matching the horizontal BC and equation at leading order.
and an interior operator \mathcal{U} :
- Input: arbitrary initial data and vertical boundary conditions.
- Output: interior term matching the vertical boundary conditions and equation at leading order.
Elementary step: adapt inputs of \mathcal{U} and \mathcal{B} such that BC and eq. are satisfied (at leading order).
Question: when should the construction stop ?
\rightarrow Answer: when all remaining boundary terms are $O(\varepsilon)$ in L^{2}.

The almost-periodic, resonant case
Main result in the linear case
The boundary layer operator
The interior operator
Construction of an approximate solution and conclusion

The random stationary, non-resonant case

Plan

Introduction

The almost-periodic, resonant case Main result in the linear case

The interior operator
Construction of an approximate solution and conclusion

The random stationary, non-resonant case

Convergence result

Theorem:[D., Saint-Raymond, 2008]
Let $u=u^{\varepsilon, \nu}$ be the solution of

$$
\left\{\begin{array}{l}
\partial_{t} u+\frac{1}{\varepsilon} e_{3} \wedge u-\nu \partial_{z}^{2} u-\Delta_{h} u+\nabla p=0 \\
\operatorname{div} u=0 \\
u_{\mid z=0}=0, \\
u_{3 \mid z=a}=0, \quad \partial_{z} u_{h \mid z=a}(t)=\frac{1}{(\varepsilon \nu)^{\kappa}} \sum_{\mu, k_{h}} \hat{\sigma}\left(\mu, k_{h}\right) e^{i \mu \frac{t}{\varepsilon}} e^{i k_{h} \cdot x_{h}} .
\end{array}\right.
$$

Let w be the solution of the envelope equation. There exists a function $u^{\text {sing }}$, of order $(\varepsilon \nu)^{-\kappa}$ in L^{∞}, and a constant $\kappa_{0}>0$, such that if $\varepsilon, \nu \rightarrow 0$ with $\nu=\mathcal{O}(\varepsilon)$ and $\kappa<\kappa_{0}$, then

$$
u^{\varepsilon, \nu}-\left(\exp \left(-\frac{t}{\varepsilon} L\right) w(t)+u^{\text {sing }}\right) \rightarrow 0
$$

in $L_{\text {loc }}^{\infty}\left(0, \infty ; L^{2}(V)\right) \cap L_{\text {loc }}^{2}\left(0, \infty ; H_{h}^{1}(V)\right)$.

Remarks on the convergence result

- No a priori bounds for $u^{\varepsilon, \nu}$.
- In general, $u^{\varepsilon, \nu}$ does not remain bounded: destabilization of the whole fluid inside the domain.
- The singular profile $u^{\text {sing }}$ is explicit. Linear response to forcing on the mode

$$
k_{h}=0, \mu= \pm 1
$$

In particular, $u^{\text {sing }}$ does not depend on x_{h} and $u_{3}^{\text {sing }} \equiv 0$.
\rightarrow No singular Ekman transpiration velocity.

- No asymptotic expansion for $u^{\varepsilon, \nu}$ with this method.

In the sequel:

- Construction of operators \mathcal{B} (boundary layer), \mathcal{U} (interior)
- Focus on uncommon behaviour: apparition of atypical boundary layers, singular profile.

Remarks on the convergence result

- No a priori bounds for $u^{\varepsilon, \nu}$.
- In general, $u^{\varepsilon, \nu}$ does not remain bounded: destabilization of the whole fluid inside the domain.
- The singular profile $u^{\text {sing }}$ is explicit. Linear response to forcing on the mode

$$
k_{h}=0, \mu= \pm 1
$$

In particular, $u^{\text {sing }}$ does not depend on x_{h} and $u_{3}^{\text {sing }} \equiv 0$.
\rightarrow No singular Ekman transpiration velocity.

- No asymptotic expansion for $u^{\varepsilon, \nu}$ with this method.

In the sequel:

- Construction of operators \mathcal{B} (boundary layer), \mathcal{U} (interior).
- Focus on uncommon behaviour: apparition of atypical boundary layers, singular profile.

Plan

Introduction

The almost-periodic, resonant case Main result in the linear case The boundary layer operator The interior operator
Construction of an approximate solution and conclusion

The random stationary, non-resonant case

General setting

Ansatz:

$$
u_{\mathrm{BL}}=u_{B}\left(t, \frac{t}{\varepsilon}, x_{h}, \frac{z}{\sqrt{\varepsilon \nu}}\right)+u_{T}\left(t, \frac{t}{\varepsilon}, x_{h}, \frac{a-z}{\sqrt{\varepsilon \nu}}\right)
$$

and

$$
u_{T} / u_{B}=\sum_{k_{h}, \mu} \hat{u}_{T} / \hat{u}_{B}\left(t, k_{h}, \mu\right) e^{i \mu \tau} e^{i k_{h} \cdot x_{h}} \exp (-\lambda z)
$$

Linearity: work with fixed k_{h} and $\mu\left(\lambda=\lambda\left(k_{h}, \mu\right)\right)$.
Equation in rescaled variables:

General setting

Ansatz:

$$
u_{\mathrm{BL}}=u_{B}\left(t, \frac{t}{\varepsilon}, x_{h}, \frac{z}{\sqrt{\varepsilon \nu}}\right)+u_{T}\left(t, \frac{t}{\varepsilon}, x_{h}, \frac{a-z}{\sqrt{\varepsilon \nu}}\right)
$$

and

$$
u_{T} / u_{B}=\sum_{k_{h}, \mu} \hat{u}_{T} / \hat{u}_{B}\left(t, k_{h}, \mu\right) e^{i \mu \tau} e^{i k_{h} \cdot x_{h}} \exp (-\lambda z)
$$

Linearity: work with fixed k_{h} and $\mu\left(\lambda=\lambda\left(k_{h}, \mu\right)\right)$.
Equation in rescaled variables:

General setting

Ansatz:

$$
u_{\mathrm{BL}}=u_{B}\left(t, \frac{t}{\varepsilon}, x_{h}, \frac{z}{\sqrt{\varepsilon \nu}}\right)+u_{T}\left(t, \frac{t}{\varepsilon}, x_{h}, \frac{a-z}{\sqrt{\varepsilon \nu}}\right)
$$

and

$$
u_{T} / u_{B}=\sum_{k_{h}, \mu} \hat{u}_{T} / \hat{u}_{B}\left(t, k_{h}, \mu\right) e^{i \mu \tau} e^{i k_{h} \cdot x_{h}} \exp (-\lambda z)
$$

Linearity: work with fixed k_{h} and $\mu\left(\lambda=\lambda\left(k_{h}, \mu\right)\right)$.
Equation in rescaled variables:

$$
\begin{array}{r}
i \mu \hat{u}_{1}-\lambda^{2} \hat{u}_{1}-\hat{u}_{2}+\varepsilon k_{h}^{2} \hat{u}_{1}+\varepsilon \nu \frac{k_{1} k_{2} \hat{u}_{1}-k_{1}^{2} \hat{u}_{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}}=0 \\
i \mu \hat{u}_{2}-\lambda^{2} \hat{u}_{2}+\hat{u}_{1}+\varepsilon k_{h}^{2} \hat{u}_{2}+\varepsilon \nu \frac{-k_{1} k_{2} \hat{u}_{2}+k_{2}^{2} \hat{u}_{1}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}}=0 \tag{2}\\
\sqrt{\varepsilon \nu}\left(i k_{1} \hat{u}_{1}+i k_{2} \hat{u}_{2}\right) \pm \lambda \hat{u}_{3}=0
\end{array}
$$

General setting - 2

Question: find $\lambda \in \mathbb{C}$ such that $\operatorname{det} A_{\lambda}=0$, where

$$
A_{\lambda}=\left(\begin{array}{cc}
i \mu-\lambda^{2}+\varepsilon k_{h}^{2}+\frac{\varepsilon \nu k_{1} k_{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}} & -1-\frac{\varepsilon \nu k_{1}^{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}} \\
1+\frac{\varepsilon \nu k_{2}^{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}} & i \mu-\lambda^{2}+\varepsilon k_{h}^{2}-\frac{\varepsilon \nu k_{1} k_{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}}
\end{array}\right)
$$

Different cases:

General setting - 2

Question: find $\lambda \in \mathbb{C}$ such that $\operatorname{det} A_{\lambda}=0$, where

$$
A_{\lambda}=\left(\begin{array}{cc}
i \mu-\lambda^{2}+\varepsilon k_{h}^{2}+\frac{\varepsilon \nu k_{1} k_{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}} & -1-\frac{\varepsilon \nu k_{1}^{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}} \\
1+\frac{\varepsilon \nu k_{2}^{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}} & i \mu-\lambda^{2}+\varepsilon k_{h}^{2}-\frac{\varepsilon \nu k_{1} k_{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}}
\end{array}\right)
$$

Different cases:

- $\mu \neq \pm 1$: eigenvalues of $\left(\begin{array}{cc}i \mu & -1 \\ 1 & i \mu\end{array}\right)$ are non zero.
\rightarrow Stability by small linear perturbations.
Conclusion: $\lambda=\mathcal{O}(1)$ (bounded away from 0).

General setting - 2

Question: find $\lambda \in \mathbb{C}$ such that $\operatorname{det} A_{\lambda}=0$, where

$$
A_{\lambda}=\left(\begin{array}{cc}
i \mu-\lambda^{2}+\varepsilon k_{h}^{2}+\frac{\varepsilon \nu k_{1} k_{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}} & -1-\frac{\varepsilon \nu k_{1}^{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}} \\
1+\frac{\varepsilon \nu k_{2}^{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}} & i \mu-\lambda^{2}+\varepsilon k_{h}^{2}-\frac{\varepsilon \nu k_{1} k_{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}}
\end{array}\right)
$$

Different cases:

- $\mu \neq \pm 1$: eigenvalues of $\left(\begin{array}{cc}i \mu & -1 \\ 1 & i \mu\end{array}\right)$ are non zero.
\rightarrow Stability by small linear perturbations.
Conclusion: $\lambda=\mathcal{O}(1)$ (bounded away from 0).
- $\mu= \pm 1$: one of the eigenvalues of $\left(\begin{array}{cc}i \mu & -1 \\ 1 & i \mu\end{array}\right)$ is zero.
\rightarrow Two sub-cases:
- $k_{h}=0: \lambda=0$ is a solution!

General setting - 2

Question: find $\lambda \in \mathbb{C}$ such that $\operatorname{det} A_{\lambda}=0$, where

$$
A_{\lambda}=\left(\begin{array}{cc}
i \mu-\lambda^{2}+\varepsilon k_{h}^{2}+\frac{\varepsilon \nu k_{1} k_{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}} & -1-\frac{\varepsilon \nu k_{1}^{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}} \\
1+\frac{\varepsilon \nu k_{2}^{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}} & i \mu-\lambda^{2}+\varepsilon k_{h}^{2}-\frac{\varepsilon \nu k_{1} k_{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}}
\end{array}\right)
$$

Different cases:

- $\mu \neq \pm 1$: eigenvalues of $\left(\begin{array}{cc}i \mu & -1 \\ 1 & i \mu\end{array}\right)$ are non zero.
\rightarrow Stability by small linear perturbations.
Conclusion: $\lambda=\mathcal{O}(1)$ (bounded away from 0).
- $\mu= \pm 1$: one of the eigenvalues of $\left(\begin{array}{cc}i \mu & -1 \\ 1 & i \mu\end{array}\right)$ is zero.
\rightarrow Two sub-cases:
- $k_{h} \neq 0$: atypical boundary layer $\left(\lambda=\mathcal{O}\left(\sqrt{\varepsilon}+(\varepsilon \nu)^{\frac{1}{4}}\right)\right)$.

General setting - 2

Question: find $\lambda \in \mathbb{C}$ such that $\operatorname{det} A_{\lambda}=0$, where

$$
A_{\lambda}=\left(\begin{array}{cc}
i \mu-\lambda^{2}+\varepsilon k_{h}^{2}+\frac{\varepsilon \nu k_{1} k_{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}} & -1-\frac{\varepsilon \nu k_{1}^{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}} \\
1+\frac{\varepsilon \nu k_{2}^{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}} & i \mu-\lambda^{2}+\varepsilon k_{h}^{2}-\frac{\varepsilon \nu k_{1} k_{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}}
\end{array}\right)
$$

Different cases:

- $\mu \neq \pm 1$: eigenvalues of $\left(\begin{array}{cc}i \mu & -1 \\ 1 & i \mu\end{array}\right)$ are non zero.
\rightarrow Stability by small linear perturbations.
Conclusion: $\lambda=\mathcal{O}(1)$ (bounded away from 0).
- $\mu= \pm 1$: one of the eigenvalues of $\left(\begin{array}{cc}i \mu & -1 \\ 1 & i \mu\end{array}\right)$ is zero.
\rightarrow Two sub-cases:
- $k_{h} \neq 0$: atypical boundary layer $\left(\lambda=\mathcal{O}\left(\sqrt{\varepsilon}+(\varepsilon \nu)^{\frac{1}{4}}\right)\right)$.
- $k_{h}=0: \lambda=0$ is a solution!

General setting - 2

Question: find $\lambda \in \mathbb{C}$ such that $\operatorname{det} A_{\lambda}=0$, where

$$
A_{\lambda}=\left(\begin{array}{cc}
i \mu-\lambda^{2}+\varepsilon k_{h}^{2}+\frac{\varepsilon \nu k_{1} k_{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}} & -1-\frac{\varepsilon \nu k_{1}^{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}} \\
1+\frac{\varepsilon \nu k_{2}^{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}} & i \mu-\lambda^{2}+\varepsilon k_{h}^{2}-\frac{\varepsilon \nu k_{1} k_{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}}
\end{array}\right)
$$

Different cases:

- $\mu \neq \pm 1$: eigenvalues of $\left(\begin{array}{cc}i \mu & -1 \\ 1 & i \mu\end{array}\right)$ are non zero.
\rightarrow Stability by small linear perturbations.
Conclusion: $\lambda=\mathcal{O}(1)$ (bounded away from 0).
- $\mu= \pm 1$: one of the eigenvalues of $\left(\begin{array}{cc}i \mu & -1 \\ 1 & i \mu\end{array}\right)$ is zero.
\rightarrow Two sub-cases:
- $k_{h} \neq 0$: atypical boundary layer $\left(\lambda=\mathcal{O}\left(\sqrt{\varepsilon}+(\varepsilon \nu)^{\frac{1}{4}}\right)\right)$.
- $k_{h}=0: \lambda=0$ is a solution!

General setting - 2

Question: find $\lambda \in \mathbb{C}$ such that $\operatorname{det} A_{\lambda}=0$, where

$$
A_{\lambda}=\left(\begin{array}{cc}
i \mu-\lambda^{2}+\varepsilon k_{h}^{2}+\frac{\varepsilon \nu k_{1} k_{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}} & -1-\frac{\varepsilon \nu k_{1}^{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}} \\
1+\frac{\varepsilon \nu k_{2}^{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}} & i \mu-\lambda^{2}+\varepsilon k_{h}^{2}-\frac{\varepsilon \nu k_{1} k_{2}}{\lambda^{2}-\varepsilon \nu k_{h}^{2}}
\end{array}\right)
$$

Different cases:

- $\mu \neq \pm 1$: eigenvalues of $\left(\begin{array}{cc}i \mu & -1 \\ 1 & i \mu\end{array}\right)$ are non zero.
\rightarrow Stability by small linear perturbations.
Conclusion: $\lambda=\mathcal{O}(1)$ (bounded away from 0).
- $\mu= \pm 1$: one of the eigenvalues of $\left(\begin{array}{cc}i \mu & -1 \\ 1 & i \mu\end{array}\right)$ is zero.
\rightarrow Two sub-cases:
- $k_{h} \neq 0$: atypical boundary layer $\left(\lambda=\mathcal{O}\left(\sqrt{\varepsilon}+(\varepsilon \nu)^{\frac{1}{4}}\right)\right)$.
- $k_{h}=0: \lambda=0$ is a solution! \rightarrow singular profile (bifurcation).

Classical Ekman layers: $\mu \neq \pm 1$

At first order,

$$
A_{\lambda}=\left(\begin{array}{cc}
i \mu-\lambda^{2} & -1 \\
1 & i \mu-\lambda^{2}
\end{array}\right) .
$$

Eigenvalues: $\lambda_{ \pm}^{2}=i(\mu \pm 1)+o(1)$;
Eigenvectors: $w_{ \pm}=(1, \pm i)+o(1)$.

Method: decompose the boundary condition δ_{h} (input of \mathcal{B}) onto basis $\left\{w_{+}, w_{-}\right\}$:

$$
\hat{\delta}_{h}\left(k_{h}, \mu\right)=\alpha_{+} w_{+}+\alpha_{-} w_{-} .
$$

Horizontal part of the boundary layer term is given by

Classical Ekman layers: $\mu \neq \pm 1$

At first order,

$$
A_{\lambda}=\left(\begin{array}{cc}
i \mu-\lambda^{2} & -1 \\
1 & i \mu-\lambda^{2}
\end{array}\right)
$$

Eigenvalues: $\lambda_{ \pm}^{2}=i(\mu \pm 1)+o(1)$;
Eigenvectors: $w_{ \pm}=(1, \pm i)+o(1)$.
Conclusion: $\left\{w_{+}, w_{-}\right\}$basis of \mathbb{C}^{2}.
Method: decompose the boundary condition δ_{h} (input of \mathcal{B}) onto basis $\left\{w_{+}, w_{-}\right\}$:

$$
\hat{\delta}_{h}\left(k_{h}, \mu\right)=\alpha_{+} w_{+}+\alpha_{-} w_{-} .
$$

Horizontal part of the boundary layer term is given by

Classical Ekman layers: $\mu \neq \pm 1$

At first order,

$$
A_{\lambda}=\left(\begin{array}{cc}
i \mu-\lambda^{2} & -1 \\
1 & i \mu-\lambda^{2}
\end{array}\right)
$$

Eigenvalues: $\lambda_{ \pm}^{2}=i(\mu \pm 1)+o(1)$;
Eigenvectors: $w_{ \pm}=(1, \pm i)+o(1)$.
Conclusion: $\left\{w_{+}, w_{-}\right\}$basis of \mathbb{C}^{2}.
Method: decompose the boundary condition δ_{h} (input of \mathcal{B}) onto basis $\left\{w_{+}, w_{-}\right\}$:

$$
\hat{\delta}_{h}\left(k_{h}, \mu\right)=\alpha_{+} w_{+}+\alpha_{-} w_{-} .
$$

Horizontal part of the boundary layer term is given by

$$
\begin{aligned}
& u_{B, h}=\left(\alpha_{+} w_{+} e^{-\lambda_{+} z}+\alpha_{-} w_{-} e^{-\lambda_{-} z}\right) e^{i \mu \tau} e^{i k_{h} \cdot x_{h}} \\
& u_{T, h}=(\varepsilon \nu)^{\frac{1}{2}-\kappa}\left(\frac{\alpha_{+}}{\lambda_{+}} w_{+} e^{-\lambda_{+} z}+\frac{\alpha_{+}}{\lambda_{-}} w_{-} e^{-\lambda_{-} z}\right) e^{i \mu \tau} e^{i k_{h} \cdot x_{h}}
\end{aligned}
$$

Atypical boundary layers: $\mu= \pm 1, k_{h} \neq 0$

$$
\operatorname{det} A_{\lambda}=0 \Rightarrow\left\{\begin{array}{l}
\lambda_{+}^{2}=2 \mu i+o(1) \\
\text { or } \lambda_{-}^{2}=\mathcal{O}(\varepsilon+\sqrt{\varepsilon \nu})
\end{array}\right.
$$

"Eigenvectors": $w_{ \pm}=(1, \pm i)+o(1)$.
\rightarrow Basis of \mathbb{C}^{2} for ε, ν small enough.
Method: decompose the boundary condition (input of \mathcal{B}) onto
basis $\left\{w_{+}, w_{-}\right\}$
Same formulas as before.
\rightarrow Uniform bounds in L^{∞}, L^{2}.
Novelty: keep exact (\neq approximated) values for w_{+}, w_{-}. \rightarrow No error term in the evolution equation.

Atypical boundary layers: $\mu= \pm 1, k_{h} \neq 0$

$$
\operatorname{det} A_{\lambda}=0 \Rightarrow\left\{\begin{array}{l}
\lambda_{+}^{2}=2 \mu i+o(1) \\
\text { or } \lambda_{-}^{2}=\mathcal{O}(\varepsilon+\sqrt{\varepsilon \nu})
\end{array}\right.
$$

"Eigenvectors": $w_{ \pm}=(1, \pm i)+o(1)$.
\rightarrow Basis of \mathbb{C}^{2} for ε, ν small enough.
Method: decompose the boundary condition (input of \mathcal{B}) onto basis $\left\{w_{+}, w_{-}\right\}$.
Same formulas as before.
\rightarrow Uniform bounds in L^{∞}, L^{2}.
Novelty: keep exact (\neq approximated) values for w_{+}, w_{-}.
\rightarrow No error term in the evolution equation.

Apparition of a singular profile: $\mu= \pm 1, k_{h}=0$

Choosing for example $\mu=1$, we derive

$$
A_{\lambda}=\left(\begin{array}{cc}
i-\lambda^{2} & -1 \\
1 & i-\lambda^{2}
\end{array}\right)
$$

Eigenvalues: $\lambda_{-}^{2}=2 i, \lambda_{+}^{2}=0$;
Eigenvectors: $w_{ \pm}=(1, \pm i)$.
Remark: define $\bar{u}^{\text {sing }}:=\frac{z}{(\varepsilon \nu)^{\kappa}} e^{i \frac{t}{\varepsilon}}\binom{W_{+}}{0}$. Then

Conclusion: decompose the BC onto basis $\left\{w_{+}, w_{-}\right\}$. Singular part of the "boundary layer" term is given by

Apparition of a singular profile: $\mu= \pm 1, k_{h}=0$

Choosing for example $\mu=1$, we derive

$$
A_{\lambda}=\left(\begin{array}{cc}
i-\lambda^{2} & -1 \\
1 & i-\lambda^{2}
\end{array}\right)
$$

Eigenvalues: $\lambda_{-}^{2}=2 i, \lambda_{+}^{2}=0$;
Eigenvectors: $w_{ \pm}=(1, \pm i)$.
Remark: define $\bar{u}^{\text {sing }}:=\frac{z}{(\varepsilon \nu)^{\kappa}} e^{i \frac{t}{\varepsilon}}\binom{W_{+}}{0}$.

Conclusion: decompose the BC onto basis $\left\{w_{+}, w_{-}\right\}$. Singular part of the "boundary layer" term is given by

Apparition of a singular profile: $\mu= \pm 1, k_{h}=0$

Choosing for example $\mu=1$, we derive

$$
A_{\lambda}=\left(\begin{array}{cc}
i-\lambda^{2} & -1 \\
1 & i-\lambda^{2}
\end{array}\right)
$$

Eigenvalues: $\lambda_{-}^{2}=2 i, \lambda_{+}^{2}=0$;
Eigenvectors: $w_{ \pm}=(1, \pm i)$.
Remark: define $\bar{u}^{\text {sing }}:=\frac{z}{(\varepsilon \nu)^{\kappa}} e^{i \frac{t}{\varepsilon}}\binom{w_{+}}{0}$. Then

$$
\bar{u}_{\mid z=0}^{\text {sing }}=0, \quad \partial_{z} \bar{u}_{h \mid z=a}^{\text {sing }}=\frac{1}{(\varepsilon \nu)^{\kappa}} e^{i \frac{t}{\varepsilon}} W_{+} .
$$

Conclusion: decompose the BC onto basis $\left\{w_{+}, w_{-}\right\}$.
Singular part of the "boundary layer" term is given by

Apparition of a singular profile: $\mu= \pm 1, k_{h}=0$

Choosing for example $\mu=1$, we derive

$$
A_{\lambda}=\left(\begin{array}{cc}
i-\lambda^{2} & -1 \\
1 & i-\lambda^{2}
\end{array}\right) .
$$

Eigenvalues: $\lambda_{-}^{2}=2 i, \lambda_{+}^{2}=0$;
Eigenvectors: $w_{ \pm}=(1, \pm i)$.
Remark: define $\bar{u}^{\text {sing }}:=\frac{z}{(\varepsilon \nu)^{\kappa}} e^{i \frac{t}{\varepsilon}}\binom{W_{+}}{0}$. Then

$$
\bar{u}_{\mid z=0}^{\text {sing }}=0, \quad \partial_{z} \bar{u}_{h \mid z=a}^{\text {sing }}=\frac{1}{(\varepsilon \nu)^{\kappa}} e^{i \frac{t}{\varepsilon}} W_{+} .
$$

Conclusion: decompose the BC onto basis $\left\{w_{+}, w_{-}\right\}$. Singular part of the "boundary layer" term is given by

$$
u_{\mathrm{BL}, h}=\left(\alpha_{B,+}+\frac{\alpha_{T,+} z}{(\varepsilon \nu)^{\kappa}}\right) w_{+} e^{i \frac{t}{\varepsilon}}
$$

Plan

Introduction

The almost-periodic, resonant case
Main result in the linear case
The boundary layer operator
The interior operator
Construction of an approximate solution and conclusion

The random stationary, non-resonant case

Decomposition of $u_{\text {int }}$ for $k_{h} \neq 0$

Explicit construction:

$$
u_{\text {int }}=\mathcal{U}\left[v_{B}, v_{T}, u_{0}\right]
$$

such that $u_{\text {int }}$ is a solution of the evolution equation and satisfies

$$
u_{\text {int }}(t=0)=u_{0}+o(1), u_{\text {int }, 3 \mid z=0}=\sqrt{\varepsilon \nu} v_{B}, u_{\text {int }, 3 \mid z=a}=\sqrt{\varepsilon \nu} v_{T} .
$$

Decomposition of $u_{\text {int }}$ for $k_{h} \neq 0$

Explicit construction:

$$
u_{\text {int }}=\mathcal{U}\left[v_{B}, v_{T}, u_{0}\right]
$$

such that $u_{\text {int }}$ is a solution of the evolution equation and satisfies

$$
u_{\text {int }}(t=0)=u_{0}+o(1), u_{\text {int }, 3 \mid z=0}=\sqrt{\varepsilon \nu} v_{B}, u_{\text {int }, 3 \mid z=a}=\sqrt{\varepsilon \nu} v_{T} .
$$

Decomposition: $u_{\text {int }}=\exp \left(\frac{t}{\varepsilon} L\right) w(t)+v_{\text {int }}+u_{\text {int }}^{\text {osc }}$ where

- $w(t)$: preponderant term; matches initial data u_{0};

Decomposition of $u_{\text {int }}$ for $k_{h} \neq 0$

Explicit construction:

$$
u_{\text {int }}=\mathcal{U}\left[v_{B}, v_{T}, u_{0}\right]
$$

such that $u_{\text {int }}$ is a solution of the evolution equation and satisfies

$$
u_{\text {int }}(t=0)=u_{0}+o(1), u_{\text {int }, 3 \mid z=0}=\sqrt{\varepsilon \nu} v_{B}, u_{\text {int }, 3 \mid z=a}=\sqrt{\varepsilon \nu} v_{T} .
$$

Decomposition: $u_{\text {int }}=\exp \left(\frac{t}{\varepsilon} L\right) w(t)+v_{\text {int }}+u_{\text {int }}^{\text {osc }}$ where

- $w(t)$: preponderant term; matches initial data u_{0};
- $v_{\text {int }}$: known explicitely;

$$
v_{\mathrm{int}}:=\sqrt{\varepsilon \nu}\binom{\nabla_{h} \Delta_{h}^{-1}\left(v_{B}-v_{T}\right)}{v_{T} z+v_{B}(1-z)} ;
$$

Decomposition of $u_{\text {int }}$ for $k_{h} \neq 0$

Explicit construction:

$$
u_{\text {int }}=\mathcal{U}\left[v_{B}, v_{T}, u_{0}\right]
$$

such that $u_{\text {int }}$ is a solution of the evolution equation and satisfies

$$
u_{\text {int }}(t=0)=u_{0}+o(1), u_{\text {int }, 3 \mid z=0}=\sqrt{\varepsilon \nu} v_{B}, u_{\text {int }, 3 \mid z=a}=\sqrt{\varepsilon \nu} v_{T} .
$$

Decomposition: $u_{\text {int }}=\exp \left(\frac{t}{\varepsilon} L\right) w(t)+v_{\text {int }}+u_{\text {int }}^{\text {osc }}$ where

- $w(t)$: preponderant term; matches initial data u_{0};
- $v_{\text {int }}$: known explicitely;

$$
v_{\mathrm{int}}:=\sqrt{\varepsilon \nu}\binom{\nabla_{h} \Delta_{h}^{-1}\left(v_{B}-v_{T}\right)}{v_{T} z+v_{B}(1-z)} ;
$$

- $u_{\text {int }}^{\text {osc. }}$: oscillating term, takes into account rest of equation.

Derivation of equations for w and $u_{\text {int }}^{\text {osc }}$

Functional preliminaries:define

$$
F_{0}:=\left\{u \in L^{2}(V), \operatorname{div} u=0, u_{3 \mid z=0}=u_{3 \mid z=a}=0\right\} .
$$

\mathbb{P} : projection on F_{0};
$\left(N_{k}\right)_{k \geq 0}$: hilbertian basis of F_{0}, such that $L N_{k}=\lambda_{k} N_{k}$.

Then $w_{\text {int }}:=\exp (-t / \varepsilon L) w+u_{\text {int }}^{\text {osc }}$ is such that

Rules:

- All terms in $\left(N_{k}, \Sigma\right)$ oscillating at frequencies $\lambda_{k} / \&$ become
source terms in equation on w;
- All terms in $\left\langle N_{k}, \Sigma\right\rangle$ oscillating at frequencies become source terms in equation on $u_{\text {inp }}^{\text {osc }}$

Derivation of equations for w and $u_{\text {int }}^{\text {osc }}$

Functional preliminaries:define

$$
F_{0}:=\left\{u \in L^{2}(V), \operatorname{div} u=0, u_{3 \mid z=0}=u_{3 \mid z=a}=0\right\} .
$$

\mathbb{P} : projection on F_{0};
$\left(N_{k}\right)_{k \geq 0}$: hilbertian basis of F_{0}, such that $L N_{k}=\lambda_{k} N_{k}$.
Set

$$
\Sigma:=\partial_{t} v_{\text {int }}+\frac{1}{\varepsilon} e_{3} \wedge v_{\text {int }}-\nu \partial_{z}^{2} v_{\text {int }}-\Delta_{h} v_{\text {int }} .
$$

Then $w_{\text {int }}:=\exp (-t / \varepsilon L) w+u_{\text {int }}^{\text {osc }}$ is such that
$\partial_{t} w_{\text {int }}+\frac{1}{\varepsilon} L w_{\text {int }}-\nu \partial_{z}^{2} w_{\text {int }}-\Delta_{h} w_{\text {int }}=-\mathbb{P}(\Sigma)=-\sum_{k}\left\langle N_{k}, \Sigma\right\rangle N_{k}$.

Rules:

- All terms in (N_{k}, Σ) oscillating at frequencies λ_{k} / b become
source terms in equation on w;
- All terms in $\left\langle N_{k}, \Sigma\right\rangle$ oscillating at frequencies
become source terms in equation on $u_{\text {inp }}^{\text {osc }}$

Derivation of equations for w and $u_{\mathrm{int}}^{\text {osc }}$

Functional preliminaries:define

$$
F_{0}:=\left\{u \in L^{2}(V), \operatorname{div} u=0, u_{3 \mid z=0}=u_{3 \mid z=a}=0\right\}
$$

\mathbb{P} : projection on F_{0};
$\left(N_{k}\right)_{k \geq 0}$: hilbertian basis of F_{0}, such that $L N_{k}=\lambda_{k} N_{k}$.
Set

$$
\Sigma:=\partial_{t} v_{\mathrm{int}}+\frac{1}{\varepsilon} e_{3} \wedge v_{\mathrm{int}}-\nu \partial_{z}^{2} v_{\mathrm{int}}-\Delta_{h} v_{\mathrm{int}}
$$

Then $w_{\text {int }}:=\exp (-t / \varepsilon L) w+u_{\text {int }}^{\text {osc }}$ is such that
$\partial_{t} w_{\text {int }}+\frac{1}{\varepsilon} L w_{\text {int }}-\nu \partial_{z}^{2} w_{\text {int }}-\Delta_{h} w_{\text {int }}=-\mathbb{P}(\Sigma)=-\sum_{k}\left\langle N_{k}, \Sigma\right\rangle N_{k}$.

Rules:

- All terms in $\left\langle N_{k}, \Sigma\right\rangle$ oscillating at frequencies $\lambda_{k} / \varepsilon$ become source terms in equation on w;
- All terms in $\left\langle N_{k}, \Sigma\right\rangle$ oscillating at frequencies $\mu / \varepsilon, \mu \neq \lambda_{k}$ become source terms in equation on $u_{\mathrm{int}}^{\mathrm{osc}}$.

Singular profile for $k_{h}=0$

Problem: recall singular profile

$$
\bar{u}^{\text {sing }}=\sum_{ \pm}\left(\alpha_{B, \pm}+\frac{\alpha_{T, \pm} Z}{(\varepsilon \nu)^{\kappa}}\right) w_{ \pm} e^{ \pm i \frac{t}{\varepsilon}} .
$$

Does not match initial condition!
Idea: build $u^{\text {sing }}:=\bar{u}^{\text {sing }}+u_{\text {osc }}^{\text {sing }}$, where

Singular profile for $k_{h}=0$

Problem: recall singular profile

$$
\bar{u}^{\text {sing }}=\sum_{ \pm}\left(\alpha_{B, \pm}+\frac{\alpha_{T, \pm} Z}{(\varepsilon \nu)^{\kappa}}\right) w_{ \pm} e^{ \pm i \frac{t}{\varepsilon}} .
$$

Does not match initial condition!
Idea: build $u^{\text {sing }}:=\bar{u}^{\text {sing }}+u_{\text {osc }}^{\text {sing }}$, where

$$
\begin{aligned}
& \partial_{t} u_{\mathrm{osc}}^{\mathrm{sing}}+\frac{1}{\varepsilon} L u_{\mathrm{osc}}^{\mathrm{sing}}-\nu \partial_{z}^{2} u_{\mathrm{osc}}^{\operatorname{sing}}=0 \\
& u_{\mathrm{osc}}^{\mathrm{sing}}(t=0)=-\bar{u}^{\mathrm{sing}}(t=0), \\
& u_{\mathrm{osc}, h \mid z=0}^{\mathrm{sing}}=0, \quad \partial_{z} u_{\mathrm{osc}, h \mid z=a}^{\mathrm{sing}}=0(t>0), \\
& u_{\mathrm{osc}, 3}^{\mathrm{sing}} \equiv 0
\end{aligned}
$$

Singular profile for $k_{h}=0$

Problem: recall singular profile

$$
\bar{u}^{\text {sing }}=\sum_{ \pm}\left(\alpha_{B, \pm}+\frac{\alpha_{T, \pm} Z}{(\varepsilon \nu)^{\kappa}}\right) w_{ \pm} e^{ \pm i \frac{t}{\varepsilon}} .
$$

Does not match initial condition!
Idea: build $u^{\text {sing }}:=\bar{u}^{\text {sing }}+u_{\text {osc }}^{\text {sing }}$, where

$$
\begin{aligned}
& \partial_{t} u_{\mathrm{osc}}^{\mathrm{sing}}+\frac{1}{\varepsilon} L u_{\mathrm{osc}}^{\mathrm{sing}}-\nu \partial_{z}^{2} u_{\mathrm{osc}}^{\mathrm{sing}}=0 \\
& u_{\mathrm{osc}}^{\mathrm{sing}}(t=0)=-\bar{u}^{\mathrm{sing}}(t=0), \\
& u_{\mathrm{osc}, h \mid z=0}^{\mathrm{sing}}=0, \quad \partial_{z} u_{\mathrm{osc}, h \mid z=a}^{\mathrm{sing}}=0(t>0), \\
& u_{\mathrm{osc}, 3}^{\mathrm{sing}} \equiv 0
\end{aligned}
$$

Remark: no stabilization.

Plan

Introduction

The almost-periodic, resonant case Main result in the linear case The boundary layer operator The interior operator
Construction of an approximate solution and conclusion

The random stationary, non-resonant case

Explicit construction of the approximate solution

- First step: define the singular profile $u^{\text {sing }}$ and the solution of the envelope equation w, given by

$$
\left\{\begin{array}{l}
\partial_{t} w-\Delta_{h} w+\sqrt{\frac{\nu}{\varepsilon}} S_{\text {Ekman }}[w]=0, \\
w_{\mid t=0}=u_{\mid t=0}
\end{array}\right.
$$

where $S_{\text {Ekman }}: F_{0} \rightarrow F_{0}, S_{\text {Ekman }} \geq 0$.

Explicit construction of the approximate solution

- First step: define the singular profile $u^{\text {sing }}$ and the solution of the envelope equation w.
- Second step: define a BL term $\mathcal{B}\left(\delta_{0, h}, \delta_{1, h}\right)$, where
- $\delta_{0, h}$: trace of w on $z=0$;
- $\delta_{1, h}=\sigma$ (wind forcing).

At this stage: evolution eq. satisfied up to $\mathcal{O}(1)$ terms, horizontal BC are satisfied, and vertical BC are satisfied up to $\mathcal{O}\left((\varepsilon \nu)^{\frac{1}{2}-\kappa}\right)$ terms.

- Third step: define the rest of the interior term (of order $o(1)$ in $\left.L^{2}\right): v^{\text {int }}+u_{\text {osc }}^{\text {int }}$
- Fourth step: define one additionnal boundary layer term, taking into account the remaining horizontal BC.
- Fifth step: use stopping Lemma.

Explicit construction of the approximate solution

- First step: define the singular profile $u^{\text {sing }}$ and the solution of the envelope equation w.
- Second step: define a BL term $\mathcal{B}\left(\delta_{0, h}, \delta_{1, h}\right)$, where
- $\delta_{0, h}$: trace of w on $z=0$;
- $\delta_{1, h}=\sigma$ (wind forcing).
- Third step: define the rest of the interior term (of order $o(1)$ in $\left.L^{2}\right): v^{\mathrm{int}}+u_{\mathrm{osc}}^{\mathrm{int}}$.
At this stage: evolution eq. satisfied up to o(1) terms, vertical $B C$ are satisfied, and horizontal $B C$ are satisfied up to $o(1)$ terms (as long as κ is not too large).

- Fifth step: use stopping Lemma.

Explicit construction of the approximate solution

- First step: define the singular profile $u^{\text {sing }}$ and the solution of the envelope equation w.
- Second step: define a BL term $\mathcal{B}\left(\delta_{0, h}, \delta_{1, h}\right)$, where
- $\delta_{0, h}$: trace of w on $z=0$;
- $\delta_{1, h}=\sigma$ (wind forcing).
- Third step: define the rest of the interior term (of order $o(1)$ in $\left.L^{2}\right): v^{\mathrm{int}}+u_{\mathrm{osc}}^{\mathrm{int}}$.
- Fourth step: define one additionnal boundary layer term, taking into account the remaining horizontal BC.

At this stage: evolution eq. satisfied up to $o(1)$ terms, horizontal BC are satisfied, and vertical BC are satisfied up to $o(\sqrt{\varepsilon \nu})=O(\varepsilon)$ terms.
> Fifth step: use stopping Lemma.

Explicit construction of the approximate solution

- First step: define the singular profile $u^{\text {sing }}$ and the solution of the envelope equation w.
- Second step: define a BL term $\mathcal{B}\left(\delta_{0, h}, \delta_{1, h}\right)$, where
- $\delta_{0, h}$: trace of w on $z=0$;
- $\delta_{1, h}=\sigma$ (wind forcing).
- Third step: define the rest of the interior term (of order $o(1)$ in $\left.L^{2}\right): v^{\mathrm{int}}+u_{\mathrm{osc}}^{\mathrm{int}}$.
- Fourth step: define one additionnal boundary layer term, taking into account the remaining horizontal BC.
- Fifth step: use stopping Lemma.

Explicit construction of the approximate solution

- First step: define the singular profile $u^{\text {sing }}$ and the solution of the envelope equation w.
- Second step: define a BL term $\mathcal{B}\left(\delta_{0, h}, \delta_{1, h}\right)$, where
- $\delta_{0, h}$: trace of w on $z=0$;
- $\delta_{1, h}=\sigma$ (wind forcing).
- Third step: define the rest of the interior term (of order $o(1)$ in $\left.L^{2}\right): v^{\mathrm{int}}+u_{\mathrm{osc}}^{\mathrm{int}}$.
- Fourth step: define one additionnal boundary layer term, taking into account the remaining horizontal BC.
- Fifth step: use stopping Lemma.

Conclusion: evolution eq. satisfied up to $o(1)$ terms, boundary conditions satisfied exactly. Conclude by energy estimate.

Conclusion of the almost-periodic case

Linear problem:

- Apparition of atypical boundary layers due to resonant forcing ($\mu= \pm 1$) on the non-homogeneous modes ($k_{h} \neq 0$).
- Singular profile ($\mu= \pm 1, k_{h}=0$) which destabilizes the whole fluid for arbitrary initial data.
- Linearity of the equation enables explicit calculations.

Conclusion of the almost-periodic case

Linear problem:

- Apparition of atypical boundary layers due to resonant forcing ($\mu= \pm 1$) on the non-homogeneous modes ($k_{h} \neq 0$).
- Singular profile ($\mu= \pm 1, k_{h}=0$) which destabilizes the whole fluid for arbitrary initial data.
- Linearity of the equation enables explicit calculations.

Nonlinear problem:
Recent result [D., Saint-Raymond, '07]: stability of singular profile in H^{s} norm and when the amplitude of the wind-stress is not too large.
Proof based on analysis of resonant modes:

Conclusion of the almost-periodic case

Linear problem:

- Apparition of atypical boundary layers due to resonant forcing ($\mu= \pm 1$) on the non-homogeneous modes ($k_{h} \neq 0$).
- Singular profile ($\mu= \pm 1, k_{h}=0$) which destabilizes the whole fluid for arbitrary initial data.
- Linearity of the equation enables explicit calculations.

Nonlinear problem:
Recent result [D., Saint-Raymond, '07]: stability of singular profile in H^{s} norm and when the amplitude of the wind-stress is not too large.
Proof based on analysis of resonant modes: $\lambda_{k}-\lambda_{I}= \pm 1$.

Introduction

The almost-periodic, resonant case

The random stationary, non-resonant case Convergence result The limit equation

The stationary setting

Recall that

$$
\sigma=S\left(t, x_{h}, \theta_{\frac{t}{\varepsilon}} \omega\right) .
$$

Assumption of non-resonance: (avoid singular profile)
 Define approximate Fourier transform: for $\gamma>0$,

$$
\hat{\sigma}_{\gamma}(\lambda, \omega):=\frac{1}{2 \pi} \int \exp (-\gamma|\tau|) e^{-i \lambda \tau} \sigma(\tau, \omega) d \tau \text {. }
$$

Assume that

(H1) $\forall \gamma>0, \hat{\sigma}_{\gamma} \in L^{\infty}\left(E, L^{1}(\mathbb{R})\right)$, and $\sup _{\gamma>0}\left\|\hat{\sigma}_{\gamma}\right\|_{L^{\infty}\left(E, L^{1}(\mathbb{R})\right)}<+\infty$.
(H2) \exists neighbour hoods V_{+}of ± 1, independent of $\gamma>0$, such that

The stationary setting

Recall that

$$
\sigma=S\left(t, x_{h}, \theta_{\frac{t}{\varepsilon}} \omega\right)
$$

Assumption of non-resonance: (avoid singular profile) Define approximate Fourier transform: for $\gamma>0$,

$$
\hat{\sigma}_{\gamma}(\lambda, \omega):=\frac{1}{2 \pi} \int_{\mathbb{R}} \exp (-\gamma|\tau|) e^{-i \lambda \tau} \sigma(\tau, \omega) d \tau
$$

Assume that

(H1) $\forall \gamma>0, \hat{\sigma}_{\gamma} \in L^{\infty}\left(E, L^{1}(\mathbb{R})\right)$, and

(H2) \exists neighbourhoods $V_{ \pm}$of ± 1, independent of $\gamma>0$, such that

The stationary setting

Recall that

$$
\sigma=S\left(t, x_{h}, \theta_{\frac{t}{\varepsilon}} \omega\right)
$$

Assumption of non-resonance: (avoid singular profile) Define approximate Fourier transform: for $\gamma>0$,

$$
\hat{\sigma}_{\gamma}(\lambda, \omega):=\frac{1}{2 \pi} \int_{\mathbb{R}} \exp (-\gamma|\tau|) e^{-i \lambda \tau} \sigma(\tau, \omega) d \tau
$$

Assume that
(H1) $\forall \gamma>0, \hat{\sigma}_{\gamma} \in L^{\infty}\left(E, L^{1}(\mathbb{R})\right)$, and

$$
\sup _{\gamma>0}\left\|\hat{\sigma}_{\gamma}\right\|_{L^{\infty}\left(E, L^{1}(\mathbb{R})\right)}<+\infty .
$$

(H2) \exists neighbourhoods $V_{ \pm}$of ± 1, independent of $\gamma>0$, such that

$$
\lim _{\gamma \rightarrow 0} \sup _{\lambda \in V_{+} \cup V_{-}}\left|\hat{\sigma}_{\gamma}(\lambda)\right|=0
$$

Introduction

The almost-periodic, resonant case

The random stationary, non-resonant case Convergence result

Convergence result in the nonlinear stationary case

Theorem:[D., 2007] Let $u=u^{\varepsilon, \nu}$ be the solution of

$$
\left\{\begin{array}{l}
\partial_{t} u+\frac{1}{\varepsilon} e_{3} \wedge u+u \cdot \nabla u-\nu \partial_{z}^{2} u-\Delta_{h} u+\nabla p=0 \\
\operatorname{div} u=0 \\
u_{\mid z=0}=0, \\
u_{3 \mid z=a}=0, \quad \partial_{z} u_{h \mid z=a}(t)=\frac{1}{(\varepsilon \nu)^{\frac{1}{2}}} \sigma\left(t, \frac{t}{\varepsilon}, x_{h}, \omega\right)
\end{array}\right.
$$

Let $w \in L^{\infty}\left(0, T^{*} ; H^{s}\right)(s>5 / 2)$ be the solution of the envelope equation, and assume that (H1)-(H2) are satisfied.
Then as $\varepsilon, \nu \rightarrow 0$ with $\nu=\mathcal{O}(\varepsilon)$,

$$
u^{\varepsilon, \nu}-\left(\exp \left(\frac{t}{\varepsilon} L\right) w(t)\right) \rightarrow 0
$$

$$
\text { in } L^{\infty}\left(0, T ; L^{2}(V \times E)\right) \cap L^{2}\left((0, T) \times E, H_{h}^{1}(V)\right) \text { for all } T<T^{*} .
$$

Convergence result in the nonlinear stationary case

Theorem:[D., 2007] Let $u=u^{\varepsilon, \nu}$ be the solution of

$$
\left\{\begin{array}{l}
\partial_{t} u+\frac{1}{\varepsilon} e_{3} \wedge u+u \cdot \nabla u-\nu \partial_{z}^{2} u-\Delta_{h} u+\nabla p=0 \\
\operatorname{div} u=0 \\
u_{\mid z=0}=0 \\
u_{3 \mid z=a}=0, \quad \partial_{z} u_{h \mid z=a}(t)=\frac{1}{(\varepsilon \nu)^{\frac{1}{2}}} \sigma\left(t, \frac{t}{\varepsilon}, x_{h}, \omega\right)
\end{array}\right.
$$

Let $w \in L^{\infty}\left(0, T^{*} ; H^{s}\right)(s>5 / 2)$ be the solution of the envelope equation, and assume that (H1)-(H2) are satisfied.
Then as $\varepsilon, \nu \rightarrow 0$ with $\nu=\mathcal{O}(\varepsilon)$,

$$
u^{\varepsilon, \nu}-\left(\exp \left(\frac{t}{\varepsilon} L\right) w(t)\right) \rightarrow 0
$$

in $L^{\infty}\left(0, T ; L^{2}(V \times E)\right) \cap L^{2}\left((0, T) \times E, H_{h}^{1}(V)\right)$ for all $T<T^{*}$.
Remark: w is random!

Elements of the proof

Same strategy as in almost-periodic case. Main features:

- No atypical boundary layer terms (non-resonance);
- Boundary layer terms are random stationary in time;
- Filtering methods \rightarrow need to investigate average behaviour of oscillating functions.
Variant of ergodic Theorem:

Elements of the proof

Same strategy as in almost-periodic case. Main features:

- No atypical boundary layer terms (non-resonance);
- Boundary layer terms are random stationary in time;
- Filtering methods \rightarrow need to investigate average behaviour of oscillating functions.
Variant of ergodic Theorem:

Elements of the proof

Same strategy as in almost-periodic case. Main features:

- No atypical boundary layer terms (non-resonance);
- Boundary layer terms are random stationary in time;
- Filtering methods \rightarrow need to investigate average behaviour of oscillating functions. Variant of ergodic Theorem:

Lemma
Let $\phi \in L^{1}(E, \mu)$, and let $\lambda \in \mathbb{R}$. Then $\exists \bar{\phi}^{\lambda} \in L^{1}(E)$,

a.s. and in $L^{1}(E)$.

Elements of the proof

Same strategy as in almost-periodic case. Main features:

- No atypical boundary layer terms (non-resonance);
- Boundary layer terms are random stationary in time;
- Filtering methods \rightarrow need to investigate average behaviour of oscillating functions.
Variant of ergodic Theorem:
Lemma
Let $\phi \in L^{1}(E, \mu)$, and let $\lambda \in \mathbb{R}$. Then $\exists \bar{\phi}^{\lambda} \in L^{1}(E)$,

$$
\frac{1}{T} \int_{0}^{T} \phi\left(\theta_{\tau} \omega\right) e^{-i \lambda \tau} d \tau \rightarrow \bar{\phi}^{\lambda}
$$

a.s. and in $L^{1}(E)$.

Introduction

The almost-periodic, resonant case

The random stationary, non-resonant case Convergence result

The limit equation

The envelope equation

The function w is a solution of

$$
\left\{\begin{array}{l}
\partial_{t} w+\bar{Q}(w, w)-\Delta_{h} w+\underbrace{\bar{S}_{B}(w)+\bar{S}_{T}(w)}_{\text {Ekman pumping }}=0 \\
w(t=0)=w_{0} \in H^{s}, \quad \operatorname{div} w_{0}=0 \\
\operatorname{div} w=0, \\
w_{3 \mid z=0}=0, w_{3 \mid z=a}=0
\end{array}\right.
$$

In general, w is random... However, $\bar{w}=1 / a \int_{0}^{a} w$ is not!

The envelope equation

The function w is a solution of

$$
\left\{\begin{array}{l}
\partial_{t} w+\bar{Q}(w, w)-\Delta_{h} w+\underbrace{\bar{S}_{B}(w)+\bar{S}_{T}(w)}_{\text {Ekman pumping }}=0 \\
w(t=0)=w_{0} \in H^{s}, \quad \operatorname{div} w_{0}=0 \\
\operatorname{div} w=0, \\
w_{3 \mid z=0}=0, w_{3 \mid z=a}=0
\end{array}\right.
$$

In general, w is random... However, $\bar{w}=1 / a \int_{0}^{a} w$ is not!

$$
\left\{\begin{array}{l}
\partial_{t} \bar{w}+\mathbb{P}(\bar{w} \cdot \nabla \bar{w})-\Delta_{h} \bar{W}+\bar{S}_{B}(\bar{w})+E\left[\bar{S}_{T}\right]=0, \\
\bar{w}(t=0)=\bar{w}_{0}=\frac{1}{a} \int_{0}^{a} w_{0}
\end{array}\right.
$$

Question: equation on $E[w]-\bar{w}$? (vertical modes)

The envelope equation

The function w is a solution of

$$
\left\{\begin{array}{l}
\partial_{t} w+\bar{Q}(w, w)-\Delta_{h} w+\underbrace{\bar{S}_{B}(w)+\bar{S}_{T}(\omega)}_{\text {Ekman pumping }}=0 \\
w(t=0)=w_{0} \in H^{s}, \quad \operatorname{div} w_{0}=0 \\
\operatorname{div} w=0, \\
w_{3 \mid z=0}=0, w_{3 \mid z=a}=0
\end{array}\right.
$$

In general, w is random... However, $\bar{w}=1 / a \int_{0}^{a} w$ is not!

$$
\left\{\begin{array}{l}
\partial_{t} \bar{w}+\mathbb{P}(\bar{w} \cdot \nabla \bar{w})-\Delta_{h} \bar{W}+\bar{S}_{B}(\bar{w})+E\left[\bar{S}_{T}\right]=0, \\
\bar{w}(t=0)=\bar{w}_{0}=\frac{1}{a} \int_{0}^{a} w_{0}
\end{array}\right.
$$

Question: equation on $E[w]-\bar{w}$? (vertical modes)

Limit system in the case of non-resonant torus

If the torus is non-resonant, then

$$
\bar{Q}(w, w)=\bar{Q}(\bar{w}, \bar{w})+\underbrace{\bar{Q}(\bar{w}, w-\bar{w})+\bar{Q}(w-\bar{w}, \bar{w})}_{=: q(\bar{w}, w-\bar{w})}
$$

\rightarrow The limit equation decouples: $W=\bar{W}+\tilde{W}_{1}+\tilde{W}_{2}$, where

Limit system in the case of non-resonant torus

If the torus is non-resonant, then

$$
\bar{Q}(w, w)=\bar{Q}(\bar{w}, \bar{w})+\underbrace{\bar{Q}(\bar{w}, w-\bar{w})+\bar{Q}(w-\bar{w}, \bar{w})}_{=: q(\bar{w}, w-\bar{w})} .
$$

\rightarrow The limit equation decouples: $w=\bar{w}+\tilde{w}_{1}+\tilde{w}_{2}$, where

- \bar{w} : nonlinear deterministic equation;
- \tilde{W}_{1} : linear deterministic equation:
- \tilde{w}_{2} : linear random equation, $E\left[\tilde{w}_{2}\right]=0$:

Limit system in the case of non-resonant torus

If the torus is non-resonant, then

$$
\bar{Q}(w, w)=\bar{Q}(\bar{w}, \bar{w})+\underbrace{\bar{Q}(\bar{w}, w-\bar{w})+\bar{Q}(w-\bar{w}, \bar{w})}_{=: q(\bar{w}, w-\bar{w})}
$$

\rightarrow The limit equation decouples: $\boldsymbol{w}=\bar{w}+\tilde{w}_{1}+\tilde{w}_{2}$, where

- \bar{w} : nonlinear deterministic equation;
- \tilde{W}_{1} : linear deterministic equation:

$$
\left\{\begin{array}{l}
\partial_{t} \tilde{w}_{1}+q\left(\bar{w}, \tilde{w}_{1}\right)-\Delta_{h} \tilde{w}_{1}+\bar{S}_{B}\left(\tilde{w}_{1}\right)=0 \\
\tilde{w}_{1}(t=0)=w_{0}-\bar{w}_{0}
\end{array}\right.
$$

- \tilde{w}_{2} : linear random equation, $E\left[\tilde{w}_{2}\right]=0$:

Limit system in the case of non-resonant torus

If the torus is non-resonant, then

$$
\bar{Q}(w, w)=\bar{Q}(\bar{w}, \bar{w})+\underbrace{\bar{Q}(\bar{w}, w-\bar{w})+\bar{Q}(w-\bar{w}, \bar{w})}_{=: q(\bar{w}, w-\bar{w})}
$$

\rightarrow The limit equation decouples: $\boldsymbol{w}=\bar{w}+\tilde{w}_{1}+\tilde{w}_{2}$, where

- \bar{w} : nonlinear deterministic equation;
- \tilde{w}_{1} : linear deterministic equation:

$$
\left\{\begin{array}{l}
\partial_{t} \tilde{w}_{1}+q\left(\bar{w}, \tilde{w}_{1}\right)-\Delta_{h} \tilde{W}_{1}+\bar{S}_{B}\left(\tilde{w}_{1}\right)=0, \\
\tilde{w}_{1}(t=0)=w_{0}-\bar{w}_{0}
\end{array}\right.
$$

- \tilde{w}_{2} : linear random equation, $E\left[\tilde{w}_{2}\right]=0$:

$$
\left\{\begin{array}{l}
\partial_{t} \tilde{w}_{2}+q\left(\bar{W}, \tilde{w}_{2}\right)-\Delta_{h} \tilde{W}_{2}+\bar{S}_{T}-E\left[\bar{S}_{T}\right]=0, \\
\tilde{w}_{2}(t=0)=0 .
\end{array}\right.
$$

Perspectives

－Include treatment of singular profile in the random case （avoid non－resonance assumptions）；
－Use β－plane instead of f－plane model（variations of Coriolis parameter）：modification of the weak limit，apparition of vertical boundary layers on the western boundaries．
－Consider more general boundaries（different types of boundary layers are expected）．
－Work with density－dependent models．

