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Main assumptions in the interior

» Starting point: Ocean = homogeneous, incompressible
fluid in a rotating frame.
— 3D Navier-Stokes equations with Coriolis force Q A u.

» Coriolis acceleration:
—  f-plane approximation: f = 2|Q| sin(#) homogeneous
(“small” geographical zone, midlatitudes);
— effect of horizontal component of Q is neglected.

» Frictional forces F: notion of “turbulent viscosity”:
F =Ad%u+ ApApu, An A, >0, Ay # A,

» Conclusion: the velocity u of currents inside the ocean is
described by

U+ (u-V)u+fes Au— A02u — ApApu+Vp =0,

V-u=0. A



Introduction

Boundary conditions

» Bottom of the ocean: flat (hg = 0).
Homogeneous Dirichlet boundary condition (no-slip):

U|z:0 =0.
» Surface of the ocean: rigid lid approximation: h = D.
Description of wind-stress:

OzUp|z—p = o,
Uz|z—p = 0.

» Horizontal boundaries: box — horizontal domain:
[0, Lay) x [0, Lao) with periodic boundary conditions.



Introduction

Scaling assumptions

» High rotation limit: Rossby number ¢ := f|UL| < 1.

» Horizontal and vertical viscosities:

Av . LA,

mw, I/—UD2<<1

D
» Amplitude of wind stress: o := % > 1.

Earth rotation vector A Turbulent horizontal viscosity
Horizontal length scale A, Turbulent vertical viscosity
Horizontal velocity scale o9 Amplitude of wind velocity
Vertical length scale

ocCcr~0



Introduction

Scaling assumptions

» High rotation limit: Rossby number = := f|UL| < 1.

» Horizontal and vertical viscosities:
An oy, A
uL~ > " UuD?

< 1.

» Amplitude of wind stress: o := Dgo > 1.

» Conclusion: the system in rescaled variables becomes

’
atu—i-u-Vu—i-geg/\u—i-Vp—Ahu—uaﬁu:O,

divu = 0, OzUp z—q = O,
Uz=0 =0, U3 z—a = 0.

New domain: V =[0,a;) x [0, a») x [0, &);
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Modelization of the wind stress

» Full atmosphere/ocean coupled model is out of reach...
— Effect of a given wind stress on ocean dynamics.

» Time dependance of wind stress:
Coriolis op. ~~ fast oscillations in time (freq. ~ 1/¢).
— Interesting scaling: o = o (t, £, xp).

» First choice: o almost-periodic: [Masmoudi 2000]

o) = 3 3 oltwp)eimeh
HEM kh€Z2
» Second choice: o stationary:
o(t, 7, X w) = S(t, Xn, O-w),

where
» we E,and (E, A, 1) is a probability space,
» (0,)rcr is @ measure preserving transformation group
acting on E.

Interest: introduce some randomness in the equation.
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Introduction

Brief review of results on rotating fluids

Ref: Chemin, Desjardins, Gallagher, Grenier.
» Dominant process: Coriolis operator:

L=P(ezN");

Spectrum { )\ := k e z3\ {0} }.

k
\k’l
— Creation of waves propagating at speed ¢~ '.

» Filtering method [Grenier; Schochet]:
Equation for u, = exp ({L) u
— Passage to the limit as ¢, v — 0: envelope equations;
— Problem: u; does not match the boundary conditions.

» Construction of boundary layers[Colin-Fabrie;
Desjardins-Grenier; Grenier-Masmoudi; Masmoudi ...]
— Creation of source terms (Ekman pumping) in envelope
equation.
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Coupling between interior and boundary layer terms

Consider the following Ansatz
t t
U(t7X7y7Z)%uim tag7x7yuz + UsL tag7x7yuz ’

where
> Unt(t,7) = exp (—=7L) uL(t) + Suint(t, 7), SUint = 0(1);
Role: uini(t, t/<) satisfies the evolution equation (up to

o(1));
> upL(,2) = ur(,(a—2)/n) + us(-,z/n), n < 1.
Role: ug. matches the horizontal boundary conditions.
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Coupling between interior and boundary layer terms

Consider the following Ansatz

t t
u(t7X7y7Z) ~ Uint (tug7x7yaz> +UBL (tug7x7yaz) )

where
> Unt(t,7) = exp (—=7L) uL(t) + Suint(t, 7), SUint = 0(1);
Role: uini(t, t/<) satisfies the evolution equation (up to
o(1));

> upL(,2) = ur(,(a—2)/n) + us(-,z/n), n < 1.
Role: ug. matches the horizontal boundary conditions.

Remarks:
» The horizontal BC for ug_ depend on uin;

» The vertical BC for jui; depends on ug, and creates a
source term (Ekman pumping) in equation for u; .

— Coupling between ui; and ug, .
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Method of resolution

Idea: define a boundary layer operator 3:
» Input: arbitrary horizontal boundary conditions.

» Output: divergence-free boundary layer term, matching the
horizontal BC and equation at leading order.

and an interior operator U/:
» Input: arbitrary initial data and vertical boundary
conditions.
» Output: interior term matching the vertical boundary
conditions and equation at leading order.
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Method of resolution

Idea: define a boundary layer operator 3:
» Input: arbitrary horizontal boundary conditions.

» Output: divergence-free boundary layer term, matching the
horizontal BC and equation at leading order.

and an interior operator U/:
» Input: arbitrary initial data and vertical boundary
conditions.
» Output: interior term matching the vertical boundary
conditions and equation at leading order.
Elementary step: adapt inputs of &/ and B such that BC and
eq. are satisfied (at leading order).
Question: when should the construction stop ?
— Answer: when all remaining boundary terms are o(<) in L2.
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The almost-periodic, resonant case
Main result in the linear case
The boundary layer operator

The interior operator
Construction of an approximate solution and conclusion
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The almost-periodic, resonant case

Convergence result

Theorem:[D., Saint-Raymond, 2008]
Let u = u®" be the solution of

( 1
oru + geg/\ u—v8§u—Ahu+Vp: 0,
divu = O,
U|Z=0 = Oa
1 JaS it _ike-
U3|ZZa = 0, azuh|z=a(t) = W Z 0'(,[1,, kh)elu5 elkh Xh
. /’bvkh

Let w be the solution of the envelope equation. There exists a
function u®""9, of order (ev)~" in L*°, and a constant ko > 0,
such that if e, v — 0 with v = O(¢) and k < kg, then

ur — <exp <—£L> w(t) + us"‘g> — 0,

in L2,(0, 00; L2(V)) N L2 (0, 00; HA(V)).
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Remarks on the convergence result

» No a priori bounds for u®".

» In general, u*” does not remain bounded: destabilization
of the whole fluid inside the domain.

» The singular profile us"9 is explicit. Linear response to
forcing on the mode

Kn=0,pu==+1.

In particular, u$"9 does not depend on x;, and uging =0.
— No singular Ekman transpiration velocity.

» No asymptotic expansion for u=* with this method.



The almost-periodic, resonant case

Remarks on the convergence result

» No a priori bounds for u®".

» In general, u*” does not remain bounded: destabilization
of the whole fluid inside the domain.

» The singular profile us"9 is explicit. Linear response to
forcing on the mode

Kn=0,pu==+1.

In particular, u$"9 does not depend on x;, and uging =0.
— No singular Ekman transpiration velocity.

» No asymptotic expansion for u=* with this method.

In the sequel:
» Construction of operators 3 (boundary layer), U (interior).

» Focus on uncommon behaviour: apparition of atypical
boundary layers, singular profile.
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General setting

Ansatz:

vs = ug (1, 5 xm —2= ) +ur (%, B2
BL — UB ’5, ha\/a T a€7 h’\/E_V s

and

ur/ug =" Ur/lig(t, kn, )€™ " exp(—Az).
Kn,u
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The almost-periodic, resonant case

General setting

Ansatz:

UgL = U i‘zxi +u tsz
BL — UB a€7 ha\/a T a€7 hs \/E_l/ 5
and
ur/ug =" Ur/lig(t, kn, )€™ " exp(—Az).
Kn,u

Linearity: work with fixed k, and 1 (A = A(Kp, 1)).
Equation in rescaled variables:

ki k201 — k1202

inly — Nty — Uptekily + ev e~
B h
A N N . —kikollo + K201 2
IMUQ—/\2U2+U1+Ekf2)U2+€V 17272 271 =0, @
N2 — evk?

\/5(//(1 01 + Ikgag) + )\03 =0.



The almost-periodic, resonant case

General setting - 2

Question: find A € C such that det Ay, = 0, where

. k1 kg El/k2
kg SRk vk
A — . e - evk? N2 — evk?
AT 5uk22 evky ko

1+—=— i—M2 4 ek? — 172
A2 — Eukﬁ ! h 2 _ Eukﬁ
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General setting - 2

Question: find A € C such that det Ay, = 0, where

: > > evkiko evk?
., in—A* + ekp + SC— EVKE —1 R El/kﬁ
A pr—
1+76Vk22 in—N2 + ek? — 761//(1 ko
A2 — Eukﬁ h 2 _ Eukﬁ

Different cases:

I
1
— Stability by small linear perturbations.
Conclusion: A = O(1) (bounded away from 0).

. -1
» 1 # +1: eigenvalues of < i ) are non zero.
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General setting - 2

Question: find A € C such that det Ay, = 0, where

: > > evkiko evk?
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Ar= vk2 " ki k
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Different cases:

I
1
— Stability by small linear perturbations.
Conclusion: A = O(1) (bounded away from 0).

. -1
» 1 # +1: eigenvalues of ( i ) are non zero.

» 1 = +1: one of the eigenvalues of (l“ 1) is zero.

1 ip
— Two sub-cases:
o ki # 0: atypical boundary layer (A = O(y/z + (ev)#)).
e kn=0: A =0is a solution!—singular profile (bifurcation).
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Classical Ekman layers: p # +1

At first order, ,
_[ip—=AX —1
A= ( 1 ip—)\z) ‘

Eigenvalues: \3 = i(u+1) + o(1);
Eigenvectors: wy = (1,+i) 4+ o(1).
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The almost-periodic, resonant case

Classical Ekman layers: p # +1
At first order, ,
_[ip—=AX —1
A= < 1 iu—)\z) ‘

Eigenvalues: \3 = i(u+1) + o(1);
Eigenvectors: wy = (1,+i) 4+ o(1).
Conclusion: {w,, w_} basis of C2.

Method: decompose the boundary condition §;, (input of B)
onto basis {w,, w_}:

On(kn, 11) = cp Wy + W,
Horizontal part of the boundary layer term is given by

ugp = <a+ wye M 4 aw e‘A—z> /T gk Xn

1 (6% _ (6 _ i ik, .
urp = (ev)z " ()\—+W+e A+z+>\—+w_e A—z> glr gk h,
+ —



The almost-periodic, resonant case

Atypical boundary layers: = +1, k, # 0

A2 =2ui+ o(1)

or X2 = O(e + ev).
“Eigenvectors”: wy = (1,+/) + o(1).

— Basis of C? for ¢, v small enough.

detA)\:0:>{



The almost-periodic, resonant case

Atypical boundary layers: = +1, k, # 0

A2 =2ui+ o(1)
or X2 = O(e + ev).

“Eigenvectors”: wy = (1,+/) + o(1).

— Basis of C? for ¢, v small enough.

Method: decompose the boundary condition (input of B) onto
basis {w,, w_}.

Same formulas as before.

— Uniform bounds in L, L2.

Novelty: keep exact (# approximated) values for w,, w_.

— No error term in the evolution equation.

detA)\:0:>{



The almost-periodic, resonant case

Apparition of a singular profile: u = +1, k, =0

Choosing for example x = 1, we derive

X2 —1
A= ( 1 i—)\z) ‘
Eigenvalues: X2 = 2/, A2 = 0;
Eigenvectors: wy = (1, /).
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i-\2 1
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z

o (7)

Remark: define o9 :—
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Apparition of a singular profile: u = +1, k, =0

Choosing for example x = 1, we derive

Eigenvalues: A2 = 2/, \2 = 0;
Eigenvectors: wy = (1, /).

Remark: define 5" .= — % ¢/t ("+) Then
(ev)r 0
B =0, 00, = et
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The almost-periodic, resonant case

Apparition of a singular profile: u = +1, k, =0

Choosing for example x = 1, we derive

Eigenvalues: A2 = 2/, \2 = 0;
Eigenvectors: wy = (1, /).

Remark: define 7"9 :— et ("+) Then
(ev)r 0

=sing __ —-sing __ il
Uy2p = 0, 8zuh|z:a = —(EV)H e'=wy.

Conclusion: decompose the BC onto basis {w., w_}.
Singular part of the “boundary layer” term is given by

ar+Z L
ugL.h = (CVB;}_ + W) W+el€.
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The almost-periodic, resonant case

The interior operator



The almost-periodic, resonant case

Decomposition of ui for ky £ 0

Explicit construction:
Uint = U[VB, VT, Up]
such that ui is a solution of the evolution equation and satisfies

Unt(t = 0) = Up + 0(1), Uintajz—0 = VEVVB, Untgjz—a = VEVVT.
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» w(t): preponderant term; matches initial data up;
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The almost-periodic, resonant case

Decomposition of ui for ky £ 0

Explicit construction:
Uint = U[VB, VT, Up]
such that ui is a solution of the evolution equation and satisfies

Unt(t = 0) = Up + 0(1), Uintajz—0 = VEVVB, Untgjz—a = VEVVT.

o t
Decomposition: ui,; = exp <EL> W(t) + Vint + U where

» w(t): preponderant term; matches initial data up;
> Vini: known explicitely;

1
= Ve (om0 ),

vrz+ vg(1—2)

» uXC: oscillating term, takes into account rest of equation.
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Derivation of equations for w and ups®

Functional preliminaries:define
Fo:={u € [2(V), divu =0, U3j,—q = U3j,—, = O}.

IP: projection on Fy;
(Nk)k>o: hilbertian basis of Fy, such that LNy = A\ N.



The almost-periodic, resonant case

Derivation of equations for w and ups®

Functional preliminaries:define

Fo:={ue LZ(V), divu = 0, U3|z=0 = U3|z=q = 0}.
IP: projection on Fy;

(Nk)k>o: hilbertian basis of Fy, such that LNy = A\ N.
Set

1 2
Y = OtVint + ges A Vint — VO3 Vint — DpVint.

Then Wiy := exp (—t/cL) w + uPs® is such that

1
al‘Wint + gLWint - Vagwint - AhWint - —]P’(Z) - = Z <Nk7 Z> Nk~
k



The almost-periodic, resonant case

Derivation of equations for w and ups®

Functional preliminaries:define
Fo:={u € [2(V), divu =0, U3j,—q = U3j,—, = O}.
IP: projection on Fy;
(Nk)k>o: hilbertian basis of Fy, such that LNy = A\ N.
Set ]
Y = OtVint + Z63 A\ Vint — V05 Vint — DpVint.

Then Wiy := exp (—t/cL) w + uPs® is such that
1
OtWint + ELWint - V3§Wim — ApWint = _]P(Z) - Z <Nk7 Z> Ni.
k

Rules:
» All terms in (Nk, ¥) oscillating at frequencies )\, /= become
source terms in equation on w;
» All terms in (Ni, X) oscillating at frequencies /=, 1 # Ak

become source terms in equation on ue.
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Singular profile for k, =0

Problem: recall singular profile

—gi aT +Z it
sing __ ) +i
u = E <OzB,i + () ) wie'c.

+

Does not match initial condition !



The almost-periodic, resonant case

Singular profile for k, =0

Problem: recall singular profile

—gi aT +Z it
sing __ ) +i
u = E <OzB,i + () ) wie'c.

+

Does not match initial condition !
Idea: build "9 := "9 4 g, where

. 1 . .
sin sin 2 sin
at‘Uoscg + gLUoscg —v03 Uoscg =0

Useg(t = 0) = —I¥"9(t = 0),
sing o sing B
Uosc,h\z:o =0, azuosc,h|z:a1 =0(t>0),

sing __
Uosc,SZ :



The almost-periodic, resonant case

Singular profile for k, =0

Problem: recall singular profile

—gi aT +Z 4t
sing __ ; i
u = E <OzB,i + () ) wie'c.

+

Does not match initial condition !
Idea: build "9 := "9 4 g, where

. 1 . .
sing sing 2 sing
OtUpse + gLUosc — vO5Ugsc =0

Used(t = 0) = —¥"9(t = 0),
sing o sing -

Uosc,h\z:O =0, azuOsc,h|z:a =0 (t > O)a
sing __

Uosc,S =Y

Remark: no stabilization.
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The almost-periodic, resonant case

Construction of an approximate solution and conclusion



The almost-periodic, resonant case

Explicit construction of the approximate solution

» First step: define the singular profile u$"9 and the solution
of the envelope equation w, given by

{ Otw — Apw + \/gsEkman[W] =0,

Wit=0 = U|t=0;

Where SEkman . FO — FO: SEkman Z O'



The almost-periodic, resonant case

Explicit construction of the approximate solution

» First step: define the singular profile u$"9 and the solution
of the envelope equation w.
» Second step: define a BL term 5(dg p. 91 ), Where
» do.n: trace of won z =0;
» 1,n = o (wind forcing).

At this stage: evolution eq. satisfied up to O(1) terms,
horizontal BC are satisfied, and vertical BC are satisfied up

to O((cv)z ") terms.



The almost-periodic, resonant case

Explicit construction of the approximate solution

» First step: define the singular profile u$"9 and the solution
of the envelope equation w.
» Second step: define a BL term 5(dg p. 91 ), Where
> do,n: trace of w on z = 0;
» 1,n = o (wind forcing).

» Third step: define the rest of the interior term (of order
o(1) in L2): vint 4yt

At this stage: evolution eq. satisfied up to o(1) terms,
vertical BC are satisfied, and horizontal BC are satisfied up
to o(1) terms (as long as « is not too large).



The almost-periodic, resonant case

Explicit construction of the approximate solution

» First step: define the singular profile u$"9 and the solution
of the envelope equation w.
» Second step: define a BL term 5(dg p. 91 ), Where
> do,n: trace of w on z = 0;
» 1,n = o (wind forcing).

» Third step: define the rest of the interior term (of order
o(1) in L2): vint 4yt

» Fourth step: define one additionnal boundary layer term,
taking into account the remaining horizontal BC.

At this stage: evolution eq. satisfied up to o(1) terms,
horizontal BC are satisfied, and vertical BC are satisfied up
to o(\/ev) = o(¢) terms.



The almost-periodic, resonant case

Explicit construction of the approximate solution

» First step: define the singular profile u$"9 and the solution
of the envelope equation w.
» Second step: define a BL term 5(dg p. 91 ), Where
> do,n: trace of w on z = 0;
» 1,n = o (wind forcing).

» Third step: define the rest of the interior term (of order
o(1) in L2): vint 4yt

» Fourth step: define one additionnal boundary layer term,
taking into account the remaining horizontal BC.

» Fifth step: use stopping Lemma.



The almost-periodic, resonant case

Explicit construction of the approximate solution

» First step: define the singular profile u$"9 and the solution
of the envelope equation w.
» Second step: define a BL term 5(dg p. 91 ), Where
> do,n: trace of w on z = 0;
» 1,n = o (wind forcing).

» Third step: define the rest of the interior term (of order
o(1) in L2): vint 4yt

» Fourth step: define one additionnal boundary layer term,
taking into account the remaining horizontal BC.

» Fifth step: use stopping Lemma.

Conclusion: evolution eq. satisfied up to o(1) terms, boundary
conditions satisfied exactly. Conclude by energy estimate.



The almost-periodic, resonant case

Conclusion of the almost-periodic case

Linear problem:

» Apparition of atypical boundary layers due to resonant
forcing (u = +1) on the non-homogeneous modes
(kn # 0).

» Singular profile (u = +£1, ky = 0) which destabilizes the
whole fluid for arbitrary initial data.

» Linearity of the equation enables explicit calculations.
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Linear problem:

» Apparition of atypical boundary layers due to resonant
forcing (u = +1) on the non-homogeneous modes
(kn # 0).

» Singular profile (u = +£1, ky = 0) which destabilizes the
whole fluid for arbitrary initial data.

» Linearity of the equation enables explicit calculations.

Nonlinear problem:

Recent result [D., Saint-Raymond, ’07]: stability of singular
profile in HS norm and when the amplitude of the wind-stress is
not too large.



The almost-periodic, resonant case

Conclusion of the almost-periodic case

Linear problem:

» Apparition of atypical boundary layers due to resonant
forcing (u = +1) on the non-homogeneous modes
(kn # 0).

» Singular profile (u = +£1, ky = 0) which destabilizes the
whole fluid for arbitrary initial data.

» Linearity of the equation enables explicit calculations.

Nonlinear problem:

Recent result [D., Saint-Raymond, ’07]: stability of singular
profile in HS norm and when the amplitude of the wind-stress is
not too large.

Proof based on analysis of resonant modes: A\ — A\j = £1.



The random stationary, non-resonant case

The random stationary, non-resonant case
Convergence result
The limit equation



The random stationary, non-resonant case

The stationary setting

Recall that
o= S(t,Xh,eiw) .



The random stationary, non-resonant case

The stationary setting

Recall that
o= S(t,Xm@gd) .

Assumption of non-resonance: (avoid singular profile)
Define approximate Fourier transform: for v > 0,

6, (\w) = 21—% /R exp(—|7))e o (r,w) dr.



The random stationary, non-resonant case

The stationary setting

Recall that
o= S(t,Xh,eiw) .

Assumption of non-resonance: (avoid singular profile)
Define approximate Fourier transform: for v > 0,

6, (\w) = 21—% /R exp(—|7))e o (r,w) dr.

Assume that
(H1) ¥y >0, 6, € L~(E, L'(R)), and

SUP |6 || Lo (E,L1 (r)) < F00-
>0

(H2) 3 neighbourhoods V. of +1, independent of v > 0, such
that

lim sup [6,(N\)|=0.
=0 eV UV



The random stationary, non-resonant case

The random stationary, non-resonant case
Convergence result



The random stationary, non-resonant case

Convergence result in the nonlinear stationary case

Theorem:[D., 2007] Let u = u®" be the solution of

(

1
o + geg/\u+u-Vu—z/8§u—Ahu+Vp:0,
divu =0,

U\ZZO = 07 ’
t
Ugjz—g = 0, azUh|z:a(t) = 70 <t7 _7Xh7w> .
| (ev)2 c

Let w € L>=(0, T*; H%) (s > 5/2) be the solution of the envelope
equation, and assume that (H1)-(H2) are satisfied.
Then as ¢, v — 0 with v = O(e),

usr — (exp (;L) W(t)) — 0,

in L(0, T; L2(V x E)) N L2((0, T) x E, H}(V)) forall T < T*.



The random stationary, non-resonant case

Convergence result in the nonlinear stationary case

Theorem:[D., 2007] Let u = u®" be the solution of

( 1
oru + ge3/\u+u-Vu—z/8§u—Ahu+Vp:0,
divu =0,
U\Z:0:07

1 t
U3|z=a = 0, 8zuh|z:a(t) = 70 (t, —,Xh,w> .
( (ev)2 c

Let w € L>=(0, T*; H%) (s > 5/2) be the solution of the envelope
equation, and assume that (H1)-(H2) are satisfied.
Then as ¢, v — 0 with v = O(e),

usr — (exp (;L) W(t)) — 0,

in L>°(0, T; L2(V x E))N L2((0, T) x E, H,],(V)) forall T < T*.
Remark: w is random!



The random stationary, non-resonant case

Elements of the proof

Same strategy as in almost-periodic case. Main features:
» No atypical boundary layer terms (nhon-resonance);
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Elements of the proof

Same strategy as in almost-periodic case. Main features:
» No atypical boundary layer terms (nhon-resonance);
» Boundary layer terms are random stationary in time;

» Filtering methods — need to investigate average behaviour
of oscillating functions.
Variant of ergodic Theorem:



The random stationary, non-resonant case

Elements of the proof

Same strategy as in almost-periodic case. Main features:
» No atypical boundary layer terms (nhon-resonance);
» Boundary layer terms are random stationary in time;

» Filtering methods — need to investigate average behaviour
of oscillating functions.
Variant of ergodic Theorem:

Lemma _
Let¢y € LY(E, ), and let A € R. Then 3¢* € L(E),

T . -
u /0 b(0,0)e N dr — 3

a.s. andin L'(E).
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The random stationary, non-resonant case

The limit equation



The random stationary, non-resonant case

The envelope equation

The function w is a solution of

Ow + Q(w, w) — Apw + Sg(w) + Sr(w) =0,
Ekman pumping

w(t=0)=wy e H®, divwy =0,

divw = 0,

W3z2—0 = 0, W3z—5 =0,



The random stationary, non-resonant case

The envelope equation

The function w is a solution of

Ow + Q(w, w) — Apw + Sg(w) + Sr(w) =0,
——

Ekman pumping
w(t=0)=wy e H®, divwy =0,
divw = 0,

W3z2—0 = 0, W3z—5 =0,

In general, w is random... However, w = 1/a foa w is not!

{ oW +P(W - VW) — Apw + Sg(W) + E [S7] =0,
a

1 a
W(tZO):W():—/ W.
0



The random stationary, non-resonant case

The envelope equation

The function w is a solution of

Ow + Q(w, w) — Apw + Sg(w) + Sr(w) =0,
——

Ekman pumping
w(t=0)=wy e H®, divwy =0,
divw = 0,

W3z2—0 = 0, W3z—5 =0,

In general, w is random... However, w = 1/a foa w is not!

{ oW +P(W - VW) — Apw + Sg(W) + E [S7] =0,
a

1 a
W(tZO):W():—/ W.
0

Question: equation on E[w] — w ? (vertical modes)
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Limit system in the case of non-resonant torus

If the torus is non-resonant, then
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Limit system in the case of non-resonant torus

If the torus is non-resonant, then

— The limit equation decouples: w = w + Wy + W», where
» w: nonlinear deterministic equation;
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Limit system in the case of non-resonant torus

If the torus is non-resonant, then

— The limit equation decouples: w = w + Wy + W», where
» w: nonlinear deterministic equation;
» w;: linear deterministic equation:

0wy + q(W, Wy) — AWy + Sg(iy) = 0,
Wi (t = 0) = wo — Wo;



The random stationary, non-resonant case

Limit system in the case of non-resonant torus

If the torus is non-resonant, then

— The limit equation decouples: w = w + Wy + W», where
» w: nonlinear deterministic equation;
» w;: linear deterministic equation:

0wy + q(W, Wy) — AWy + Sg(iy) = 0,
Wi (t = 0) = wo — Wo;
» »: linear random equation, E[Ww»] = 0:

8t|7V2 + Q(V_V Wg) — AhW2 + ST — E[ST] =0,
Wp(t = 0) = 0.



» Include treatment of singular profile in the random case
(avoid non-resonance assumptions);

» Use §-plane instead of f-plane model (variations of Coriolis
parameter): modification of the weak limit, apparition of
vertical boundary layers on the western boundaries.

» Consider more general boundaries (different types of
boundary layers are expected).

» Work with density-dependent models.
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