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Abstract. The goal of this paper is to describe in mathematical terms the effect on the ocean circulation of a random
stationary wind stress at the surface of the ocean. In order to avoid singular behaviour, non-resonance hypotheses are
introduced, which ensure that the time frequencies of the wind-stress are different from that of the Earth rotation. We
prove a convergence result for a three-dimensional Navier-Stokes-Coriolis system in a bounded domain, in the asymptotic
of fast rotation and vanishing vertical viscosity, and we exhibit some random and stationary boundary layer profiles. At
last, an average equation is derived for the limit system in the case of the non-resonant torus.
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1. Introduction. The goal of this paper is to study mathematically a problem arising in ocean
dynamics, namely the behaviour of ocean currents under stimulation by the wind. Following the books
by Pedlosky [20, 21] and Gill [9], the velocity of the fluid in the ocean, denoted by u, is described by the
incompressible Navier-Stokes equations in three dimensions, in rotating coordinates, with Coriolis force

ρ(∂tu+ u · ∇u+ 2Ωe ∧ u)−Ah∆hu−Az∂2
zu = ∇p, t > 0, (x, y, z) ∈ U(t) ⊂ R3,

divu = 0.

In the above equation, Ah and Az are respectively the horizontal and vertical turbulent viscosities, p is
the pressure inside the fluid, ρ is the homogeneous and constant density, and Ωe is the rotation vector
of the Earth (Ω > 0 and e is a unitary vector, parallel to the pole axis, oriented from South to North).
U(t) is an open set in R3, depending on the time variable t: indeed, the interface between the ocean and
the atmosphere may be moving, and is described in general by a free surface z = h(t).

In order to focus on the influence of the wind, let us now make a series of crude modeling hypotheses
on the boundary conditions: first, we assume that the lateral boundaries of the ocean are flat, and that
the velocity u satisfies periodic boundary conditions in the horizontal variable. We also neglect the
fluctuations of the free surface, namely, we assume that h(t) ≡ aD, with a,D positive constants. This
approximation, although highly unrealistic, is justified by the fact that the behaviour of the fluid around
the surface is in general very turbulent. Hence, as emphasized in [6], only a modelization is tractable
and meaningful. Let us also mention that the justification of this rigid lid approximation starting from
a free surface is mainly open from a mathematical point of view: we refer to [1] for the derivation of
Navier-type wall laws for the Laplace equation, under general assumptions on the interface, and to [14]
for some elements of justification in the case of the great lake equations. At last, we assume that the
bottom of the ocean is flat; the case of a nonflat bottom has already been investigated by several authors,
and we refer to [6, 8, 17] for more details regarding that point.

As a consequence, we assume that U(t) = [0, a1H)× [0, a2H)× [0, aD), where H > 0 is the typical
horizontal lengthscale, and u satisfies the following boundary conditions

u is periodic in the horizontal variable with period [0, a1H)× [0, a2H),
u|z=0 = 0 (no slip condition at the bottom of the ocean),
∂zuh|z=aD = A0σ (influence of the wind),
u3|z=aD = 0 (no flux condition at the surface).

Let us now reduce the problem by scaling arguments. First, we neglect the effect of the horizontal
component of the rotation vector e, which is classical in a geophysical framework (see [4]). Furthermore,
we assume that the motion occurs at midlatitudes (far from the equator), and on a “small” geographical
zone, meaning H � R0, where R0 is the earth radius. In this setting, it is legitimate to use the so-called
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f -plane approximation (see [7]), and to neglect the fluctuations of the quantity e3 · e with respect to the
latitude. In rescaled variables, the equation becomes

∂tu
ε,ν + uε,ν · ∇uε,ν +

1
ε
e3 ∧ uε,ν − νh∆hu

ε,ν − νz∂2
zu

ε,ν +
(
∇hp
1
γ2 ∂zp

)
= 0, (1.1)

where

ε :=
U

2HΩ
, νh :=

Ah
ρuH

, νz :=
LAz
ρUD2

, γ :=
D

H
,

and U is the typical horizontal relative velocity of the fluid. We are interested in the limit

νz � 1, ε� 1, νh ∼ 1.

Such a scaling of parameters seems convenient for instance for the mesoscale eddies that have been
observed in western Atlantic (see [20]). One has indeed

U ∼ 5 cm · s−1, H ∼ 100 km, D ∼ 4 km and Ω ∼ 10−4s−1

which leads to ε ∼ 5× 10−3. Possible values for the turbulent viscosities given in [20] are

Ah ∼ 106 kg ·m−1 · s−1 and Az ∼ 1 kg ·m−1 · s−1

so that νz ∼ 10−3, νh ∼ 1. In the rest of the article, we denote by ν the small parameter νz, and we
assume that νh = 1. Additionally, we do not take into account the shallow water effect, and thus we take
γ = 1, even though this is not consistent with the values of H and D given above. Indeed, the thin layer
effect, which corresponds to γ � 1, is expected to substantially complicate the analysis, but without
modifying the definition of boundary layers. Thus, in order to focus on the influence of a random forcing,
we study the classical rotating fluids equation (see for instance [4]), that is

∂tu
ε,ν + uε,ν · ∇uε,ν +

1
ε
e3 ∧ uε,ν −∆hu

ε,ν − ν∂2
zu

ε,ν +∇p = 0. (1.2)

Moreover, the amplitude of the wind stress at the surface of the ocean may be very large; thus we set

β :=
A0S0D

U
,

where S0 is the amplitude of the wind velocity, and we study the limit β → ∞. Equation (1.2) is thus
supplemented with the boundary conditions

uε,ν|z=0 = 0,

∂zu
ε,ν
h|z=a = βσε,

uε,ν3|z=a = 0.

(1.3)

Additionally, uε,ν is assumed to be T2-periodic in the horizontal variable xh, where T2 := R2/[0, a1) ×
[0, a2). In the rest of the paper, we set Υ := T2 × (0, a). The assumptions on the wind-stress σε will be
made clear later on.

1.1. General results on rotating fluids. Let us now explain heuristically what is the expected
form of uε,ν at the limit. Assume for instance that ν = ε and that the family uε,ν behaves in L2([0, T ]×Υ)
like some function u0(t, t/ε, x), with u0 ∈ L∞([0, T ]× [0,∞)×Υ) sufficiently smooth. Then it is natural
to expect that u0 satisfies 

∂τu
0 + e3 ∧ u0 = 0,

divu0 = 0,
u0

3|z=0 = u0
3|z=a = 0.

(1.4)
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In fact, the above equation can be derived rigorously from (1.2) if the dependence of the function u0

with respect to the fast time variable τ is known a priori ; the goal of the two-scale convergence theory,
formalized by Grégoire Allaire in [2] after an idea of Gabriel N’Guetseng (see [18]), is precisely to justify
such derivations in the context of periodic functions. However, in this paper, we do not need to resort
to such techniques; our aim is merely to build an approximate solution thanks to formal computations.

In view of (1.4), we introduce the vector space

H :=
{
u ∈ L2(Υ)3, divu = 0, u3|z=0 = u3|z=a = 0

}
.

We denote by P the orthogonal projection on H in L2(Υ)3, and we set L := P(e3 ∧ ·). Notice that
P differs from the Leray projector in general, because of the no-flux conditions at the bottom and the
surface of the fluid. It is known (see for instance [4]) that there exists a hilbertian basis B = {Nk, k ∈
Z3 \ {0} } ∪ {(1,±i, 0)/

√
2} of H constitued of eigenvectors of the operator L: for all k, the vector Nk

satisfies

P(e3 ∧Nk) = iλkNk with λk = − k′3
|k′|

,

where k′ = (2πk1/a1, 2πk2/a2, πk3/a). Furthermore, notice that

L

 1
±i
0

 = ∓i

 1
±i
0

 .

For k ∈ Z3 \ {0}, the vector Nk is given by

Nk(xh, z) = eik
′
h·xh

cos(k′3z)n1(k)
cos(k′3z)n2(k)
sin(k′3z)n3(k)


where 

n1(k) =
1

√
a1a2a|k′h|

(ik′2 + k′1λk)

n2(k) =
1

√
a1a2a|k′h|

(−ik′1 + k′2λk)

n3(k) = i
|k′h|√

a1a2a|k′|

if kh 6= 0,

and 
n1(k) =

sgn(k3)
√
a1a2a

n2(k) =
i

√
a1a2a

n3(k) = 0

else.

For M ∈ B, we denote by λ(M) the eigenvalue of L associated with the eigenvector M . Notice also that
a triplet k = (k1, k2, k3) ∈ Z3 can be associated with each vector M ∈ B. The association is obvious if
M ∈ {Nk, k ∈ Z3 \ {0, } }, and if M ∈ {(1,±i, 0)/

√
2}, the corresponding triplet is (0, 0, 0).

Let L(τ) : H → H be the semi-group associated with equation (1.4), i.e. L(τ) = exp(−τL) for τ ≥ 0.
We infer from equation (1.4) that u0(t, τ) ∈ H almost everywhere, and that there exists a function u0

L

such that

u0 = L(τ)u0
L =

∑
M∈B

e−iλ(M)τ
〈
M,u0

L

〉
.

Consequently the main effect of the Coriolis operator L is to create waves, propagating at frequencies
of order ε−1. The goal is now to identify the function u0

L, which in general depends on the slow time
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variable t. This is achieved thanks to filtering methods, which were introduced by S. Schochet in [23],
and further developed by E. Grenier in [10] in the context of rotating fluids. Precisely, setting

uε,νL = exp
(
t

ε
L

)
uε,ν ;

it is proved in [4, 17] in the case of Dirichlet boundary conditions at z = 0 and z = a that uε,νL converges
strongly in L2

loc([0,∞) × Υ) towards a function u0
L. Moreover, the function u0

L satisfies a nonlinear
equation of the type

∂tu
0
L + Q̄(u0

L, u
0
L)−∆hu

0
L = S̄, (1.5)

where the quadratic term Q̄(u0
L, u

0
L) corresponds to the filtering of oscillations in the non-linear term

uε,ν ·∇uε,ν , and the source term S̄ to the filtering of oscillations in lower order terms in uε,ν . The quadratic
term Q̄ is defined as follows (see [4], Proposition 6.1 and [17]): for w1, w2 ∈ H∩H1(Υ), Q̄(w1, w2) is the
weak limit as ε→ 0 of the quantity

1
2

exp
(
t

ε
L

)
P
(

exp
(
− t
ε
L

)
w1 · ∇ exp

(
− t
ε
L

)
w2

)
+

1
2

exp
(
t

ε
L

)
P
(

exp
(
− t
ε
L

)
w2 · ∇ exp

(
− t
ε
L

)
w1

)
.

Hence

Q̄(w1, w2) =
∑
M∈B

∑
(M1,M2)∈KM

〈M1, w1〉 〈M2, w2〉αM1,M2,MM, (1.6)

where the resonant set KM is defined for M ∈ B by

KM :=
{

(M1,M2) ∈ B2,
k

(1)
h + k

(2)
h = kh,

λ(M1) + λ(M2) = λ(M)
and ∃η ∈ {−1, 1}2, η1k

(1)
3 + η2k

(2)
3 = k3

}
and the coefficient αM1,M2,M by

αM1,M2,M =
1
2

(〈M, (M1 · ∇)M2〉+ 〈M, (M2 · ∇)M1〉) .

Above, we have denoted by k (resp. k(i)) the triplet of Z3 associated with M ∈ B (resp. M (i)).
In order that the equation on u0

L is defined unambiguously, the value of the source term S̄ has to be
specified. In the present case, we have

S̄ = −
√
ν

ε
SB(u0

L)− νβST (σ),

where SB : H → H is a linear continuous non-negative operator (see [4, 5, 17]) recalled in formula (3.10)
below, and ST (σ) depends on the time oscillations in the wind-stress σ. Thus, in the next paragraph, we
precise the assumptions on the wind-stress σε, and we define the source term ST . In the above formula
and throughout the article, the subscripts B and T refer to top and bottom, respectively.

1.2. Definition of the limit equation. Let us first introduce the hypotheses on the dependance of
the wind velocity σε with respect to the time variable. Since the Coriolis operator generates oscillations
at frequencies of order ε−1, it seems natural to consider functions σε which depend on the fast time
variable t/ε. The case where this dependance is periodic, or almost periodic, has been investigated by N.
Masmoudi in [17] in the non-resonant case, that is, when the frequencies of the wind-stress are different
from ±1. The results of [17] were then extended by the author and Laure Saint-Raymond in [5]. In
fact, it is proved in [5] that when the wind-stress oscillates with the same frequency as the rotation of
the Earth (i.e. ±1), the typical size of the boundary layers is much larger than the one of the classical
Ekman layers. Moreover, a resonant forcing may overall destabilize the whole fluid for large times. Here,
we wish to avoid these singular behaviours, and thus to consider a more general non-resonant setting.
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Let (E,A,m0) be a probability space, and let (θτ )τ∈R be a measure preserving group transformation
acting on E. We assume that the function σε can be written

σε(t, xh) = σ

(
t,
t

ε
, xh;ω

)
, t > 0, xh ∈ T2, ω ∈ E,

and that the function σ is stationary, i.e.

σ(t, τ + s, xh;ω) = σ(t, τ, xh; θsω)

almost everywhere.
The periodic setting can be embedded in the stationary (ergodic) setting in the following way (see

[19]): take E = R/Z ' [0, 1), and let m0 be the Lebesgue measure on E. Define the group transformation
(θτ )τ∈R by

θτs = s+ τ mod Z ∀(τ, s) ∈ R× E.

Then it is easily checked that θτ preserves the measure m0 for all τ ∈ R. Thus the periodic setting
is a particular case of the stationary setting; the almost periodic setting can also be embedded in the
stationary setting, but the construction is more involved, and we refer the interested reader to [19].

The interest of the stationary setting, in addition to its generalization of the almost periodic one, lies
in the introduction of some randomness in equation (1.2). Hence, we also expect to recover a random
function in the limit ε, ν → 0. In fact, we will prove rigorously a strong convergence result of this kind;
additionally, we will characterize the average behaviour of uε,ν in the limit. Thus, one of the secondary
goals of this paper is to derive some averaging techniques adapted to highly rotating fluids, which may
be of interest in the framework of a mathematical theory of weak turbulence.

Since the function σ is not an almost periodic function, we now introduce a notion of approximate
spectral decomposition of σ. For α > 0, define the operator Fα by

Fασ : λ ∈ R 7→ 1
2π

∫
R

exp(−α|τ |)e−iλτσ(τ) dτ, (1.7)

and define the family of functions (σα)α>0 by the formula

σα(τ) :=
∫

R
exp(−α|λ|)eiλτFασ(λ) dλ. (1.8)

It is proved in Appendix A (see Lemma A.1) that the family (σα)α>0 converges towards σ, as α → 0,
in L∞([0, T1] × [0, T2] × E,L2(T2)) for all T1, T2 > 0. In order to simplify the presentation, we assume
from now on that σ only has a finite number of horizontal Fourier modes. This is not crucial in
the convergence proof, but the non-resonance conditions on σ are somewhat simpler to formulate in this
case. We refer to Remark 1.2 for more general assumptions.

From now on, we assume that for all α > 0, T > 0, the function Fασ belongs to L∞([0, T ] × E ×
T2, L1 ∩ L∞(Rλ)), and that the following non-resonance hypotheses hold:
(H1) For all T > 0,

∀T > 0, sup
α>0
||Fασ||L∞([0,T ]×E×T2,L1(Rλ)) < +∞.

(H2) There exist neighbourhoods V± of ±1, independent of α > 0, such that

∀T > 0, lim
α→0

sup
λ∈V+∪V−

‖Fασ(λ)‖L∞([0,T ]×E×T2) = 0.

We refer to Remark 1.3 below for some details about the meaning of hypotheses (H1)-(H2) for
almost periodic functions. The interested reader may also consult [13] for a treatment a resonance
phenomena for functions with a continuous spectrum; notice however that the context in [13] is somewhat
different, since it deals with functions whose Fourier transform is well-defined.

Let us now explain how random oscillations are filtered:
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Proposition 1.1. Let φ ∈ L∞(Rτ , L2(E)) be stationary, and let λ ∈ R. Then the family

φλθ : ω ∈ E 7→ 1
θ

∫ θ

0

φ(τ, ω)e−iλτdτ, θ > 0

converges, almost surely and in L2(E), towards a function denoted by Eλ[φ] ∈ L2(E) as θ → ∞. More-
over, Eλ[φ] satisfies the identity

Eλ[φ](θτω) = Eλ[φ](ω)eiλτ

almost surely in ω, for all τ ∈ R.
Additionally, if σ satisfies (H1)-(H2), then

Eλ[σ] = 0 (1.9)

for λ in a neighbourhood of ±1.
Proposition 1.1 is proved in Appendix B, except property (1.9), which will be proved in the course

of the proof page 27.
With the above definition of Eλ, the source term ST is defined by

ST (σ)(t) = − 1
√
aa1a2

∑
k∈Z3

1kh 6=0
(−1)k3

|k′h|
(
λkk

′
h + i(k′h)⊥

)
· E−λk [σ̂(t, ·, kh)]Nk,

where

σ̂(t, τ, kh;ω) =
∫

T2
σ(t, xh;ω)e−ik

′
h·xh dxh.

Notice that ST (σ) is a random function in general, and is well-defined in L∞loc([0,∞)×E,L2(Υ)) thanks
to (H1)-(H2) provided σ ∈ L∞([0, T ]× [0,∞)× T2 × E) for all T > 0.
• We now state an existence result for the limit system, based on the analysis in [4]. To that end,

we introduce the anisotropic Sobolev spaces Hs,s′ by

Hs,s′ :=
{
u ∈ L2(Υ), ∀α ∈ N3, |αh| ≤ s, |α3| ≤ s′, ∇αhh ∂α3

z u ∈ L2(Υ)
}
.

Then the following result holds:
Proposition 1.2. Let ν, ε, β > 0 be arbitrary.
Let u0 ∈ H ∩H0,1, and let σ ∈ L∞loc([0,∞)t, L∞([0,∞)τ × T2 × E)).
Assume that the hypotheses (H1)-(H2) hold.
Then ST (σ) ∈ L∞loc([0,∞)t, L∞(E,H0,1)), and consequently, the equation

∂tw + Q̄(w,w)−∆hw +
√
ν

ε
SB(w) + νβST (σ) = 0,

w|t=0 = u0

(1.10)

has a unique solution w ∈ L∞(E, C([0,∞),H∩H0,1)) such that ∇hu belongs to L∞(E,L2
loc([0,∞), H0,1)).

Remark 1.1. (i) Notice that the function w is random in general because of the source term ST .
(ii) In [4], Proposition 1.2 is proved for ST = 0 (see Proposition 6.5 p. 145). As stressed by the authors,
the result is non trivial since the system (1.10) is similar to a three-dimensional Navier-Stokes equation,
with a vanishing vertical viscosity. The proof relies on two arguments: first, a careful analysis of the
structure of the quadratic term Q̄ shows that the limit equation is in fact close to a two-dimensional one.
Second, the divergence-free property enables one to recover estimates on the vertical derivatives on the
third component of the velocity field, and thus to bypass the difficulties caused by the lack of smoothing
in the vertical direction.

In fact, the proof of Proposition 1.2 can easily be adapted from the one of Proposition 6.5 in [4],
and is therefore left to the reader. The method remains exactly the same, the only difference being the
presence of the source term ST in the energy estimates. This does not rise any particular difficulty,
thanks to the assumptions on σ.
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1.3. Convergence result.
Theorem 1.3. Assume that ν = O(ε), and that

√
ενβ = O(1).

Let σ ∈W 1,∞([0,∞)τ × [0,∞)t, L∞(T2 × E)) such that (H1)-(H2) are satisfied.
Let uε,ν ∈ L∞(E, C([0,∞), L2)∩L2

loc([0,∞), H1)) be a weak solution of (1.2), supplemented with the
conditions (1.3) and the initial data uε,ν|t=0 = u0 ∈ H ×H0,1. Let w be the solution of (1.10). Then for
all T > 0,

uε,ν − exp
(
− t
ε
L

)
w → 0

in L2([0, T ]× E,H1,0) ∩ L∞([0, T ], L2(E ×Υ)).
In the case of the nonresonant torus (see (1.12) below), it is likely that the hypothesis ν = O(ε)

can be relaxed. Indeed, in this case, the equation on w decouples between a nonlinear equation on the
vertical average of w on the one hand, and a linear equation on the vertical modes of w on the other (see
paragraph 1.4 below, together with Section 5). Moreover, it can be proved that the purely horizontal
modes of w decay exponentially in time at a rate exp(−t

√
ν/ε), and the rate of decay does not depend

on the particular horizontal mode considered. Thus, in this particular case, the regime ν � ε may be
investigated, using arguments similar to those developed in [5].

Remark 1.2. In fact, the above Theorem remains true even when the number of horizontal Fourier
modes of σ is infinite. In this case, it can be checked that the non-resonance assumptions (H1)-(H2)
have to be replaced by the following: there exists s > 4 such that
(H1’) For all α > 0, T > 0, Fασ ∈ L∞([0, T ]× E,L1(Rλ, Hs(T2))), and

∀T > 0, sup
α>0
||Fασ||L∞([0,T ]×E,L1(R,Hs(T2))) < +∞.

(H2’) There exist neighbourhoods V± of ±1, independent of α > 0, such that

∀T > 0, lim
α→0

sup
λ∈V+∪V−

‖Fασ(λ)‖L∞([0,T ]×E,Hs(T2)) = 0.

The H4 regularity assumption stems from the regularity required in the stopping Lemma A.2 in the
Appendix.

Furthermore, the regularity assumptions on the function σ become

σ ∈ L∞loc([0,∞)t, L∞([0,∞)τ × E,H3/2(T2)), ∂τσ ∈ H1(T2, L∞([0,∞)t × [0,∞)τ × E)).

Remark 1.3. Let us now explain the meaning of hypotheses (H1)-(H2) for almost periodic func-
tions. Let kh ∈ Z2, and let φ ∈ L∞([0,∞)× T2) such that

φ(τ, xh) = eik
′
h·xh

∑
µ∈M

φµe
iµτ ,

where M is a countable set. The fact that φ as only one horizontal Fourier mode is not crucial, but
merely helps focusing on the time spectrum. Then it can be checked easily that for all α > 0,

Fαφ(λ, xh) =
1

2π
eik
′
h·xh

∑
µ∈M

φµ
2α

α2 + (µ− λ)2
.

In particular, there exists a constant C > 0 such that

‖Fαφ‖L∞(T2,L1(Rλ)) ≤ C
∑
µ∈M

|φµ|
∫

R

2α
α2 + (µ− λ)2

dλ

≤ C
∑
µ∈M

|φµ| .

Thus hypothesis (H1) is satisfied provided
∑
µ∈M |φµ| <∞.
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On the other hand, assume that

η := d(M, {−1, 1}) > 0, (1.11)

i.e. that there are no frequencies in a neighbourhood of ±1. Then if λ ∈ (−1 − η/2,−1 + η/2) ∪ (1 −
η/2, 1 + η/2), we have

|λ− µ| ≥ η

2
∀µ ∈M,

and consequently, setting V ± := (±1− η/2,±1 + η/2), we have,

sup
λ∈V −∪V +

‖Fαφ(λ)‖L∞(T2) ≤ C
α

η
.

Thus hypothesis (1.11) entails (H2). Additionally, hypothesis (1.11) cannot be easily relaxed, as shows
the following construction: consider the sequence µn := 1−1/n, and choose a sequence of positive numbers
φn such that ∑

n

φn <∞.

For τ ∈ R, set

φ(τ) :=
∑
n

φne
iµnτ .

Then for all α > 0, for all k > 0

Fαφ(µk) =
∑
n

φn
2α

α2 +
(

1
n −

1
k

)2 ≥ 2φk
α
.

In particular,

lim
α→0
Fαφ(µk) = +∞

for all k, and thus condition (H2) is not satisfied.

1.4. Average behaviour at the limit. We have already stressed that the solution w of equation
(1.10) is, in general, a random function. Thus one may wonder whether the average behaviour of w at
the limit can be characterized. In general, the nonlinearity of equation (1.10) prevents us from deriving
an equation, or a system of equations, on the expectation of w, which we denote by E[w]. However, when
the torus is non resonant, equation (1.10) decouples, and in this case we are able to exhibit a system of
equations satisfied by E[w].

Let us first recall a few definitions:
Definition 1.4 (Non-resonant torus). The torus T3 := T2 × [−a, a) is said to be non-resonant if

the following property holds: for all (M1,M2) ∈ B2,(
∃η ∈ {−1, 1}3, η1λ(M1) + η2λ(M2 −M1)− η3λ(M2) = 0

)
⇒ k

(1)
3 k

(2)
3 (k(2)

3 − k(1)
3 ) = 0, (1.12)

where k(i) ∈ Z3 is the triplet associated with Mi (i = 1, 2).
We refer to [3] for a discussion of hypothesis (1.12) and its consequences. Let us mention that (1.12)

holds for almost all values of (a1, a2, a) ∈ (0,∞)3. When the torus is non-resonant, the structure of the
quadratic form Q̄ defined by (1.6) is particularly simple, and the system (1.10) can be decoupled into
a two-dimensional Navier-Stokes equation on the vertical average of w, and a linear equation on the
z-dependent part (see [4]). The advantage of this decomposition in our case is that the vertical average
of S̄T (σ) is deterministic, at least when the group transformation (θτ )τ≥0 acting on E is ergodic (see
[24]).
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Definition 1.5 (Ergodic transformation group). Let (θτ )τ∈R be a group of invariant transforma-
tions acting on the probability space (E,A,m0). The group is said to be ergodic if for all A ∈ A,

(θτA ⊂ A ∀τ ∈ R)⇒ m0(A) = 0 or m0(A) = 1.

We now state the result on the average behaviour at the limit:
Proposition 1.6. Assume that the transformation group (θτ )τ∈R is ergodic.

Let u0 ∈ H∩H0,1, and let σ ∈ L∞([0,∞)t,×[0,∞)τ ×E × T2) such that the hypotheses of Theorem 1.3
are satisfied. Let w ∈ L∞(E, C([0,∞),H ∩H0,1) ∩ L2

loc([0,∞), H1,0)) be the unique solution of equation
(1.10).

Let w̄ = (w̄h, 0) ∈ C([0,∞), L2(T2)) ∩ L2
loc([0,∞), H1(T2)) be the solution of the 2D-Navier-Stokes

equation

∂tw̄h + w̄h · ∇hw̄h −∆hw̄h +
1

a
√

2

√
ν

ε
w̄h + νβE [ST (σ)]h = ∇hp̄,

divhw̄h = 0,

w̄h|t=0(xh) =
1
a

∫ a

0

u0,h(xh, z) dz −
1

aa1a2

∫ a

0

∫
T2
u0,h(yh, z) dyh dz.

Then the following properties hold:
1. As ε, ν → 0 as in Theorem 1.3, we have

uε,ν ⇀ w̄ in L2([0, T ]×Υ× E).

In particular, the weak limit of uε,ν is a deterministic function.
2. Assume additionally that the torus T3 is non resonant. Then

E[w] = w̄ + w̃,

where w̃ solves a linear deterministic equation

∂tw̃ + 2Q̄(w̄, w̃)−∆hw̃ +
√
ν

ε
SB(w̃) = 0,

w̃|t=0 = u0 − w̄|t=0.

1.5. Strategy of proof of Theorem 1.3. The proof relies on the construction of an approximate
solution, obtained as the sum of some interior terms - the largest of which is exp(−TL/ε)w(t) - and some
boundary layer terms which restore the horizontal boundary conditions violated by the interior terms.
We refer to the works by N. Masmoudi [16, 17], N. Masmoudi and E. Grenier [11], N. Masmoudi and
F. Rousset [15], and F. Rousset [22] for an extensive study of boundary layers in rotating fluids, or in
incompressible fluids with vanishing vertical viscosity for [16]. We emphasize that in fine, all terms will
be small in L2 norm, except exp(−TL/ε)w(t).

Following [4] (Chapter 7), let us assume that as ε, ν → 0,

uε,ν ≈ uint + uBL,

pε,ν ≈ 1
ε
pint +

1
ε
pBL + pint,0,

(1.13)

where

uint(t, xh, z) = U

(
t,
t

ε
, xh, z

)
, pint(t, xh, z) = P

(
t,
t

ε
, x, y, z

)
,

uBL(t, xh, z) = uT

(
t,
t

ε
, xh,

a− z
η

)
+ uB

(
t,
t

ε
, xh,

z

η

)
,

pBL(t, xh, z) = pT

(
t,
t

ε
, xh,

a− z
η

)
+ pB

(
t,
t

ε
, xh,

z

η

)
.

9



Above, η is a small parameter that will be chosen later on. The function uT (t, τ, xh, ζ) is assumed to
vanish as ζ →∞ (same for pT , pB , uB).

We then plug the Ansatz (1.13) into equation (1.2), and identify the different powers of ε. In general,
there is a coupling between uint and uBL: indeed, we have seen that it is natural to expect that

U(t, τ) = exp(−τL)w(t),

at first order, and thus uint does not match the horizontal boundary conditions in general. As a conse-
quence, the value of uint at the boundary has to be taken into account when constructing the boundary
layer term uBL. On the other hand, because of the divergence-free constraint, the third component of
uBL does not vanish at the boundary, which means that a small amount of fluid may enter or leave the
interior of the domain. This phenomenon is called Ekman suction, and gives rise to a source term
(called the Ekman pumping term) in the equation satisfied by uint. This leads to some sort of “loop”
construction, in which the boundary layer and interior terms are constructed one after the other.

The first step of this construction lies in the definition of boundary layer terms. In the periodic case,
this is well-understood (see [4, 17, 5]); thus the main contribution of this article in this regard lies in the
definition of boundary layers in the random stationary case. Hence, Section 2 is entirely devoted to that
topic. Section 3 is concerned with the definition of first and second order interior terms; in particular, we
derive in paragraph 3.2 the limit equation for the system (1.2). In Section 4, we prove the convergence
result, after defining some additional corrector terms. At last, we prove Proposition 1.6 in Section 5.

2. Construction of random boundary layer terms. The goal of this section is to construct
approximate solutions of equation (1.2), which satisfy the horizontal boundary condition at z = a, and
which are localized in the vicinity of the surface. Such a construction has already been achieved in the
case when the function σ is quasi-periodic with respect to the fast time variable (see [17] in the non-
resonant case, and [5] in the resonant case). Thus our goal is to extend this construction to a random
forcing. The main result of this section is the following:

Lemma 2.1. Assume that β
√
εν = O(1). Let σ ∈W 1,∞([0,∞)t× [0,∞)τ , L∞(T2×E)) be such that

(H1)-(H2) are satisfied. Then for all δ > 0, there exists a function uBL,δ
T ∈ L∞([0,∞)t×Υ×E) which

satisfies the system

∂tu
BL,δ
T +

1
ε
e3 ∧ uBL,δ

T − ν∂2
zu

BL,δ
T −∆hu

BL,δ
T = O

((
1 +

δ

ε

)
(εν)1/4‖σ‖

)
L∞([0,∞)×E,L2(Υ))

,

∂zu
BL,δ
T,h|z=a = βσ,

divuBL,δ
T = 0,

and such that

sup
δ>0
‖uBL,δ

T ‖∞ <∞, sup
δ>0

(εν)−1/4‖uBL,δ
T ‖L∞([0,∞)×E,L2(Υ)) < +∞.

Moreover, uBL,δ
T |z=0 is exponentially small.

The above Lemma entails in particular that for all δ > 0, uBL,δ
T is an approximate solution of (1.2),

which satisfies the appropriate horizontal boundary condition at z = a. The Lemma is proved in the two
next paragraphs: we first explain how uBL,δ

T is defined, and then we derive the L2 and L∞ estimates.

2.1. Construction of the boundary term at the surface. As explained in the Introduction,
the idea is to consider an Ansatz of the form

uBL,δ
T (t, xh, z, ω) = uT

(
t,
t

ε
, xh,

a− z
η

;ω
)
,

where η is a small parameter (whose size has to be determined) and

lim
ζ→∞

uT (t, τ, xh, ζ;ω) = 0 ∀ t, τ, xh, ω.
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Hence we expect uBL
h to be of order ηβ||σ||∞ in L∞. Moreover, the divergence-free condition entails that

the third component of uT is given by

uT,3 (ζ) = −η
∫ ∞
ζ

divhuT,h(ζ ′)dζ ′;

thus uT,3 = O(βη2||σ||W 1,∞). At last, in order to be consistent with (1.13), we assume that the pressure
inside the boundary layer is given by

p(t, xh, z, ω) ≈
z∼a

1
ε
pT

(
a− z
η

)
where pT = O(βη||σ||∞). Then the pressure term in the third component of (1.2) is of order β||σ||∞/ε,
whereas the lowest order term in the left-hand side is of order η2β||σ||W 1,∞/ε. Thus, since η is small, we
infer

∂ζpT = 0,

and since pT vanishes at infinity, we have pT = 0: at first order, the pressure does not vary in the
boundary layer. Thus, we now focus on the horizontal component of uT , which is a solution of

∂τ

(
uT,1
uT,2

)
− νε

η2
∂2
ζ

(
uT,1
uT,2

)
+
(
−uT,2
uT,1

)
= 0, (2.1)

∂ζuT,h|ζ=0 = −ηβσ(τ, x, y, ω), (2.2)
uT,h|ζ=+∞ = 0. (2.3)

We now choose η so that all the terms in (2.1) are of the same order, that is,

η =
√
νε.

Moreover, since σ is a stationary function of time, it seems natural to look for stationary solutions of
(2.1), and thus for fundamental solutions ϕ1, ϕ2 of (2.1) in the following sense: ϕi (i = 1, 2) is a solution
of (2.1) in the sense of distributions and satisfies (2.3), and

∂ζϕ1|ζ=0 = δ0(τ)
(

1
0

)
, ∂ζϕ2|ζ=0 = δ0(t)

(
0
1

)
where δ0 denotes the Dirac mass at τ = 0. If we can construct ϕ1 and ϕ2 satisfying the above conditions,
then a good candidate for uT is

uT,h(t, τ, xh, ζ;ω) = −
√
νεβ

∑
j∈{1,2}

∫ ∞
0

σj(t, τ − s, xh;ω)ϕj(s, ζ)ds.

Hence we now define ϕ1, ϕ2. Since the fundamental solution of the heat equation is known, let us make
the following change of unknow function (see [17]):

H±j = ∂ζ

[
e±iτ

(
ϕj,1 ± iϕj,2
ϕj,2 ∓ iϕj,1

)]
, j = 1, 2.

Then, setting e±1 := (1,∓i), e±2 := (±i, 1), we infer that H±j = Ge±j , where G satisfies ∂τG− ∂2
ζG = 0, τ > 0, ζ > 0,

G|ζ=0(τ) = δ0(τ),
G|ζ=+∞ = 0.

(2.4)

The boundary condition at ζ = 0 should be understood as follows: for all ϕ ∈ Cb(R), for all τ > 0

lim
ζ→0+

[∫ ∞
0

ϕ(τ − s)G(s, ζ)ds
]

= ϕ(τ).
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It can be checked (see Chapter 4, section 1 in [12]) that

G(τ, ζ) :=
ζ√

4πτ3/2
exp

(
− ζ

2

4τ

)
for τ > 0, ζ > 0,

is a solution of (2.4), which leads to

∂ζϕj(τ, ζ) :=
1
2
[
e−iτH+

j (τ, ζ) + e+iτH−j (τ, ζ)
]

=
1
2
G(τ, ζ)

[
e−iτe+

j + e+iτe−j
]
.

Unfortunately, when we integrate this formula with respect to ζ in order to obtain an explicit expression
for uT,h, the convolution kernel thus obtained is

ϕj(τ, ζ) = − 1√
4πτ

exp
(
− ζ

2

4τ

)[
e−iτe+

j + e+iτe−j
]
,

and is not integrable near τ = +∞. Hence, in the spirit of [17], we consider an approximate corrector in
the boundary layer: for δ > 0, we set

Gδ(τ, ζ) =
ζ√

4πτ3/2
exp

(
− ζ

2

4τ
− δτ

)
.

Then the corresponding corrector is given by

uδT,h(t, τ, xh, ζ, ω) = −β
√
εν

∑
j∈{1,2}

∫ ∞
0

ϕj(s, ζ) exp(−δs)σj(t, τ − s, xh;ω) ds (2.5)

=
β
√
νε√

4π

∑
±

∫ ∞
0

1√
s

exp
(
−ζ

2

4s

)
(σ ± iσ⊥)(t, τ − s, xh, ω)e−δs±isds.

The approximate corrector uδT satisfies the exact boundary conditions at ζ = 0, and equation (2.1) up
to an error term of order δ

∂τu
δ
T,h − ∂2

ζu
δ
T,h +

(
uδT,h

)⊥
+ δuδT,h = 0.

The third component of uδT is then given by

uδT,3(ζ) = −
√
νε

∫ ∞
ζ

divhuδT,h,

which yields

uδT,3(·, τ, ·, ζ, ω) =
νεβ√

4π

∑
±

∫ ∞
0

ϕ

(
ζ√
s

)
(divhσ ∓ irothσ)(·, τ − s, ·, ω)e−δs±isds,

where ϕ is defined by ϕ′(ζ) = exp
(
− ζ

2

4

)
, ϕ(+∞) = 0.

In horizontal Fourier variables, we have

uδT,3(t, τ, xh, ζ, ω) =
νεβ√

4πa1a2

∑
kh∈Z2

∑
±
eik
′
h·xh

∫ ∞
0

ϕ

(
ζ√
s

)
σ̂±(t, τ − s, kh, ω)e−δs±isds (2.6)

where

σ̂±(kh) = ik′h · σ̂(kh)± (k′h)⊥ · σ̂(kh).
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Now, set

uBL,δ
T (t, xh, z;ω) := uδT

(
t,
t

ε
, xh,

a− z√
εν

;ω
)
.

It can be readily checked that

∂tu
BL,δ
T +

1
ε
e3 ∧ uBL,δ

T − ν∂2
zu

BL,δ
T −∆hu

BL,δ
T =

 (∂t −∆h + δ)uδT,h
(
t, tε , xh,

a−z√
εν

;ω
)(

∂t + 1
ε∂τ −∆h − 1

ε∂
2
ζ + δ

)
uδT,3

(
t, tε , xh,

a−z√
εν

;ω
) .

There remains to evaluate uδT in L∞ and L2.

2.2. Continuity estimates. This paragraph is devoted to the proof of the following Proposition:
Proposition 2.2. Assume that σ ∈ L∞(E × [0,∞)× T2, Cb(Rτ )), and that σ satisfies (H1)-(H2).

Then for all T > 0, there exists a constant CT > 0, such that for all δ, ν, ε, β > 0,∣∣∣∣uδT , ∂ζuδT , ζ∂ζuδT ∣∣∣∣L∞([0,T ]×Rτ×T2×[0,∞)ζ×E)
≤ CT

√
ενβ, (2.7)∣∣∣∣uδT , ∂ζuδT , ζ∂ζuδT ∣∣∣∣L∞([0,T ]×Rτ×E,L2([0,∞)ζ×T2))

≤ CT
√
ενβ. (2.8)

Remark 2.1. With the assumptions of Theorem 1.3, the same bounds also hold for all the derivatives
of uT,δ with respect to the macroscopic time variable t and the horizontal space variable xh.

Proof. We focus on the horizontal component of uδT ; the vertical one is treated with similar arguments.
Recall that uδT,h is given by (2.5); in order to simplify we set σ± := σ ± iσ⊥.

First, we write

uδT,h(·, τ, ·, ζ, ·) =
√
νεβ√
4π

∑
±

∫ ∞
0

1√
s

exp
(
−ζ

2

4s
− δs

)
σ±(·, τ − s, ·)e±is ds

=
√
νεβ√
4π

∑
±

∫ ∞
0

1√
s

exp
(
−ζ

2

4s

)
σ±α (·, τ − s, ·)e(−δ±i)s ds (2.9)

+
√
νεβ√
4π

∑
±

∫ ∞
0

1√
s

exp
(
−ζ

2

4s

)(
σ± − σ±α

)
(·, τ − s, ·)e(−δ±i)s ds. (2.10)

The term (2.10) can easily be evaluated thanks to Lemma A.1 in the Appendix; notice that since the
convergence given in Lemma A.1 is not uniform with respect to τ ∈ [0,∞), we cannot derive an estimate
in L∞([0,∞)τ ) at this stage. Hence we keep the variable τ for the time being; there exists a constant
C > 0 such that for all τ ≥ 0, R > 0,∥∥∥∥∫ ∞

0

1√
s

exp
(
−ζ

2

4s
− δs

)(
σ± − σ±α

)
(·, τ − s, ·, ω)e±is ds

∥∥∥∥
L∞([0,T ]×E,L∞(T2))

≤ C||σ − σα||L∞([0,T ]×E×[τ−R,τ ]×T2)

∫ R

0

1√
s

exp
(
−ζ

2

4s
− δs

)
ds (2.11)

+ C ‖σ‖L∞([0,T ]×Rτ×T2×E)

∫ ∞
R

1√
s

exp
(
−ζ

2

4s
− δs

)
ds

≤ C

δ
||σ − σα||L∞([0,T ]×E×[τ−R,τ ]×T2)

+ C ‖σ‖L∞([0,T ]×Rτ×T2×E)

exp(−δR)
δ

.

Choosing R = δ−2, we deduce that∥∥∥∥∫ ∞
0

1√
s

exp
(
−ζ

2

4s
− δs

)(
σ± − σ±α

)
(·, τ − s, ·, ω)e±is ds

∥∥∥∥
L∞([0,T ]×E,L∞(T2))

≤ C

δ
||σ − σα||L∞([0,T ]×E×[τ− 1

δ2
,τ]×T2) + C

exp
(
− 1
δ

)
δ

.
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As for the term (2.9), recalling the definition of σα, we have∫ ∞
0

1√
s

exp
(
−ζ

2

4s
− δs

)
Fασ±(·, τ − s, ·, ω)e±is ds (2.12)

=
∫ ∞

0

∫
R

1√
s
e−α|λ| exp

(
−ζ

2

4s
− δs

)
Fασ±(·, λ, ·, ω)eiλ(τ−s)e±is dλ ds. (2.13)

We first evaluate ∫ ∞
0

1√
s

exp
(
−ζ

2

4s

)
e−(δ+i(λ±1))s ds.

We split the integral into two parts, one going from s = 0 to s = 1, and the other from s = 1 to s =∞.
It is obvious that for all ζ > 0, δ > 0, λ ∈ R,∣∣∣∣∫ 1

0

1√
s

exp
(
−ζ

2

4s

)
e−(δ+i(λ±1))s ds

∣∣∣∣ ≤ ∫ 1

0

1√
s

exp
(
−ζ

2

4s

)
ds ≤ 1

2
. (2.14)

Integrating by parts the second integral, we obtain∫ ∞
1

1√
s

exp
(
−ζ

2

4s

)
e−(δ+i(λ±1))s ds

=
1

δ + i(λ± 1)
exp

(
−ζ

2

4

)
− 1

2(δ + i(λ± 1))

∫ ∞
1

1
s

3
2

[
1− ζ2

2s

]
exp

(
−ζ

2

4s

)
e−(δ+i(λ±1))s ds. (2.15)

We are now ready to derive the L∞ estimate; the function

x 7→
(

1− x2

2

)
e−

x2
4

is bounded on R. Hence, gathering (2.14) and (2.15), we deduce that there exists a constant C such that
for all ζ > 0, δ > 0, λ ∈ R,∣∣∣∣∫ ∞

0

1√
s

exp
(
−ζ

2

4s

)
e−(δ+i(λ±1))s ds

∣∣∣∣ ≤ C [1 +
1

|δ + i(λ± 1)|

]
.

Inserting this inequality in (2.13), we obtain∥∥∥∥∫ ∞
0

1√
s

exp
(
−ζ

2

4s
− δs

)
Fασ±(·, τ − s, ·, ω)e∓is ds

∥∥∥∥
L∞(T2)

≤ C
∫

R
e−α|λ|

[
1 +

1
|δ + i(λ∓ 1)|

] ∥∥∥F̂ασ±(·, λ, ·, ω)
∥∥∥
L∞(T2)

dλ

≤ C

[
sup
α
||σ̂+,α||L∞(E×T2,L1(R)) +

∫
V±

1
|δ + i(λ∓ 1)|

‖Fασ(·, λ, ·, ω)‖L∞(T2) dλ

]

+C
∫

R\V±
‖Fασ(·, λ, ·, ω)‖L∞(T2) dλ

≤ C

[
sup
α
||Fασ||L∞(E×T2,L1(R)) + sup

λ∈V±
‖Fασ(λ)‖L∞(T2) ln(δ)

]
.

Above, we have used the following facts: there exists a constant c1 > 0 such that

|δ + i(λ∓ 1)| ≥ |λ∓ 1| ≥ c1 ∀λ ∈ R \ V±,
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and there exists another constant c2 > 0 such that∫
V±

1
|δ + i(λ∓ 1)|

≤
∫ ±1+c2

±1−c2

1√
δ2 + (1 + λ)2

dλ ≤ C ln(δ).

We deduce that for all α > 0, for all δ > 0, τ ≥ 0,∣∣∣∣uδT,h(τ)
∣∣∣∣
L∞([0,T ]×T2×[0,∞)ζ×E)

≤ C
√
ενβ

[
1 +

exp
(
− 1
δ

)
δ

]

+ C
√
ενβ

[
1
δ
||σ − σα||L∞([0,T ]×[τ−δ−1,τ ]×E×T2) + sup

λ∈V+∪V−
‖Fασ(λ)‖ ln(δ)

]
.

Taking the infimum with respect to α of the right-hand side, with δ > 0 fixed, we deduce that

sup
δ>0

∣∣∣∣uδT,h∣∣∣∣L∞([0,T ]×[0,∞)τ×T2×[0,∞)ζ×E)
≤ C
√
ενβ.

We now turn to the derivation of the L2 estimate, which is similar to the above computations. The
main difference lies in the fact that we need to integrate by parts (2.15) yet another time, which yields∫ ∞

1

1√
s

exp
(
−ζ

2

4s

)
e−(δ+i(λ±1))s ds

=
1

δ + i(λ± 1)
exp

(
−ζ

2

4

)
− 1

2(δ + i(λ± 1))2

[
1− ζ2

2

]
exp

(
−ζ

2

4

)
− 1

2(δ + i(λ± 1))2

∫ ∞
1

1
s

5
2
φ

(
ζ√
s

)
e−(δ+i(λ±1))s ds,

where

φ(x) = −
(
x4

8
− 3x2

2
+

3
2

)
exp

(
−x

2

4

)
.

Consequently, remembering (2.14), we have∣∣∣∣∫ ∞
0

1√
s

exp
(
−ζ

2

4s

)
e−(δ+i(λ±1))s ds

∣∣∣∣
≤
∫ 1

0

1√
s

exp
(
−ζ

2

4s

)
ds+

1
|δ + i(λ± 1)|

exp
(
−ζ

2

4

)
+

1
2|δ + i(λ± 1)|2

∣∣∣∣1− ζ2

2

∣∣∣∣ exp
(
−ζ

2

4

)
+

1
2|δ + i(λ± 1)|2

∫ ∞
1

1
s

5
2

∣∣∣∣φ( ζ√
s

)∣∣∣∣ ds.
Plugging this estimate into (2.13) and using (H1)-(H2), we infer that for all ζ > 0, for all s > 0,∥∥∥∥∫ ∞

0

1√
s

exp
(
−ζ

2

4s
− δs

)
σ±α (·, τ − s, ·, ω)e±is ds

∥∥∥∥
L∞(T2)

≤ C
[∫ 1

0

1√
s

exp
(
−ζ

2

4s

)
ds

]
+C exp

(
−ζ

2

4

)(
1 + sup

λ∈V±
‖Fασ(λ)‖L∞([0,T ]×E,L∞(T2))) ln(δ)

)

+C
∣∣∣∣1− ζ2

2

∣∣∣∣ exp
(
−ζ

2

4

)(
1 + sup

λ∈V±
‖Fασ(λ)‖L∞([0,T ]×E,L∞(T2)))

1
δ

)

+C
[∫ ∞

1

1
s

5
2

∣∣∣∣φ(ζ2

s

)∣∣∣∣ ds]
(

1 + sup
λ∈V±

‖Fασ(λ)‖L∞([0,T ]×E,L∞(T2)))

1
δ

)
.
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Here, we have used the inequality∫
V∓

dλ

|δ + i(λ± 1)|2
≤
∫ ∓1+c2

∓1−c2

dλ

δ2 + (λ± 1)2
≤ C

δ
.

There only remains to prove that each term of the right-hand side has a finite L2 norm. First, thanks to
Jensen’s inequality, we have∫ ∞

0

(∫ 1

0

2√
s

exp
(
−ζ

2

4s

)
ds

)2

dζ ≤
∫ ∞

0

∫ 1

0

2√
s

exp
(
−ζ

2

2s

)
dsdζ

≤ 2
∫ 1

0

ds

∫ ∞
0

e−
x2
2 dx <∞.

Similarly, ∫ ∞
0

(∫ ∞
1

1
s

5
2

∣∣∣∣φ( ζ√
s

)∣∣∣∣ ds)2

dζ ≤ C
∫ ∞

0

∫ ∞
1

1
s

5
2

∣∣∣∣φ( ζ√
s

)∣∣∣∣2 dsdζ
≤ C

(∫ ∞
1

1
s2

)(∫ ∞
0

|φ (x)|2 dx
)
<∞.

We also have to evaluate the L2 norm of the integral in (2.11); we have∫ ∞
0

[∫ ∞
0

1√
s

exp
(
−ζ

2

4s
− δs

)
ds

]2

dζ

≤
x=
√
δζ,

u=δs

1
δ

3
2

∫ ∞
0

[∫ ∞
0

1√
u

exp
(
−x

2

4u
− u
)
du

]2

dx

≤ 1
δ

3
2

∫ ∞
0

∫ ∞
0

1
u

exp
(
−x

2

2u
− u
)
du dx

≤ 1
δ

3
2

∫ ∞
0

∫ ∞
0

1√
u

exp
(
−x

2

2
− u
)
du dx

≤ C

δ
3
2
.

Gathering all the terms, we obtain, for all α, δ > 0, for all τ > 0,∥∥uδT,h(τ)
∥∥2

L∞([0,T ]×E,L2([0,∞)ζ ,L∞(T2)))

≤ Cβ2εν
||σ − σα||L∞([0,T ]×[τ−δ−1,τ ]×E,L∞(T2))

δ
3
2

+ Cβ2εν

(
exp

(
− 1
δ

)
δ

3
2

+ sup
λ∈V−

∣∣Fασ+(λ)
∣∣ (1

δ
+ ln(δ)

))
.

Taking the infimum of the above inequality with respect to α, we infer the L2 estimate on uδT,h. The
estimates on uδT,3, ∂ζu

δ
T , and ζ∂ζu

δ
T are derived in a similar fashion.

Remark 2.2. Stationary boundary layer terms relative to Dirichlet boundary conditions can also be
defined: consider for instance the boundary condition

uh|z=0(t, xh) = cB,h

(
t,
t

ε
, xh;ω

)
.

The construction is the same as for Neumann boundary conditions, and is in fact more simple because we
need not integrate with respect to the variable ζ. Thus, with the same notations as above, the boundary
layer term at the bottom is given by

uδB,h(t, τ, xh, ζ, ω) =
1
2

∑
j∈{1,2}

∫ ∞
0

Gδ(s, ζ)
[
e−ise+

j + e+ise−j
]
cB,j(t, τ − s, x, y;ω) ds,
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and

uδB,3(t, τ, xh, ζ, ω) =
νε√
4π

∑
kh∈Z2

∑
±
eik
′
h·xh

∫ ∞
0

1√
s

exp
(
−ζ

2

4s

)
ĉ±B,h(·, τ − s, kh, ω)e−δs±isds.

2.3. Previous results in the quasi-periodic case. For the reader’s convenience, we have gath-
ered here previous results appearing in [4, 17], in which the authors compute the boundary layer term at
the bottom of the fluid. We recall that it can be expected that the solution in the interior of the domain
behaves like some function exp(−tL/ε)w(t), with w ∈ L∞(E, C([0,∞),H)). In general, the horizontal
component of such a function does not vanish at z = 0, and thus a boundary layer has to be added in
order to restore the Dirichlet boundary condition. Consequently, we seek for a boundary layer term uBL

B

which is an approximate solution of equation (1.2) and which satisfies

uBL
B,h|z=0(t, xh) =

∑
M∈B

ĉB,h(t,M)eik
′
h·xhe−iλ(M)t/ε, (2.16)

where k denotes the triplet associated with M . For the boundary layer term at the first order, the
coefficient ĉB,h(t,M) will be given by the formula

ĉB,h(t,M) := −〈M,w(t)〉
(
n1(M)
n2(M)

)
,

with nh(M) = nh(k) if M = Nk for some k ∈ Z3, and nh((1,±i, 0)/
√

2) = (1,±i)/
√

2. However, we will
also use this construction for the lower order boundary layer terms, and thus we keep an arbitrary value
for ĉB,h(t, k) for the time being.

As before, we assume that

uBL
B (t, xh, z) = uB

(
t,
t

ε
, xh,

z√
εν

)
.

The decomposition (2.16) leads us to search for a corrector uB satisfying

uB,h =
∑
M∈B

uB,h,M ,

where each term uB,h,M is an approximate solution of (1.2), and

uB,h,M |ζ=0(t, τ, xh) = ĉB,h(t,M)e−iλ(M)τeik
′
h·xh .

The periodicity in time of the boundary condition prompts us to choose uB,h,M as a periodic function
of τ , with frequency λ(M). Also, it is classical to seek uB,h,M as an exponentially decaying function of
ζ; the rate of decay is then dictated by the equation. The precise expression of uB,h,M is the following
(see [17]):
• First case: kh 6= 0.
In this case, the triplet k associated with M is non-zero, and thus M = Nk. Then uB,h,M is an exact
solution of (2.1), and is equal to

uB,h,M (t, τ, x, y, ζ) =
∑
±
w±k (t;ω)e−iλkτ+ik′h·xh−η

±
k ζ (2.17)

where

η±k =
√

1∓ λk
1± i√

2
,

w±k (t;ω) =
1
2

(
ĉB,1(t,Nk)± iĉB,2(t,Nk)
ĉB,2(t,Nk)∓ iĉB,1(t,Nk)

)
=
ĉB,1(t,Nk)± iĉB,2(t,Nk)

2

(
1
∓i

)
.
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The vertical part of the boundary layer is then given by

uB,3,k(t, τ, x, y, ζ) =
√
εν
∑
±

1
η±k

ik′h · w±k (t;ω)e−iλkτ+ik′h·xh−η
±
k ζ . (2.18)

• Second case: kh = 0.
In this case, the construction of the resonant boundary layers in [5] proves that there are indeed boundary
layers, but which are of order

√
νt, and not

√
εν in general. Thus the size of the boundary layer depends

(slowly) on time.
First, notice that if kh = 0, then λk ∈ {−1, 1}. As in the first case, we decompose ĉB,h(t,M) onto

the basis (1,±i) :

ĉB,h(t,M) =
1
2

∑
±

(ĉB,1(t,M)∓ iĉB,2(t,M))
(

1
±i

)
.

As a consequence, we have∑
M∈B,
kh=0

ĉB,h(t,M)e−iλ(M)τ = α+(t)eiτ
(

1
i

)
+ α−(t)e−iτ

(
1
−i

)

+ γ+(t)eiτ
(

1
−i

)
+ γ−(t)e−iτ

(
1
i

)
,

where

α±(t) =
∑

M,λ(M)=∓1

(ĉB,1(t,M)∓ iĉB,2(t,M)) ,

γ±(t) =
∑

M,λ(M)=∓1

(ĉB,1(t,M)± iĉB,2(t,M)) .

The terms γ±e±iτ (1,∓i) give rise to a classical boundary layer term, namely

∑
±
γ±(t)e±iτ−η

±ζ

(
1
∓i

)
, with η± = 1± i.

For the terms α±e±iτ (1,±i), we rather use the following Ansatz (see [5])

uBL,res(t, xh, z) = ψ

(
z√
νt

)∑
±
α±(t)e±i

t
ε

(
1
±i

)
. (2.19)

In order that uBL,res is an approximate solution of (the linear part of) equation (1.2), the function ψ
must be such that

−X
2
ψ′(X)− ψ′′(X) = 0,

ψ|X=0 = 1, ψ|X=+∞ = 0.

which yields

ψ(X) =
1√
π

∫ ∞
X

exp
(
−u

2

4

)
du.

With this definition, uBL,res(t) vanishes outside a layer of size
√
νt localized near the bottom of the fluid.

Hence uBL,res is an approximate solution of the linear part of equation (1.2), and uBL,res
|z=a is exponentially

small.
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Now, set

uB(t, τ, xh, ζ) :=
∑
k∈Z3,
kh 6=0

uB,h,Nk (t, τ, xh, ζ) +
∑
±
γ±(t)e±iτ−η

±ζ

(
1
∓i

)
.

The complete boundary layer term at the bottom uBL
B is given by

uBL
B (t, xh, z) = uB

(
t,
t

ε
, xh,

z√
εν

)
+ uBL,res(t, xh, z).

We now give some estimates on the boundary layer terms constructed in this paragraph:
Lemma 2.3. Let uB be defined by (2.17)-(2.18) and ustat by (2.19). Then the following estimates

hold, for all t > 0

‖uB,h(t), ζ∂ζuB,h(t)‖L∞([0,∞)τ ,L2(T2×[0,∞)ζ)) ≤ C

∑
k∈Z3,
kh 6=0

|ĉB,h(t,Nk)|2 |k|
|kh|
|k3|2


1
2

,

‖uB,h(t), ζ∂ζuB,h(t)‖L∞([0,∞)τ×T2×[0,∞)ζ) ≤ C
∑
k∈Z3,
kh 6=0

|ĉB,h(t,Nk)| ,

‖uB,3(t), ζ∂ζuB,3(t)‖L∞([0,∞),L2(T2×[0,∞))) ≤ C
√
εν

∑
k∈Z3,
kh 6=0

|ĉB,h(t,Nk)|2 |k|
3

|kh|
|k3|2


1
2

,

‖uB,3(t), ζ∂ζuB,3(t)‖L∞([0,∞)×T2×[0,∞)) ≤ C
√
εν
∑
k∈Z3,
kh 6=0

|k| |ĉB,h(t,Nk)| ,

and ∥∥uBL,res(t), z∂zuBL,res(t)
∥∥
L2(Υ)

≤ C(νt)1/4
∑

M∈B,kh=0

|ĉB(t,M)| ,

∥∥uBL,res(t), z∂zuBL,res(t)
∥∥
L∞(Υ)

≤ C
∑

M∈B,kh=0

|ĉB(t,M)| .

The proof of the above Lemma is left to the reader. Notice that according to the definition of η±k ,
we have

C
|kh|
|k|
≤
∣∣η±k ∣∣ ≤ 1 ∀k ∈ Z3, kh 6= 0.

Corollary 2.4. Assume that there exists N > 0 such that

ĉB,h(t,Nk) = 0 if |k| ≥ N, ∀t ≥ 0.

Then the boundary layer term uBL
B is an approximate solution of the linear part of equation (1.2). Pre-

cisely, there exists a constant CN , depending only on N , such that∥∥∥∥∂tuBL
B +

1
ε
uBL
B − ν∂2

zu
BL
B −∆hu

BL
B

∥∥∥∥
L∞([0,T ],L2(Υ))

≤ CNν1/4 sup
t∈[0,T ]

(∑
M∈B

(
|ĉB,h(t,M)|2 + |∂tĉB,h(t,M)|2

))1/2
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Proof. By construction, uBL
B is an approximate solution of the linear part of equation (1.2), with an

error term equal to

[(∂t −∆h)uB ]
(
t,
t

ε
, xh,

z√
εν

)
+ ϕ

(
z√
νt

)∑
±
∂tα
±(t)e±i

t
ε ,

where ∂t is the derivation operator with respect to the macroscopic time variable. Thanks to the as-
sumption on the coefficients ĉB,h, we have[∫ T

0

∫
Υ

∫
E

∣∣∣∣∂tuB (t, tε , xh, z√
εν

)∣∣∣∣2 dm0(ω) dz dxh dt

]1/2

≤ CN
[
(εν)1/4 + ν1/4

]
‖∂tcB,h‖

whereas the term ∆huB is bounded in L∞(E,L2([0, T ], H−1,0)) by CN (εν)1/4‖cB,h‖. At last, the error
term due to uBL,res satisfies∥∥∥∥∥ϕ

(
z√
νt

)∑
±
∂tα
±(t)e±i

t
ε

∥∥∥∥∥
L∞(E,L2(Υ))

≤ CNν1/4‖∂tcB,h‖.

3. The solution in the interior at main order. This section is devoted to the construction
of the first order interior terms in expansion (1.13). At this stage, we merely know how to construct
boundary layer terms which deal with the horizontal part of the boundary conditions (1.3); moreover,
following the analysis in paragraph 1.1, we expect uε,ν(t) to behave like exp(−tL/ε)w(t) in the interior.
Thus the idea is to define a function

uint(t) := exp
(
− t
ε
L

)
w(t) + vint

(
t,
t

ε

)
+ δuint

(
t,
t

ε

)
,

where vint and δuint are corrector terms, such that uint is an approximate solution of (1.2). We also
require that

uint + uBL,δ
T + uBL

B

satisfies the boundary conditions (1.3) at main order.
Let us now explain the role of the correctors vint and δuint: it can be checked in the formulas of the

previous section that the third components of the boundary layer terms do not vanish at the boundary:
indeed, one has

uBL,δ
T,3|z=a = O(βεν‖σ‖), uBL

B,3|z=0 = O(
√
εν‖w‖).

The role of the corrector vint is precisely to lift these boundary conditions and to restore the zero-
flux conditions at the bottom and at the surface. Consequently, the term vint has fast oscillations (at
frequencies of order ε−1), and in general, vint is not an approximate solution of (1.2). Filtering out the
oscillations in the term

∂vint

∂t
+

1
ε
e3 ∧ vint

yields the source terms SB and ST in the equation satisfied by w (see equation (5.1)). The remaining
oscillating terms in the expression above are then taken care of through the addition of the corrector
δuint.

The organization of this section is as follows: first, we deal with the corrector vint, by giving a precise
definition and explaining how oscillations are filtered. Then we derive the equation on the function w;
in general, this equation depends on the small parameter δ, introduced when constructing the boundary
layer terms at the surface. Thus in the third paragraph, we identify the limit as δ → 0 of the function
w, which yields the envelope equation. Eventually, the fourth and last paragraph is concerned with the
definition of the corrector δuint.
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3.1. Lifting the vertical boundary conditions. In the rest of this section, we set

cB,3(t, τ, xh) := − 1√
εν
uB,3|ζ=0(t, τ, xh)

= −
∑
k∈Z3,
kh 6=0

∑
±

ik′h · w
±
k

η±k
eik
′
h·xhe−iλkτ ,

where

w±k (t) = −1
2
〈Nk, w(t)〉

(
n1(k)± in2(k)
n2(k)∓ in1(k)

)
and η±k was defined in the previous section. In order to shorten the notation, we set

ĉB,3(t, τ, kh) :=
∫

T2
cB,3(t, xh)e−ik

′
h·xhdxh

= −a1a2

∑
k3∈Z

∑
±

ik′h · w
±
k (t)

η±k
e−iλkτ .

The function w will be defined in the next section.
Similarly, we set

cT,3(t, τ, xh;ω) := − 1
βεν

uδT,3|ζ=0(t, τ, xh;ω)

=
1
2

∑
±

∫ ∞
0

[divhσ ∓ irothσ] (t, τ − s, xh;ω)e−δs±isds.

We also set ĉT,3(t, τ, kh;ω) =
∫

T2 cT,3(t, xh;ω)e−ik
′
h·xhdxh, so that

ĉT,3(t, τ, kh) =
1
2

∑
±

∫ ∞
0

σ̂±(t, τ − s, kh)e−δs±isds.

With the above definitions, the function cB,3 is quasi-periodic with respect to the fast time variable
τ , whereas cT,3 is random and stationary with respect to the fast time variable τ .
• Defintion of vint. We now define a function vint which is divergence free and such that

vint
3|z=0(t, xh) =

√
ενcB,3

(
t,
t

ε
, xh

)
,

vint
3|z=a(t, xh) = ενβcT,3

(
t,
t

ε
, xh

)
.

(3.1)

Of course, conditions (3.1) do not determine vint unequivocally. A possible choice is

vint
3 (t, τ, x) =

1
a

[
ενβcT,3 (t, τ, xh) z +

√
ενcB,3 (t, τ, xh) (a− z)

]
, (3.2)

vint
h (t, τ, x) =

1
a
∇h∆−1

h

[√
ενcB,3 (t, τ, xh)− ενβcT,3 (t, τ, xh)

]
. (3.3)

In fact, since cB,3 is an almost periodic function, a more convenient choice can be made, which is the
so-called “non-resonant” choice in [17]. In this case, the equation on δuint is slightly more simple, since
there is no source term due to cB,3. However, we have chosen here not to distinguish between stationary
and almost periodic boundary conditions, and thus to work with the expressions (3.2), (3.3).
• Filtering the oscillations. We give here the statement and proof of a Lemma which will be

useful in the construction of δuint and w.
Lemma 3.1. Let T > 0 be arbitrary.
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Let v ∈ L∞([0, T ]× [0,∞)τ , L2(T2 × E)) such that ∂τv ∈ L∞([0, T ]× [0,∞)τ , L2(T2 × E)) and

divv = 0, (3.4)
v3|z=0(t, τ, xh) =

√
ενcB,3(t, τ, xh), (3.5)

v3|z=a(t, τ, xh) = βενcT,3(t, τ, xh). (3.6)

Then as θ →∞, the family

Sθ :=
1
θ

∫ θ

0

L(−τ)P [∂τv + e3 ∧ v] dτ

converges almost everywhere and in L∞([0, T ], L2(T2 × [0, a]×E)), and its limit does not depend on the
choice of the function v. Precisely,

lim
θ→∞

Sθ =: S̄[cB,3, cT,3] =
1

√
aa1a2

∑
k∈Z3

|k′h|
|k′|2
E−λk

[√
ενĉB,3(kh)− (−1)k3βενĉT,3(kh)

]
Nk. (3.7)

Remark 3.1. In the above Lemma, the operator Eλ, which was originally defined for random sta-
tionary functions, has been extended to almost periodic functions: if

c(τ) =
∑
µ∈M

αµe
iµτ ,

with
∑
µ |αµ| <∞, then

Eλ[c] := lim
θ→∞

1
θ

∫ θ

0

e−λτ c(τ) dτ = 1λ=µαµ.

Proof. Let v1, v2 be two solutions of (3.4)-(3.6), and let V = v1 − v2. Notice that V ∈ L∞([0, T ]×
[0,∞)τ ;L2(E,H)), and ∂τV ∈ L∞([0, T ]× [0,∞)τ ;L2(E ×Υ)). We write

L(−τ)P [∂τV + e3 ∧ V ] = L(−τ) [∂τV + LV ] =
∂

∂τ
[L(−τ)V (τ)] .

Consequently,

1
θ

∫ θ

0

L(−τ) [∂τV + P (e3 ∧ V )] dτ =
L(−θ)V|τ=θ − V|τ=0

θ
.

The right-hand side of the above equality vanishes in L∞([0, T ]× E,L2(Υ)) as θ →∞. Hence the limit
is independent of the choice of v.

In order to complete the proof of the lemma, it is thus sufficient to show that the limit exists for the
choice (3.2)-(3.3), and to compute the limit in this case. First, we recall that for any function F ∈ L2(Υ),
we have

PF =
∑
M∈B

〈M,F 〉M.

Let k ∈ Z3 be the triplet associated with a vector M ∈ B. It can be readily checked that if kh = 0, then〈
M,∂τv

int
〉

= 0. Thus for all k = (kh, k3) ∈ Z3 such that kh 6= 0, we compute〈
Nk, ∂τv

int〉 =
1
a

∫ a

0

cos(k′3z)nh(k) · ik
′
h

|k′h|2
(
ενβ∂τ ĉT,3(·, kh)−

√
εν∂τ ĉB,3(·, kh)

)
dz

+
1
a

∫ a

0

n3(k) sin(k′3z)
(√
εν∂τ ĉB,3(·, kh)(a− z) + ενβ∂τ ĉT,3(·, kh)z

)
dz

= n3(k)
1k3 6=0

k′3

[√
εν∂τ ĉB,3(·, kh)− (−1)k3ενβ∂τ ĉT,3(·, kh)

]
+ 1k3=0 nh(k) · ik

′
h

|k′h|2
(
ενβ∂τ ĉT,3(·, kh)−

√
εν∂τ ĉB,3(·, kh)

)
.
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Notice that if k3 = 0, then

nh(k) · k′h = 0;

consequently, we have

〈
Nk, ∂τv

int〉 = − i
√
aa1a2

1k3 6=0|k′h|
|k′|k′3

[√
εν∂τ ĉB,3(·, kh)− (−1)k3ενβ∂τ ĉT,3(t, τ, kh;ω)

]
.

In a similar way,

〈
Nk, e3 ∧ vint〉 =

1
a

∫ a

0

cos(k′3z)nh(k) · i(k
′
h)⊥

|k′h|2
(
ενβĉT,3(·, kh)−

√
ενĉB,3(·, kh)

)
dz

= 1k3=0nh(k) · i(k
′
h)⊥

|k′h|2
(
ενβĉT,3(·, kh)−

√
ενĉB,3(·, kh)

)
=

1k3=0√
aa1a2

1
|k′h|

(√
ενĉB,3(·, kh)− ενβĉT,3(·, kh)

)
.

We deduce from the above calculations that

L(−τ)P(∂τvint + e3 ∧ vint) (3.8)

= − i
√
aa1a2

∑
k∈Z3

1k3 6=0|k′h|
k′3|k′|

eiλkτ
[√
εν∂τ ĉB,3 − (−1)k3ενβ∂τ ĉT,3

]
(t, τ, kh;ω)Nk

+
1

√
aa1a2

∑
k∈Z3

1k3=0
1
|k′h|

(√
ενĉB,3(t, τ, kh;ω)− ενβĉT,3(t, τ, kh;ω)

)
Nk.

We decompose the sum in the right-hand side into two sums, one bearing on kh such that |kh| > A,
denoted by S1,A, and the other on |kh| ≤ A, denoted by S2,A, for some A > 0 arbitrary. Using the fact
that β

√
εν = O(1), we have

‖S1,A(t, τ)‖2L2

≤ Cεν

∥∥∥∥∥∥
∑
|kh|>A

∑
k3∈Z

1k3 6=0|k′h|
k′3|k′|

eiλkτ
[
∂τ ĉB,3 − (−1)k3β

√
εν∂τ ĉT,3

]
(t, τ, kh;ω)Nk

∥∥∥∥∥∥
2

L2

+ Cεν

∥∥∥∥∥∥
∑
|kh|>A

1
|kh|

(
β
√
ενĉT,3(t, τ, kh;ω)− ĉB,3(t, τ, kh;ω)

)
Nkh,0

∥∥∥∥∥∥
2

L2

≤ Cεν
∑
|kh|>A

(
|∂τ ĉB,3(t, τ, kh;ω)|2 + |∂τ ĉT,3(t, τ, kh;ω)|2

)
+Cεν

∑
|kh|>A

(
|ĉB,3(t, τ, kh;ω)|2 + |ĉT,3(t, τ, kh;ω)|2

)
.

Since cB , cT , ∂τ cB , ∂τ cT belong to L2(T2, L∞([0,∞)× [0, T ]×E)), we deduce that the sum S1,A vanishes
in L∞([0, T ]× [0,∞), L2(T2 × [0, a]×E)) as A→∞. Thus we work with A sufficiently large, but fixed,
so that S1,A is arbitrarily small in L2 norm, and we focus on S2,A.

For k ∈ Z3 fixed, we have, according to Proposition 1.1,

1
θ

∫ θ

0

eiλkτ∂τ ĉT,3(t, τ, kh;ω) dτ = −iλk
1
θ

∫ θ

0

eiλkτ ĉT,3(t, τ, kh;ω) dτ

+
1
θ

{
eiλkθ ĉT,3(t, θ, kh;ω)− ĉT,3(t, 0, kh;ω)

}
−→
θ→∞

−iλkE−λk [ĉT,3(t, kh)] (ω)
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in L∞([0,∞)t, L2(E)). The calculation for cB,3 is identical.
Using Lebesgue’s Theorem, we deduce that as θ →∞

1
θ

∫ θ

0

S2,A(t, τ) dτ → 1
√
aa1a2

∑
|kh|≤A

∑
k3∈Z

|k′h|
|k′|2
E−λk

[√
ενĉB,3(t, kh)− (−1)k3ενβĉT,3(t, kh)

]
Nk, (3.9)

and the convergence holds in L∞([0, T ], L2(Υ× E)). Moreover, we have∑
k∈Z3

|k′h|2

|k′|4
|E−λk [ĉT,3(t, kh)]|2 ≤ C

∑
k3∈Z∗

1
1 + |k3|2

‖E−λk [cT,3(t)]‖2L2(T2)

≤ C‖cT,3‖2L∞([0,∞)×[0,∞)×E,L2(T2)).

A similar estimate holds for cB,3. Thus the right-hand side of (3.9) converges in L2(Υ× E) as A→∞.
Eventually, we infer (3.7).

• Computation of the source terms. For the sake of completeness, we now derive an expression
of S̄[cB,3, cT,3] in terms of w and σ. We begin with E−λk [ĉB,3]. Remembering the definition of ĉB,3(t, kh),
we have

E−λk [ĉB,3(t, kh)] = −a1a2

∑
±

ik′h · w
±
k (t)

η±k
.

Easy calculations lead to

E−λk [ĉB,3(t, kh)] =
√
a1a2

2a
1kh 6=0 〈Nk, w(t)〉 |k′h|

∑
±

1± λk√
1∓ λk

1± i
2

Thus, we define the Ekman pumping term at the bottom of the fluid by

SB(w) :=
∑
k∈Z3,
k 6=0

〈Nk, w〉AkNk, (3.10)

where

Ak :=
|k′h|2

2
√

2a|k′|2
∑
±

1± λk√
1∓ λk

(1± i).

There remains to compute the coefficients E−λk(ĉT,3(t, kh)); since the boundary condition cT,3 de-
pends on the small parameter δ, the corresponding Ekman pumping term will depend on δ as well.
The limit as δ vanishes of the corresponding source term will be computed in the next paragraph. By
definition of Eλ, we have, for all kh ∈ Z2, for all λ ∈ R,

Eλ [ĉT,3(t, kh)] (ω) =
1
2

∑
±

lim
θ→∞

1
θ

∫ θ

0

∫ ∞
0

σ̂±(t, τ − s, kh;ω)e−δs−iλτ±is ds dτ

=
1
2

∑
±

lim
θ→∞

∫ ∞
0

(
1
θ

∫ θ

0

σ̂±(t, τ, kh; θ−sω)e−iλτ dτ

)
e−δs±is ds,

where

σ̂±(kh) = (ik′h ± (k′h)⊥) · σ̂(kh).

Thanks to Lebesgue’s dominated convergence Theorem and Proposition 1.1, we infer, for all δ > 0,

Eλ [ĉT,3(t, kh)] (ω) =
1
2

∑
±

∫ ∞
0

Eλ
[
σ̂±(t, kh)

]
(θ−sω)e−δs±is ds

=
1
2

∑
±

∫ ∞
0

Eλ
[
σ̂±(t, kh)

]
(ω)e−δs±is−iλs ds

=
1
2

∑
±
Eλ
[
σ̂±(t, kh)

]
(ω)

−1
−δ + i(−λ± 1)

.
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Thus we define the Ekman pumping term at the top of the fluid by

SδT (σ) =
1
2

1
√
aa1a2

∑
k∈Z3

∑
±

(−1)k3 |k′h|
|k′|2

E−λk [σ̂±(kh)]
−δ + i(λk ± 1)

Nk. (3.11)

Going back to Lemma 3.7, we deduce that

S̄[cB,3, cT,3] =
√
ενSB(w) + ενβSδT (σ).

3.2. The envelope equation. Now that the term vint is defined, there remains to construct w and
δuint such that uint is an approximate solution of equation (1.2). We recall that δuint, vint are strongly
oscillating terms, small in H1 norm. Consequently, setting ūint(t, τ) = L(τ)w(t), we have

∂tu
int + uint · ∇uint +

1
ε
e3 ∧ uint −∆hu

int − ν∂2
zu

int

≈ L
(
t

ε

)
∂tw + ūint · ∇ūint −∆hū

int +
1
ε

[
∂τδu

int + Lδuint](t, t
ε

)
+

1
ε

[
∂τv

int + e3 ∧ vint](t, t
ε

)
+∇pint

= L
(
t

ε

)[
∂tw +Q

(
t

ε
, w,w

)
−∆hw

]
+∇pint

+
1
ε

[
L (τ) ∂τ

(
L (−τ) δuint(t, τ)

)]
|τ= t

ε

+ Σ
(
t,
t

ε

)
,

where

Q(τ, w,w) = L(−τ)P [∇(L(τ)w ⊗ L(τ)w)] .

and Σ is defined by

Σ(t, τ) :=
1
ε

[
∂

∂τ
vint(t, τ) + e3 ∧ vint(t, τ)

]
. (3.12)

Thus it is natural to choose w and δuint such that for all t, τ ,

∂tw +Q(τ, w,w)−∆hw + L (−τ) PΣ (t, τ) +
1
ε
∂τ
[
L (−τ) δuint(t, τ)

]
= 0. (3.13)

The quantity L(−τ)PΣ(t, τ) has already been computed in Lemma 3.1 (see (3.8)). Since w does not
depend on τ , the first idea is to average the above equation on a time interval [0, θ], and to pass to the
limit as θ →∞ in order to derive an equation for w. Assuming that the term δuint is bounded uniformly
in τ , we have

lim
θ→∞

∫ θ

0

1
ε
∂τ
[
L (−τ) δuint(t, τ)

]
dτ = 0.

On the other hand, we have already proved in Lemma 3.1 that

lim
θ→∞

1
θ

∫ θ

0

L (−τ) PΣ (t, τ) dτ =
1
ε
S̄[cB,3, cT,3]

=
√
ν

ε
SB [w] + νβSδT (σ) in L∞loc([0,∞)t, L2(Υ× E)).

Moreover, we have

Q(τ, w,w) =
∑

M,M1,M2∈B
ei(−λ(M1)−λ(M2)+λ(M))τ 〈M1, w〉 〈M2, w〉 〈M, (M1 · ∇)M2〉M,
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and it is proved in [4] that if w is sufficiently smooth,

1
θ

∫ θ

0

Q(τ, w,w) ⇀ Q̄(w,w)

in the distributional sense, where Q̄ is defined by (1.6). Hence, for all δ > 0, we define wδ as the unique
solution in L∞(E, C([0,∞),H ∩H0,1)) ∩ L∞(E,L2

loc([0,∞), H1,0)) of the equation

∂tw
δ + Q̄(wδ, wδ)−∆hw

δ +
√
ν

ε
SB(wδ) + νβSδT (σ) = 0,

wδ|t=0 = u0 ∈ H ∩H0,1.

(3.14)

We refer to Proposition 6.5 p. 145 in [4] and to the comments following Proposition 1.2 in the Introduction
of this paper for existence and uniqueness results about equation (3.14). Notice that if σ ∈ L∞([0, T )×
[0,∞)τ × E,L2(T2)) only has a finite number of horizontal modes, then SδT (σ) ∈ L∞([0, T ] × E,H0,1).
Moreover, the fact that <(Ak) ≥ 0 in the definition of SB implies that the Ekman pumping due to the
Dirichlet condition at z = 0 induces a damping term in the envelope equation.
• The idea is then to pass to the limit in SδT (σ) as δ → 0 when σ satisfies (H1)-(H2), using (1.9).

Let us admit for the time being that the last property of Proposition 1.1 holds, i.e.

∃η > 0, ∀λ ∈ [−1− η,−1 + η] ∪ [1− η, 1 + η], Eλ(σ) = 0. (3.15)

Property (3.15) entails that the sum in the right-hand side of (3.11) bears only on the triplets (k1, k2, k3)
such that

|λk − 1| ≥ η, |λk + 1| ≥ η,

which entails

|k3| ≤ C(η)|kh|.

Consequently, since σ only has a finite number of horizontal modes, we deduce that the sum in the
definition of SδT (σ) is finite. Hence SδT (σ) converges as δ → 0 in L∞([0,∞)×E;L2(T2 × [0, a))) towards

ST (σ) := −
√
a1a2

a

∑
k∈Z3,
kh 6=0

(−1)k3

|k′h|
(
λkk

′
h + i(k′h)⊥

)
· E−λk [σ̂(kh)]Nk. (3.16)

The same property holds when σ has an infinite number of horizontal Fourier modes, provided σ is
sufficiently smooth with respect to the horizontal variable xh and satisfies (H1)-(H2).

Thus for all T0 > 0, the source term SδT (σ) remains bounded in L∞((0, T0) × E,H0,1) as δ → 0;
whence wδ is bounded, uniformly in δ, in L∞(E, C([0, T0],H∩H0,1)∩L2([0, T0], H1,0)). Moreover, let w
be the unique solution in L∞(E, C([0,∞),H ∩H0,1)) ∩ L∞(E,L2

loc([0,∞), H1,0)) of

∂tw + Q̄(w,w)−∆hw +
√
ν

ε
SB(w) + νβST (σ) = 0,

w|t=0 = u0.

(3.17)

A standard energy estimate leads to the following error bound, for all T > 0,

||w − wδ||L∞([0,T ]×E,L2) + ||∇h(w − wδ)||L∞(E,L2([0,T ]×Υ))

≤ Cνβ||ST (σ)− SδT (σ)||L∞(E,L2([0,T ]×Υ)). (3.18)

Thus, when constructing the approximate solution in the next section, we will use the function wδ,
but we will keep in mind that wδ converges towards w as δ vanishes.
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• Let us now turn to the proof of property (3.15) (which is the same as (1.9)). Using (H2), we
choose η0 > 0 such that

[−1− η0,−1 + η0] ⊂ V−, [1− η0, 1 + η0] ⊂ V+.

For λ ∈ R arbitrary, and for θ > 0, we have∥∥∥∥∥1
θ

∫ θ

0

σ(τ, ω)e−iλτ dτ

∥∥∥∥∥
L∞([0,T ]×T2×E)

=

∥∥∥∥∥1
θ

∫ θ

0

(σ − σα + σα)(τ, ω)e−iλτ dτ

∥∥∥∥∥
L∞([0,T ]×T2×E)

≤ ||σ − σα||L∞((0,θ)×[0,T ]×E×T2)

+
1
θ

∥∥∥∥∥
∫ θ

0

∫
R
e−α|µ|+iµτ−iλτFασ(µ) dµ dτ

∥∥∥∥∥
L∞([0,T ]×T2×E)

≤ ||σ − σα||L∞((0,θ)×[0,T ]×E×T2)

+
∥∥∥∥∫

R
e−α|µ|

ei(µ−λ)θ − 1
i(µ− λ)θ

Fασ(µ) dµ
∥∥∥∥
L∞(T2)

≤ ||σ − σα||L∞((0,θ)×[0,T ]×E×T2)

+

(
sup

µ∈V−∪V+

‖Fασ(µ)‖L∞([0,T ]×E×T2)

)
(|V+|+ |V−|)

+
∫

R\(V−∪V+)

e−α|µ|
∣∣∣∣ei(µ−λ)θ − 1
i(µ− λ)θ

∣∣∣∣ ‖Fασ(µ)‖L∞([0,T ]×E×T2) dµ dτ.

Let us now evaluate the last integral when λ is close to ±1, say for instance

|λ− 1| ≤ η0

2
.

Then if µ ∈ R \ (V− ∪ V+), we have |µ− 1| ≥ η0, and thus

|µ− λ| ≥ η0

2
.

In particular, ∣∣∣∣ei(µ−λ)θ − 1
i(µ− λ)θ

∣∣∣∣ ≤ 2
|µ− λ|θ

≤ C

θ
.

Hence, for all θ > 0, for λ such that |λ± 1| ≤ η0/2, the following inequality holds for all α > 0∥∥∥∥∥1
θ

∫ θ

0

σ(τ, ω)e−iλτ dτ

∥∥∥∥∥
L∞([0,T ]×T2,L2(E))

≤ ||σ − σα||L∞([0,θ]×[0,T ]×E×T2) +
C

θ
sup
α>0
‖Fασ(µ)‖L∞([0,T ]×E×T2,L1(Rλ))

+ sup
µ∈V−∪V+

‖Fασ(µ)‖L∞([0,T ]×E×T2) (|V+|+ |V−|) .

In the above inequality, we first take θ large enough, so that the left-hand side is close to ‖σ̄(λ)‖, and
C supα ‖Fασ‖/θ is small. Then we let α go to zero, with θ fixed; we deduce that

Eλ[σ] = 0 ∀λ such that d(λ,±1) ≤ η0

2
.
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3.3. Definition of δuint. Once w (or wδ) and vint are defined, there only remains to obtain an
equation on δuint. As stated before, δuint is chosen so that equality (3.13) holds for all τ ≥ 0. According
to the above computations, this amounts to taking δuint such that

∂

∂τ

[
L(−τ)δuint(τ)

]
= εQ̄(w,w)− εQ(τ, w,w) + S̄[cB,3, cT,3]− εL(−τ)PΣ(t, τ),

L(−τ)δuint(τ) = ε

∫ τ

0

[
Q̄(w,w)−Q(s, w,w)

]
ds

+
∫ τ

0

[
S̄[cB,3, cT,3]− εL(−s)PΣ(t, s)

]
ds

δuint(τ) = εL(τ)
∫ τ

0

[
Q̄(w,w)−Q(s, w,w)

]
ds (3.19)

+L(τ)
∫ τ

0

[
S̄[cB,3, cT,3]− εL(−s)PΣ(t, s)

]
ds.

Equivalently, δuint satifies the equation

∂τδu
int + Lδuint = εL(τ)

[
Q̄(w,w)− εQ(τ, w,w)

]
+ L(τ)S̄[cB,3, cT,3]− εPΣ(t, τ).

We now derive a bound on the coefficients of δuint:
Lemma 3.2. Let T > 0, N > 0, and let w ∈ L∞(E, C([0, T ],H)) such that

〈Nk, w(t)〉 = 0 ∀k, |k| > N, ∀t ∈ [0, T ].

Let Σ be given by (3.12), and δuint by (3.19). Then for all M ∈ B, for all η > 0, there exists a
constant Cη,M such that for all τ ≥ 0, for all ε, ν, β > 0 such that ν = O(ε) and

√
ενβ = O(1)∥∥〈M, δuint(t, τ)

〉∥∥
L∞([0,T ],L2(E))

≤ (ε+
√
εν)(Cη,M + ητ).

Remark 3.2. The above Lemma is stated with a function w having only a finite number of Fourier
modes, which is not the case for the solution of (3.14) in general. However, when constructing the
approximate solution in the next section, we will consider regularizations of the solution w of the envelope
equation (1.10), so that this issue is in fact unimportant.

Proof. We begin with the derivation of a bound for the term∫ τ

0

[
Q̄(w,w)−Q(s, w,w)

]
ds

= −
∑

M,M1,M2∈B
λ(M1)+λ(M2)6=λ(M)

αM1,M2,M 〈M1, w〉 〈M2, w〉
(∫ τ

0

ei(λ(M)−λ(M1)−λ(M2))sds

)
M.

Notice that the set (M1,M2) ∈ B2 such that 〈M1, w〉 〈M2, w〉 6= 0 is finite (the associated triplets
k(1), k(2) ∈ Z3 satisfy |k(i)| ≤ N). Moreover, if |k(1)|, |k(2)| ≤ N and λ(M1) + λ(M2) 6= λ(M), then there
exists a constant αN,M > 0 such that

|λ(M1) + λ(M2)− λ(M)| ≥ αN,M .

As a consequence, we have∣∣∣∣〈M,

∫ τ

0

[
Q̄(w(t), w(t))−Q(s, w(t), w(t))

]
ds

〉∣∣∣∣ ≤ 1
αN,M

‖w‖2L∞((0,T )×T2×[0,a]×E).

In a similar way, we now derive a bound on the second term in (3.19). According to Lemma 3.1, we
have, for all M ∈ B,

1
τ

∫ τ

0

〈M,L(−s)PΣ(t, s)〉 ds→ 1
ε

〈
M, S̄[cB,3, cT,3]

〉

28



as τ →∞, in L∞([0, T ], L2(E)). Let τη,M > 0 such that if τ ≥ τη,M , then∥∥∥∥1
τ

∫ τ

0

〈M,L(−s)PΣ(t, s)〉 ds− 1
ε

〈
M, S̄[cB,3, cT,3]

〉∥∥∥∥
L∞([0,T ],L2(E))

≤ η.

Now, for τ < τη,M , we have∥∥∥∥〈M,

∫ τ

0

[
1
ε
S̄[cB,3, cT,3]− L(−s)PΣ(t, s)

]
ds

〉∥∥∥∥
L∞([0,T ],L2(E))

≤ τη,M
∥∥∥∥〈M,

1
ε
S̄[cB,3, cT,3]

〉∥∥∥∥
L∞([0,T ],L2(E))

+
∫ τη,k

0

‖〈M,Σ(·, s)〉‖L∞([0,T ],L2(E)) ds

≤ Cη,M .

Gathering all the estimates, we infer the inequality announced in Lemma 3.2.

4. Proof of convergence. This section is devoted to the proof of the convergence result in Theorem
1.3. In the previous sections, we have already defined boundary layer terms and interior terms at the
main order. Unfortunately, the sum of those first order terms is not a sufficiently good approximation of
uε,ν . Hence the first step of the proof is to define additional correctors, and thus to build an adequate
approximate solution. We then derive some technical estimates on the various terms of the approximate
solution, and eventually we prove the convergence thanks to an energy estimate.

4.1. Building an approximate solution. The approximate solution is obtained as the sum of
some interior terms and some boundary layer terms; although we have to construct several correctors
in order to obtain a good approximation of the function uε,ν , we emphasize that all terms vanish in L2

norm, except the solution wδ of the approximated envelope equation (3.14). In this paragraph, we build
the correctors step by step, using the general constructions of the previous sections. At each step, we
will give some bounds on the corresponding term; these bounds will be proved in the next paragraph.

• First step. The interior term at the main order.
We have seen that the interior term at main order is given as the solution of the envelope equation

(3.14), and that when the parameter δ vanishes, the envelope equation becomes (3.17). However, we
are not able to construct the boundary layer terms at the top for δ = 0, and thus we must keep the
approximated solution of the envelope equation, namely wδ. Moreover, when constructing the corrector
terms uBL, δuint, vint, we will need some high regularity estimates in space and time on wδ, which are in
general not available for wδ or w. Thus we introduce a regularization of wδ with respect to the time
variable, and we truncate the large frequencies in wδ.

Let χ ∈ D(R) be a cut-off function such that

χ(t) = 0 ∀t ∈ [0,∞), χ(t) = 0 ∀t ∈ (−∞,−1],

χ(t) ≥ 0 ∀t ∈ R,
∫

R
χ = 1.

For n ∈ N∗, set χn := n−1χ(·/n), and define, for n,N > 0,

wδn,N := PN
[
wδ ∗t χn

]
= (PNwδ) ∗t χn,

where PN stands for the projection on the vector space generated by Nk for |k| ≤ N and by (1,±i, 0)/
√

2.
The convolution in time is well-defined thanks to the assumptions on the support of χ. We have clearly

lim
n,N→∞

sup
δ>0
‖wδ − wδn,N‖L∞([0,T ]×E,L2) = 0,

lim
n,N→∞

sup
δ>0
‖wδ − wδn,N‖L∞(E,L2([0,T ],H1,0)) = 0.

Moreover, the following result holds, and will be proved in the next paragraph:
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Lemma 4.1. The function wδn,N is an approximate solution of (3.14), with an error term rδn,N which
vanishes in L2([0, T ], H−1,0) as n,N →∞, uniformly in δ.

Hence we work with wδn,N instead of w from now on; for all k, s > 0, there exists a constant Cn,N (k, s)
such that

‖wδn,N‖L∞(E,Wk,∞([0,T ],Hs(Υ)) ≤ Cn,N (k, s).

In the sequel, we denote by Cn,N all constants depending on n and N (and possibly T, u0 and σ), but
not on δ.

• Second step. The boundary layer terms at the first order.
The boundary layer terms at main order, uBL

B and uBL
T , are defined in Section 2, where the function

w is replaced by wδn,N . Thus uBL
B depends in fact on the parameters n,N and δ, and uBL

T depends on δ.
Using the results of Proposition 2.2 and the previous step, the following estimates can be proved:

Lemma 4.2. We recall that ν = O(ε) and β
√
εν = O(1). Setting

uBL(t, xh, z) := uBL
B (t, xh, z) + uBL

T (t, xh, z)

= uB

(
t,
t

ε
, xh,

z√
εν

)
+ uBL,res(t, xh, z) + uT

(
t,
t

ε
, xh,

a− z√
εν

)
we have ∥∥uBL, z∂zu

BL, (z − a)∂zuBL
∥∥
L∞([0,T ]×T2×[0,a]×E)

≤ Cn,N , (4.1)∥∥uBL
∥∥
L∞([0,T ]×E,H1,0)

≤ Cn,Nν1/4,∥∥z∂zuBL, (z − a)∂zuBL
∥∥
L∞([0,T ]×E,L2(Υ))

≤ Cn,Nν1/4.

Moreover, uBL is an approximate solution of the linear part of equation (1.2), with an error term
bounded in L∞([0, T ]× E,L2(Υ)) by

Cn,Nν
1/4 + C

δ√
ε
.

The above Lemma follows immediately from Lemma 2.1, Proposition 2.2, Lemma 2.3 and Corollary
2.4.

• Third step. The interior corrector terms vint and δuint.
We now define the correctors vint and δuint as in (3.2)-(3.3) and (3.19) respectively, taking w = wδn,N

in (3.19). Notice that the boundary conditions cB,3 and cT,3 are of order one in L∞. More precisely,
using the fact that wδn,N has a finite number of Fourier modes on the one hand, and (H1)-(H2) on the
other, we deduce that

‖vint‖L∞([0,T ]×[0,∞)×T2×[0,a]) ≤ C
(√
εν‖wδn,N‖L∞([0,T ],H3) + νεβ

)
≤ Cn,N

√
νε;

moreover, according to Lemma 3.2,

∀η > 0, ∀k ∈ Z3, ∃Cη,k > 0,
∥∥∥∥〈Nk, δuint

(
t,
t

ε

)〉∥∥∥∥
L∞([0,T ],L2(E))

≤ η + Cη,kε.

Thus we set, for K > 0 arbitrary,

δuint
K := PKδuint

=
∑
|k|≤K

〈
Nk, δu

int〉Nk +
1
2

∑
±

〈 1
±i
0

 , δuint

〉 1
±i
0

 .

According to the above convergence result, for all K ∈ N, we have∥∥∥∥δuint
K

(
t,
t

ε

)∥∥∥∥
L∞([0,T ],L2(E,W 1,∞(Υ)))

→ 0 as ε, ν → 0.
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Moreover, there exists a constant Cn,N,K such that∥∥∥∥δuint
K

(
t,
t

ε

)∥∥∥∥
L∞([0,T ]×E,W 1,∞(Υ))

≤ Cn,N,K .

In the rest of the paper, we set

uint(t) := L
(
t

ε

)
wδn,N (t) + vint

(
t,
t

ε

)
+ δuint

K

(
t,
t

ε

)
; (4.2)

the following lemma holds:
Lemma 4.3. Let rδn,N be the remainder term in the equation on wδn,N (see Lemma 4.1). Then the

function uint satisfies

∂tu
int +

1
ε
e3 ∧ uint + uint · ∇uint −∆hu

int − ν∂2
zu

int +∇p = L
(
t

ε

)
rδn,N + wrem

1 + wrem
2 + wrem

3 ,

where wrem
1 = o(1) in L2([0, T ]× E × T2 × [0, a]), wrem

2 = o(1) in L2([0, T ]× E,H−1,0), and

∀n,N, lim
K→∞

sup
ε,ν,β,δ

‖wrem
3 ‖L∞(E,L2([0,T ]×T2×[0,a]) = 0.

Moreover,

uint
|t=0 = u0 + o(1) in L∞(E,L2(×Υ)),

and there exists a constant Cn,N,K such that

‖uint‖L∞([0,T ]×E,W 1,∞(Υ)) ≤ Cn,N,K . (4.3)

In the above Lemma and in the rest of the paper, the o(1) means that for all n,N,K, the corre-
sponding expression vanishes as ε, ν → 0, uniformly in δ.

• Fourth step. The boundary layer term at the second order.
At this stage, we have exhibited a function uint (resp. uBL) which is an approximate solution of

the evolution equation (1.2) (resp. of its linear part); moreover, the boundary layer term uBL and the
corrector vint have been built so that the boundary conditions are satisfied at the leading order. Precisely,
we have

uBL
h|z=0(t) + uint

h|z=0(t) = vint
h|z=0(t, t/ε) + δuint

K,h|z=0(t, t/ε) + uT,h|ζ= a√
εν

(t, t/ε),

∂z

(
uBL
h|z=a(t) + uint

h|z=a(t)
)

= βσ(t, t/ε) +
1√
εν
∂ζuB,h|ζ= a√

εν
(t, t/ε) + ∂zu

BL,res
h|z=a (t),

uBL
3|z=0(t) + uint

3|z=0(t) = uT,3|ζ= a√
εν

(t, t/ε),

uBL
3|z=a(t) + uint

3|z=a(t) = uB,3|ζ= a√
εν

(t, t/ε).

The terms uT |ζ= a√
εν
, ∂ζuB,h|ζ= a√

εν
, uB,3|ζ= a√

εν
and uBL,res

|z=a are exponentially small, thus satisfy the
assumptions of Lemma A.2 in the Appendix; they will be taken care of at the very last step. But in
general, setting c̃B,h := vint

h|z=0+δuint
K,h|z=0, the quantity ε

−1c̃B,h does not vanish. Thus, we define another
boundary layer term in order to restore the Dirichlet boundary condition at z = 0. We now have to make
precise which parts are almost periodic or random stationary in c̃B,h(t, τ). We have

vint
h|z=0 = vint

h = −βεν
a
∇h∆−1

h (cT,3) +
√
εν

a
∇h∆−1

h (cB,3).

The first term in the right-hand side is clearly random and stationary, whereas the second one is almost
periodic. Concerning the term δuint

K , the situation is not so clear. Using (3.19), we write

δuint
K (t, τ) =

∑
M∈B

e−iλ(M)τδbM (t, τ)M,
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where δbM = 0 if M = Nk for some k ∈ Z3 such that |k| > K, and

δbM (t, τ) := ε

〈
M,

∫ τ

0

(
Q̄(wδn,N , w

δ
n,N )−Q(s, wδn,N , w

δ
n,N )

)
ds

〉
+
〈
M,

∫ τ

0

S̄[cB,3, cT,3]− εL(−s)PΣ(t, s)
〉

else. According to Lemma 3.2,

sup
t∈[0,T ]

∥∥∥∥δbM (t, tε
)∥∥∥∥

L2(E)

= o(1),

and

sup
t∈[0,T ]

∥∥∥∥ ∂∂tδbM
(
t,
t

ε

)∥∥∥∥
L∞(E)

≤ Cn,N .

Thus we forget the fact that δbM depends on the microscopic time variable τ , and we merely treat δuint
K

as an almost periodic function. Hence we use the construction of section 2 (see in particular Remark
2.2 for the random stationary part), and we denote by δuBL the boundary layer term thus obtained. By
definition,

δuBL
h|z=0 = −c̃B,h,

and

∂tδu
BL +

1
ε
e3 ∧ δuBL − ν∂2

zδu
BL = o(1) in L∞([0, T ]× E ×Υ).

Using the same kind of estimates as in Lemma 2.3, we deduce that∥∥δuBL
h

∥∥
L2([0,T ]×E×Υ)

= o(ν1/4).

• Fifth step. The “stopping” corrector.
Let us now examine the remaining boundary conditions.
. Horizontal component at z = 0: this term is the simplest of all. We have

δB,h(t) :=
(
uint
h (t) + uBL

h (t) + δuBL
h (t)

)
|z=a = uT,h|ζ= a√

εν
(t, t/ε),

and thus, using the same arguments as in Proposition 2.2, we prove that there exists a constant
C such that

‖δB,h(t)‖H3(T2) ≤ C exp
(
− a√

εν

)
‖∂tδB,h(t)‖H3(T2) ≤

C

ε
exp

(
− a√

εν

)
.

Since ε−k exp (−a/
√
εν) = o(1) for all k ∈ N∗, δB,h satisfies the conditions of Lemma A.2 in the

Appendix.
. Vertical component at z = 0: we compute

δB,3(t) :=
(
uint

3 (t) + uBL
3 (t) + δuBL

3 (t)
)
|z=0

= uT,3|ζ= a√
εν

(t, t/ε) + δuBL
3|z=0(t).

It is easily proved that uT,3|ζ=a/√εν(t, t/ε) satisfies the hypotheses of Lemma A.2, provided σ is
sufficiently smooth. Concerning δuBL

3 , we have, according to the assumptions on σ,

‖δuBL
3|z=0‖L∞([0,T ],L2(E,H3(T2)) ≤ o(

√
εν) + Cn,N,K(νε)3/2β ≤ o(ε),

‖∂tδuBL
3|z=0‖L∞([0,T ],L2(E,H3(T2))) = o(1).

Thus δB,3 satisfies the conditions of Lemma A.2.
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. Horizontal component at z = a:

δT,h(t) = ∂z
(
uint
h (t) + uBL

h (t) + δuBL
h (t)

)
|z=a −

1
β
σ

(
t,
t

ε

)
=

1√
εν
∂ζuB,h|ζ= a√

εν
(t, t/ε) + ∂zu

BL,res
h|z=a (t) + ∂zδu

BL
h|z=a(t).

For all s > 0, we have∥∥∥∂zuBL,res
h|z=a

∥∥∥
L∞([0,T ]×E,Hs(T2))

≤ Cn,N
1√
νT

exp
(
− a2

4νT

)
= o(ε),∥∥∥∂t∂zuBL,res

h|z=a (t)
∥∥∥
L∞([0,T ]×E,Hs(T2))

≤ Cn,N
1

ν3/2
exp

(
− a2

4νT

)
= o(ε).

(Remember that ν = O(ε).) Thus all terms of the right-hand side are exponentially small as ε
vanishes, and δT,h satisfies the conditions of Lemma A.2.

. Vertical component at z = a: let

δT,3(t) :=
(
uint

3 (t) + uBL
3 (t) + δuBL

3 (t)
)
|z=a

= uB,3|ζ= a√
εν

(t, t/ε) + δuBL
3|ζ= a√

εν
(t).

Once again, δT,3 is exponentially small in all Hs norms, and thus matches the conditions of
Lemma A.2.

We thus define ustop, given by Lemma A.2, so that

ustop
h|z=0 = −δB,h, ∂zu

stop
h|z=a = −δT,h

ustop
3|z=0 = −δB,3, ustop

3|z=a = −δT,3,

and such that ustop is an approximate solution of the linear part of equation (1.2), with an error term
which is o(1) in L2. Notice that the corrector ustop itself is o(ε) in L2.

We now define

uapp := uint + uBL + δuBL + ustop (4.4)
= uint + urem. (4.5)

By construction, the remainder urem is o(1) in L∞([0, T ], L2(E ×Υ) and uapp satisfies conditions (1.3).
The goal of the next paragraph is to prove that uapp is an approximate solution of (1.2), which allows
us to conclude in paragraph 4.3 that uε,ν − uapp vanishes thanks to an energy estimate.

4.2. Estimates on the approximate solution. We start by proving the lemmas stated in the
previous paragraph.
• Proof of Lemma 4.1 (Estimates on wδn,N ).
Remembering (3.14), it is easily checked that wδn,N satisfies

∂tw
δ
n,N + PN (Q̄(wδ, wδ)) ∗ χn −∆hw

δ
n,N +

√
ν

ε
SB(wδn,N ) + νβPNSδT (σ ∗ χn) = 0.

Thus wδn,N is an approximate solution of (3.14), with an error term rδn,N equal to

rδn,N = Q̄(wδn,N , w
δ
n,N )− PN Q̄(wδ, wδ) ∗ χn + νβ(SδT (σ)− PNSδT (σ ∗ χn))

=
[
(P− PN )Q̄(wδ, wδ)

]
∗ χn +

[
Q̄(PNwδ,PNwδ)− Q̄(wδ, wδ)

]
∗ χn (4.6)

+
[
Q̄(wδn,N , w

δ
n,N )− Q̄(PNwδ,PNwδ) ∗ χn

]
+ νβPNSδT [σ − σ ∗ χn] + νβ(P− PN )SδT (σ).

In order to evaluate rδn,N , we need continuity estimates on the quadratic term Q̄. We recall that Q̄ is
bilinear continuous from

L∞([0, T ], H0,1)× L2([0, T ], H1,0) into L2([0, T ], H−1,0).
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(see Proposition 6.6 in [4] for a proof of this non trivial fact). Moreover, for a, b ∈ H1 ∩ H, it can be
proved, using the methods of [4], that there exists a constant C > 0 such that

‖Q̄(a, b)‖H−1,0 ≤ C‖a‖1/2L2 ‖a‖1/2H1,0‖b‖1/2L2 ‖b‖1/2H1,0

+C‖∂3a‖L2‖b‖1/2L2 ‖b‖1/2H1,0 + C‖∂3b‖L2‖a‖1/2L2 ‖a‖1/2H1,0

≤ C (‖a‖H1,0‖b‖H0,1 + ‖a‖H0,1‖b‖H1,0) . (4.7)

It is easily deduced from the above inequality that the two terms in line (4.6) converge towards zero; on
the other hand, the regularity of σ entails that SδT [σ − σ ∗ χn] vahishes in L2 as n→∞, uniformly in δ,
together with (P− PN )SδT (σ). We thus focus on the last term in the expression of rδn,N , which we write

Q̄(wδn,N (t), wδn,N (t))− Q̄(PNwδ,PNwδ) ∗ χn

=
∫

R
Q̄(wδn,N (t),PNwδ(u))χn(t− u) du−

∫
R
Q̄(PNwδ(u),PNwδ(u))χn(t− u) du

=
∫

R
Q̄(wδn,N (t)− PNwδ(u),PNwδ(u))χn(t− u) du,

and thus, using inequality (4.7) together with the L∞([0, T ], H0,1) bound on wδ, we infer∥∥Q̄(wδn,N (t), wδn,N (t))− Q̄(wδ, wδ) ∗ χn(t)
∥∥
H−1,0

≤ C
∫

R

∥∥wδn,N (t)− PNwδ(u)
∥∥
H0,1

∥∥PNwδ(u)
∥∥
H1,0 χn(t− u) du

+ C

∫
R

∥∥wδn,N (t)− PNwδ(u)
∥∥
H1,0

∥∥PNwδ(u)
∥∥
H0,1 χn(t− u) du.

Eventually, we get∥∥Q̄(wδn,N (t), wδn,N (t))− Q̄(wδ, wδ) ∗ χn(t)
∥∥
L∞(E,L2([0,T ],H−1,0))

≤ C sup
|h|≤ 1

n

∥∥wδ − τhwδ∥∥L∞(E,L2([0,T ],H1,0))
+ C sup

|h|≤ 1
n

∥∥wδ − τhwδ∥∥L∞([0,T ]×E,H0,1)
,

where τhw : (t, x) 7→ w(t + h, x). The right-hand side of the above inequality vanishes as n → ∞,
uniformly in δ.

Thus rδn,N vanishes as n,N →∞ in L2([0, T ]× E,H−1,0), uniformly in δ. �

Hence we have proved that wδn,N is an approximate solution of (3.14). We now tackle the bounds
on uint.
• Proof of Lemma 4.3 (Estimates on uint). First of all, the estimate (4.3) is easily deduced from the

previous bounds on wδn,N , v
int and δuint. Thus the main point is to check that the assertions on wrem

i ,
i = 1, 2, 3, hold true.

We begin with the term wrem
3 , which is due to the truncation of the large frequencies in δuint;

precisely, we have

wrem
3 (t) :=

1
ε

(P− PK)
[
∂τδu

int + Lδuint](t, t
ε

)
.

Remembering the definition of δuint (see (3.19)), we infer

‖wrem
3 ‖L∞(E,L2([0,T ]×T2×[0,a])

≤
∥∥(P− PK)

[
Q̄(wδn,N , w

δ
n,N )

]∥∥
L∞(E,L2([0,T ]×Υ))

+
∥∥(P− PK)

[
Q(s, wδn,N , w

δ
n,N )

]∥∥
L∞([0,∞)s×E,L2([0,T ]×Υ))

+
1
ε

∥∥(P− PK)
[
S̄[cB,3, cT,3]

]∥∥
L∞(E,L2([0,T ]×Υ))

+ ‖(P− PK)Σ‖L∞([0,∞)×E,L2([0,T ]×Υ)) .
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If ν = O(ε), and
√
νεβ = O(1), all terms vanish as K → ∞ uniformly in ε, ν, δ. Thus the condition on

wrem
3 is satisfied.

On the other hand, we have defined vint and δuint so that uint is an approximate solution of equation
(1.2), with an error term which we now evaluate in L2([0, T ] × Υ × E) + L2([0, T ] × E,H−1,0). Apart
from the one mentioned above, which is due to the truncation of the large spatial frequencies in δuint,
the error term is equal to

L
(
t

ε

)
rδn,N (t) +

[
(∂t −∆h − ν∂2

z )(δuint
K + vint)

](
t,
t

ε

)
+
[
uint · ∇

]
(δuint

K + vint)
(
t,
t

ε

)
+
[
(δuint

K + vint)
(
t,
t

ε

)
· ∇
]
L
(
t

ε

)
wδn,N (t).

Let wrem
2 (t) := −∆hv

int (t, t/ε) . Then wrem
2 is bounded in L2([0, T ]× E,H−1,0) by

√
εν‖cB,3‖L∞([0,T ]×[0,∞)τ×E,H1(T2)) + ενβ‖cT,3‖L∞([0,T ]×[0,∞)τ×E,H1(T2)) = o(1).

Keeping aside L (t/ε) rδn,N (t), the remaining error terms are bounded in L2([0, T ]× T2 × [0, a]× E) by

‖∂tδuint
K ‖L∞([0,T ]t×[0,Tε ]

τ
,L2(E×Υ))

+ ‖∂tvint‖L∞([0,∞)τ ,L2([0,T ]×T2×[0,a]×E)

+ ‖δuint
K ‖L∞([0,T ]t×[0,Tε ]

τ
,L2(E,H2))

+ ‖uint‖L∞‖δuint
K + vint‖L∞([0,T ]t×[0,Tε ]

τ
,L2(E,H1))

+ ‖uint‖L∞(E,L2([0,T ],H1))‖δuint
K + vint‖L2(E,L∞([0,T ]t×[0,Tε ]

τ
×Υ))

= o(1).

Above, we have used the fact that wδn,N , and whence vint, δuint
K , are smooth with respect to the time

variable t. �

• At this stage, we know that uint is an approximate solution of (1.2), and that urem is an approximate
solution of the linear part of (1.2), such that additionally urem = o(1). There remains to prove that the
function uapp = uint + urem is an approximate solution of equation (1.2). The core of the proof lies in
the following Lemma:

Lemma 4.4 (Non linear estimate on the remainder term). For all n,N, as ε, ν → 0 with ν = O(ε)
and β

√
εν = O(1), we have

sup
δ>0

∥∥uint · ∇urem + urem · ∇uint + urem · ∇urem
∥∥
L2([0,T ]×T2×[0,a]×E)

→ 0.

Proof. First, we have ∥∥(urem · ∇)uint∥∥
L2([0,T ]×T2×[0,a]×E)

≤ ‖urem‖L2([0,T ]×T2×[0,a]×E)

∥∥uint∥∥
L∞([0,T ]×E,W 1,∞)

≤ Cn,N,K
(
‖uBL‖L2 + ‖δuBL‖L2 + ‖ustop‖L2

)
.

The right-hand side vanishes thanks to the estimates of the previous paragraph.
The other terms are slightly more complicated. We write

uint · ∇urem + urem · ∇urem = uapp · ∇urem

= uapp · ∇ustop + uapp · ∇
(
uBL + δuBL) .

The first term in the right-hand side is bounded in L2([0, T ]× E ×Υ) by

‖uapp‖L∞‖ustop‖L2([0,T ]×E,H1) ≤ Cn,N,Kε.
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We thus focus on the second term, which we further split into

uapp
h · ∇h

(
uBL + δuBL)+ uapp

3 ∂z
(
uBL + δuBL) .

We have ∥∥uapp
h · ∇h

(
uBL + δuBL)∥∥

L2([0,T ]×E×Υ)

≤ ‖uapp‖L∞([0,T ]×E×Υ)‖uBL + δuBL‖L2([0,T ]×E,H1,0)

≤ Cn,N,Kν1/4.

We split the other term as follows

∥∥uapp
3 ∂z

(
uBL + δuBL)∥∥2

L2(Υ)
=
∫

T2

∫ a/2

0

∣∣uapp
3 ∂z

(
uB + δuBL)∣∣2

+
∫

T2

∫ a/2

0

|uapp
3 ∂zuT |

2

+
∫

T2

∫ a

a/2

∣∣uapp
3 ∂z

(
uB + δuBL)∣∣2

+
∫

T2

∫ a

a/2

|uapp
3 ∂zuT |

2
.

For z ≥ a/2, t > 0, we have∣∣∂z (uB + δuBL) (t)
∣∣2 ≤ Cn,N [(εν)−1 exp

(
− ca√

εν

)
+

1
νt

exp
(
− ca√

νt

)]
and thus ∫ T

0

∫
T2

∫ a

a/2

∣∣uapp
3 ∂z

(
uB + δuBL)∣∣2

≤ Cn,N
[
(εν)−1 exp

(
− ca√

εν

)
+ exp

(
− ca√

νT

)]
.

Similarly, ∫ T

0

∫
T2

∫ a/2

0

|uapp
3 ∂zuT |

2

≤ Cn,Nβ2 exp
(
− ca√

εν

)
≤ Cn,N (εν)−1 exp

(
− ca√

εν

)
.

We now evaluate the two remaining terms. The idea is the following: since uapp
3 vanishes at the boundary,

we have

uapp
3 (z) ≈ Cz for z = o(1),

and uapp
3 (z) ≈ C(z − a) for z − a = o(1),

and z∂zuB , (z − a)∂zuT are evaluated in (4.1). Moreover, we can split uapp into

uapp(t) =
[
L
(
t

ε

)
wδn,N (t) + δuint

K

(
t,
t

ε

)]
+
[
vint

(
t,
t

ε

)
+ uBL(t)

]
+
[
δuBL(t) + ustop(t)

]
.

By definition of vint and ustop, the vertical components of each of the three terms in brackets vanish at
z = 0 and z = a; additionally, the first term is bounded in L∞([0, T ]× E,W 1,∞) by a constant Cn,N,K ,
while the (vertical components of the) second and third ones are respectively of order

Cn,N

(√
εν + (εν)3/4

)
and o((εν)3/4) + o(ε)
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in L∞([0, T ]× E,H1,0). Once again, the formulation ustop = o(ε) must be understood as

∀n,N,K, lim
ε,ν→0

sup
δ>0

ε−1‖ustop‖ = 0.

As a consequence, we have∫
T2

∫ a/2

0

∣∣uapp
3 (t)∂z

(
uB + δuBL) (t)

∣∣2
≤
∥∥∥∥z−1

[(
L
(
t

ε

)
wδn,N

)
3

(t) + δuint
K,3

(
t,
t

ε

)]∥∥∥∥2

L∞

∥∥z∂z (uB + δuBL) (t)
∥∥2

L2

+
∥∥∥∥z−1

[
vint

3

(
t,
t

ε

)
+ uBL

3 (t) + δuBL
3 (t) + ustop

3 (t)
]∥∥∥∥2

L2

∥∥z∂z (uB + δuBL) (t)
∥∥2

L∞
.

Using Hardy’s inequality together with the divergence-free property, we infer that∫
T2

∫ a/2

0

∣∣uapp
3 (t)∂z

(
uB + δuBL) (t)

∣∣2
≤ Cn,N,Kν1/2

∥∥∥∥∂zL( tε
)
wδn,N + δuint

K

(
t,
t

ε

)∥∥∥∥2

L∞

+ Cn,N,K

∥∥∥∥∂z [vint
3

(
t,
t

ε

)
+ uBL

3 (t) + δuBL
3 (t) + ustop

3 (t)
]∥∥∥∥2

L2

≤ Cn,N,Kν1/2

∥∥∥∥L( tε
)
wδn,N (t) + δuint

K

(
t,
t

ε

)∥∥∥∥2

W 1,∞

+ Cn,N,K

∥∥∥∥vint
h

(
t,
t

ε

)
+ uBL

h (t) + δuBL
h (t) + ustop

h (t)
∥∥∥∥2

H1,0

≤ o(1).

The term ∫
T2

∫ a

a/2

|uapp
3 (t)∂zuT (t)|2

is treated in a similar way. Gathering all the terms, we deduce the convergence result stated in Lemma
4.4.

In the rest of this section, following the notations introduced in Lemma 4.3, we denote by wrem
1 any

term which satisfies

∀n,N,K, lim
ε→0

sup
δ>0
‖wrem

1 ‖L2([0,T ]×E×T2×[0,a]) = 0, (4.8)

by wrem
2 any term which satisfies

∀n,N,K, lim
ε→0

sup
δ>0
‖wrem

2 ‖L2([0,T ]×E,H−1,0) = 0, (4.9)

and by wrem
3 any term which satisfies

∀n,N, lim
K→∞

sup
ε,ν,β,δ

‖wrem
3 ‖L∞([0,∞)×E,L2([0,T ]×T2×[0,a]) = 0. (4.10)

According to Lemmas 4.2, 4.3 and 4.4, uapp satisfies an equation of the type

∂tu
app + uapp · ∇uapp +

1
ε
e3 ∧ uapp −∆hu

app − ν∂2
zu

app

= ∇p+ L
(
t

ε

)
rδn,N + wrem

1 + wrem
2 + wrem

3 +O
(
δ√
ε

)
L2

, (4.11)
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We recall that the remainder rδn,N , which was defined by (4.6), satisfies

lim
n,N→∞

sup
ε,ν,δ
‖rδn,N‖L2([0,T ]×E,H−1,0) = 0.

Equation (4.11) is supplemented with the boundary conditions (1.3) and the initial condition

uapp
|t=0 = w0 + δw1

0 + δw2
0,

where δw1
0 and δw2

0 are such that

lim
n,N→∞

sup
δ,ε,ν
‖δw1

0‖L∞(E,L2(Υ)) = 0,

and ∀n,N, lim
ε,ν→0

sup
δ>0
‖δw2

0‖L∞(E,L2(Υ)) = 0.

In order to avoid too heavy notation, we will simply write

uapp
|t=0 = w0 + o(1).

4.3. Energy estimate. We now evaluate the difference between uε,ν and uapp thanks to an energy
estimate. The function uε,ν − uapp is a solution of

∂t(uε,ν − uapp) +
1
ε
e3 ∧ (uε,ν − uapp)−∆h(uε,ν − uapp)− ν∂2

z (uε,ν − uapp)

= ∇p′ + wrem
1 + wrem

2 + wrem
3 − L

(
t

ε

)
rδn,N +O

(
δ√
ε

)
L2

− (uε,ν · ∇)(uε,ν − uapp)− [(uε,ν − uapp) · ∇]uapp.

Taking the scalar product of the above equation by uε,ν − uapp and using the Cauchy-Schwarz
inequality, we deduce that for all t > 0, for almost every ω ∈ E,

1
2
d

dt
‖uε,ν(t, ω)− uapp(t, ω)‖2L2 +

1
2
‖uε,ν(t, ω)− uapp(t, ω)‖2H1,0

≤
∫

T2×[0,a]

|[((uε,ν(t, ω)− uapp(t, ω)) · ∇)uapp(t, ω)] · (uε,ν(t, ω)− uapp(t, ω))|

+ ‖wrem
1 (t, ω)‖2L2(Υ) + ‖wrem

2 (t, ω)‖2H−1,0 + ‖wrem
3 (t, ω)‖2L2(Υ)

+ C
∥∥rδn,N (t)

∥∥2

H−1,0 + C
δ2

ε
+ C‖uε,ν(t, ω)− uapp(t, ω)‖2L2 .

In the above inequality, we have dropped the term ν‖∂z(uε,ν − uapp)‖2L2 in the left-hand side. We now
evaluate the term ∫

T2×[0,a]

|((uε,ν − uapp) · ∇)uapp · (uε,ν − uapp)| .

First, let us write

uapp =
[
uint + ustop]+

[
uBL + δuBL] .

The function uint +ustop is bounded in L∞([0, T ]×E,W 1,∞(Υ) by a constant Cn,N ; similarly, ∇h(uBL +
δuBL) is bounded in L∞([0, T ]× E ×Υ). As a consequence, we have∫

T2×[0,a]

∣∣(uε,ν − uapp) · ∇
[
uint + ustop] · (uε,ν − uapp)

∣∣
+
∫

T2×[0,a]

∣∣(uε,νh − uapp
h ) · ∇h

[
uBL + δuBL] · (uε,ν − uapp)

∣∣
≤ Cn,N,K‖uε,ν − uapp‖2L2([T 2×[0,a]).
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There remains to derive a bound for the term∫
T2×[0,a]

∣∣(uε,ν3 − uapp
3 )∂z

[
uBL + δuBL] · (uε,ν − uapp)

∣∣ ;
the calculations are quite similar to those of Lemma 4.4. We first split the integral on [0, a] into two
integrals, one bearing on [0, a/2] and the other on [a/2, a]. The term uBL

T (resp. uBL
B + δuBL) is expo-

nentially small on [0, a/2] (resp. on [a/2, a]), and thus we neglect it in the final estimate. Moreover, we
have for instance ∫ a/2

0

∫
T2

∣∣(uε,ν3 − uapp
3 )∂z

[
uBL
B + δuBL] · (uε,ν − uapp)

∣∣
≤
∥∥∥∥1
z

(uε,ν3 − uapp
3 )

∥∥∥∥
L2

∥∥z∂z [uBL
B + δuBL]∥∥

L∞
‖uε,ν − uapp‖L2

≤ C‖∂z(uε,ν3 − uapp
3 )‖L2(Υ) ‖uε,ν − uapp‖L2(Υ)

≤ C‖uε,ν − uapp‖H1,0 ‖uε,ν − uapp‖L2(Υ) .

Eventually, we infer that∫
T2×[0,a]

∣∣(uε,ν3 − uapp
3 )∂z

[
uBL + δuBL] · (uε,ν − uapp)

∣∣
≤ C ‖uε,ν − uapp‖2L2(Υ) + C‖uε,ν − uapp‖H1,0 ‖uε,ν − uapp‖L2(Υ) .

Gathering all the above estimates and integrating on E, we deduce that

∂

∂t
‖uε,ν − uapp‖2L2(E×Υ) + ‖uε,ν − uapp‖2L2(E,H1,0)

≤ C ‖uε,ν − uapp‖2L2(E×Υ)

+
∥∥rδn,N∥∥2

L2(E,H−1,0)
+
Cδ2

ε

+ ‖wrem
1 ‖2L2(E×Υ) + ‖wrem

2 ‖2L2(E,H−1,0) + ‖wrem
3 ‖2L2(E×Υ) .

Using Gronwall’s Lemma, we infer that for all t ∈ [0, T ],

‖(uε,ν − uapp)(t)‖2L2(E×Υ) +
∫ t

0

‖uε,ν − uapp‖2L2(E,H1,0) (4.12)

≤ C
[
‖wrem

1 ‖2L2([0,T ]×E×Υ) + ‖wrem
2 ‖2L2([0,T ]×E,H−1,0) + ‖wrem

3 ‖2L2([0,T ]×E×Υ)

]
+ C

[∥∥rδn,N∥∥2

L2([0,T ]×E,H−1,0)
+
δ2

ε

]
.

• We are now ready to prove Theorem 1.3. Let us write

uε,ν(t)− L
(
t

ε

)
w(t) = [uε,ν − uapp] (t) +

[
uapp(t)− L

(
t

ε

)
wδn,N (t)

]
+
[
L
(
t

ε

)
[wδn,N − wδ](t)

]
+ L

(
t

ε

)
[wδ − w](t),

where
. the term uε,ν − uapp satisfies the energy estimate (4.12);
. the term uapp(t)−L

(
t
ε

)
wδn,N (t) is equal to urem + vint + δuint

K , and thus vanishes as ε, ν → 0 in
L∞([0, T ], L2(E,H1,0)), uniformly in δ > 0, and for all n,N,K;

. the term wδn,N − wδ vanishes as n,N → ∞ uniformly in δ, ε, ν according to the first step in
paragraph 4.1;
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. the term wδ − w vanishes as δ → 0, uniformly in ε, ν, according to (3.18).
Let η > 0 be arbitrary. We first take n0, N0 large enough so that for all δ > 0, ε, ν, β > 0,

‖rδn0,N0
‖2L∞([0,T ]×E,H−1,0) ≤ η,

‖wδn,N − wδ‖2L∞([0,T ]×E,L2), ‖w
δ
n,N − wδ‖2L∞(E,L2([0,T ],H1,0)) ≤ η.

Thanks to (4.10), we now choose K > 0 large enough so that for all ε, ν, β, δ,

‖wrem
3 ‖2L2([0,T ]×E×Υ) ≤ η.

Remembering properties (4.8)-(4.9), we deduce that there exists ε0, ν0 > 0 such that for all δ, for all
ε < ε0, ν < ν0 with ν ≤ Cε and β

√
εν ≤ C,

‖wrem
1 ‖2L2([0,T ]×E×Υ) ≤ η,

‖wrem
2 ‖2L2([0,T ]×E,H−1,0) ≤ η,∥∥∥∥uapp(t)− L

(
t

ε

)
wδn0,N0

(t)
∥∥∥∥2

L∞([0,T ],L2(E,H1,0))

≤ η.

At this stage, we have, for all δ > 0, for all ε, ν, β such that 0 < ε < ε0 and ν = O(ε),
√
νεβ = O(1),

∥∥∥∥uε,ν(t)− L
(
t

ε

)
w(t)

∥∥∥∥2

L2(E×Υ)

+
∫ t

0

∥∥∥uε,ν(s)− L
(s
ε

)
w(s)

∥∥∥2

L2(E,H1,0)
ds

≤ Cη + C‖wδ − w‖2L∞([0,T ],L2(E×Υ)) + C‖wδ − w‖2L2([0,T ]×E,H1,0) +
Cδ2

ε
.

We now let δ → 0 in the right-hand side, and we obtain∥∥∥∥uε,ν(t)− L
(
t

ε

)
w(t)

∥∥∥∥2

L2(E×T 2×[0,a])

+
∫ t

0

∥∥∥uε,ν(s)− L
(s
ε

)
w(s)

∥∥∥2

L2(E,H1,0)
ds ≤ Cη

for ε, ν small enough. The convergence result is thus proved.

5. Mean behaviour at the limit. This section is devoted to the proof of Proposition 1.6. Let us
recall what the issue is: in general, the source term ST (σ) in (1.10) is a random function, and thus so is
w. Hence, our goal is to derive an equation, or a system of equations, on E[w]. We emphasize that such
a derivation is not always possible, because of the nonlinear term Q̄(w,w). However, we shall prove that
the vertical average of wh, denoted by w̄h, is always a deterministic function. Moreover, if the torus is
nonresonant (see (1.12)), then w − w̄ solves a linear equation, and thus in this particular case we can
derive an equation for E[w − w̄].

Our first result is the following:
Lemma 5.1. Assume that the group transformation (θτ )τ∈R is ergodic. Let u0 ∈ H ∩H1, and let w

be the solution of (1.10). Set

w̄h(t, xh) =
1
a

∫ a

0

wh(t, xh, z) dz −
1

aa1a2

∫ a

0

∫
T2
wh(t, yh, z) dyh dz.

Then w̄h is the unique solution in C([0,∞), L2(T2))∩L2
loc([0,∞), H1(T2)) of the two-dimensional Navier-

Stokes equation  ∂tw̄h + w̄h · ∇w̄h −∆hw̄h +
1

a
√

2

√
ν

ε
w̄h + νβE [ST (σ)]h = 0,

w̄h|t=0 = 1
a

∫ a
0
w0,h.

(5.1)

In particular, w̄h is a deterministic function.
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Proof. Let us recall that if

φ =
∑
M∈B

φ̂(M)M ∈ H,

then

Ph(φ)(xh) :=
1
a

∫ a

0

φh(xh, ·)−
1

aa1a2

∫ a

0

∫
T2
φh =

∑
kh∈Z2

φ̂(kh, 0)eik
′
h·xhnh(kh, 0).

Thus we have to project equation (1.10) onto the horizontal modes, which correspond to k3 = 0. It is
easily checked that

Ph (SB(w)) = SB,h(w̄h) =
1√
2a
w̄h,

and we recall (see [17] and Proposition 6.2 in [4]) that there exists a function p̄ ∈ L2(T2) such that for
all w ∈ H1 ∩H

Ph(Q̄(w,w)) = (w̄h · ∇h)w̄h +∇hp̄.

In fact, this result is proved in [4] for vector fields w whose horizontal mean vanishes, but it can be easily
extended to arbitrary vector fields, by simply noticing that

Q̄(w1, w2) = 0

whenever w1 is a constant two-dimensional vector field. Thus we only have to prove that

Ph(ST (σ)) = E [ST,h(σ)] ,

almost surely in E. We use the following fact, of which we postpone the proof: if λ ∈ R, then

E[Eλ[σ]] =
{

E[σ] if λ = 0,
0 else. (5.2)

Moreover, if λ = 0, then

Eλ[σ] = E[σ] almost surely. (5.3)

Note also that λk = 0 if and only if k3 = 0. Remembering (3.16), we deduce from (5.2) and (5.3) that

E[ST,h(σ)] = − i
√
aa1a2

∑
kh∈Z2

1
|k′h|2

(k′h)⊥ · E[σ̂(kh)]eik
′
h·xh

(
ik′2
−ik′1

)

= − i
√
aa1a2

∑
kh∈Z2

1
|k′h|2

(k′h)⊥ · E0[σ̂(kh)]eik
′
h·xh

(
ik′2
−ik′1

)
= Ph[ST (σ)].

Thus the lemma is proved, pending the derivation of (5.2) and (5.3). Concerning (5.2), the invariance
of the probability measure m0 with respect to θτ entails that

E [Eλ[σ]] = E[σ] lim
θ→∞

1
θ

∫ θ

0

e−iλτ dτ,

and (5.2) follows easily. Equality (5.3) is a consequence of Birkhoff’s ergodic theorem (see [24]).
The first point in Proposition 1.6 follows easily from the above Lemma (together with Theorem 1.3),

by simply noticing that the sequence

exp
(
− t
ε
L

)
w(t) =

∑
M∈B

e−iλ(M) tε 〈M,w(t)〉M
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weakly converges in L2([0, T ]×Υ× E) towards∑
k∈Z3\{0},
λk=0

〈Nk, w(t)〉Nk = w̄(t) = (w̄h(t), 0).

Remark 5.1. Notice that

rothPh[ST (σ)] = −
√
a1a2

a
E [rothσ] .

Hence we recover the result of [6]: the vorticity φ := rothw̄h is a solution of

∂tφ+ w̄h · ∇hφ−∆hφ+
1

a
√

2

√
ν

ε
φ = νβ

√
a1a2

a
E [rothσ] .

From now on, we assume that the torus is nonresonant (see (1.12)). Consequently, with w̄ = (w̄h, 0),
we have

Q̄(w − w̄, w − w̄) = 0.

Moreover, using (5.2)-(5.3), it is easily checked that

E [ST,3(σ)] = 0.

Setting u = w − w̄, we deduce that u solves a linear equation, namely

∂tu+ 2Q̄(u, w̄)−∆hu+
√
ν

ε
SB(u) + νβST (σ)− νβE[ST (σ)] = 0.

Since w̄ is deterministic, we have

E
[
Q̄(u, w̄)

]
= Q̄(E[u], w̄).

Hence we can further decompose u into w̃+ ũ, where w̃ is deterministic and does not depend on σ, and ũ
is random with zero average. The precise result is stated in the following lemma, from which Proposition
1.6 follows immediately:

Lemma 5.2. Assume that the hypotheses of Proposition 1.6 hold. Then

w = w̄ + w̃ + ũ

where:
• the function w̄ is deterministic and satisfies (5.1);
• the function w̃ is deterministic and satisfies ∂tw̃ + 2Q̄(w̄, w̃)−∆hw̃ +

√
ν

ε
SB(w̃) = 0,

w̃|t=0 = u0 − w̄|t=0;

• the function ũ is random, with zero average, and satisfies ∂tũ+ 2Q̄(w̄, ũ)−∆hũ+
√
ν

ε
SB(ũ) + νβST (σ)− νβE[ST (σ)] = 0,

ũ|t=0 = 0.
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Appendix A: convergence of the family σα.
Lemma A.1 Let T > 0. Assume that σ ∈ L∞([0, T ]×E, C(R)) ∩ L∞([0, T ]×Rτ ×E). Then for all

T ′ > 0,

σα − σ → 0 in L∞((0, T )× (0, T ′)× E) as α→ 0.

Proof. By definition of σα, we have

σα(t, τ, ω) =
1

2π

∫
R×R

exp(−α|λ| − α|s|)eiλ(τ−s)σ(t, s, ω) ds dλ

=
1

2π

∫
R

exp(−α|s|) 2α
α2 + (τ − s)2

σ(t, s, ω) ds

=
1
π

∫
R

exp(−α|τ + αs|) 1
1 + s2

σ(t, τ + αs, ω) ds.

Consequently,

σ(t, τ, ω)− σα(t, τ, ω) =
1
π

∫
R

exp(−α|τ + αs|) 1
1 + s2

[σ(t, τ, ω)− σ(t, τ + αs, ω)] ds

+
1
π
σ(t, τ, ω)

∫
R

[1− exp(−α|τ + αs|)] 1
1 + s2

ds.

The convergence result of Lemma A.1 follows easily.

Appendix B: proof of Proposition 1.1. Let λ ∈ R be arbitrary, and let φ ∈ L2(E).
Consider the probability space

Eλ := E × [0, 2π), Pλ := P ⊗ dµ

2π
,

where µ is the standard Lebesgue measure on [0, 2π]. Let us define the following group of transformations,
acting on (Eλ, Pλ)

T λτ (ω, ϕ) := (θτω, ϕ− λτ mod2π), τ ∈ R.

Then it is easily checked that T λτ is measure-preserving for all τ ∈ R. And if T > 0, we have, for all
ϕ ∈ [0, 2π], ∫ T

0

Φ(θτω)e−iλτ dτ = e−iϕ
∫ T

0

Φ(θτω)eiϕ−iλτ dτ

= e−iϕ
∫ T

0

Ψ
(
T λτ (ω, ϕ)

)
dτ,

where the function Ψ ∈ L2(Eλ) is defined by

Ψ (ω, ϕ) := Φ(ω)eiϕ.

Hence, according to Birkhoff’s ergodic theorem (see [24]), there exists a function Ψλ ∈ L2(Eλ),
invariant by the group of transformations

(
T λτ
)
τ∈R, such that

1
T

∫ T

0

Φ(θτω)e−iλτ dτ → e−iϕΨλ(ω, ϕ),

Pλ - almost surely in Eλ and in L2(Eλ). Moreover, the function

(ω,Φ) 7→ e−iϕΨλ(ω, ϕ)
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clearly does not depend on ϕ by construction. Hence, we set

Φλ(ω) := e−iϕΨλ(ω, ϕ) ∀(ω, ϕ) ∈ Eλ,

and we have proved that

1
T

∫ T

0

Φ(θτω)e−iλτ dτ → Φλ(ω)

almost surely in ω and in L2(E).
Now, since Ψλ is invariant by the group

(
T λτ
)
τ∈R and Φλ does not depend on ϕ, we have, almost

surely in ω,

Φλ(θτω) = e−iϕΨλ(θτω, ϕ)
= e−i(ϕ−λτ)Ψλ(θτω, ϕ− λτ mod2π)
= e−i(ϕ−λτ)Ψλ

(
T λτ (ω, ϕ)

)
= e−i(ϕ−λτ)Ψλ (ω, ϕ)
= eiλτΦλ(ω).

This completes the proof of Proposition 1.1.

Appendix C: the stopping Lemma.
Lemma A.2 (Stopping condition) Let T0 > 0, and let δB , δT ∈ L∞([0, T0], H3(T2)) be two families

such that ∫
(δT,3 − δB,3)dxh = 0

and such that as ε→ 0, for A = T,B,

1
ε
‖δA‖L∞([0,T ],H1(T2)) → 0, ‖δA‖L∞([0,T ],H3(T2)) → 0 and ‖∂tδA‖L∞([0,T ],H1(T2)) → 0.

Then there exists a family ustop ∈ L∞([0, T ], L2(Υ)) with ∇ · w = 0 such that

ustop
|z=0 = δB , ustop

3|z=a = δT,3 and ∂zu
stop
h|z=a = δT,h

and such that as ε→ 0,

1
ε
‖ustop‖L∞([0,T ],L2) → 0,

∥∥∥∥∂tustop +
1
ε
Lustop − ν∂zzustop −∆hu

stop
∥∥∥∥
L∞([0,T ],L2)

→ 0.

For a proof of the above Lemma, see [5].
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