Stability of periodic stationary solutions of scalar
conservation laws with space-periodic flux

Anne-Laure Dalibard

Abstract

This article investigates the long-time behaviour of parabolic scalar conservation
laws of the type dyu + divyA(y,u) — Ayu = 0, where y € RY and the flux A
is periodic in y. More specifically, we consider the case when the initial data is an
L' disturbance of a stationary periodic solution. We show, under polynomial growth
assumptions on the flux, that the difference between u and the stationary solution
vanishes for large times in L' norm. The proof uses a self-similar change of vari-
ables which is well-suited for the analysis of the long time behaviour of parabolic
equations. Then, convergence in self-similar variables follows from arguments from
dynamical systems theory. One crucial point is to obtain compactness in L' on the
family of rescaled solutions; this is achieved by deriving uniform bounds in weighted
L? spaces.

Keywords. Long time asymptotics, parabolic scalar conservation law, asymptotic
expansion, moment estimates, homogenization

1 Introduction
The goal of this article is to study the long time limit of solutions of the equation
O+ div,A(y,u) — Ayu=0, t>0,yecRY, (1.1)

where the flux A : RY x R — RY is assumed to be T -periodic with respect to its
first variable. Here and in the rest of the article, TY denotes the N-dimensional torus, i.e.
™ = (R/Z)V.

Classical results on scalar conservation laws (see for instance [20, 15]) ensure that
the semi-group associated with equation (1.1) is well-defined in L' (RY) + L>°(R"). The
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case when the initial data belongs to U(y) + L'(R) (when N = 1), where U is a viscous
shock profile of equation (1.1) has already been dealt with in a previous article, see [8].
In the present paper, we restrict our study to the case when the inital data belongs to
v(y)+ LY (RY), where v is a given periodic stationary solution of (1.1). The choice of such
initial data stems from the fact that the semi-group associated with (1.1) is non-expansive
in the L' norm; hence it is natural to investigate stability in L*(R).

When the flux A is linear, say

Ay, u) = a(y)u,

this study coincides (at least for some particular functions «) with the one led by Adrien
Blanchet, Jean Dolbeault and Michal Kowalczyk in [5] on the large time behaviour of
Brownian ratchets, as we will explain in Remark 1.3. It is proved in [5] that if the flux A
is linear and if

1
mnmpaqaazéNwuw»—wwuy—dfdy<m> (1.2)

t—o00

for some velocity ¢ € RY which will be defined later on (see (1.7)), then there exists a
constant C' and a number ~ € (0, 1/2) such that

4Nmaw—mw—<Mh@>F(y—d>%@§0tﬂ .

1+ 2t)N/2 1+ 2t
where f; is the solution of an elliptic equation in T (see (1.6)), F is a Gaussian profile,

and M is the mass of the initial disturbance, i.e.

M = (Ujg=0 — V).
RN

(1.3) is a technical assumption which is expected to hold for a large class of initial data
(but such a fact is not proved in [5]).

Unfortunately, as we explained in [8], the above result does not imply that the same
convergence holds in the nonlinear case. Moreover, the proof of [5], which is based on
entropy dissipation methods together with Log-Sobolev Poincaré inequalities, can hardly
be transposed as such to a nonlinear setting, although attempts in this direction have been
made: for instance, in [10] M. Di Francesco and P. Markowich prove convergence to-
wards diffusive waves for the Burgers equation thanks to entropy dissipation methods.
However, their strategy relies crucially on the Hopf-Cole formula, and therefore could not
be transposed in the present general setting. Hence we have chosen here a slightly differ-
ent approach, which enables us to extend some of the results of [5] to a nonlinear context.
Additionally, we recover a weaker version of the convergence (1.3), but without the need
for assumption (1.2). In fact, we prove that (1.2) holds for a class of initial data which is
dense in v + L*(RY).
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The present work is also embedded in the broader study of the long time behaviour
of conservation laws. We refer the interested reader to the review paper by D. Serre [21]
(and the references therein) for a thorough description of the homogeneous case, in which
the author investigates the stability of stationary solutions of scalar conservation laws in
various models (parabolic and hyperbolic settings, relaxation models...)

Before stating the main results of this paper, let us now recall a few properties of
equation (1.1). First, according to a result of [7], periodic stationary solutions of (1.1)
exist, provided the flux A satisfies some growth assumptions. In fact, several different
growth regimes were studied in [7]; we only recall one of them here, which is the most
relevant with regards to our purposes. In the rest of the article, we assume that A belongs
to WL°(TN x R)V, and that

loc
Ipo € R, Vy € TV, div,A(y, po) = 0. (1.4)

We also assume that there exists n € (0, (N + 2)/N) such that

VP >0, 3Cp >0, Y(p,q) € R, [p| < P,

{ 0pA(y, P+ q) — 0 Ay, p)| < Cr(lal + lal"), (15)
|divy Ay, p + q) — divy Ay, p)| < Cr(lg] +[q]").

These assumptions were introduced in [8, 7]. They ensure that for any € R, there exists
a unique periodic stationary solution of (1.1) with mean value r; we refer to [7] for a
discussion of the optimality of conditions (1.4), (1.5). Moreover, if « is a solution of (1.1)
with initial data u—g € v + L' N L>®(RY), where v € W1*°(RY) is any stationary
solution of (1.1), then u € L>([0, 00) x RY). This result will be used several times in the

article, and its proof is recalled in Appendix A.

We now introduce the profiles which characterize the asymptotic behaviour of the

function wu:

e First, the function f, occurring in (1.3) is the unique solution in H'(T%) of the
equation
—Ay fo+divy(anfo) =0, (fo) =1, (1.6)
where
ai(y) = (FpA)(y, v(y)) € L=(T)N.
Above and in the rest of the article, the notation (-) stands for the average on the
torus TV, that is

)= Ff

TN

e The drift velocity c is then defined by

c=N <Oélf0> . (17)
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e The last function which will appear in the asymptotic profile of u is the equivalent,
in the non-linear case, of the Gaussian profile /' occurring in (1.3); it is the unique
solution, in a suitable functional space, of an elliptic equation of the form

— S 000, Fy—div, (eFy)+a-V, Fy = 0in RY, with / Fu =M ER,
1<ij<N RN

(1.8)
where the coefficients 7); ; and @ are constant, and the matrix (1, j)1<; j<n is coer-
cive. Unfortunately, giving the precise definition of 7; ; and a would take us too far
at this stage. Let us merely mention that a = 0 if N > 2. We also recall that thanks
to a result of J. Aguirre, M. Escobedo, and E. Zuazua (see [1]), the above equation
has a unique solution for all M € R, and we refer to the next section for more
details. In particular, 7 ;, a are defined in (2.14), (2.16) respectively.

The main result of this paper is the following:

Theorem 1.1. Let A € W5’°°(’]TN x R)N, and assume that A satisfies (1.4), (1.5).

loc

Let v be a periodic stationary solution of (1.1), and let u;,; € v + LY(RY). Let u be

the unique solution of (1.1) with initial condition u—y = u;y;. Set

M = /(um — ) dy.
R

Then as t — oo,

/.

Remark 1.1. In fact, the regularity assumptions on the flux A are not as stringent as

1 y—ct
u(t,y) —v(y) — Wfo(y)FM (m) ‘ dy — 0.

stated in the Theorem above. In particular, the conditions on the derivatives with respect
to the space variable y can be considerably reduced. When looking closely at the proof,
the correct regularity assumptions on A are

OEA € Lig(TV x R)N vk € {0,1,--- 4},
div, A, div, 0y A € Ll (T x R).

loc

Remark 1.2. Notice that even in the linear case, Theorem 1.1 does not yield any con-
vergence rate, in contrast with (1.3). This is due to the method of proof, which relies
on abstract arguments from dynamical systems theory. The convergence rate obtained by
Blanchet, Dolbeault and Kowalczyk in [5] is based on more ‘“constructive” techniques,
namely entropy dissipation methods and Log Sobolev inequalities. The counterpart of
such techniques lies in the necessity for assumption (1.2). We emphasize that such an
assumption is not necessary here.
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Remark 1.3. Let us now make precise the link between brownian ratchets and equation
(1.1) in the linear case. In [5], A. Blanchet, J. Dolbeault and M. Kowalczyk study the long
time behaviour of the solution f = f(¢,y) of the equation

Of = Ayf +divy, (V(y —wt)f), t>0,yeRY, (1.9)
with ¢ € C}(TV), w € RY. Setting
u(t,y) = f(t,y +wt) Vt>0, VycRY,
we see that u satisfies
Ovu + divy (a(y)u) — Ayu =0,

where the drift coefficient « is given by

ay) = —w — Vyih(y). (1.10)

Hence the study of (1.9) and that of (1.1) in the linear case are closely related; they are
strictly equivalent in dimension one, since any function o € C*(T) can be decomposed as

a:/Toz%—(oz—/Ta) :/TcH—@yqb, for some ¢ € C*(T).

The equivalence does not hold when N > 2, but in fact, all the results of [5] remain true
for an arbitrary drift o € C*(T") (using exactly the same techniques as the ones developed
in [5]). This will be a consequence of the analysis we will perform in the next sections.
The choice for a function o with the structure (1.10) stems from physical considerations
(see [4]): equation (1.9) describes the evolution of the density of particles in a traveling
potential, moving with constant speed w.

In the course of the proof of Theorem 1.1, we will also prove that condition (1.2) holds
for a large class of initial data. The precise result is the following:

Proposition 1.1. Assume that the flux A is linear, and that u,; € v+ L*(RY) is such that
B> N4 8, [ ) = o) P(1+ ) dy < o
RN

Let u be the unique solution of (1.1) with initial data w;,;. Then (1.2) is satisfied. As a
consequence (see [5]), (1.3) holds.

Hence for linear fluxes and for a large range of initial data, a rate of convergence can
be given. The derivation of convergence rates in the non-linear case goes beyond the scope
of this article; in fact, the standard methods to derive convergence rates rely on the use
of entropy-entropy dissipation inequalities (see [10] in the case of the Burgers equation),
which we have chosen not to use here.

Another consequence of Theorem 1.1 is the stability of stationary shock profiles of
equation (1.1) (see [8]) in dimension one:
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Definition 1.1. Assume that N = 1. A stationary shock profile is a stationary solution U
of (1.1) such that there exists periodic stationary solutions v;, v,. of (1.1) such that

lim [U(y) — v, (y)] =0,

y—-+o0

Jim [U(y) —u(y)] =0.

It was proved in [8] that the stability of shock profiles is a consequence of the stability
of periodic stationary solutions. Thus we have the following

Corollary 1.1. Assume that N = 1, and that the hypotheses of Theorem 1.1 are satisfied.
Let U € L*®(R) be a stationary shock profile of (1.1). Let u;,; € U + L'(R) such that

/R(Uz'm‘—U) =0,

and let u be the unique solution of (1.1) with initial data w;,;. Then

The strategy of proof of Theorem 1.1 is close to the one developed in [12], in which
M. Escobedo and E. Zuazua study the long time behaviour of a homogeneous version
of (1.1); we also refer the interested reader to [11], in which M. Escobedo, J.L. Vazquez
and E. Zuazua extend the analysis performed in [12] to the case when the flux has sub-
critical growth, and to [23], in which E. Zuazua extends the results of [12] to more general
situations. The first step of the analysis consists in a self-similar change of variables,
which helps us to focus on the appropriate length scales; this will be done in the next
section, in which we also derive the equations on the limit profiles f, and F};. Then,
in section 3, we obtain some compactness on the rescaled sequence by deriving some
uniform L? bounds in weighted spaces. Eventually, we conclude the proof in Section 4 by
using semi-group arguments inherited from dynamical systems theory.

Throughout the article, we will use the following notation: if ¢) € L2 (RY), we set,
forall p € [1, 00),

LP(a)) = {u e LP (RY), /RN lu|Pyp < +oo} ;

1/p
and s = ( [ aPv)

H'(¢) = {u € L*(¢), Vu e L*(¢)},
and ”UH%ﬂ(w) = HUH%?(;@ + HVUH%%W
Sobolev spaces of the type W*P(v), H*(1), with s € N arbitrary and p € [1,00), are

defined in a similar fashion. When we write ||u|| .»®~), without specifying a weight func-
tion, we always refer to the usual L? norm in RY, with respect to the Lebesgue measure

(ie. v = 1).
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2 The homogenized system

The goal of this section is to analyze the expected asymptotic behaviour of the solution
u(t) of equation (1.1); to that end, we change the space and time variables and introduce
a parabolic scaling, which is appropriate for the study of the long time behaviour of dif-
fusion equations. Then, using a two-scale Ansatz in space and time which was introduced
in [5], we construct an approximate solution of the rescaled system. Eventually, we recall
and derive several properties of the limit system.

2.1 Parabolic scaling

Consider the solution u € L{%([0,00) x RY) of (1.1), with up—g = wi; € v+ L' N

loc

L>®(RM). Tt is a classical feature of scalar conservation laws that the semi-group asso-
ciated with (1.1) is contractant in L'(R"). Hence, for all t > 0, u(t) € v + L}(RY),
and

[u(t) = vlly < [Jtini — v]}1.
Thus it is natural to compute the equation satisfied by f(t) = u(t) — v € L*(R"): since
v is a stationary solution of (1.1), there holds

of +divyB(y,f) —A,f =0, t>0,yeRY
where the flux B is defined by

By, f) = Ay, v(y) + f) — Ay, v(y)), V(y, f) € TV xR.

The flux B(y, f) vanishes at f = 0, for all y. Moreover, if the flux A satisfies the assump-
tions of Theorem 1.1, there exists a; € C'(TV) and B, € C(TN x R) such that

B(y, f) = ax(y) f + Bi(y, f), (2.1)
and the flux él is such that

VX >0, 3Cx >0, Vf € [-X, X], Vy € TV,

Biy, )] < CxIfP*

At some point in the proof, we will need a more refined approximation of 5 in a neigh-
bourhood of f = 0; we thus also introduce ay, as € L®(TV), By € L®(TV x R) such
that

By, f) = aa(y)f + ax(y) f> + as(y) f* + Bs(y, f).

and the flux Bg is such that for all X > 0, there exists a constant C'xy > 0, such that for
all f € [-X,X],forally € TV,

‘Bg<y, Nl < oxlf,
diVyBB,(ya f) S CX‘f’47

‘aff”?)(y, N < Cx|fPP.
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The existence of o; (i = 1,2, 3) and the bounds on By, B; are ensured by the assumption
that A € W>>(TV x R). Notice in particular that

ar(y) = 0By, f)ir=0 = (0,A)(y,v(y)), VyeT".

As explained in [5], the interplay between the diffusion and the drift «;; induces a
displacement of the center of mass. In the linear case, that is, when Bl = 0, the evolution
of the center of mass can be computed as follows: since the function f satisfies

Of +divy(anf) — A, f =0,

there holds
d

g7 yf(t,y)dy=N [ ai(y)f(t,y)dy.
RN RN

Now, fort > 0,y € TV, set

flty)=> " flt.y+k).

kezZN

Since the function « is periodic, f satisfies

O f +divy(arf) —A,f =0, t>0, yeTV,

[ )= [ o

Using Lemma 1.1 of [18] together with a Poincaré inequality on the torus T, it can be

and we have, for all t > 0,

easily proved that as ¢ — oo, f(t) converges with exponential speed in L' (T") towards
f > fo, where fj is the unique solution of (1.6). Additionally, notice that

()= vt+m=[ f=n

Consequently, setting
c:= N (o fo)

we infer that in the linear case,

— [ (y—ct)f — 0 exponentially fast.
dt Jg

In fact, it turns out that the nonlinearity has no effect on this displacement, although
this is not quite clear if we try to include the quadratic term B, in the above calculation.
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We will justify this result by formal calculations in the next paragraph. Nonetheless, it
can be proved in the case N = 1 (see for instance [8]) that when || fy|; is not too large,
| follx

1 (Ol 2@ < Coyr V>0,

and more generally, the L? norm of f(¢) vanishes for long times for all p € (1, 00].
This somehow explains why the quadratic term does not modify the motion of the center
of mass for large times: the term By (-, f(¢,-)) vanishes in L'(R) as ¢ — oo. Hence,
hereinafter, we choose to make in the general case the same change of variables as the
one dictated by the linear case. Precisely, let U € L2 ([0, 00) x RY) such that

loc
y—ct
Vv1+2t

This change of variables is classical in the study of long-time parabolic dynamics, see for

1
f(t,y)sz(logvlJr%, ), t>0,ycRY. (22

instance [12]. In the present case, our change of variables is exactly the same as in [5];
straightforward calculations lead to

0.U — div,(zU) + Rdiv,((on(2) — ¢)U) — AU = —RN*div, By (z, R—UN) , (2.3)

with 7 > 0, x € RY, and where

R?—1
R=¢ and z=Rx+c 5

Studying the long time behaviour of f amounts to studying the long time behaviour of
U. Now, as 7 — 00, the quantity R becomes very large, and thus the variable z is highly
oscillating. Hence, as emphasized in [5], the asymptotic study of equation (2.3) somehow
falls into the scope of homogenization theory; the small parameter measuring the period
of the oscillations is then ¢ = R~' = e~ 7. However, one substantial difference with
classical homogenization problems is that the small parameter depends on time, which
sometimes makes the proofs much more technical. We refer to [5] for more details.

Let us also mention that the homogenization of equation (2.3) with a “fixed”” small pa-
rameter, and when the quadratic flux B; vanishes, has been performed by Thierry Goudon
and Frédéric Poupaud in [14]. As a consequence, the formal asymptotic expansions which
will be performed in the next section are in fact very close to the ones of [14].

2.2 Formal derivation of the limit system

As usual in homogenization problems (see [3] for instance), the idea is now to assume
that the solution U of (2.3) admits an asymptotic development in powers of the small
parameter measuring the period of the oscillations; in the present case, the small parameter
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is ™7, so that we expect the approximation to be valid for large times only. Hence, assume
that when 7 > 1,

U(r, o) = Uy (1,2,2) + e U (T,2,2) + e Uy (1,2, 2) + - - - (2.4)

where 2 = "z + c(e*” — 1)/2 stands for the fast variable and where for all (7,z) €
R, x R¥, the function

z—Ui(T,x,2)

is TV -periodic. Plugging the Ansatz (2.4) into equation (2.3) and identifying the powers
of R = €7 leads to a cascade of equations on the terms Uy, Uy, etc. Notice that according
to Lemma A.1 in the Appendix, f € L*°([0,00) x R"), and thus U/R" is bounded in
L.

e Terms of order R?: Identifying the highest order terms in equation (2.3) when U is
given by (2.4) leads to

c- V.U +div.((oq — )Up) — AUy = =AUy + div.(a Uy) =0, ze€ TV,

We recall the following result, which is a straightforward consequence of the Krein-
Rutman Theorem (see [9]):

Lemma 2.1. Let o € L>=(TN)N. Consider the vector space
Ela] = {w e H(T"), —A,w+div,(aw) =0} .

Then dimE[a] = 1, and there exists a unique function m € E|«] such that (m) = 1.
Moreover, m € WYP(TY) for all p < oo, and

inf m > 0.
2€TN

In the present case, F[a;] = Rfy, where fj is defined by (1.6). Hence there exists a

function F' = F'(7, x) such that

Us(m,2,2) = fol2)F(1,2) Y(7,7,2) €[0,00) x RY x TV, (2.5)

e Terms of order R': Concerning the terms of order R' = €7, the case when the space
dimension is equal to one has to be treated separately. Indeed,

U

RN+1diVIB1 (Z, ﬁ

> = R Ndiv,(auU?) + R *Ndiv,(asU?)

+RN*div, <Bg (z, R—(i\[)) ,
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and using the bounds on B,

(A U .- U - U
RN*tldiv, <33 (z,m>) = RN(div,Bs) (z,ﬁ>+vaU~(8UBg) (z,m>
= OR*M) 4+ O(R*N*™) = O(R™).

We infer that if U is given by (2.4), then

RN*div, B, (2 %) = R Ndiv,(apU3) (2.6)

+ RN [divy(asU3) + 2div.(aeUsUr )]
+ R7div,(asU?)
+ O(R™).

Consequently, we obtain that when N > 2, the term U; solves the equation

N

02U
—A Uy + diva(ayUy) = —divi (a1 — )Up) +2 2
=1

(%iazi ’

(2.7)

Since Uy(t, z, z) = fo(2)F(t,x), we have
<(al - C)Uﬂ(tv Z, )) = F(t’ {IJ) (<a1f0> - C) =0

by definition of c. Hence the right-hand side of (2.7) has zero mean value, and the compat-
ibility condition is satisfied. Thus for all (¢, z) € [0, 00) x RY, (2.7) has a unique solution
in H*(T"). Moreover, using the linearity of (2.7) together with the expression (2.5), we
infer that U; can be written as

Ui(t,z,z) = fi(z) - V. F(t,x), (2.8)
where f; € HY(TN)V satisfies
=N fri+diva(on fig) = = folar — ) +20.,fo, Vie{l,--- N} (2.9)

Notice that according to the regularity assumptions on the flux A, the function div, o
belongs to L>(T). Using boot-strap arguments for equation (1.6), we deduce that f, €
W2P(TN) for all p < oo, and therefore f; € W?2P(TV) for all p < oco. In particular,
fi1, fo € Wl’OO(TN).

If N =1, on the other hand, the corrector U; solves the equation
92U,
0x0z

Notice that the compatibility condition is satisfied, for the same reason as before. Hence

—0..U;y + 0.(onUy) = —0,((ay — ¢)Up) + 2 — 0. (aUp). (2.10)

in this case,
U(t,2,2) = [i(2)0:F(t, x) + g1(2) F(t, 2)%, (2.11)
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where g; € H'(T) solves

—A.g1 + 0:(1g1) = —0.(aa(fo)?).

The fact that the compatibility condition is satisfied in all cases justifies a posteriori
the use of the change of variables (2.2) in the nonlinear case. This means that, at least on
a formal level, the displacement of the center of mass of the function f is unaffected by
the presence of the quadratic term B;.

e Terms of order R°: As we identify the terms of order one in equation (2.3), we obtain

_AZUQ +diV(C¥1U2) (212)
02U,
Gxiazi

N
= —0.Uy + divy(aUp) + AUy — diva((en — )U1) +2)

i=1

where the term Ay stems from the expansion of the nonlinear term Bl. According to

(2.6), we have

ANL == am<042Ug) + 232(oz2U0U1) + 82(043U§’) if N = 17
Ay = div.(apU]) if N =2,
Ay =0 if N > 3.

The evolution equation for the function £ follows from the compatibility condition; pre-
cisely, we obtain

O F —div,(zF) — A F + div, (g — ¢)Uy) — (Anp) = 0.

We now distinguish between the cases N > 2 and N = 1.
>If N > 2, (Ayr) = 0; using (2.8), we infer that F' satisfies

2
F
0-F —div,(xF) - Y m,j% =0, 7>0,zeRYwithN>2, (2.13)

where the coefficients (); ;)1<; j<n are given by

Mg = 0ij — (o — i) frg) - (2.14)
The following Lemma entails that equation (2.13) is well-posed:
Lemma 2.2. The matrix 1 := (1; ;)1<i j<n IS coercive.

Lemma 2.2 is proved in [14] for any N > 1, and its proof is recalled in [5] when
N = 1. For the reader’s convenience, we sketch the main steps of the proof here, and we
refer to [14], Proposition 4.6 for details.
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Proof. Let L be the differential operator
Lo =—A,0+div.(aq9).

The idea is to introduce, for all j € {1,--- , N}, the function X; which solves the adjoint
problem

Lixy = =Aaxg —on-Vaxg =y — ¢, (x5) = 0.
Since the right-hand side satisfies ((a1; — ¢;)¥) = 0 for all ¢ € ker L = E[a;] = Rfy,
the function y; is well-defined. For all £ € RY, we have

Sl )i 66 = {0x- O -6)
7 = (x-&(—folag —¢)- £+ 2V, fo-&))
= —(fox €L (x - &) + (2x - €V fo - €)

= —(L(fox-&x-&) —2(fo§ - V.(x-9)).

Expanding L( fox - &) and using the identity L f, = 0 leads to

(L(fox - E)x - €) = (foIV.(x - OF).

Hence
2 maE = K (RIVC OF) + 20 Va0 €)
= (fole +V.(x-OP).

We deduce that

Z ni;&& >0 VEeRY.
1<ij<N
Now, let & € RY such that > 7; ;&£ = 0. Since fo(z) > 0 for all z, we infer that
E4+V.(x-&)=0 VzeTV.

Taking the average of the above inequality on T? leads to £ = 0. Hence the matrix (7; ;)
is coercive. []

>If N =1, we have
<.ANL> = &B <042Ug> = <a2f§> 855F2.
Moreover, in this case U; is given by (2.11); hence

(div,((a1 = )U1)) = (a1 = &) f1) Opa F + (1 = €)g1) D F™.
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Consequently, the compatibility condition reads
O0-F — 0,(xF) + a0, F* =10, F =0, 7>0, 2z €R, (2.15)
where the coefficients a, n are given by

a:= <a2f§> + (a1 —c)q)

(2.16)
n:=1- (a1 —c)f1).

Lemma 2.2 states that the diffusion coefficient 7 is positive.

Remark 2.1. (i) The fact that the coefficient a appearing in (1.8) is zero for all N > 2
i1s consistent with the results of M. Escobedo and E. Zuazua in [12]: indeed, the
authors of [12] consider the convection-diffusion equation

vy —Av=a-V(jv|” ) in(0,00) x RY

for some exponent ¢ > 1 + 1/N and for o € RY. They prove that if ¢ > 1+ 1/N,
the asymptotic behaviour of v is given by the heat kernel, i.e. the convective term
does not play any role. On the contrary, if ¢ = 1 + 1/N, v behaves asymptotically
like the self-similar solution of a nonlinear equation.

In the present case, because of the Taylor expansion (2.1), the flux B consists of a
linear drift term and a quadratic term. Hence the study performed in this paper is
related to the case ¢ = 2 of [12]; we infer that ¢ = 1 + 1/N if and only if N = 1,
and we check that this is the only case when a nonlinear behaviour can be observed
at the limit.

(i1) In order to have a better understanding of the large time behaviour of equation (1.1),
it would be interesting to compute the next term of the development, in the spirit of
the paper by E. Zuazua [22]. In particular, the nonlinear behaviour of the equation is
expected to appear at the next order for all N € N. Notice that this implies that the
term U is not, in fact, the next term in the development. However, such an analysis
is beyond the scope of the present article.

The formal derivation of an approximate solution is now complete. In the following
paragraphs, we recall or prove several results concerning the well-posedness and the long
time behaviour of equations (2.13) and (2.15). We will often refer to the equation on F' as
the “homogenized equation”; this term refers to equation (2.13) when N > 2, and (2.15)
when N = 1.
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2.3 Existence and uniqueness of stationary solutions of the homoge-
nized equation

This paragraph is concerned with the existence and uniqueness (in suitable functional
spaces) of stationary solutions of the homogenized equations (2.13) and (2.15). In the
case when N = 1, or when (7 j)1<; j<n = Al for some A > 0, such results are stated in
[1]. In the general case, we merely use a linear change of variables, and the problem is
then reduced to the case of an isotropic diffusion.

Lemma 2.3. Assume that N > 2. For v > 0, set ¢, : * € RY +— exp(y|x|?). Then
there exists v > 0 such that for all M € R, there exists a unique function Fy; € H' (1))

satisfying

N
1<ij<N R

Furthermore, the following properties hold:

(i) Forall M € R, Fyy = MF};

(ii) Fy € W2P N C®(RY) forall p € [1,00), and Fy € H?(¢),);
(iii) Fy(z) > 0 forall v € RV,

Proof. The idea is to perform an affine change of variables in order to transform the

diffusion term into a laplacian. Precisely, set
5= MWL <N,

Then the matrix S = (s;;) is symmetric and positive definite (see Lemma 2.2); hence
there exists an orthogonal matrix O € M,,(R) and positive numbers \; such that

S = O'Diag(A1,---, An)O.
Let us change the variables by setting
x =Py, with P:=OTDiag(A[?,---, A}/, (2.18)

and for any function F' € L'(RY), define
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where the coefficients 7j;,; are given by

it = (P k(P iysiy = (PSP ),

0,

Using the definitions of the matrices P and .S, we infer that
i=P'S(P " =1Iy.

Thus the diffusion term is transformed into a laplacian with this change of variables.
Let us now compute the drift term. We have

= (Py)i,
and, denoting by (ey, - - - , ex) the canonical basis of RY,
OF (z) J ~
- S F(p

= (P7'e) V,F(P 'a).

Thus, always setting x = Py,

v V. F(xr) = Z i(P7e;) - V,F(y)

i=1

P! (Z(Py)zez)

= (P7'Py)-V,F(y) =y -V, F(y).

.

’ Vyﬁ(y)

Notice that this property is in fact independent of the definition of the matrix P. Conse-
quently, [y is a solution of (2.17) if and only if F satisfies

— A Fyr — div, (yEFpy) = 0, / Fyr = (det S)7Y2 M.
RN

The only solutions of the above equation in H'(R") are Gaussian functions. Hence there
exists a unique solution of (2.17) in H*(R") for all M, and this solution is given by

1
Fuy(x) = CM exp (—§|P_1:E|2) ,
where the positive constant C' is a normalization factor. Moreover,

P = ‘Dl&g()\ V2 1/2) Oa:

Y

and thus, since |Oz|* = |z|?,

-1 -1
<max )\i) lz)? < |P o < < min /\i) |z|?.
1<i<N 1<i<N



Stability of stationary solutions of scalar conservation laws 17

All the properties of the lemma follow, with

~1
v < (2 max )\Z-) .
1<i<N

O

In the case when N = 1, the existence of a stationary solution is treated in [1]. Hence
we merely recall the main results of [1] in that regard.

Lemma 2.4 (Aguirre, Escobedo, Zuazua). Let M € R be arbitrary, and let a € R, n > 0.
Let vy := (2n)~ %

Then there exists a unique function Fyy € H'(1),) which satisfies
10w Frr — Op(xFyy) + a0, Fy = 0, /FM:M.
R

Moreover, F); enjoys the following properties:
(i) Fyy € WP NC®(R) forallp € [1,00), and Fyy € H*(¢,);

(ii) If M > 0, then Fy(z) > 0 for all v € RY.

We deduce from the above Lemma that if 7" < -, then there exists a constant C',, such
that

\Far(2)|, |0uFp ()] < Cy exp(—y'z?) Vx € R.

Indeed, since Fiyy € H?(1),), it can be easily proved that Fy,¢.,, € H*(R) for all y/ < ~.
Sobolev embeddings then imply that Fy¢p,, € WH2(R).

The existence of stationary solutions of (2.13) and (2.15) is thus ensured. We now
tackle the study of the properties of equations (2.13) and (2.15), focusing in particular on
the long-time behaviour and on regularity issues.

2.4 Long time behaviour of the homogenized equation

We begin with a definition of the weight function K € C>(R"), which plays a central
role in the theory of existence. For N > 2, we use the change of variables (2.18), which
was introduced in the proof of Lemma 2.3. This allows us to transform the matrix () ;)
into the identity matrix. For t > 0, y € R, set F'(t,y) = F(t, Py). If F is a solution of
(2.13), then F solves

O F — div,(yF) — A,F = 0.
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Consequently, the results of [12] can be directly applied to F', for which existence is
proved in the functional space L?(K,), where Ky(y) = exp(y?/2). Performing the inverse
change of variables, it is clear that the relevant weight function is given by

—1,.12
K(z) = Ko(P'2) = exp (|P 2x| ) . (2.19)

Notice that by definition of the matrix P, there exist positive constants 7, ' such that
exp(v2?) < K(z) < exp(yz?) Vo € RY.

When N = 1, the weight function K is given by

K(z) = exp (%) |

We immediately deduce from [12] the following Proposition:

Proposition 2.1. Let F,; € L>®(RY) N L?*(K). Then the homogenized problem has a

unique solution
F € C([0,00), L*(K)) NC((0,00), H*(K)) N C*((0, 00), L*(K))

such that Fl—y = Fip;.
Moreover,

tli}n;) HF(t) - FM”Ll(RN) = O,

where Fyy is the unique stationary solution of the homogenized problem with mass M =
fRN anz

Consequently, the homogenized equations (2.15) and (2.13) are well posed. We con-
clude this section by stating a result on the construction of an approximate solution:

Definition 2.1. Let F' € C([0, 00, L*(K)) N C((0, 00), H*(K)). We define the approxi-
mate solution of (2.3) associated with F' by

Uapp[F] (7—7 T, R) = UO (Ta x, Z) + R_lUl (7—7 T, Z) + R_z‘/é (7_7 x, Z) )
with7 >0,z € RN, R >0and 2z := Rx—l—c%,andwhere
e [, is defined by (2.5);

e U is defined by (2.8)if N > 2 and by (2.11)if N = 1;
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e 1/ is defined by

—A Vo +div(ianVa) = (fo(z) = 1) [0, F 4+ div(xF) + A F|
+ (div,((a1 — c)U1)) — divy((a1 — ¢)Uy)

N

2
+22 ! + Anp — <~ANL>~
=1

8%8;:,»

Notice that we do not require, in the above definition, that ' is a solution of (2.13)
or (2.15); hence the right-hand side in the equation on the term of order R~ is slightly
modified, so that the compatibility condition is satisfied and V5 is well-defined. Of course,
if [ is a solution of (2.15) or (2.13), the equation on V5 becomes (2.12) and V5, = Us.

We then have the following result:

Lemma 2.5. . Let M € R be arbitrary. Define the function U € L>([0,00) NRY))
by
U(r,x) :=UP[Fy] (1, 2;€7) .

Then U is a solution of

0, U — div,(2U) — AU + Rdiv,((a1(2) — ¢)U) =
U

- —RN+1diVxél <Z, ﬁ

) _"_ Urem7
where the remainder term U™ is such that there exist C' > 0, v > 0 such that

1T ()| s ety + U (T) || oo vy < Ce™7 ¥ 2 0.

2. Let Fy,; € L*(RY)NL*(K), and let F € C([0,00), L*(K)) be the unique solution
of the homogenized equation such that Fj_g = Fj;. Let p € C°(RY) be a molli-
fying kernel (p > 0, [ p = 1), and let Fs := F %, ps, where ps = 6~ p(-/9), for
o> 0.

Let (7,)n>0 be a sequence of positive numbers such that lim 7,, = +oo. Forn €

N, § > 0, define the function u’ by
ud (r,2) = U [Fs) (t,2;e™77), 2z €RY, 7>0.

2
. . —1
Then ufl satisfies, with R, = ¢™"" and z, = R,x + CR"2 ,

Orud — divy (2ud) + Rudive((ai(2,) — e)ul) — Agud =
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where the remainder term 1% satisfies, for all T > 0,

|’T2‘|L°°([O,T},L1(RN)) <wr(d) + Csre™™,
where wr : Ry — R is afunction depending only on T such that lims_q+ wr(9) =
0.

The proof of the above Lemma follows the calculations of the first paragraph; the proof
is lengthy but straightforward, and is therefore left to the reader. The fact that U™ has
exponential decay is a consequence of Lemmas 2.3, 2.4.

3 Weighted L? bounds for the rescaled equation

As explained in the previous section, we choose to work with the rescaled equation (2.3)
rather than with the original one (1.1). In fact, it can be easily checked that Theorem 1.1
is equivalent to the following Proposition:

Proposition 3.1. Let U;,; € L'(RY), and let M := [,y Upp.
Let U € C([0,00), L'(RY)) be the unique solution of (2.3) with initial data U|,—y =

627'

lim
T—00 RN

dx =0,

U(r,z) — fo <eT:c +e ) Far(z)

where the speed c is defined by (1.7), and Fy; € L*(RY) is the unique stationary solution
of the homogenized equation (2.13), (2.15) with total mass M.

In turn, since the function fy € L°°(T") is such that infp~ fy > 0, the above statement
is equivalent to

TILIEO ||V(T) - FM”Ll(RN) = 0,
where the function V' = V(7, x) is defined by

V(r,z) = U, ‘”L —~, 7>0,zeR". (3.1)
fo (eTI + - )

The proof of Proposition 3.1 consists of essentially two steps: first, we prove com-
pactness properties in L*(R”) for the family (V' (7)),>o. To that end, we derive uniform
bounds with respect to 7 in weighted L? spaces; this step will be achieved in the current
section. Then, we prove in the next section, using techniques inherited from dynamical
systems theory, that the limit of any converging sequence V' (7,,) is equal to F);. As em-
phasized in the introduction, the proof of convergence relies on rather abstract arguments,
and thus does not yield any rate of convergence in general. However, when the flux A
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is linear, the weighted L? bounds allow us to prove that the family U(7) has uniformly
bounded moments of order four, and thus (1.2) holds. As proved in [5], the convergence
stated in Theorem 1.1 then takes place with algebraic rate.

The main result of this section is the following:

Proposition 3.2. Let U;,,; € L' N L>°(RY), and let U € C([0, 00), LY(RY)) be the unique
solution of (2.3) with initial data Uj,—g = Usy;. Let m > 2(N + 1) be arbitrary, and
assume that

/ Ui (2))2(1 + |2[)™? dx < +o0.
RN

Then there exists a constant C,, > 0 (depending only on m, N, and on the flux A) such
that if | Usni| 1 ey < Ch, then

sup/ V(1 2)|2(1 + |z[)™? dz < +o0,

7>0 JRN

" (32)
sup/ / V.V (s,2)|> do ds < +o0.
T RN

>0
As a consequence, there exists a sequence (T,,) of positive numbers such that T, € [n,n +
1] for all n, and such that the sequence (V (7., x))n>o is compact in L' (R™).
Moreover, if the flux A is linear, then C,,, = +o0 for all m > 2(N + 1).

Before proving the bounds (3.2), we explain how they entail the existence of a con-
verging sequence. Thus we admit that (3.2) holds for the time being. First, for any X > 1,
7 > 0, we have

/ V(r,2)| de
j2]>X

1/2 1/2
: (/ V(T 2)P(1+ |22 df) (/ (1+ [z) ™ da:)

1/2
< gxW=m/2 (sup/ V (7, 2)|2(1 + |z[*)™/? dx) :
RN

>0
Since m > N, we infer that the family {V (7, z) },>¢ is equi-integrable.
Moreover, let X C RY be an arbitrary compact set, and let h € R" be arbitrary, with
|h| < 1. Let
K:={zecR", dz,K)<1}.

The set K is clearly compact. Then

/K V(rz+h) - Vir )| do

IN

1
\h\// IVV|(7, 2 + Ah) d dz
K J0

IN

) 1/2
il [ rvv<r,z>|dzs|h||m”2(/ \vsz,x)wm) .
K RN
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Now, for all n € N, there exists 7, € [n,n + 1] such that

n+1
/ V.V ()| de < / / V.V (s, 2)? di ds.
RN n RN

Consequently, there exists a constant C', depending only on A and on the bounds on V' in
L% .([0,00), H'), such that

loc
Vn e N, / |V (Tp,z+ h) — V(7p,x)| de < Clh|.
K

Hence the sequence {V (7,,, 7) },>0 is equi-continuous in L' (RY).
Notice also that

1 [ Usni || L1 v
sup |V (1) | vy < ————sup [|U(70) || L1 vy < I NEIRY)

n>0 infrn fo n>0 infry fo

Thus the sequence {V (7,,, z) } >0 is bounded in L}(RY).

According to classical results of functional analysis (see for instance [6]), we infer that
the sequence (V(7,,))n>0 is compact in L.

The rest of the section is devoted to the proof of the bounds (3.2). We first prove
that V' € L2([0,00), L*((1 + |z|?)™/?)). Then, using the construction of approximate
solutions of (2.3) performed in the previous section, we derive an energy inequality on the
function V. Carefully controlling the non-linear terms appearing in this energy inequality,

we are led to (3.2).

Before addressing the proof, we recall a result which will play a key role in several
arguments: since Uy,,; € LN L' (RY), there exists a positive constant C', depending only
on the flux A and on ||Usp;||1, ||Uinil| - Such that

[U(7)|| poo vy < Ce™7. (3.3)

Indeed, performing backwards the parabolic scaling (2.2), it turns out that this inequality
is equivalent to the boundedness of u in L°°([0,00) x RY), where u is the solution of
(1.1) with initial data v 4+ Uj;,,;. And the L° bound on u follows from Lemma A.1 in the
Appendix.

First step: the family V(1) is locally bounded in L?((1 + |z|?)™/?).
This amounts in fact to proving that U € LX([0,00), L*((1 + |z|?)™/?)). Hence,

loc

multiply (2.3) by U(7, x)(1+|z|?)™/? and integrate with respect to the variable x. Always
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with the notation R = €7, 2 = Rz + c%, this leads to

1d
2d7' RN

= —/ |V1U|2(1 + |;1;’2)m/2 dr — m (x . VxU)U(l + ‘x|2)—1+m/2 dx
RN

RN

U (7, 2)]*(1 + |=*)"™?dz (3.4)

1 - m
‘5/ (""C'WUF)(H|f|2>’"/2dw—m/ U2 f2(1 + |f2)~ /2 da
RN RN

_RN—H/ |:B (Z, Ug]avx)) o CUgj’vx)} VU1 + |$|2)m/2dy
RN

—mRN*H /RN [B <z o, ‘”)) _ U @} cx UL+ |zf2) ™2 dg.,

RN RN
Since U(7)/RY is bounded (see (3.3)), there exists a constant C' such that

U, )
<C v

b (e 1 V) V)

2 ' RN RN

Moreover,

(1 + |2|?) "1

|lz]?(1 + ]x|2)_1+m/2‘ < (L4 |zH™? vaeRY.
Hence, using the Cauchy-Schwarz inequality, we infer that the last two terms in (3.4) are
bounded by

1
—/ |VxU|2(1+|x|2)m/2dx+CR2/ U1+ |z))™? da.
4 RN RN

On the other hand,

/ (v VL |UP) (1 + |e[2)™? de
RN

VP (8 a2 a1 4 o)) da
< c/ U + [22)™? de.
RN

Gathering all the terms, we deduce that there exists ¢ € (0,1), C' > 0 such that
d

dT RN

< [ VU o) e € [ U)o e
RN R

N

U (7, 2) (1 + |2 *)"?dz

Using Gronwall’s Lemma, we infer that

U e L2([0,00), LA((1 + |z[)™?), V.U € L2.([0,00), L*((1 + |z[*)™?)).

loc loc
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Second step: The energy inequality.

The idea here is the following: assume momentarily that the flux B is linear, that is,
By = 0. Let ¢ € L=([0,00) x RY) be a solution of (2.3) such that (7, z) > 0 for all
7, x. Then, according to [18], for any convex function H € CQ(R), we have

i oo (GEn ) ar== [ (G257 ()

Taking H : x € R — 22, we infer that

2

dz.

sup/ \U(r, z)|? d < +00.

720 JRN

Hence, if 1 (7, ) behaves like (1+|z|?)~™/2 for |z| large, the L? bound in (3.2) is proved.
Thus the goal of this step is to build a positive function U, which behaves like (14

|z|?)~™/2 for |z| large, and which is an approximate solution of the linear part of (2.3),

with remainder terms of order one. Using calculations similar to the ones led in [18], we

then derive an inequality on the energy

/.

From now on, we no longer assume that B; = 0.

2

Ulr,z) U(r,x).

U(T, x)

The definition of U is inspired from the construction of an approximate solution in the
previous paragraph. Precisely, we set

Ulr,z) = fo(2)hm(z) + e f1(2) - Vahm(z), 7>0,2cRY z2=¢c"z+c

e’ —1
2 )

where the function f; € W1>°(TM)¥ is defined by (2.9), and where
B () = (1 + |z[>) ™2,

Notice that even when NV = 1, the structure of the function Uis inspired from the linear
case: there is no term of the form A2, in U. The nonlinear term in the flux B will be treated
independently.

Remember that infyy fy > 0; since

T
ehm = - —hrru RNv
Vihm(x) mIT PE x €

we deduce that there exists 75 > 0 (depending on m), such that

0< %fo(z)hm(x) <U(r,z) < 2fo(2)hm(z) Yy e RN, 7> (3.5)
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We now compute, for 7 > 7, the rate of growth (or decay) of the energy [ |U|2U~".
Using equation (2.3) and performing several integrations by parts, we obtain

;i/ ceay
+/ o

U(r,
L 9e N+ / B ( 7U(va$)) v, ([{(T,x)) .
RN e’ U(r,x)

By definition of U , we have

U(r,x) dx

(1,2) dz

z)
J (e

2[ 0.U + AU + div,(zU) — e"div, <( 1(z )—C)Uﬂ dx

—0,.U + AU + div, (2U) — e"div, ((al(z) — 0)0)

Ofri, 0?hy,
= divy(xhy) fo(2) + fo(2)Azhp(z) 4+ 2 Ut z) ()
— 8zj 8@8%
1<i,j<N
O ()
- Z (o = i) frg] (2 )W
1<i,j<N
. 0 O ho ()
t+e Z f1i(2) {8—% (@30, hm () + W]
1<i,j<N J
where
. 627’ -1
z=exr+c
Notice that
. m
and there exists a constant C' (depending on m and N) such that forall i, j € {1,--- | N},
0Ny () 1
axiaxj (1 + |$‘2)1+% ’
O?h () B hom ()
< .
|Vahm(x)| + ‘]a;\ Dm0 Ga:iﬁm? < Chy(x)

Remember that N —m < 0 and that inequality (3.5) holds; hence we infer that for 7 > 7
with 7 large enough,

—0,U 4 AU + divy(zU) — e"div, <(a1(z) — C)U)

. 1
(N —m) fo(2)hm(x) + Ce hy(z) + OW
1

IN

=

—m

4

U(r,z) +C

IN
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On the other hand, since the flux B, is quadratic near the origin and U /eNT is bounded,

oo [ (U5) v (522 o

we have

< C’e(l_N)T/ \U(7,7)]* |V, (q(7’$)> dr.
RN U(T,ZL‘)

Gathering all the terms, we obtain

d Ul* - - N Ul? - U\ 2 -

O e L TU+2/ viZz)l T 36

dT RN U 4 RN U RN U

2
v \U(-,z)/ (14 |z?) >
+Ce(1N)T/ \U? |V, <g> . (3.8)
RN U

Notice that when the flux A is linear, the term (3.8) is zero.

Third step: control of the term (3.7).
Setop:=U/ U: then according to the first step,

¢ € L, ([7—07 OO)’ LQ(hm)) n L120<;(h_07 OO)? Hl(hm))

loc

Moreover,
V(¢*hm) = 20hmV$ + ¢*Vhy;

since |Vh,,| < mh,,, we deduce that ¢*h,,, € L. ([r9,00), WHH(RY)), and thus, using

loc

Sobolev embeddings, ¢?h,,, € L ([0, 00), LP"(RY)), where p* := N/(N —1)if N > 2,

loc

and p* = +oo0 if N = 1. Additionally, the following inequality holds: there exists a
constant C', depending only on N and m, such that for all 7 > 7

6% P ()l o vy < ClUV (O (7))l 2 )
< Clom)e2un) IV L2,y + ClS(T) 22 01,0)-

We use the above inequality in order to control the term (3.7). First, let us write
[ 1etr P o) 048 @
RN
= [ @Ok (o] )
RN

where the exponents a, b satisfy
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which leads to a = 1 — 2, b = 2. Notice that a,b € (0, 1), provided m is large enough
(m > 4, which is always satisfied if m > 2(N + 1)).
Then, using Holder’s inequality, we infer

[ tetr 0P o) 048 o
RN

||¢2(7—)hmHaLIJ(RN) ||¢(T)hm||lzl(RN)a
where the parameter p is given by

1—
1—

3

p=a(l-b""=

3~

Notice that p is always larger than one. In order to be able to interpolate L between L!
and LP", p must also be smaller than p*; if N = 1, p* = 0o, and thus we always have
p < p*. If N > 2, this condition amounts to m > 2(N + 1); we assume that m always
satisfies this assumption in the sequel.

Now, let § € (0, 1) such that

0 1-0
+

using once again Holder’s inequality, we obtain

[ 6P+ o) 048 da

< 62 m 155 e 82 m 1555 oy 6 11
a9+af a(l—6
< Ol hmlgrmn IVl S e,

+C||<b2hmHL1(RN)||¢hm\|L1(RN>-
If N=1,thend = p~ !, and straightforward computations lead to

1-46 2
-2 a-g =2
m m

al + a

Hence, using Young’s inequality, we deduce that for all A > 0, there exists a constant C'
such that

[ otrapa s japy 008 do
RN
< )\||¢2(T)hm||L1(R) + )\Hng(7')||2L2(hm) + CA||¢(T)hm||%1(R). (3.9)

If N > 2, the calculations are similar and lead to
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Hence (3.9) is also valid in this case.
Using inequality (3.5) and choosing the parameter A small enough leads eventually to

2U(T)+%/RN \V/ (gg;)

2

2

ur) U(r)  (3.10)

U(r)
+C (/RN \U(r, )| dz

— N
371 < =
16 RN

for all 7 > 7.

Fourth step: control of the term (3.8).

Remark 3.1. We recall that (3.8)=0 if the flux A is linear. Hence this step is required only
in the nonlinear case.

Using inequality (3.3), we infer that there exists a constant C' such that

vx<UE g)‘ dz.

From now on, we treat the cases N = 1, N = 2, and N > 3 separately, and we set

¢ =U/T.

(3.8) < c/ U (r,z)|"+
RN

e If N =1, we have, for all 7 > 7,

[ e
RN

. (o)

< c / (0b()RY2) (S(r V) 2 (62 (7))
R
< Clab™) 2 U5 11672 hon| e e
< CNDS) 20 1T (O 1102 (87 ) [ 1y -
Moreover,
0. (6"7h,s) = 26"t + 2 uhs
and thus

1/2
0. (¢3/2hm)HL1( < Cll Rl 122 (1050 2200y + 11l 200 -
Eventually, we obtain, using once again (3.5),

v @8) e +/R

U 1wy < |Unillry V7 >0,

2

YO o)

U(r)

(3.8 < CIU() e [ /
R

Since
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we infer that if ||Ujy|| 11 (r) is sufficiently small, then

s [ ()

e If N = 2, using the Sobolev embedding W1!(R?) C L?(R?), we obtain, for 7 > 7,

2

m— N U(r).  3.11)

16 RN

U(r)
U(r)

(3.8) <

/ U, 2+ vw(q("m))\ ir < C / (1612 hn) (IV261122)
RN U(,I)
< C|I¢1**hum 22y 1 Vo8l 200
< C||V (I6]*2h,) ||L1(R2> Va6l 22

As is the case N = 1, we have

19 (18P ) |11 oy < Clldhanlly ey (1060l z2h) + 16l 2000 -

/’ : +/}RQ 2(7@)].

Following exactly the same argument as in the case N = 1, we deduce that if
| Usni|| L1 (m2) s sufficiently small, then (3.11) holds.

Hence we are led to

ulr)

3.8) < C||U(7)||M2 ?
(3.8) < C||U( o)

Ll(R2

e If N > 3, we have, for 7 > 7,
RN U(,ZL’)
c [ 16190l ¥
RN

< c / (16lhm) ™ (IV20lRY2) (j6lhY2)

1/N
Cll&hum a1V ol 20y 101N Loy

IN

IA

where the parameter p is such that

1 1 1

N * 2 + P ’
ie.p = (2N)/(N — 2). Using the Sobolev embedding H!(RY) c LP(RY), we

have

ey < C 9% (6 e,
< C(IVOll 2t + 10l L2(hm)) -
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ffm] |

Gathering inequalities (3.6), (3.10) and (3.11), we infer that if ||Ujy;|| 1@y is suffi-

d/ 2~ Lme N/
dT RN ﬁ
2
< Tx]dx> < ONUnil F1 vy (3.12)
RN

Thus, once again, we obtain

(3.8) < ClIU(T) T, [/RN ‘V (58)

and thus (3.11) holds as long as || Uy || 1y is not too large.

2

U(r) + M

2 |U(7)

2

vy 0(r)

U(r)

Fifth step: Conclusion.

Let Cy := (m — N)/8, Cy := C’||Ulm||L1(RN Using a Gronwall type argument, we
deduce that for all 7 > 7y, we have

/R i %; G + /CH ( /R ) v(gg) 20<s>> ds
< o [ %U( m)+ 2

< 0/ U (70, )21 + |2]2)™2 + 2.
RN Cl

Using (3.5), we infer

C

sup [ UL+ ) <0 [ U a) P+ L) O
T2>T0

T (s) 2 2\m/2 &

sup - hm ds < C \U (70, 2)|*(1 + |z|*)™* 4+ C=-.

7270 JT RN 8 RN Ch

Hence U € L*®(]0, 00), L((1 + |z|?)™/?)). Since f; is bounded away from zero, the L?
bound on V" follows.
Concerning the bound on V.V, notice that

7 Tehnlo)

and thus
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Consequently, for all 7 > 0

/RN V.V (7, 2)2(1 + |z]?)™? dz < C H% 9

which leads to the bound on V, V. Notice that in fact, we recover

9

H (hm)

VoV € Li([0,00), L*((1 + |z]*)™/?)).

Hence Proposition 3.2 is proved.

Let us now conclude this section by explaining how the bound (1.2) on the moments
of order four follows from (3.2). Let U;,; € L*(h,,!), with m > 2(N + 2) sufficiently
large. Then we have proved that U € L>([0,00), L?(h,,!)), with no restriction on the size
of [|[Usnil| L1(RN) in the linear case. Now, for all 7 > 0, using a simple Holder inequality,
we infer that

1/2
[0l do < 10Oy ([ o0+l 2 a0)
RN RN

Hence, if m > N + 8, we deduce that U € L*>([0,00), L*(|z|*)); going back to the
original variables, this entails that (1.2) is satisfied. Thus the convergence result (1.3)
holds if the flux A is linear, and Proposition 1.1 is proved.

4 Long-time behaviour

This section is devoted to the rest of the proof of Theorem 1.1. The idea is to use the L'
compactness proved in the previous section (see Proposition 3.2) together with techniques
from dynamical systems theory. This type of proof was initiated by S. Osher and J. Ralston
in [19], in which the authors proved the L' stability of travelling waves for a quasilinear
parabolic equation. Their arguments were then adapted successfully to various kinds of
problems in the context of scalar conservation laws (see for instance the review in [21]).

In the present study, our scheme of proof is in fact closely related to the one of M.
Escobedo and E. Zuazua in [12]; indeed, the idea is to apply the dynamical systems tools
to the rescaled parabolic system (2.3) rather than the original conservation law (1.1). The
main difference with [12] lies in the presence of highly oscillating coefficients in (2.3);
thus it is necessary to work simultaneously with the homogenized equation (2.13)-(2.15)
and with the oscillating one.

Let us now introduce some notation and definitions. First, we denote by S, (7 > 0)
the semi-group associated with the homogenized equation, that is equation (2.15) if N =
1, and equation (2.13) if N > 2. According to Proposition 2.1, the semi-group S is
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well-defined in L>®(RY) N L?(K), where K is the weight function defined by (2.19);
additionally, the L' contraction property holds, namely

18- Fi — S Bl pieny < || Fy — Follpiesy V7 >0, VFy, Fy € L°(RY) N L*(K).

Hence S, can be extended on L*(RY).
We also define the w-limit set associated with a given function U;,,; € L* (RN ): recall-
ing the definition of the function V' (see (3.1)), we set

QUini]) == {V € L'RY), 37, = o0, V(r,) =V inL'(RV)}, (4.1)

where the function U in (3.1) is the unique solution of (2.3) with initial data U;,,;. When
there is no ambiguity, we will simply write 2 instead of Q[Uj,;].
Notice that V'(7,,) converges towards V' in L' if and only if

U(n, ) = fo (eT"x + ce%; ) V(x)

lim
n—oo RN

This equivalence will be used repeatedly throughout the section.

The organisation of this section is the following: we first introduce a “quasi-Liapunov
function” for the semi-group associated with equation (2.3). We then prove that Proposi-
tion 3.1 holds when the initial data U;,,; has a sufficiently small L! norm. Eventually, we
prove Proposition 3.1 in the general case.

4.1 A quasi-Liapunov function

Let us first recall the definition of a Liapunov function (see [17]):

Definition 4.1. Let X’ be a Banach space, and let 7w : [0,00) X X — X be a dynamical
system on X, i.e. 7 satisfies the following:

(i) 7(0,x2) =z forallx € X
(if) Semi-group property: For all s,¢ > 0, forall x € X, w(t + s,2) = 7 (t, 7 (s, x));
(iii) 7 is continuous on [0, 00) x X.
LetV: X — R. Vis said to be a Liapunov function if
(1) V is continuous;

(i) V(z) <0 forall z € X, where

V(x) := lim inf V(r(t,x)) — V(x)
t

t—0t
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Liapunov functions are crucial in the analysis of the stability of dynamical systems.
In the present context, because of the different scales involved, it seems difficult to find a
suitable Liapunov function, and we thus extend the previous definition:

Definition 4.2. Let X" be a Banach space, and let ¢ € [0,00) — z; € X be a continuous
curve in X. Let H : [0,00) X X — R be continuous. We say that H is a quasi-Liapunov
function for the trajectory (z);> if the following properties hold:

(i) The family H(t,x;) (t > 0) is bounded in R;
(ii) There exists a function ¢ : [0, 00) — [0, 00) such that lim; ., ¥ (¢) = 0 and

vt 2 0, Sup(H<vas) - H(twrt)) S ¢<t) (42)

s>t
In other words, we drop the semi-group property associated with the dynamical system
7, and we focus on a particular trajectory; moreover, inequality (4.2) means that H(s, x)
is “almost decreasing” with respect to s for large s. Notice that a Lyapunov function

associated with a semi-group 7 is decreasing along any trajectory (s, x) (s > 0).
We then have the following result:

Lemma 4.1. Let X be a Banach space, and let t € [0,00) +— x; € X be a continuous
curve in X. Let H : [0,00) x X — R be a quasi-Liapunov function for (z:);>o. Then
H(t, z) has a finite limit as t — oo.

Proof. First, since H(t, z;) is bounded for ¢ € [0, c0), the quantities

H = liminf H(t,x;), H := limsup H(¢, ;)

t—o0 t—o0

are well-defined and belong to R, with H < H.
Let ¢ > 0 arbitrary. There exists . > 0 such that

Y(t) <e Vit>t..
By definition of H, there exists s. > t. such that
(H(se,zs.) — H| <.
Since H is a quasi-Liapunov function, for all s > s., we have
H(s, ) < H(se,ws) +9(se)
< H+2e.

Hence
H+2e Ve >0,

H<
and H = H. Thus the quantity #(¢, z;) has a finite limit as t — oo.
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We now apply this notion to the present context:

Lemma 4.2. Let M € R be arbitrary, and let Uy,; € L'(RN). For 7 > 0 and u €
LY(RYN), define the function H by

H(r ) = /]R ulw) = U R, ;)] di,

where the function U? was introduced in Definition 2.1.
Let U € C(]0, 00), LY(RY)) be the solution of (2.3) with initial data U,—y = Uy;.
Then 'H is a quasi-Liapunov function for the trajectory {U(7))},0 in L*(RY). As a
consequence, the function

e’ —1

T € [0,00) \U(7,z) — folz)Fyp(2)| dx, withz=¢e"z+c 5
RN

converges as T — OQ.

Proof. This property is an easy consequence of the first point in Lemma 2.5; indeed,
according to Lemma 2.5, there exists a constant C, depending only on N and M, such
that

d d
—H(r,U(1)) = —||U(7) — Uapp[FM](T)HLl(RN) < Ce™ .
dr dr

Consequently, for all 7/ > 7 > 0, we have

!

H(,U(T")) — H(r,U(1)) <CleT™ —e 7)< Ce™ .

Thus property (ii) of Definition 4.2 is satisfied. Additionally, notice that

0<H(r,U(T) < U@y + folloocrmy | Ear | 1 vy
+ Ce (I9Fullpeny + I1Furl3aem )
+ Ce ™ <||FM||W2v1(RN) + 1 Fall oy + ||VFM||%2(RN)>
< NUinill 1wy + C.
Whence H(7,U(7)) is bounded for 7 € [0,00). Additionally the continuity of H on
[0,00) x L' is obvious. Consequently H is a quasi-Liapunov function for the trajectory

U(7). According to Lemma 4.1, H (7, U(7)) admits a finite limit as 7 — oo. Furthermore,

we have

[0r) = fo(2) Faall oy = [|[U() = UBIEMI() + €U 4 €7 Va1 v,

where U; and U, are defined by (2.8)-(2.11) and (2.12) respectively. Hence for all 7 > 0,
there holds

H(r,U(7)) = Ce™™ < ||U(T) = fo(2) Furll preny < H(T,U(7)) + Ce™7,
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where the constant C' depends only on W *P bounds on F,. Thus the function
7= [|U(7) = fo(2) Full pa ey
converges as 7 — 00, and

lim [[U(7) = fo(2) Fall v,y = lim H(7, U(r)).

T—00

]

Definition 4.3. Let U;,,; € L'(RY) be arbitrary, and let M := [ Usni. Let U be the
solution of (2.3) with initial data Uj;—y = Usy;.
We define the number ¢(Uj,,;) by

e —1

((Uipi) := lim \U(7,z) — fo(z)Fap(z)| dx, withz=¢e"z+¢

Notice that Proposition 3.1 is equivalent to
U(Usni) =0 VU € LYNRY).
Classically, we now derive a continuity property for the function /:
Lemma 4.3. The function
Uec L'RY)— (U)eR
is Lipschitz continuous.

Proof. Let U U2 e LYRYN), and let M® = Jan U for i = 1,2. We denote by

U® € ¢([0,00), L' (RY)) the solution of (2.3) with initial data U"). Then for all T > 0,

ine*

the L' contraction principle ensures that

UO) . U(Q)

ing ini

|09 @) = 0Dy < |

LY(RN)

Hence, for all = > 0, we have

/ (U (7, 2) — fo(2) Py (z)| do — / U7, 2) = fo(2) Fya ()] doe
RN RN

< HU(I)(T) - U(2)(7')HL1(RN) + ||f0||L°°(’]I‘N) | Faray — FM<2>||L1(RN) .
According to Lemma A.2 in the Appendix,

me ma

| Frv) = Fag [l 1 gy = MY — M@ < ’ v _ @

LYRN)
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Eventually, we obtain, for all 7 > 0,

/N |U(1)(T, x) — fo(2)Fa) (x)| dr — /N |U(2)(7'7 x) — fo(z)FM(z)(:p)| dz| <
R R
1) (2)
< (14 Wollzgemy ) |00 = U2 -
and thus, passing to the limit,
1) (2) 1) (2)

Hence ¢ is a Lipschitz continuous function.

4.2 Analysis of the w-limit set

Proposition 4.1. Let U;,,; € L'(RY), and set
]RN
Assume that the w-limit set §) associated with U,,; is non-empty (see (4.1)). Then the

following properties hold:

(i) Forall V €,

/ V=M,
RN

(ii) S, Q2 C Qforall T > 0;
(iii) For all V € Q, we have

17 = Bl ey = 0.

(RN)

Proof. Throughout the proof, we denote by U the unique solution of equation (2.3) with
initial data Uj,;.

Property (i) is quite straightforward: indeed, conservation of mass for the equation
(2.3) implies that

/ Ur)=M V7 >0.
RN

If V € , then there exists a sequence (7,,),>o such that

lim 7, = coand lim \U(7y, %) = fo (2) V(2)| dz =0,

n—o00 n—oo JpN
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where z, = e™x + cen=1 . According to a result of G. Allaire (see [2]),

2

lim » fo(z,) V(z)de = <f0>/RN /RN

gathering the three equalities, we obtain property (i).
We now address the proof of property (ii), which relies on the second point in Lemma
2.5;let V € Q be arbitrary, and for all ¢ > 0, let V. € L*(K) N L>(R") such that
Ve = V@) <e.

Let (7,,)n>0 be a sequence of positive numbers such that 7,, — oo and

/ ’U (Tw, ) — folzn) (x)| dr — 0,

where z,, = ez + ce ol

Let p € C°(RY) be a mollyfing kernel; for § > 0, set ps := 6~V p(-/d), and define the
function U2* by
Ug’g(’f, 37) — [JP [(S’T‘_/E) * Pa] (7_733; eTn"FT).
Then Lemma 2.5 ensures that U,f’f satisfies equation (2.3) with an error term, the latter
being bounded for all 7' > 0 in L>([0, T], L'(RY)) by

wT,a(é) + CT,a,ée_Tn

where wy : [0,00) — [0, 00) is such that limg+ wr. = 0, and where the constant Cr . 5
depends only on ,9, N and T'.

Using the L' contraction principle for scalar conservation laws, we infer that for all
T > 0, and for all 7 € [0, T],

/ \U(70 4+ 7,2) = UY¥(7,2)| da
RN

< wre(0) + Crege™™ + /

RN

’U(Tm l‘) - Ug’\i:o

< wr () + Croge™™ + / U (@) — folza)V(2)| de
U(S,e

—l—/RN nr=o(T) = fo(zn)f/(a;)’ dr.

Now, according to Definition 2.1,

- (Tat7) _ 1
Ug’E(T7 JJ) = (ST‘/E) *g p&(QJ)f() (€TH+T.CL’ -+ CQT)

2mnt7) _ 1
+ ey, (7’, x, e T+ ceT)

2(tn+T1) _ 1
+ 6—2(Tn+7’)‘/'2 <7_’ x, e™tT + CG 5 ) .
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Hence for all 7 € [0, T, we have

2(rnt+7) _q
/ USE(r,x) — S,V fo ( (P P —— ) dx
RN 2
< Nfolloo sup 1SV — (S, V2) 4 sl 1wy
7€[0,T
+e ™ (| Uil oo oyxmy, 1wy + 1020 oo o,71xy 1R )) )
< folloo |1V = Vallr + sup 18-V = (S, VE) 4 PéHLl(RN)]

T€[0,7T
e (U1l o o.apery. o1 @yy) + Uzl zos o.ryery o1 eayy)
< (Ce+ wa(d) + CT7€75€77".

Gathering the two inequalities, we deduce that for all n, 9, €,

sup /
re[0,7] JRY

S WT,E((S) + CT,&,(Se_Tn +/ {U(Tm [E) - fO(Zn)V(‘r)l dx + Ce.

RN

_ eXm+m)
Uty +1,2) — S V(x)fo (e””x + CT> ‘ dx

In the right-hand side of the above inequality, we first choose ¢ sufficiently small, then J so
that wy - (0) is sufficiently small, and eventually n large enough so that the two remaining
terms are small as well; hence

lim inf (wT,5(5) +Cre.se”™ + / ‘U(Tml‘) - fo(zn)\_/(m)| dz + C’e) =0

n—00 £>0,6>0 RN

Thus we have proved that for all 7" > 0,

B 2(tn+T1) _ 1
Ultp+1,2) — (S V) fo (e““x + CT> ‘ dx = 0.

lim sup /
n—0 rel0,T] JRN

The above convergence entails immediately that S,V € Q for all 7 € [0, 7. Since T' > 0
was arbitrary, property (ii) is proved.

There remains to prove property (iii), which is a variant of the LaSalle invariance
principle; let V' € € be arbitrary, and let 7,, be a sequence of positive numbers such that

lim,,_oo 7, = +00 and

lim |U(70,2) = fo(za)V (z)| dz =0,

n—oo RN

-1

where z,, = e™z + 2 . According to a result of G. Allaire (see [2]), we have, since
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(fo) = 1and fy € C(TY),

HV_FMHLl(RN) nh—>n;olo BN fO(zn)‘V(x)_FM(x)ldm
L oo Ulm,z)  Ulmez)
a ”IEEO RN folzn) V() fo(zn) fo(zn) Furl))
= lim - Jo(zn) UfE)Téj) — Fy(z)| do
Consequently,

||‘7 — FMHLl(]RN) = g(Uml) VV e Q.

Corollary 4.1. Let U;,; € L*(RY), and set
RN
Assume that the w-limit set Q|U,,;| is non-empty. Then {(Uyy,;) = 0, and thus the result
of Proposition 3.1 holds.

Proof. Let V € Q be arbitrary. Then
lim ||ST‘_/ - FMHLl(RN) = 0,

this property is stated in Proposition 2.1 in the case when V' € L>®°(R") N L%(K), but can
be in fact easily generalized to an arbitrary function V € L' by using the contractivity of
the semi-group S, : indeed, let ¢ > 0, and let V. € L>(RY) N L?(K) such that [ V. =
[V =M, and

IVe = Ve < e

Then for all 7 > 0,

||S7"—/ - FMHLl(RN) < ||S7"—/ - 87‘76||L1(RN) + ||ST‘78 - FM”Ll(RN)
< IV = Vellpeny + [187Ve = Farll ).

Hence, using Proposition 2.1, we infer that

limsup ||S,V — Fyllpeyy <e Ve >0,

T—00

and thus ||S;V — Fy|| 11~y vanishes as 7 — oo.
On the other hand, property (ii) in Proposition 4.1 ensures that S,V € € for all 7 > 0,
and thus, using (iii),

HST‘_/ - FMHLl(RN) = K(Uml) VT 2 0.
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Consequently, ¢(U;,;) = 0. Going back to the definition of ¢(U;,;), we deduce that

€2T

lim _ dr = 0.
T—00 JRN

U(r,z) — fo <eT:c e ) Far(z)

O

Thus the proof of Proposition 3.1 is complete provided we are able to show that the set
Q[U;:] is non-empty for a sufficiently large class of functions Uy,; € Ll(RN ). In the case
when ||Uyp;||1 is small, this result follows from Proposition 3.2 and from a contraction
principle. The proof in the general case is more involved, and in fact, an analysis similar
to the one performed in Section 3 has to be conducted once more.

4.3 Proof of Proposition 3.1 when ||U,; | 11z~ is small

We now complete the proof of Theorem 1.1 when ||Ujnl| 11w~y is small. Let Uy, €
Lt (RN ). Assume that U;,,; satisfies the following assumptions

Im >2(N+1), U € L*((1+[z[*)™?) N L=(RY), (4.3)
and  ||Uinill 1@y < Com, (4.4)

where the constant C),, was introduced in Proposition 3.2. Then according to Proposition
3.2, the w-limit set 2[U;,;] is non-empty, and consequently Proposition 3.1 is true (see
Corollary 4.1).

Let us now prove that Proposition 3.1 holds when Uj,,; merely satisfies (4.4): this fact
is a direct consequence of the density of L((1+ |z|?)™?)NL>(RY) in L'(R"), together
with the continuity of ¢. Indeed, for all ¢ > 0, let U5, € L*((1 + |=[*)™/?) N L>°(RY)

ini

such that

[Uini = Uil @yy < &, Ugullneyy < G
Then ¢(Uy,,;) = 0. Since ¢ is Lipschitz continuous (see Lemma 4.3), there exists a constant
C such that

C(Uini) = [(Uini) — U(U,;)| < Cl|Uini — Uiyl 1y < Ce.

Since the above inequality holds for all ¢ > 0, we deduce that ¢(U;,;) = 0. Recalling
the definition of ¢, we infer that Proposition 3.1 holds for all initial data U;,; € Ll(RN )
satisfying (4.4).

4.4 Proof of Proposition 3.1 in the general case

The case when ||U;,;||1 is large follows from the following Lemma:
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Lemma 4.4. There exists a constant Cy, depending only on N and on the flux A, such
that for all U,,; € L*(RY),

Before proving the above Lemma, let us explain why the result of Proposition 3.1
follows. Since ¢ is Lipschitz continuous, ¢(L'(R”)) is a connected set of [0, c0), i.e. an
interval. Moreover, 0 € /(L'(R")) according to the previous paragraph, and Lemma 4.4
entails that

(LY (RY)) N (0, Co] = 0.
Consequently, /(L (RY)) = {0}.
There remains to prove Lemma 4.4. According to Corollary 4.1 and using by now

standard arguments, we only have to prove that there exists a set A C L'(RY), which is
dense in L' (RY), and such that

3C >0, VUi € L'RM) N A, 0(Usp) < C = QU] # 0. (4.5)

In the following, we will take A = L2((1 + |z|?)™/2), for some m > 0 sufficiently large.

The scheme of proof of the implication (4.5) is very similar to the one of Proposi-
tion 3.2; indeed, we have to prove that if ¢(U;,;) is small enough, then there exists a
sequence (7;,) of positive numbers, with lim, ., 7, = 400, such that (V(7,,))n—00
is a compact sequence in L'(RY). Notice that this is obviously equivalent to the com-
pactness of the sequence V (7,,,-) — Fiy, whose L' norm is of the order of ¢(U,,;) as
n — oo. Thus our strategy is the following: rather than using directly the equation on U,
we consider the equation on the function U — U*P[F;]. We prove that for an appropri-
ate function U, an inequality of the type (3.6) holds, with U replaced by U — U*P[F),].
Then, all the occurrences of ||U(7)|| .1~y in the proof of Proposition 3.2 are replaced by
|(U — U*P[Fu])(7)] 21 (mv), which converges towards £(Usy;) as 7 — oc. Thus the same
arguments which led us to compactness in the case when ||Usy; || 1w~y is small show that
compactness holds, provided ¢(U;,;) is small enough.

Let us now retrace the main lines of the proof: first, consider a function U;,,; € L* (RN )
such that Uy,,; € L%((1 + |z|?)™/?) for some sufficiently large m (to be chosen later). Set
M = [~ U and

W(r,z) =U(r,z) — UPP[Fy (T, 25€7).
In the rest of the proof, for the sake of brevity, we will write U (7, x) as a short-hand for
U®P[Fy|(, z; €7). Then the following properties hold

W e L3([0, 00), (14 Jo*)™2)) 1 Lic((0,00), H' (1 + o)),
AC' >0, Vr >0, [|[W(r, .)||LOO(RN) < CeMT,
TIEEO [W(T)[| L1 vy = €(Uini)-
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Moreover, using Lemma 2.5, we deduce that 11 satisfies
oW = div(aW) + AW — Rdiv, (e (2) — ¢) W)
v [ (o) - 1 (- L)
+U™m,
with R =¢€", 2z = Rx + c%, and we recall that the remainder U satisfies
[T ()| oo @ny + U™ ()| p2erierzy < Ce™7 (4.6)

for some v > 0.
Then, using the bounds on U, U*P together with the regularity assumptions on B, it
can be easily proved that

B (z utr, x)) B (z M) — 20y (2) foz) LW D) |y,

RN R2N
and the function b is such that there exists C' > 0 such that

* W(ra)l \Uappwﬂ?’)_

R2N+1 R3N

W(r, z)
RN

Y(r,z) e Ry x RY,  |b(r,2)] < C (‘

We define a function W by
W (r,x) = Wo(z, 2) + e Wiz, 2),
with Wy(z, 2) = fo(2)hy(x) and
—A Wi +div, (e Wh) = 2A,, Wy — div,((oq — ¢)Wy) — 21y div,(aq foFuWo).
Notice that by definition of f, and ¢, the compatibility condition is always satisfied, and
Wiz, 2) = f1(2) - Vyhp(x) + Lnogwy (2) Far(2) b (2),

with
—Aw; + div, (aqw;) = —2div, (aa 7).
Let 79 > 0 such that

1
W(r,z) > §f0(z)hm(x) V7 > 1, Vy € RY.
For further purposes, we also choose 7 such that

W, Nr@yy < 20(Uini) YT > 70.
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(Notice that if £(U;,;) = 0 there is nothing to prove).
Using calculations similar to the ones performed in the proof of Proposition 3.2, we

“(3)

infer that for 7 > 7,

d w

dT RN

W(r)

2

w

2
. _N
W(r) +

W 2 -
C/RN @E: 3) (1+ |ch2)1+?

+CeNT /R W) |V (gg x;
l

IN

W(r,x

W(T)+2/RN
z )\ dr
+Ce N7 /RN W (7, 2)| ‘v (W) dx

(1)

+C€(2N+1)T/ ’Uapp(T, m)‘&‘.
RN
W(r, )

* /RN W(r,x)

Using the same arguments as in the third step of the proof of Proposition 3.2, we deduce
that if m > 2(N + 1),

\U™™(r,z)| du.

W (r,x) 2 dz m—N W(r)|? - _
¢ RN <W(T,x)) (14 |z[2)t+2 = 20 Juv | W (1) W ()
1 W(r) 2
+§ RN v (W(T)) wir)
+Cl(Upns)?.

Similarly, the calculations of the fourth step in the proof of Proposition 3.2 yield

eI=Mr /RN W (r,z)* |V, (%)' dx

< CIW )iy [ /R . ’WEZ Wi */RN v (%3) QW(T)]
< ClU)"™ [ /R . % W +/RN v (%) 2W(T)] |

The two additional terms coming from the estimation of b can be easily bounded thanks
to the Cauchy-Schwarz inequality. For 7 > 7, and 7, large enough, we have

ccr [ wials, (P o | owi e, (8D

m— N wW(r)|? - 1 W\ |
< "5 Llwva W<T)+§/RNv<W<T>> W)+ C.
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Eventually, using the Cauchy-Schwarz inequality together with the bound (4.6), we infer

that
/RN % Urem (v, )| da
< U )1)< WEQQW@)W
< U e ( % <>>m
< Ce </RN ggﬂ W(r) b
< c+m2_0N N ggg QVV(T).

Gathering all the terms, we deduce that there exists a constant C,,,, depending only on
N and m, such that if /(U;,;) < C,,, then for all T > 7,
© (W(T))
W(r)

g ice o [

W(r)
Compactness of a subsequence W (7,,) follows. Hence the w-limit set is non-empty, and
thus ¢(U;,;) = 0.

2

W(r)<C.

()
W)

2
~ m—N
W _—
(T) + 20 RN

Appendix A

Lemma A.1. Assume that the flux A satisfies (1.4), (1.5). Letv € WLOO(']I‘N ) be a periodic
stationary solution of (1.1), and let u € L$5.(]0,00), L=(RY)) N C([0, 00), L} .(RN))

be the unique solution of (1.1) with initial data u;,; € v(y) + L' N L®(RY). Then
u € L*=(]0,00) x RY).

Proof. This result was proved in [8] in the case N = 1. When N > 2, the proof goes
along the same lines; the only difference lies in the use of the Sobolev embeddings, which
depend on the dimension. Hence we merely recall here the main steps of the proof, with
an emphasis on the case N > 2.

In the rest of the proof, we set f(t,y) = u(t,y) — v(y). Then f solves the equation

of +divyB(y, f) — A, f =0, 4.7)
and according to (1.5) the flux B is such that for all f € R,

|divy B(y, f)l < C(If[+[£]"),
0;B(y, [)l < CUfI+ 1f),



Stability of stationary solutions of scalar conservation laws 45

where the exponent n is such that n < (N + 2)/N. Moreover,
Hf(t)”Ll(]RN) < Huznz - UHLl(RN) vt > 0.

For ¢ > 1 arbitrary, multiply (4.7) by f|f|?"!, and integrate over R . Using a few inte-

o ([ [ ) e

We then use Sobolev embeddings in order to control the L¢*! and L™ norms in the

grations by parts (see [8]), we are led to

d

q+1

right-hand side. We distinguish between the cases N = 2 and N > 3, since the space H'!
is critical in dimension two.

o If N = 2, then H'(R?) C LP(R?) for all p € [2,00). Interpolating L™ between
L' and L” for some p sufficiently large, we have, using the Gagliardo-Nirenberg-Sobolev

inequality
. 1 6 1-46
HfHLq-ﬁ—n(ﬂv) < ||f||L1 (R2) ||fHLp R2) with q_|_—n = I —+ T
. 201-0)
< gqgr1 q+1
< I || 1717, 5
(1-0)(g+1) !
(1-6) 1
< GG A1 g, IO iy
Notice that 1
2(”:11(1—9):2 gtn ,
q 1
(¢q+1) (1 p)
and N .
AT 72 1 w1
q+1
since n < (N + 2)/N. Thus, we choose p > 1 such that
2 1
+n)(1-0)| — —-) < 2.
-0 (2 -1)

Young’s inequality then implies that for all A\ > 0, there exists a constant C' , and expo-
nents ¢, g such that

[ e <a|vi= |
.

q2
L+ O (e + 171, ) 49

The other term in the right-hand side of (4.8) can be bounded in a similar fashion: we
have, for all A > 0,

1|
[ s <afvis
R

44
Lo O (I + 1610 ) 10
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for some exponents g3, g4 which can be explicitely computed. Choosing an appropriate
parameter A\, we infer that there exist ¢, 2, ¢3, ¢4 > 0 such that

d
dt

q+1

e, [ vl

(Hf! rey P 1 + 1% )

L% (r?) L% (r?)

Using (4.10) one more time leads to

d
e, [ g

dt
(HfH o+ U+ 1 + 1% )

Using a Gronwall-type argument, we infer that for all ¢ > 1,
f e L2([0,00), L% (B) = f € L¥([0. 00), L(R?)).

Since f € L*([0, ), L'(R?)), we infer by induction on g that f € L>([0,00), L?(R?))
forall ¢ > 1.
e When N > 3, we use the Sobolev embedding H*(RY) C L*" (R"), where

. 2N
P=N—2
Interpolating L4+ between L' - ), we obtain
q+1 +1
I llzrsoiesy < IF g ey < 1117 ; o ||f||L1(RN
< ||| I,
where the parameter 6 € (0, 1) is given by
1 20 1-46

g+n  pg+1) 1

It can be checked that
N+2 6(g+n)

n < N = P < 1.
Hence (4.9) holds when N > 3. Inequality (4.10) is proved with similar arguments. As
in the two-dimensional case, we deduce that f € L>([0,00), L(R")) for all q. Using
Theorem 8.1 in Chapter III of [16] (see [8] for details), we infer eventually that f €

L=([0, 00) x RV).

]
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Appendix B

Lemma A.2. Let M > M’ be arbitrary. Then
Fu(y) > Far(y) Yy € RY.

As a consequence,
| Fre — Fal| iy = M — M.

Proof. The arguments are exactly the ones which lead to the uniqueness of stationary
solutions of (2.13), (2.15), and they can be found in [1]. We recall the main steps below
for the reader’s convenience.

Let F := Fyy — Fyp. Then F € L' N C*(RY), and [, F' > 0. Hence the set

0 := {z ¢ RY F(z) > 0}

is non-empty. The idea is to prove that F', = F'1¢ satisfies a linear elliptic equation; since
F; > 0, the strong maximum principle entails that F; cannot vanish anywhere, and thus
F,(x) > 0forall z € R".

Let us now derive an equation on £, . Substracting the equations on F; and F);/, we
have PR

— Z nmm + div,(bF) = 0,
1<i,j<N v
where
b(x) = a(Fy(z) + Fap(z)) — 2, o€ RY;

notice that a = 0 if N > 2. Since F' € H?(R"), we have
div,(bF)1g = div,(bF})

almost everywhere. Thus, we obtain

O*F
— Y mijles—— +div,(bFy) = 0.

1<ij<N 00z,

Integrating the above equation on R leads to

Let us now perform the change of variables (2.18), which changes the matrix 7 into iden-
tity: setting F'(y) = F(Py), and © := {F > 0}, we infer
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Moreover, F' € H?> N W1 (RY), and thus Lemma 7 in [1] applies. We deduce that
A, (F1g) = 1A, F,
and thus P2 2
+
> migles—o—= Y Mija—.
1<ij<N 8@8% 1<i <N 89018%
Eventually, /' solves the elliptic equation

PF,
1<4,j<N

with b € L2 (RY). Using either a unique continuation principle or Harnack’s inequality
(see [13], Theorem 8.20), we infer that if F', vanishes at some point x in RY, then Fy
is identically zero on R”, which is absurd. Hence F, (x) > 0 for all x € R”, and thus
RY \ © = (), which means that F'(z) > 0 for all z € RY.

]
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