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Abstract

This article investigates the long-time behaviour of parabolic scalar conservation
laws of the type ∂tu + divyA(y, u) − ∆yu = 0, where y ∈ RN and the flux A
is periodic in y. More specifically, we consider the case when the initial data is an
L1 disturbance of a stationary periodic solution. We show, under polynomial growth
assumptions on the flux, that the difference between u and the stationary solution
vanishes for large times in L1 norm. The proof uses a self-similar change of vari-
ables which is well-suited for the analysis of the long time behaviour of parabolic
equations. Then, convergence in self-similar variables follows from arguments from
dynamical systems theory. One crucial point is to obtain compactness in L1 on the
family of rescaled solutions; this is achieved by deriving uniform bounds in weighted
L2 spaces.

Keywords. Long time asymptotics, parabolic scalar conservation law, asymptotic
expansion, moment estimates, homogenization

1 Introduction

The goal of this article is to study the long time limit of solutions of the equation

∂tu+ divyA(y, u)−∆yu = 0, t > 0, y ∈ RN , (1.1)

where the flux A : RN × R → RN is assumed to be TN -periodic with respect to its
first variable. Here and in the rest of the article, TN denotes the N -dimensional torus, i.e.
TN = (R/Z)N .

Classical results on scalar conservation laws (see for instance [20, 15]) ensure that
the semi-group associated with equation (1.1) is well-defined in L1(RN) +L∞(RN). The
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case when the initial data belongs to U(y) + L1(R) (when N = 1), where U is a viscous
shock profile of equation (1.1) has already been dealt with in a previous article, see [8].
In the present paper, we restrict our study to the case when the inital data belongs to
v(y)+L1(RN), where v is a given periodic stationary solution of (1.1). The choice of such
initial data stems from the fact that the semi-group associated with (1.1) is non-expansive
in the L1 norm; hence it is natural to investigate stability in L1(RN).

When the flux A is linear, say

A(y, u) = α(y)u,

this study coincides (at least for some particular functions α) with the one led by Adrien
Blanchet, Jean Dolbeault and Michal Kowalczyk in [5] on the large time behaviour of
Brownian ratchets, as we will explain in Remark 1.3. It is proved in [5] that if the flux A
is linear and if

lim sup
t→∞

1

(1 + 2t)2

∫
RN
|u(t, y)− v(y)| (y − ct)4 dy <∞ (1.2)

for some velocity c ∈ RN which will be defined later on (see (1.7)), then there exists a
constant C and a number κ ∈ (0, 1/2) such that∫

RN

∣∣∣∣u(t, y)− v(y)− Mf0(y)

(1 + 2t)N/2
F

(
y − ct√
1 + 2t

)∣∣∣∣ dy ≤ Ct−κ, (1.3)

where f0 is the solution of an elliptic equation in TN (see (1.6)), F is a Gaussian profile,
and M is the mass of the initial disturbance, i.e.

M =

∫
RN

(u|t=0 − v).

(1.3) is a technical assumption which is expected to hold for a large class of initial data
(but such a fact is not proved in [5]).

Unfortunately, as we explained in [8], the above result does not imply that the same
convergence holds in the nonlinear case. Moreover, the proof of [5], which is based on
entropy dissipation methods together with Log-Sobolev Poincaré inequalities, can hardly
be transposed as such to a nonlinear setting, although attempts in this direction have been
made: for instance, in [10] M. Di Francesco and P. Markowich prove convergence to-
wards diffusive waves for the Burgers equation thanks to entropy dissipation methods.
However, their strategy relies crucially on the Hopf-Cole formula, and therefore could not
be transposed in the present general setting. Hence we have chosen here a slightly differ-
ent approach, which enables us to extend some of the results of [5] to a nonlinear context.
Additionally, we recover a weaker version of the convergence (1.3), but without the need
for assumption (1.2). In fact, we prove that (1.2) holds for a class of initial data which is
dense in v + L1(RN).
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The present work is also embedded in the broader study of the long time behaviour
of conservation laws. We refer the interested reader to the review paper by D. Serre [21]
(and the references therein) for a thorough description of the homogeneous case, in which
the author investigates the stability of stationary solutions of scalar conservation laws in
various models (parabolic and hyperbolic settings, relaxation models...)

Before stating the main results of this paper, let us now recall a few properties of
equation (1.1). First, according to a result of [7], periodic stationary solutions of (1.1)
exist, provided the flux A satisfies some growth assumptions. In fact, several different
growth regimes were studied in [7]; we only recall one of them here, which is the most
relevant with regards to our purposes. In the rest of the article, we assume that A belongs
to W 1,∞

loc (TN × R)N , and that

∃p0 ∈ R, ∀y ∈ TN , divyA(y, p0) = 0. (1.4)

We also assume that there exists n ∈ (0, (N + 2)/N) such that

∀P > 0, ∃CP > 0, ∀(p, q) ∈ R2, |p| ≤ P,{
|∂pA(y, p+ q)− ∂pA(y, p)| ≤ CP (|q|+ |q|n),
|divyA(y, p+ q)− divyA(y, p)| ≤ CP (|q|+ |q|n).

(1.5)

These assumptions were introduced in [8, 7]. They ensure that for any r ∈ R, there exists
a unique periodic stationary solution of (1.1) with mean value r; we refer to [7] for a
discussion of the optimality of conditions (1.4), (1.5). Moreover, if u is a solution of (1.1)
with initial data u|t=0 ∈ v + L1 ∩ L∞(RN), where v ∈ W 1,∞(RN) is any stationary
solution of (1.1), then u ∈ L∞([0,∞)×RN). This result will be used several times in the
article, and its proof is recalled in Appendix A.

We now introduce the profiles which characterize the asymptotic behaviour of the
function u:

• First, the function f0 occurring in (1.3) is the unique solution in H1(TN) of the
equation

−∆yf0 + divy(α1f0) = 0, 〈f0〉 = 1, (1.6)

where
α1(y) := (∂pA)(y, v(y)) ∈ L∞(TN)N .

Above and in the rest of the article, the notation 〈·〉 stands for the average on the
torus TN , that is

〈f〉 :=

∫
TN
f.

• The drift velocity c is then defined by

c = N 〈α1f0〉 . (1.7)
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• The last function which will appear in the asymptotic profile of u is the equivalent,
in the non-linear case, of the Gaussian profile F occurring in (1.3); it is the unique
solution, in a suitable functional space, of an elliptic equation of the form

−
∑

1≤i,j≤N

ηi,j∂i∂jFM−divx(xFM)+a·∇xF
2
M = 0 in RN , with

∫
RN
FM = M ∈ R,

(1.8)
where the coefficients ηi,j and a are constant, and the matrix (ηi,j)1≤i,j≤N is coer-
cive. Unfortunately, giving the precise definition of ηi,j and a would take us too far
at this stage. Let us merely mention that a = 0 if N ≥ 2. We also recall that thanks
to a result of J. Aguirre, M. Escobedo, and E. Zuazua (see [1]), the above equation
has a unique solution for all M ∈ R, and we refer to the next section for more
details. In particular, ηi,j , a are defined in (2.14), (2.16) respectively.

The main result of this paper is the following:

Theorem 1.1. Let A ∈ W 5,∞
loc (TN × R)N , and assume that A satisfies (1.4), (1.5).

Let v be a periodic stationary solution of (1.1), and let uini ∈ v + L1(RN). Let u be
the unique solution of (1.1) with initial condition u|t=0 = uini. Set

M :=

∫
R
(uini − v) dy.

Then as t→∞,∫
RN

∣∣∣∣u(t, y)− v(y)− 1

(1 + 2t)N/2
f0(y)FM

(
y − ct√
1 + 2t

)∣∣∣∣ dy → 0.

Remark 1.1. In fact, the regularity assumptions on the flux A are not as stringent as
stated in the Theorem above. In particular, the conditions on the derivatives with respect
to the space variable y can be considerably reduced. When looking closely at the proof,
the correct regularity assumptions on A are

∂kpA ∈ L∞loc(TN × R)N ∀k ∈ {0, 1, · · · , 4},
divyA, divy∂

4
pA ∈ L∞loc(TN × R).

Remark 1.2. Notice that even in the linear case, Theorem 1.1 does not yield any con-
vergence rate, in contrast with (1.3). This is due to the method of proof, which relies
on abstract arguments from dynamical systems theory. The convergence rate obtained by
Blanchet, Dolbeault and Kowalczyk in [5] is based on more “constructive” techniques,
namely entropy dissipation methods and Log Sobolev inequalities. The counterpart of
such techniques lies in the necessity for assumption (1.2). We emphasize that such an
assumption is not necessary here.
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Remark 1.3. Let us now make precise the link between brownian ratchets and equation
(1.1) in the linear case. In [5], A. Blanchet, J. Dolbeault and M. Kowalczyk study the long
time behaviour of the solution f = f(t, y) of the equation

∂tf = ∆yf + divy(∇ψ(y − ωt)f), t > 0, y ∈ RN , (1.9)

with ψ ∈ C2(TN), ω ∈ RN . Setting

u(t, y) = f(t, y + ωt) ∀t > 0, ∀y ∈ RN ,

we see that u satisfies
∂tu+ divy(α(y)u)−∆yu = 0,

where the drift coefficient α is given by

α(y) = −ω −∇yψ(y). (1.10)

Hence the study of (1.9) and that of (1.1) in the linear case are closely related; they are
strictly equivalent in dimension one, since any function α ∈ C1(T) can be decomposed as

α =

∫
T
α +

(
α−

∫
T
α

)
=

∫
T
α + ∂yφ, for some φ ∈ C2(T).

The equivalence does not hold when N ≥ 2, but in fact, all the results of [5] remain true
for an arbitrary drift α ∈ C1(TN) (using exactly the same techniques as the ones developed
in [5]). This will be a consequence of the analysis we will perform in the next sections.
The choice for a function α with the structure (1.10) stems from physical considerations
(see [4]): equation (1.9) describes the evolution of the density of particles in a traveling
potential, moving with constant speed ω.

In the course of the proof of Theorem 1.1, we will also prove that condition (1.2) holds
for a large class of initial data. The precise result is the following:

Proposition 1.1. Assume that the flux A is linear, and that uini ∈ v+L1(RN) is such that

∃m > N + 8,

∫
RN
|uini(y)− v(y)|2(1 + |y|2)m/2 dy <∞.

Let u be the unique solution of (1.1) with initial data uini. Then (1.2) is satisfied. As a
consequence (see [5]), (1.3) holds.

Hence for linear fluxes and for a large range of initial data, a rate of convergence can
be given. The derivation of convergence rates in the non-linear case goes beyond the scope
of this article; in fact, the standard methods to derive convergence rates rely on the use
of entropy-entropy dissipation inequalities (see [10] in the case of the Burgers equation),
which we have chosen not to use here.

Another consequence of Theorem 1.1 is the stability of stationary shock profiles of
equation (1.1) (see [8]) in dimension one:
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Definition 1.1. Assume that N = 1. A stationary shock profile is a stationary solution U
of (1.1) such that there exists periodic stationary solutions vl, vr of (1.1) such that

lim
y→+∞

[U(y)− vr(y)] = 0,

lim
y→−∞

[U(y)− vl(y)] = 0.

It was proved in [8] that the stability of shock profiles is a consequence of the stability
of periodic stationary solutions. Thus we have the following

Corollary 1.1. Assume that N = 1, and that the hypotheses of Theorem 1.1 are satisfied.
Let U ∈ L∞(R) be a stationary shock profile of (1.1). Let uini ∈ U + L1(R) such that∫

R
(uini − U) = 0,

and let u be the unique solution of (1.1) with initial data uini. Then

lim
t→∞
‖u(t)− U‖L1(R) = 0.

The strategy of proof of Theorem 1.1 is close to the one developed in [12], in which
M. Escobedo and E. Zuazua study the long time behaviour of a homogeneous version
of (1.1); we also refer the interested reader to [11], in which M. Escobedo, J.L. Vazquez
and E. Zuazua extend the analysis performed in [12] to the case when the flux has sub-
critical growth, and to [23], in which E. Zuazua extends the results of [12] to more general
situations. The first step of the analysis consists in a self-similar change of variables,
which helps us to focus on the appropriate length scales; this will be done in the next
section, in which we also derive the equations on the limit profiles f0 and FM . Then,
in section 3, we obtain some compactness on the rescaled sequence by deriving some
uniform L2 bounds in weighted spaces. Eventually, we conclude the proof in Section 4 by
using semi-group arguments inherited from dynamical systems theory.

Throughout the article, we will use the following notation: if ψ ∈ L∞loc(RN), we set,
for all p ∈ [1,∞),

Lp(ψ) :=

{
u ∈ Lploc(R

N),

∫
RN
|u|pψ < +∞

}
,

and ‖u‖Lp(ψ) =

(∫
RN
|u|pψ

)1/p

,

H1(ψ) :=
{
u ∈ L2(ψ), ∇u ∈ L2(ψ)

}
,

and ‖u‖2
H1(ψ) = ‖u‖2

L2(ψ) + ‖∇u‖2
L2(ψ).

Sobolev spaces of the type W s,p(ψ), Hs(ψ), with s ∈ N arbitrary and p ∈ [1,∞), are
defined in a similar fashion. When we write ‖u‖Lp(RN ), without specifying a weight func-
tion, we always refer to the usual Lp norm in RN , with respect to the Lebesgue measure
(i.e. ψ ≡ 1).
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2 The homogenized system

The goal of this section is to analyze the expected asymptotic behaviour of the solution
u(t) of equation (1.1); to that end, we change the space and time variables and introduce
a parabolic scaling, which is appropriate for the study of the long time behaviour of dif-
fusion equations. Then, using a two-scale Ansatz in space and time which was introduced
in [5], we construct an approximate solution of the rescaled system. Eventually, we recall
and derive several properties of the limit system.

2.1 Parabolic scaling

Consider the solution u ∈ L∞loc([0,∞) × RN) of (1.1), with u|t=0 = uini ∈ v + L1 ∩
L∞(RN). It is a classical feature of scalar conservation laws that the semi-group asso-
ciated with (1.1) is contractant in L1(RN). Hence, for all t ≥ 0, u(t) ∈ v + L1(RN),
and

‖u(t)− v‖1 ≤ ‖uini − v‖1.

Thus it is natural to compute the equation satisfied by f(t) = u(t) − v ∈ L1(RN): since
v is a stationary solution of (1.1), there holds

∂tf + divyB(y, f)−∆yf = 0, t > 0, y ∈ RN ,

where the flux B is defined by

B(y, f) = A(y, v(y) + f)− A(y, v(y)), ∀(y, f) ∈ TN × R.

The flux B(y, f) vanishes at f = 0, for all y. Moreover, if the flux A satisfies the assump-
tions of Theorem 1.1, there exists α1 ∈ C1(TN) and B̃1 ∈ C(TN × R) such that

B(y, f) = α1(y)f + B̃1(y, f), (2.1)

and the flux B̃1 is such that

∀X > 0, ∃CX > 0, ∀f ∈ [−X,X], ∀y ∈ TN ,
∣∣∣B̃1(y, f)

∣∣∣ ≤ CX |f |2.

At some point in the proof, we will need a more refined approximation of B in a neigh-
bourhood of f = 0; we thus also introduce α2, α3 ∈ L∞(TN), B̃3 ∈ L∞(TN × R) such
that

B(y, f) = α1(y)f + α2(y)f 2 + α3(y)f 3 + B̃3(y, f),

and the flux B̃3 is such that for all X > 0, there exists a constant CX > 0, such that for
all f ∈ [−X,X], for all y ∈ TN , ∣∣∣B̃3(y, f)

∣∣∣ ≤ CX |f |4,∣∣∣divyB̃3(y, f)
∣∣∣ ≤ CX |f |4,∣∣∣∂f B̃3(y, f)
∣∣∣ ≤ CX |f |3.
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The existence of αi (i = 1, 2, 3) and the bounds on B̃1, B̃3 are ensured by the assumption
that A ∈ W 5,∞(TN × R). Notice in particular that

α1(y) = ∂fB(y, f)|f=0 = (∂pA)(y, v(y)), ∀y ∈ TN .

As explained in [5], the interplay between the diffusion and the drift α1 induces a
displacement of the center of mass. In the linear case, that is, when B̃1 = 0, the evolution
of the center of mass can be computed as follows: since the function f satisfies

∂tf + divy(α1f)−∆yf = 0,

there holds
d

dt

∫
RN
yf(t, y) dy = N

∫
RN
α1(y)f(t, y) dy.

Now, for t ≥ 0, y ∈ TN , set

f̃(t, y) =
∑
k∈ZN

f(t, y + k).

Since the function α1 is periodic, f̃ satisfies

∂tf̃ + divy(α1f̃)−∆yf̃ = 0, t > 0, y ∈ TN ,

and we have, for all t ≥ 0, ∫
RN
α1f(t) =

∫
TN
α1f̃(t).

Using Lemma 1.1 of [18] together with a Poincaré inequality on the torus TN , it can be
easily proved that as t → ∞, f̃(t) converges with exponential speed in L1(TN) towards〈
f̃
〉
f0, where f0 is the unique solution of (1.6). Additionally, notice that

〈
f̃
〉

=
∑
k∈ZN

〈f(·+ k)〉 =

∫
RN
f = M.

Consequently, setting
c := N 〈α1f0〉

we infer that in the linear case,

d

dt

∫
R
(y − ct)f → 0 exponentially fast.

In fact, it turns out that the nonlinearity has no effect on this displacement, although
this is not quite clear if we try to include the quadratic term B̃1 in the above calculation.
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We will justify this result by formal calculations in the next paragraph. Nonetheless, it
can be proved in the case N = 1 (see for instance [8]) that when ‖f0‖1 is not too large,

‖f(t)‖L2(R) ≤ C
‖f0‖1

t1/4
∀t > 0,

and more generally, the Lp norm of f(t) vanishes for long times for all p ∈ (1,∞].
This somehow explains why the quadratic term does not modify the motion of the center
of mass for large times: the term B̃1(·, f(t, ·)) vanishes in L1(R) as t → ∞. Hence,
hereinafter, we choose to make in the general case the same change of variables as the
one dictated by the linear case. Precisely, let U ∈ L∞loc([0,∞)× RN) such that

f(t, y) =
1

(1 + 2t)N/2
U

(
log
√

1 + 2t,
y − ct√
1 + 2t

)
, t ≥ 0, y ∈ RN . (2.2)

This change of variables is classical in the study of long-time parabolic dynamics, see for
instance [12]. In the present case, our change of variables is exactly the same as in [5];
straightforward calculations lead to

∂τU − divx(xU) +Rdivx((α1(z)− c)U)−∆xU = −RN+1divxB̃1

(
z,

U

RN

)
, (2.3)

with τ > 0, x ∈ RN , and where

R = eτ and z = Rx+ c
R2 − 1

2
.

Studying the long time behaviour of f amounts to studying the long time behaviour of
U . Now, as τ → ∞, the quantity R becomes very large, and thus the variable z is highly
oscillating. Hence, as emphasized in [5], the asymptotic study of equation (2.3) somehow
falls into the scope of homogenization theory; the small parameter measuring the period
of the oscillations is then ε = R−1 = e−τ . However, one substantial difference with
classical homogenization problems is that the small parameter depends on time, which
sometimes makes the proofs much more technical. We refer to [5] for more details.

Let us also mention that the homogenization of equation (2.3) with a “fixed” small pa-
rameter, and when the quadratic flux B̃1 vanishes, has been performed by Thierry Goudon
and Frédéric Poupaud in [14]. As a consequence, the formal asymptotic expansions which
will be performed in the next section are in fact very close to the ones of [14].

2.2 Formal derivation of the limit system

As usual in homogenization problems (see [3] for instance), the idea is now to assume
that the solution U of (2.3) admits an asymptotic development in powers of the small
parameter measuring the period of the oscillations; in the present case, the small parameter
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is e−τ , so that we expect the approximation to be valid for large times only. Hence, assume
that when τ � 1,

U(τ, x) ≈ U0 (τ, x, z) + e−τU1 (τ, x, z) + e−2τU2 (τ, x, z) + · · · (2.4)

where z = eτx + c(e2τ − 1)/2 stands for the fast variable and where for all (τ, x) ∈
R+ × RN , the function

z 7→ Ui(τ, x, z)

is TN -periodic. Plugging the Ansatz (2.4) into equation (2.3) and identifying the powers
of R = eτ leads to a cascade of equations on the terms U0, U1, etc. Notice that according
to Lemma A.1 in the Appendix, f ∈ L∞([0,∞) × RN), and thus U/RN is bounded in
L∞.

• Terms of order R2: Identifying the highest order terms in equation (2.3) when U is
given by (2.4) leads to

c · ∇zU0 + divz((α1 − c)U0)−∆zU0 = −∆zU0 + divz(α1U0) = 0, z ∈ TN .

We recall the following result, which is a straightforward consequence of the Krein-
Rutman Theorem (see [9]):

Lemma 2.1. Let α ∈ L∞(TN)N . Consider the vector space

E[α] :=
{
w ∈ H1(TN), −∆zw + divz(αw) = 0

}
.

Then dimE[α] = 1, and there exists a unique function m ∈ E[α] such that 〈m〉 = 1.
Moreover, m ∈ W 1,p(TN) for all p <∞, and

inf
z∈TN

m > 0.

In the present case, E[α1] = Rf0, where f0 is defined by (1.6). Hence there exists a
function F = F (τ, x) such that

U0(τ, x, z) = f0(z)F (τ, x) ∀(τ, x, z) ∈ [0,∞)× RN × TN . (2.5)

• Terms of order R1: Concerning the terms of order R1 = eτ , the case when the space
dimension is equal to one has to be treated separately. Indeed,

RN+1divxB̃1

(
z,

U

RN

)
= R1−Ndivx(α2U

2) +R1−2Ndivx(α3U
3)

+RN+1divx

(
B̃3

(
z,

U

RN

))
,
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and using the bounds on B̃3,

RN+1divx

(
B̃3

(
z,

U

RN

))
= RN(divzB̃3)

(
z,

U

RN

)
+R∇xU · (∂U B̃3)

(
z,

U

RN

)
= O(R−3N) +O(R−3N+2) = O(R−1).

We infer that if U is given by (2.4), then

RN+1divxB̃1

(
z,

U

RN

)
= R2−Ndivz(α2U

2
0 ) (2.6)

+ R1−N [divx(α2U
2
0 ) + 2divz(α2U0U1)

]
+ R2−2Ndivz(α3U

3
0 )

+ O(R−1).

Consequently, we obtain that when N ≥ 2, the term U1 solves the equation

−∆zU1 + divz(α1U1) = −divx((α1 − c)U0) + 2
N∑
i=1

∂2U0

∂xi∂zi
. (2.7)

Since U0(t, x, z) = f0(z)F (t, x), we have

〈(α1 − c)U0(t, x, ·)〉 = F (t, x) (〈α1f0〉 − c) = 0

by definition of c. Hence the right-hand side of (2.7) has zero mean value, and the compat-
ibility condition is satisfied. Thus for all (t, x) ∈ [0,∞)×RN , (2.7) has a unique solution
in H1(TN). Moreover, using the linearity of (2.7) together with the expression (2.5), we
infer that U1 can be written as

U1(t, x, z) = f1(z) · ∇xF (t, x), (2.8)

where f1 ∈ H1(TN)N satisfies

−∆zf1,i + divz(α1f1,i) = −f0(α1,i − ci) + 2∂zif0, ∀i ∈ {1, · · · , N}. (2.9)

Notice that according to the regularity assumptions on the flux A, the function divyα1

belongs to L∞(TN). Using boot-strap arguments for equation (1.6), we deduce that f0 ∈
W 2,p(TN) for all p < ∞, and therefore f1 ∈ W 2,p(TN) for all p < ∞. In particular,
f1, f0 ∈ W 1,∞(TN).

If N = 1, on the other hand, the corrector U1 solves the equation

−∂zzU1 + ∂z(α1U1) = −∂x((α1 − c)U0) + 2
∂2U0

∂x∂z
− ∂z(α2U

2
0 ). (2.10)

Notice that the compatibility condition is satisfied, for the same reason as before. Hence
in this case,

U1(t, x, z) = f1(z)∂xF (t, x) + g1(z)F (t, x)2, (2.11)
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where g1 ∈ H1(T) solves

−∆zg1 + ∂z(α1g1) = −∂z(α2(f0)2).

The fact that the compatibility condition is satisfied in all cases justifies a posteriori
the use of the change of variables (2.2) in the nonlinear case. This means that, at least on
a formal level, the displacement of the center of mass of the function f is unaffected by
the presence of the quadratic term B̃1.

• Terms of order R0: As we identify the terms of order one in equation (2.3), we obtain

−∆zU2 + div(α1U2) (2.12)

= −∂τU0 + divx(xU0) + ∆xU0 − divx((α1 − c)U1) + 2
N∑
i=1

∂2U1

∂xi∂zi
+ANL,

where the term ANL stems from the expansion of the nonlinear term B̃1. According to
(2.6), we have

ANL = ∂x(α2U
2
0 ) + 2∂z(α2U0U1) + ∂z(α3U

3
0 ) if N = 1,

ANL = divz(α2U
2
0 ) if N = 2,

ANL = 0 if N ≥ 3.

The evolution equation for the function F follows from the compatibility condition; pre-
cisely, we obtain

∂τF − divx(xF )−∆xF + divx 〈(α1 − c)U1〉 − 〈ANL〉 = 0.

We now distinguish between the cases N ≥ 2 and N = 1.
. If N ≥ 2, 〈ANL〉 = 0; using (2.8), we infer that F satisfies

∂τF − divx(xF )−
∑

1≤i,j≤N

ηi,j
∂2F

∂xi∂xj
= 0, τ > 0, x ∈ RN with N ≥ 2, (2.13)

where the coefficients (ηi,j)1≤i,j≤N are given by

ηi,j = δi,j − 〈(α1,i − ci)f1,j〉 . (2.14)

The following Lemma entails that equation (2.13) is well-posed:

Lemma 2.2. The matrix η := (ηi,j)1≤i,j≤N is coercive.

Lemma 2.2 is proved in [14] for any N ≥ 1, and its proof is recalled in [5] when
N = 1. For the reader’s convenience, we sketch the main steps of the proof here, and we
refer to [14], Proposition 4.6 for details.
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Proof. Let L be the differential operator

Lφ = −∆zφ+ divz(α1φ).

The idea is to introduce, for all j ∈ {1, · · · , N}, the function χj which solves the adjoint
problem

L∗χj = −∆zχj − α1 · ∇zχj = α1,j − cj, 〈χj〉 = 0.

Since the right-hand side satisfies 〈(α1,j − cj)ψ〉 = 0 for all ψ ∈ kerL = E[α1] = Rf0,
the function χj is well-defined. For all ξ ∈ RN , we have∑

i,j

〈(α1,i − ci)f1,j〉 ξiξj = 〈L∗(χ · ξ)f1 · ξ〉

= 〈χ · ξ (−f0(α1 − c) · ξ + 2∇zf0 · ξ)〉
= −〈f0χ · ξL∗(χ · ξ)〉+ 〈2χ · ξ∇zf0 · ξ〉
= −〈L(f0χ · ξ)χ · ξ〉 − 2 〈f0ξ · ∇z(χ · ξ)〉 .

Expanding L(f0χ · ξ) and using the identity Lf0 = 0 leads to

〈L(f0χ · ξ)χ · ξ〉 =
〈
f0 |∇z(χ · ξ)|2

〉
.

Hence ∑
1≤i,j≤N

ηi,jξiξj = |ξ|2 +
〈
f0 |∇z(χ · ξ)|2

〉
+ 2 〈f0ξ · ∇z(χ · ξ)〉

=
〈
f0 |ξ +∇z(χ · ξ)|2

〉
.

We deduce that ∑
1≤i,j≤N

ηi,jξiξj ≥ 0 ∀ξ ∈ RN .

Now, let ξ ∈ RN such that
∑
ηi,jξiξj = 0. Since f0(z) > 0 for all z, we infer that

ξ +∇z(χ · ξ) = 0 ∀z ∈ TN .

Taking the average of the above inequality on TN leads to ξ = 0. Hence the matrix (ηi,j)

is coercive.

. If N = 1, we have

〈ANL〉 = ∂x
〈
α2U

2
0

〉
=
〈
α2f

2
0

〉
∂xF

2.

Moreover, in this case U1 is given by (2.11); hence

〈divx((α1 − c)U1)〉 = 〈(α1 − c)f1〉 ∂xxF + 〈(α1 − c)g1〉 ∂xF 2.
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Consequently, the compatibility condition reads

∂τF − ∂x(xF ) + a∂xF
2 − η∂xxF = 0, τ > 0, x ∈ R, (2.15)

where the coefficients a, η are given by

a :=
〈
α2f

2
0

〉
+ 〈(α1 − c)g1〉 ,

η := 1− 〈(α1 − c)f1〉 .
(2.16)

Lemma 2.2 states that the diffusion coefficient η is positive.

Remark 2.1. (i) The fact that the coefficient a appearing in (1.8) is zero for all N ≥ 2

is consistent with the results of M. Escobedo and E. Zuazua in [12]: indeed, the
authors of [12] consider the convection-diffusion equation

vt −∆v = α · ∇(|v|q−1v) in (0,∞)× RN

for some exponent q ≥ 1 + 1/N and for α ∈ RN . They prove that if q > 1 + 1/N ,
the asymptotic behaviour of v is given by the heat kernel, i.e. the convective term
does not play any role. On the contrary, if q = 1 + 1/N , v behaves asymptotically
like the self-similar solution of a nonlinear equation.

In the present case, because of the Taylor expansion (2.1), the flux B consists of a
linear drift term and a quadratic term. Hence the study performed in this paper is
related to the case q = 2 of [12]; we infer that q = 1 + 1/N if and only if N = 1,
and we check that this is the only case when a nonlinear behaviour can be observed
at the limit.

(ii) In order to have a better understanding of the large time behaviour of equation (1.1),
it would be interesting to compute the next term of the development, in the spirit of
the paper by E. Zuazua [22]. In particular, the nonlinear behaviour of the equation is
expected to appear at the next order for all N ∈ N. Notice that this implies that the
term U1 is not, in fact, the next term in the development. However, such an analysis
is beyond the scope of the present article.

The formal derivation of an approximate solution is now complete. In the following
paragraphs, we recall or prove several results concerning the well-posedness and the long
time behaviour of equations (2.13) and (2.15). We will often refer to the equation on F as
the “homogenized equation”; this term refers to equation (2.13) when N ≥ 2, and (2.15)
when N = 1.
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2.3 Existence and uniqueness of stationary solutions of the homoge-
nized equation

This paragraph is concerned with the existence and uniqueness (in suitable functional
spaces) of stationary solutions of the homogenized equations (2.13) and (2.15). In the
case when N = 1, or when (ηi,j)1≤i,j≤N = λI for some λ > 0, such results are stated in
[1]. In the general case, we merely use a linear change of variables, and the problem is
then reduced to the case of an isotropic diffusion.

Lemma 2.3. Assume that N ≥ 2. For γ > 0, set ψγ : x ∈ RN 7→ exp(γ|x|2). Then
there exists γ > 0 such that for all M ∈ R, there exists a unique function FM ∈ H1(ψγ)

satisfying

−
∑

1≤i,j≤N

ηi,j∂i∂jFM − divx(xFM) = 0,

∫
RN
FM = M. (2.17)

Furthermore, the following properties hold:

(i) For all M ∈ R, FM = MF1;

(ii) F1 ∈ W 2,p ∩ C∞(RN) for all p ∈ [1,∞), and F1 ∈ H2(ψγ);

(iii) F1(x) > 0 for all x ∈ RN .

Proof. The idea is to perform an affine change of variables in order to transform the
diffusion term into a laplacian. Precisely, set

si,j =
ηi,j + ηj,i

2
, 1 ≤ i, j ≤ N.

Then the matrix S = (si,j) is symmetric and positive definite (see Lemma 2.2); hence
there exists an orthogonal matrix O ∈Mn(R) and positive numbers λj such that

S = OTDiag(λ1, · · · , λN)O.

Let us change the variables by setting

x = Py, with P := OTDiag(λ
1/2
1 , · · · , λ1/2

N ), (2.18)

and for any function F ∈ L1(RN), define

F̃ (y) = F (Py).

It can be readily checked that for all x ∈ RN ,∑
i,j

ηi,j
∂2F

∂xi∂xj
(x) =

∑
k,l

η̃k,l
∂2F̃

∂yk∂yl
(P−1x),
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where the coefficients η̃k,l are given by

η̃k,l =
∑
i,j

(P−1)k,i(P
−1)l,jsi,j = (P−1S(P−1)T )k,l.

Using the definitions of the matrices P and S, we infer that

η̃ = P−1S(P−1)T = IN .

Thus the diffusion term is transformed into a laplacian with this change of variables.
Let us now compute the drift term. We have

xi = (Py)i,

and, denoting by (e1, · · · , eN) the canonical basis of RN ,

∂F (x)

∂xi
=

∂

∂xi
F̃ (P−1x)

= (P−1ei) · ∇yF̃ (P−1x).

Thus, always setting x = Py,

x · ∇xF (x) =
N∑
i=1

(Py)i(P
−1ei) · ∇yF̃ (y)

=

[
P−1

(
N∑
i=1

(Py)iei

)]
· ∇yF̃ (y)

= (P−1Py) · ∇yF̃ (y) = y · ∇yF̃ (y).

Notice that this property is in fact independent of the definition of the matrix P . Conse-
quently, FM is a solution of (2.17) if and only if F̃M satisfies

−∆yF̃M − divy(yF̃M) = 0,

∫
RN
F̃M = (detS)−1/2M.

The only solutions of the above equation in H1(RN) are Gaussian functions. Hence there
exists a unique solution of (2.17) in H1(RN) for all M , and this solution is given by

FM(x) = CM exp

(
−1

2
|P−1x|2

)
,

where the positive constant C is a normalization factor. Moreover,

|P−1x|2 =
∣∣∣Diag

(
λ
−1/2
1 , · · · , λ−1/2

N

)
Ox
∣∣∣2 ,

and thus, since |Ox|2 = |x|2,(
max

1≤i≤N
λi

)−1

|x|2 ≤ |P−1x|2 ≤
(

min
1≤i≤N

λi

)−1

|x|2.
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All the properties of the lemma follow, with

γ <

(
2 max

1≤i≤N
λi

)−1

.

In the case when N = 1, the existence of a stationary solution is treated in [1]. Hence
we merely recall the main results of [1] in that regard.

Lemma 2.4 (Aguirre, Escobedo, Zuazua). Let M ∈ R be arbitrary, and let a ∈ R, η > 0.
Let γ := (2η)−1.

Then there exists a unique function FM ∈ H1(ψγ) which satisfies

−η∂xxFM − ∂x(xFM) + a∂xF
2
M = 0,

∫
R
FM = M.

Moreover, FM enjoys the following properties:

(i) FM ∈ W 2,p ∩ C∞(R) for all p ∈ [1,∞), and FM ∈ H2(ψγ);

(ii) If M > 0, then FM(x) > 0 for all x ∈ RN .

We deduce from the above Lemma that if γ′ < γ, then there exists a constant Cγ′ such
that

|FM(x)| , |∂xFM(x)| ≤ Cγ′ exp(−γ′x2) ∀x ∈ R.

Indeed, since FM ∈ H2(ψγ), it can be easily proved that FMψγ′ ∈ H2(R) for all γ′ < γ.
Sobolev embeddings then imply that FMψγ′ ∈ W 1,∞(R).

The existence of stationary solutions of (2.13) and (2.15) is thus ensured. We now
tackle the study of the properties of equations (2.13) and (2.15), focusing in particular on
the long-time behaviour and on regularity issues.

2.4 Long time behaviour of the homogenized equation

We begin with a definition of the weight function K ∈ C∞(RN), which plays a central
role in the theory of existence. For N ≥ 2, we use the change of variables (2.18), which
was introduced in the proof of Lemma 2.3. This allows us to transform the matrix (ηi,j)

into the identity matrix. For t > 0, y ∈ RN , set F̃ (t, y) = F (t, Py). If F is a solution of
(2.13), then F̃ solves

∂tF̃ − divy(yF̃ )−∆yF̃ = 0.
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Consequently, the results of [12] can be directly applied to F̃ , for which existence is
proved in the functional spaceL2(K0), whereK0(y) = exp(y2/2). Performing the inverse
change of variables, it is clear that the relevant weight function is given by

K(x) := K0(P−1x) = exp

(
|P−1x|2

2

)
. (2.19)

Notice that by definition of the matrix P , there exist positive constants γ, γ′ such that

exp(γ′x2) ≤ K(x) ≤ exp(γx2) ∀x ∈ RN .

When N = 1, the weight function K is given by

K(x) := exp

(
|x|2

2η

)
.

We immediately deduce from [12] the following Proposition:

Proposition 2.1. Let Fini ∈ L∞(RN) ∩ L2(K). Then the homogenized problem has a
unique solution

F ∈ C([0,∞), L2(K)) ∩ C((0,∞), H2(K)) ∩ C1((0,∞), L2(K))

such that F|t=0 = Fini.
Moreover,

lim
t→∞
‖F (t)− FM‖L1(RN ) = 0,

where FM is the unique stationary solution of the homogenized problem with mass M =∫
RN Fini.

Consequently, the homogenized equations (2.15) and (2.13) are well posed. We con-
clude this section by stating a result on the construction of an approximate solution:

Definition 2.1. Let F ∈ C([0,∞, L2(K)) ∩ C((0,∞), H2(K)). We define the approxi-
mate solution of (2.3) associated with F by

U app[F ](τ, x;R) = U0 (τ, x, z) +R−1U1 (τ, x, z) +R−2V2 (τ, x, z) ,

with τ ≥ 0, x ∈ RN , R > 0 and z := Rx+ cR
2−1
2

, and where

• U0 is defined by (2.5);

• U1 is defined by (2.8) if N ≥ 2 and by (2.11) if N = 1;
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• V2 is defined by

−∆zV2 + div(α1V2) = (f0(z)− 1) [−∂τF + divx(xF ) + ∆xF ]

+ 〈divx((α1 − c)U1)〉 − divx((α1 − c)U1)

+2
N∑
i=1

∂2U1

∂xi∂zi
+ANL − 〈ANL〉 .

Notice that we do not require, in the above definition, that F is a solution of (2.13)
or (2.15); hence the right-hand side in the equation on the term of order R−2 is slightly
modified, so that the compatibility condition is satisfied and V2 is well-defined. Of course,
if F is a solution of (2.15) or (2.13), the equation on V2 becomes (2.12) and V2 = U2.

We then have the following result:

Lemma 2.5. 1. Let M ∈ R be arbitrary. Define the function U ∈ L∞([0,∞) ∩ RN))

by
U(τ, x) := U app[FM ] (τ, x; eτ ) .

Then U is a solution of

∂τU − divx(xU)−∆xU +Rdivx((α1(z)− c)U) =

= −RN+1divxB̃1

(
z,

U

RN

)
+ U rem,

where the remainder term U rem is such that there exist C > 0, γ > 0 such that

‖U rem(τ)‖L1(eγ|x|2 ) + ‖U rem(τ)‖L∞(RN ) ≤ Ce−τ ∀τ ≥ 0.

2. Let Fini ∈ L∞(RN)∩L2(K), and let F ∈ C([0,∞), L2(K)) be the unique solution
of the homogenized equation such that F|t=0 = Fini. Let ρ ∈ C∞0 (RN) be a molli-
fying kernel (ρ ≥ 0,

∫
ρ = 1), and let Fδ := F ∗x ρδ, where ρδ = δ−Nρ(·/δ), for

δ > 0.

Let (τn)n≥0 be a sequence of positive numbers such that lim
n→∞

τn = +∞. For n ∈
N, δ > 0, define the function uδn by

uδn(τ, x) = U app[Fδ]
(
τ, x; eτn+τ

)
, x ∈ RN , τ ≥ 0.

Then uδn satisfies, with Rn = eτn+τ and zn = Rnx+ cR
2
n−1
2

,

∂τu
δ
n − divx(xu

δ
n) +Rndivx((α1(zn)− c)uδn)−∆xu

δ
n =

= −RN+1
n divxB̃1

(
z,
uδn
RN
n

)
+ rδn,
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where the remainder term rδn satisfies, for all T > 0,

‖rδn‖L∞([0,T ],L1(RN )) ≤ ωT (δ) + Cδ,T e
−τn ,

where ωT : R+ → R+ is a function depending only on T such that limδ→0+ ωT (δ) =

0.

The proof of the above Lemma follows the calculations of the first paragraph; the proof
is lengthy but straightforward, and is therefore left to the reader. The fact that U rem has
exponential decay is a consequence of Lemmas 2.3, 2.4.

3 Weighted L2 bounds for the rescaled equation

As explained in the previous section, we choose to work with the rescaled equation (2.3)
rather than with the original one (1.1). In fact, it can be easily checked that Theorem 1.1
is equivalent to the following Proposition:

Proposition 3.1. Let Uini ∈ L1(RN), and let M :=
∫

RN Uini.
Let U ∈ C([0,∞), L1(RN)) be the unique solution of (2.3) with initial data U|τ=0 =

Uini. Then

lim
τ→∞

∫
RN

∣∣∣∣U(τ, x)− f0

(
eτx+ c

e2τ − 1

2

)
FM(x)

∣∣∣∣ dx = 0,

where the speed c is defined by (1.7), and FM ∈ L1(RN) is the unique stationary solution
of the homogenized equation (2.13), (2.15) with total mass M .

In turn, since the function f0 ∈ L∞(TN) is such that infTN f0 > 0, the above statement
is equivalent to

lim
τ→∞
‖V (τ)− FM‖L1(RN ) = 0,

where the function V = V (τ, x) is defined by

V (τ, x) :=
U(τ, x)

f0

(
eτx+ c e

2τ−1
2

) , τ ≥ 0, x ∈ RN . (3.1)

The proof of Proposition 3.1 consists of essentially two steps: first, we prove com-
pactness properties in L1(RN) for the family (V (τ))τ≥0. To that end, we derive uniform
bounds with respect to τ in weighted L2 spaces; this step will be achieved in the current
section. Then, we prove in the next section, using techniques inherited from dynamical
systems theory, that the limit of any converging sequence V (τn) is equal to FM . As em-
phasized in the introduction, the proof of convergence relies on rather abstract arguments,
and thus does not yield any rate of convergence in general. However, when the flux A
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is linear, the weighted L2 bounds allow us to prove that the family U(τ) has uniformly
bounded moments of order four, and thus (1.2) holds. As proved in [5], the convergence
stated in Theorem 1.1 then takes place with algebraic rate.

The main result of this section is the following:

Proposition 3.2. Let Uini ∈ L1∩L∞(RN), and let U ∈ C([0,∞), L1(RN)) be the unique
solution of (2.3) with initial data U|τ=0 = Uini. Let m > 2(N + 1) be arbitrary, and
assume that ∫

RN
|Uini(x)|2(1 + |x|2)m/2 dx < +∞.

Then there exists a constant Cm > 0 (depending only on m,N, and on the flux A) such
that if ‖Uini‖L1(RN ) ≤ Cm, then

sup
τ≥0

∫
RN
|V (τ, x)|2(1 + |x|2)m/2 dx < +∞,

sup
τ≥0

∫ τ+1

τ

∫
RN
|∇xV (s, x)|2 dx ds < +∞.

(3.2)

As a consequence, there exists a sequence (τn) of positive numbers such that τn ∈ [n, n+

1] for all n, and such that the sequence (V (τn, x))n≥0 is compact in L1(RN).
Moreover, if the flux A is linear, then Cm = +∞ for all m > 2(N + 1).

Before proving the bounds (3.2), we explain how they entail the existence of a con-
verging sequence. Thus we admit that (3.2) holds for the time being. First, for any X ≥ 1,
τ ≥ 0, we have∫

|x|≥X
|V (τ, x)| dx

≤
(∫
|x|≥X

|V (τ, x)|2(1 + |x|2)m/2 dx

)1/2(∫
|x|≥X

(1 + |x|2)−m/2 dx

)1/2

≤ CX(N−m)/2

(
sup
τ≥0

∫
RN
|V (τ, x)|2(1 + |x|2)m/2 dx

)1/2

.

Since m > N , we infer that the family {V (τ, x)}τ≥0 is equi-integrable.
Moreover, let K ⊂ RN be an arbitrary compact set, and let h ∈ RN be arbitrary, with

|h| ≤ 1. Let
K̃ := {x ∈ RN , d(x,K) ≤ 1}.

The set K̃ is clearly compact. Then∫
K
|V (τ, x+ h)− V (τ, x)| dx

≤ |h|
∫
K

∫ 1

0

|∇V |(τ, x+ λh) dλ dx

≤ |h|
∫
K̃
|∇V (τ, z)| dz ≤ |h||K̃|1/2

(∫
RN
|∇xV (τ, x)|2 dx

)1/2

.
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Now, for all n ∈ N, there exists τn ∈ [n, n+ 1] such that

∫
RN
|∇xV (τn, x)|2 dx ≤

∫ n+1

n

∫
RN
|∇xV (s, x)|2 dx ds.

Consequently, there exists a constant C, depending only on K and on the bounds on V in
L2

loc([0,∞), H1), such that

∀n ∈ N,
∫
K
|V (τn, x+ h)− V (τn, x)| dx ≤ C|h|.

Hence the sequence {V (τn, x)}n≥0 is equi-continuous in L1(RN).

Notice also that

sup
n≥0
‖V (τn)‖L1(RN ) ≤

1

infTN f0

sup
n≥0
‖U(τn)‖L1(RN ) ≤

‖Uini‖L1(RN )

infTN f0

.

Thus the sequence {V (τn, x)}n≥0 is bounded in L1(RN).

According to classical results of functional analysis (see for instance [6]), we infer that
the sequence (V (τn))n≥0 is compact in L1.

The rest of the section is devoted to the proof of the bounds (3.2). We first prove
that V ∈ L∞loc([0,∞), L2((1 + |x|2)m/2)). Then, using the construction of approximate
solutions of (2.3) performed in the previous section, we derive an energy inequality on the
function V . Carefully controlling the non-linear terms appearing in this energy inequality,
we are led to (3.2).

Before addressing the proof, we recall a result which will play a key role in several
arguments: since Uini ∈ L∞∩L1(RN), there exists a positive constant C, depending only
on the flux A and on ‖Uini‖1, ‖Uini‖∞, such that

‖U(τ)‖L∞(RN ) ≤ CeNτ . (3.3)

Indeed, performing backwards the parabolic scaling (2.2), it turns out that this inequality
is equivalent to the boundedness of u in L∞([0,∞) × RN), where u is the solution of
(1.1) with initial data v + Uini. And the L∞ bound on u follows from Lemma A.1 in the
Appendix.

First step: the family V (τ) is locally bounded in L2((1 + |x|2)m/2).
This amounts in fact to proving that U ∈ L∞loc([0,∞), L2((1 + |x|2)m/2)). Hence,

multiply (2.3) by U(τ, x)(1+ |x|2)m/2 and integrate with respect to the variable x. Always
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with the notation R = eτ , z = Rx+ cR
2−1
2

, this leads to

1

2

d

dτ

∫
RN
|U(τ, x)|2(1 + |x|2)m/2dx (3.4)

= −
∫

RN
|∇xU |2(1 + |x|2)m/2 dx−m

∫
RN

(x · ∇xU)U(1 + |x|2)−1+m/2 dx

−1

2

∫
RN

(x · ∇x|U |2)(1 + |x|2)m/2 dx−m
∫

RN
|U |2|x|2(1 + |x|2)−1+m/2 dx

−RN+1

∫
RN

[
B

(
z,
U(τ, x)

RN

)
− cU(τ, x)

RN

]
· ∇xU(1 + |x|2)m/2dy

−mRN+1

∫
RN

[
B

(
z,
U(τ, x)

RN

)
− cU(τ, x)

RN

]
· x U(1 + |x|2)−1+m/2 dx.

Since U(τ)/RN is bounded (see (3.3)), there exists a constant C such that∣∣∣∣B(Rx+ c
R2 − 1

2
,
U(τ, x)

RN

)
− cU(τ, x)

RN

∣∣∣∣ ≤ C
|U(τ, x)|
RN

.

Moreover,∣∣x(1 + |x|2)−1+m/2
∣∣ , ∣∣|x|2(1 + |x|2)−1+m/2

∣∣ ≤ (1 + |x|2)m/2 ∀x ∈ RN .

Hence, using the Cauchy-Schwarz inequality, we infer that the last two terms in (3.4) are
bounded by

1

4

∫
RN
|∇xU |2(1 + |x|2)m/2 dx+ CR2

∫
RN
|U |2(1 + |x|2)m/2 dx.

On the other hand,∣∣∣∣∫
RN

(
x · ∇x|U |2

)
(1 + |x|2)m/2 dx

∣∣∣∣
=

∣∣∣∣∫
RN
|U |2

(
N(1 + |x|2)m/2 +mx2(1 + |x|2)−1+m/2

)
dx

∣∣∣∣
≤ C

∫
RN
|U |2(1 + |x|2)m/2 dx.

Gathering all the terms, we deduce that there exists c ∈ (0, 1), C > 0 such that

d

dτ

∫
RN
|U(τ, x)|2(1 + |x|2)m/2dx

≤ −c
∫

RN
|∇xU(τ, x)|2(1 + |x|2)m/2 dx+ Ce2τ

∫
RN
|U(τ, x)|2(1 + |x|2)m/2dx.

Using Gronwall’s Lemma, we infer that

U ∈ L∞loc([0,∞), L2((1 + |x|2)m/2), ∇xU ∈ L2
loc([0,∞), L2((1 + |x|2)m/2)).
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Second step: The energy inequality.

The idea here is the following: assume momentarily that the flux B is linear, that is,
B̃1 = 0. Let ψ ∈ L∞([0,∞) × RN) be a solution of (2.3) such that ψ(τ, x) > 0 for all
τ, x. Then, according to [18], for any convex function H ∈ C2(R), we have

d

dt

∫
RN
ψ(τ, x)H

(
U(τ, x)

ψ(τ, x)

)
dx = −

∫
RN
H ′′
(
U(τ, x)

ψ(τ, x)

) ∣∣∣∣∇x

(
U(τ, x)

ψ(τ, x)

)∣∣∣∣2 dx.
Taking H : x ∈ R 7→ x2, we infer that

sup
τ≥0

∫
RN
|U(τ, x)|2 dx

ψ(τ, x)
< +∞.

Hence, if ψ(τ, x) behaves like (1+ |x|2)−m/2 for |x| large, the L2 bound in (3.2) is proved.
Thus the goal of this step is to build a positive function Ũ , which behaves like (1 +

|x|2)−m/2 for |x| large, and which is an approximate solution of the linear part of (2.3),
with remainder terms of order one. Using calculations similar to the ones led in [18], we
then derive an inequality on the energy∫

RN

∣∣∣∣U(τ, x)

Ũ(τ, x)

∣∣∣∣2 Ũ(τ, x).

From now on, we no longer assume that B̃1 = 0.
The definition of Ũ is inspired from the construction of an approximate solution in the

previous paragraph. Precisely, we set

Ũ(τ, x) = f0(z)hm(x) + e−τf1(z) · ∇xhm(x), τ ≥ 0, x ∈ RN , z = eτx+ c
e2τ − 1

2
,

where the function f1 ∈ W 1,∞(TN)N is defined by (2.9), and where

hm(x) := (1 + |x|2)−m/2.

Notice that even when N = 1, the structure of the function Ũ is inspired from the linear
case: there is no term of the form h2

m in Ũ . The nonlinear term in the fluxB will be treated
independently.

Remember that infTN f0 > 0; since

∇xhm(x) = −m x

1 + |x|2
hm, x ∈ RN ,

we deduce that there exists τ0 > 0 (depending on m), such that

0 <
1

2
f0(z)hm(x) ≤ Ũ(τ, x) ≤ 2f0(z)hm(x) ∀y ∈ RN , τ ≥ τ0. (3.5)
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We now compute, for τ ≥ τ0, the rate of growth (or decay) of the energy
∫
|U |2Ũ−1.

Using equation (2.3) and performing several integrations by parts, we obtain

d

dτ

∫
RN

∣∣∣∣U(τ, x)

Ũ(τ, x)

∣∣∣∣2 Ũ(τ, x) dx

= −2

∫
RN

∣∣∣∣∇x

(
U(τ, x)

Ũ(τ, x)

)∣∣∣∣2 Ũ(τ, x) dx

+

∫
RN

∣∣∣∣U(τ, x)

Ũ(τ, x)

∣∣∣∣2 [−∂τ Ũ + ∆xŨ + divx(xŨ)− eτdivx

(
(α1(z)− c)Ũ

)]
dx

+2e(N+1)τ

∫
RN
B̃1

(
z,
U(τ, x)

eNτ

)
· ∇x

(
U(τ, x)

Ũ(τ, x)

)
dx.

By definition of Ũ , we have

−∂τ Ũ + ∆xŨ + divx(xŨ)− eτdivx

(
(α1(z)− c)Ũ

)
= divx(xhm)f0(z) + f0(z)∆xhm(x) + 2

∑
1≤i,j≤N

∂f1,i

∂zj
(z)

∂2hm(x)

∂xi∂xj

−
∑

1≤i,j≤N

[(α1,i − ci)f1,j] (z)
∂2hm(x)

∂xi∂xj

+e−τ
∑

1≤i,j≤N

f1,i(z)

[
∂

∂xj
(xj∂xihm(x)) +

∂3hm(x)

∂xi∂x2
j

]
,

where

z = eτx+ c
e2τ − 1

2
.

Notice that
divx(xhm(x)) = (N −m)hm(x) +

m

(1 + |x|2)1+m
2

,

and there exists a constant C (depending on m and N ) such that for all i, j ∈ {1, · · · , N},∣∣∣∣∂2hm(x)

∂xi∂xj

∣∣∣∣ ≤ C
1

(1 + |x|2)1+m
2

,

|∇xhm(x)|+
∣∣∣∣|x|∂2hm(x)

∂xi∂xj

∣∣∣∣+

∣∣∣∣∂3hm(x)

∂xi∂x2
j

∣∣∣∣ ≤ Chm(x).

Remember that N −m < 0 and that inequality (3.5) holds; hence we infer that for τ ≥ τ0

with τ0 large enough,

−∂τ Ũ + ∆xŨ + divx(xŨ)− eτdivx

(
(α1(z)− c)Ũ

)
≤ (N −m)f0(z)hm(x) + Ce−τhm(x) + C

1

(1 + |x|2)1+m
2

≤ N −m
4

Ũ(τ, x) + C
1

(1 + |x|2)1+m
2

.
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On the other hand, since the flux B̃1 is quadratic near the origin and U/eNτ is bounded,
we have ∣∣∣∣e(N+1)τ

∫
RN
B̃1

(
z,
U(τ, x)

eNτ

)
· ∇x

(
U(τ, x)

Ũ(τ, x)

)
dx

∣∣∣∣
≤ Ce(1−N)τ

∫
RN
|U(τ, x)|2

∣∣∣∣∇x

(
U(τ, x)

Ũ(τ, x)

)∣∣∣∣ dx.
Gathering all the terms, we obtain

d

dτ

∫
RN

∣∣∣∣UŨ
∣∣∣∣2 Ũ +

m−N
4

∫
RN

∣∣∣∣UŨ
∣∣∣∣2 Ũ + 2

∫
RN

∣∣∣∣∇(UŨ
)∣∣∣∣2 Ũ (3.6)

≤ C

∫
RN

(
U(·, x)

Ũ(·, x)

)2
dx

(1 + |x|2)1+m
2

(3.7)

+Ce(1−N)τ

∫
RN
|U |2

∣∣∣∣∇x

(
U

Ũ

)∣∣∣∣ . (3.8)

Notice that when the flux A is linear, the term (3.8) is zero.

Third step: control of the term (3.7).

Set φ := U/Ũ ; then according to the first step,

φ ∈ L∞loc([τ0,∞), L2(hm)) ∩ L2
loc([τ0,∞), H1(hm)).

Moreover,
∇(φ2hm) = 2φhm∇φ+ φ2∇hm;

since |∇hm| ≤ mhm, we deduce that φ2hm ∈ L1
loc([τ0,∞),W 1,1(RN)), and thus, using

Sobolev embeddings, φ2hm ∈ L1
loc([τ0,∞), Lp

∗
(RN)), where p∗ := N/(N−1) if N ≥ 2,

and p∗ = +∞ if N = 1. Additionally, the following inequality holds: there exists a
constant C, depending only on N and m, such that for all τ ≥ τ0

‖φ2hm(τ)‖Lp∗ (RN ) ≤ C‖∇(φ2hm(τ))‖L1(RN )

≤ C‖φ(τ)‖L2(hm)‖∇φ(τ)‖L2(hm) + C‖φ(τ)‖2
L2(hm).

We use the above inequality in order to control the term (3.7). First, let us write∫
RN
|φ(τ, x)|2(1 + |x|2)−(1+m

2 ) dx

=

∫
RN

(
φ2(τ)hm

)a
(|φ(τ)|hm)b ,

where the exponents a, b satisfy{
2a+ b = 2

a
m

2
+ b

m

2
= 1 +

m

2
,
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which leads to a = 1 − 2
m

, b = 4
m
. Notice that a, b ∈ (0, 1), provided m is large enough

(m > 4, which is always satisfied if m > 2(N + 1)).
Then, using Hölder’s inequality, we infer∫

RN
|φ(τ, x)|2(1 + |x|2)−(1+m

2 ) dx

≤
∥∥φ2(τ)hm

∥∥a
Lp(RN )

‖φ(τ)hm‖bL1(RN ),

where the parameter p is given by

p = a (1− b)−1 =
1− 2

m

1− 4
m

.

Notice that p is always larger than one. In order to be able to interpolate Lp between L1

and Lp∗ , p must also be smaller than p∗; if N = 1, p∗ = ∞, and thus we always have
p < p∗. If N ≥ 2, this condition amounts to m > 2(N + 1); we assume that m always
satisfies this assumption in the sequel.

Now, let θ ∈ (0, 1) such that

1

p
=
θ

1
+

1− θ
p∗

;

using once again Hölder’s inequality, we obtain∫
RN
|φ(·, x)|2(1 + |x|2)−(1+m

2 ) dx

≤ ‖φ2hm‖aθL1(RN )‖φ
2hm‖a(1−θ)

Lp
∗

(RN )
‖φhm‖bL1(RN )

≤ C‖φ2hm‖
aθ+a 1−θ

2

L1(RN )
‖∇φ‖a(1−θ)

L2(hm)‖φhm‖
b
L1(RN )

+C‖φ2hm‖aL1(RN )‖φhm‖
b
L1(RN ).

If N = 1, then θ = p−1, and straightforward computations lead to

aθ + a
1− θ

2
= 1− 3

m
, a(1− θ) =

2

m
.

Hence, using Young’s inequality, we deduce that for all λ > 0, there exists a constant Cλ
such that ∫

RN
|φ(τ, x)|2(1 + |x|2)−(1+m

2 ) dx

≤ λ‖φ2(τ)hm‖L1(R) + λ‖∇φ(τ)‖2
L2(hm) + Cλ‖φ(τ)hm‖2

L1(R). (3.9)

If N ≥ 2, the calculations are similar and lead to

aθ + a
1− θ

2
= 1− N + 2

m
, a(1− θ) =

2N

m
.
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Hence (3.9) is also valid in this case.
Using inequality (3.5) and choosing the parameter λ small enough leads eventually to

(3.7) ≤ m−N
16

∫
RN

∣∣∣∣U(τ)

Ũ(τ)

∣∣∣∣2 Ũ(τ) +
1

2

∫
RN

∣∣∣∣∇(U(τ)

Ũ(τ)

)∣∣∣∣2 Ũ(τ) (3.10)

+C

(∫
RN
|U(τ, x)| dx

)2

for all τ ≥ τ0.

Fourth step: control of the term (3.8).

Remark 3.1. We recall that (3.8)=0 if the flux A is linear. Hence this step is required only
in the nonlinear case.

Using inequality (3.3), we infer that there exists a constant C such that

(3.8) ≤ C

∫
RN
|U(τ, x)|1+ 1

N

∣∣∣∣∇x

(
U(τ, x)

Ũ(τ, x)

)∣∣∣∣ dx.
From now on, we treat the cases N = 1, N = 2, and N ≥ 3 separately, and we set
φ = U/Ũ.

• If N = 1, we have, for all τ ≥ τ0,∫
RN
|U(τ, x)|1+ 1

N

∣∣∣∣∇x

(
U(τ, x)

Ũ(τ, x)

)∣∣∣∣ dx
≤ C

∫
R

(
∂xφ(τ)h1/2

m

)
(φ(τ)hm)1/2 (φ3/2(τ)hm

)
≤ C‖∂xφ(τ)‖L2(hm)‖U(τ)‖1/2

L1(R)

∥∥φ3/2(τ)hm
∥∥
L∞(R)

≤ C‖∂xφ(τ)‖L2(hm)‖U(τ)‖1/2

L1(R)

∥∥∂x (φ3/2(τ)hm
)∥∥

L1(R)
.

Moreover,

∂x
(
φ3/2hm

)
=

3

2
φ1/2hm∂xφ+ φ3/2∂xhm,

and thus ∥∥∂x (φ3/2hm
)∥∥

L1(R)
≤ C‖φhm‖1/2

L1

(
‖∂xφ‖L2(hm) + ‖φ‖L2(hm)

)
.

Eventually, we obtain, using once again (3.5),

(3.8) ≤ C‖U(τ)‖L1(R)

[∫
R

∣∣∣∣∇(U(τ)

Ũ(τ)

)∣∣∣∣2 Ũ(τ) +

∫
R

∣∣∣∣U(τ)

Ũ(τ)

∣∣∣∣2 Ũ(τ)

]
.

Since
‖U(τ)‖L1(R) ≤ ‖Uini‖L1(R) ∀τ ≥ 0,
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we infer that if ‖Uini‖L1(R) is sufficiently small, then

(3.8) ≤ m−N
16

∫
RN

∣∣∣∣U(τ)

Ũ(τ)

∣∣∣∣2 Ũ(τ) +
1

2

∫
RN

∣∣∣∣∇(U(τ)

Ũ(τ)

)∣∣∣∣2 Ũ(τ). (3.11)

• IfN = 2, using the Sobolev embeddingW 1,1(R2) ⊂ L2(R2),we obtain, for τ ≥ τ0,∫
RN
|U(·, x)|1+ 1

N

∣∣∣∣∇x

(
U(·, x)

Ũ(·, x)

)∣∣∣∣ dx ≤ C

∫
R2

(
|φ|3/2hm

) (
|∇xφ|h1/2

m

)
≤ C

∥∥|φ|3/2hm∥∥L2(R2)
‖∇xφ‖L2(hm)

≤ C
∥∥∇ (|φ|3/2hm)∥∥L1(R2)

‖∇xφ‖L2(hm).

As is the case N = 1, we have∥∥∇ (|φ|3/2hm)∥∥L1(R2)
≤ C‖φhm‖1/2

L1(R2)

(
‖∂xφ‖L2(hm) + ‖φ‖L2(hm)

)
.

Hence we are led to

(3.8) ≤ C‖U(τ)‖1/2

L1(R2)

[∫
R2

∣∣∣∣∇U(τ)

Ũ(τ)

∣∣∣∣2 Ũ(τ) +

∫
R2

∣∣∣∣U(τ)

Ũ(τ)

∣∣∣∣2 Ũ(τ)

]
.

Following exactly the same argument as in the case N = 1, we deduce that if
‖Uini‖L1(R2) is sufficiently small, then (3.11) holds.

• If N ≥ 3, we have, for τ ≥ τ0,∫
RN
|U(·, x)|1+ 1

N

∣∣∣∣∇x

(
U(·, x)

Ũ(·, x)

)∣∣∣∣ dx
≤ C

∫
RN
|φ|1+ 1

N |∇xφ|h
1+ 1

N
m

≤ C

∫
RN

(|φ|hm)1/N (|∇xφ|h1/2
m

) (
|φ|h1/2

m

)
≤ C‖φhm‖1/N

L1(RN )
‖∇xφ‖L2(hm)

∥∥|φ|h1/2
m

∥∥
Lp(RN )

,

where the parameter p is such that

1

N
+

1

2
+

1

p
= 1,

i.e. p = (2N)/(N − 2). Using the Sobolev embedding H1(RN) ⊂ Lp(RN), we
have ∥∥|φ|h1/2

m

∥∥
Lp(RN )

≤ C
∥∥∇x

(
|φ|h1/2

m

)∥∥
L2(RN )

≤ C
(
‖∇φ‖L2(hm) + ‖φ‖L2(hm)

)
.
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Thus, once again, we obtain

(3.8) ≤ C‖U(τ)‖1/N

L1(RN )

[∫
RN

∣∣∣∣∇(U(τ)

Ũ(τ)

)∣∣∣∣2 Ũ(τ) +

∫
R2

∣∣∣∣U(τ)

Ũ(τ)

∣∣∣∣2 Ũ(τ)

]
,

and thus (3.11) holds as long as ‖Uini‖L1(RN ) is not too large.

Gathering inequalities (3.6), (3.10) and (3.11), we infer that if ‖Uini‖L1(RN ) is suffi-
ciently small, then for all τ ≥ τ0,

d

dτ

∫
RN

∣∣∣∣U(τ)

Ũ(τ)

∣∣∣∣2 Ũ(τ) +
m−N

8

∫
RN

∣∣∣∣U(τ)

Ũ(τ)

∣∣∣∣2 Ũ(τ) +

∫
RN

∣∣∣∣∇(U(τ)

Ũ(τ)

)∣∣∣∣2 Ũ(τ)

≤ C

(∫
RN
|U(τ, x)| dx

)2

≤ C‖Uini‖2
L1(RN ). (3.12)

Fifth step: Conclusion.

Let C1 := (m − N)/8, C2 := C‖Uini‖2
L1(RN ). Using a Gronwall type argument, we

deduce that for all τ ≥ τ0, we have∫
RN

∣∣∣∣U(τ)

Ũ(τ)

∣∣∣∣2 Ũ(τ) +

∫ τ

τ0

e−C1(τ−s)

(∫
RN

∣∣∣∣∇(U(s)

Ũ(s)

)∣∣∣∣2 Ũ(s)

)
ds

≤ e−C1(τ−τ0)

∫
RN

∣∣∣∣U(τ0)

Ũ(τ0)

∣∣∣∣2 Ũ(τ0) +
C2

C1

≤ C

∫
RN
|U(τ0, x)|2(1 + |x|2)m/2 +

C2

C1

.

Using (3.5), we infer

sup
τ≥τ0

∫
RN
|U(τ, x)|2(1 + |x|2)m/2 ≤ C

∫
RN
|U(τ0, x)|2(1 + |x|2)m/2 + C

C2

C1

,

sup
τ≥τ0

∫ τ+1

τ

∫
RN

∣∣∣∣∇(U(s)

Ũ(s)

)∣∣∣∣2 hm ds ≤ C

∫
RN
|U(τ0, x)|2(1 + |x|2)m/2 + C

C2

C1

.

Hence U ∈ L∞([0,∞), L2((1 + |x|2)m/2)). Since f0 is bounded away from zero, the L2

bound on V follows.
Concerning the bound on∇xV , notice that

V (τ, x) =
U(τ, x)

Ũ(τ, x)

(
hm(x) + e−τ

f1(z)

f0(z)
· ∇xhm(x)

)
,

and thus

|∇xV (τ, x)| ≤ Chm(x)

(∣∣∣∣∇x

(
U(τ, x)

Ũ(τ, x)

)∣∣∣∣+

∣∣∣∣U(τ, x)

Ũ(τ, x)

∣∣∣∣) .
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Consequently, for all τ ≥ 0∫
RN
|∇xV (τ, x)|2(1 + |x|2)m/2 dx ≤ C

∥∥∥∥U(τ)

Ũ(τ)

∥∥∥∥2

H1(hm)

,

which leads to the bound on∇xV . Notice that in fact, we recover

∇xV ∈ L2
loc([0,∞), L2((1 + |x|2)m/2)).

Hence Proposition 3.2 is proved.

Let us now conclude this section by explaining how the bound (1.2) on the moments
of order four follows from (3.2). Let Uini ∈ L2(h−1

m ), with m > 2(N + 2) sufficiently
large. Then we have proved that U ∈ L∞([0,∞), L2(h−1

m )), with no restriction on the size
of ‖Uini‖L1(RN ) in the linear case. Now, for all τ ≥ 0, using a simple Hölder inequality,
we infer that∫

RN
|U(τ, x)||x|4 dx ≤ ‖U(τ)‖L2(h−1

m )

(∫
RN
|x|8(1 + |x|2)−m/2 dx

)1/2

.

Hence, if m > N + 8, we deduce that U ∈ L∞([0,∞), L1(|x|4)); going back to the
original variables, this entails that (1.2) is satisfied. Thus the convergence result (1.3)
holds if the flux A is linear, and Proposition 1.1 is proved.

4 Long-time behaviour

This section is devoted to the rest of the proof of Theorem 1.1. The idea is to use the L1

compactness proved in the previous section (see Proposition 3.2) together with techniques
from dynamical systems theory. This type of proof was initiated by S. Osher and J. Ralston
in [19], in which the authors proved the L1 stability of travelling waves for a quasilinear
parabolic equation. Their arguments were then adapted successfully to various kinds of
problems in the context of scalar conservation laws (see for instance the review in [21]).

In the present study, our scheme of proof is in fact closely related to the one of M.
Escobedo and E. Zuazua in [12]; indeed, the idea is to apply the dynamical systems tools
to the rescaled parabolic system (2.3) rather than the original conservation law (1.1). The
main difference with [12] lies in the presence of highly oscillating coefficients in (2.3);
thus it is necessary to work simultaneously with the homogenized equation (2.13)-(2.15)
and with the oscillating one.

Let us now introduce some notation and definitions. First, we denote by Sτ (τ ≥ 0)
the semi-group associated with the homogenized equation, that is equation (2.15) if N =

1, and equation (2.13) if N ≥ 2. According to Proposition 2.1, the semi-group Sτ is
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well-defined in L∞(RN) ∩ L2(K), where K is the weight function defined by (2.19);
additionally, the L1 contraction property holds, namely

‖SτF1 − SτF2‖L1(RN ) ≤ ‖F1 − F2‖L1(RN ) ∀τ ≥ 0, ∀F1, F2 ∈ L∞(RN) ∩ L2(K).

Hence Sτ can be extended on L1(RN).
We also define the ω-limit set associated with a given function Uini ∈ L1(RN): recall-

ing the definition of the function V (see (3.1)), we set

Ω[Uini] :=
{
V̄ ∈ L1(RN), ∃τn →∞, V (τn)→ V̄ in L1(RN)

}
, (4.1)

where the function U in (3.1) is the unique solution of (2.3) with initial data Uini. When
there is no ambiguity, we will simply write Ω instead of Ω[Uini].

Notice that V (τn) converges towards V̄ in L1 if and only if

lim
n→∞

∫
RN

∣∣∣∣U(τn, x)− f0

(
eτnx+ c

e2τn − 1

2

)
V̄ (x)

∣∣∣∣ dx = 0.

This equivalence will be used repeatedly throughout the section.
The organisation of this section is the following: we first introduce a “quasi-Liapunov

function” for the semi-group associated with equation (2.3). We then prove that Proposi-
tion 3.1 holds when the initial data Uini has a sufficiently small L1 norm. Eventually, we
prove Proposition 3.1 in the general case.

4.1 A quasi-Liapunov function

Let us first recall the definition of a Liapunov function (see [17]):

Definition 4.1. Let X be a Banach space, and let π : [0,∞) × X → X be a dynamical
system on X , i.e. π satisfies the following:

(i) π(0, x) = x for all x ∈ X ;

(ii) Semi-group property: For all s, t ≥ 0, for all x ∈ X , π(t+ s, x) = π(t, π(s, x));

(iii) π is continuous on [0,∞)×X .

Let V : X → R. V is said to be a Liapunov function if

(i) V is continuous;

(ii) V̇(x) ≤ 0 for all x ∈ X , where

V̇(x) := lim inf
t→0+

V(π(t, x))− V(x)

t
.
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Liapunov functions are crucial in the analysis of the stability of dynamical systems.
In the present context, because of the different scales involved, it seems difficult to find a
suitable Liapunov function, and we thus extend the previous definition:

Definition 4.2. Let X be a Banach space, and let t ∈ [0,∞) 7→ xt ∈ X be a continuous
curve in X . Let H : [0,∞)× X → R be continuous. We say that H is a quasi-Liapunov
function for the trajectory (xt)t≥0 if the following properties hold:

(i) The familyH(t, xt) (t ≥ 0) is bounded in R;

(ii) There exists a function ψ : [0,∞)→ [0,∞) such that limt→∞ ψ(t) = 0 and

∀t ≥ 0, sup
s≥t

(H(s, xs)−H(t, xt)) ≤ ψ(t). (4.2)

In other words, we drop the semi-group property associated with the dynamical system
π, and we focus on a particular trajectory; moreover, inequality (4.2) means thatH(s, xs)

is “almost decreasing” with respect to s for large s. Notice that a Lyapunov function
associated with a semi-group π is decreasing along any trajectory π(s, x) (s ≥ 0).

We then have the following result:

Lemma 4.1. Let X be a Banach space, and let t ∈ [0,∞) 7→ xt ∈ X be a continuous
curve in X . Let H : [0,∞) × X → R be a quasi-Liapunov function for (xt)t≥0. Then
H(t, xt) has a finite limit as t→∞.

Proof. First, sinceH(t, xt) is bounded for t ∈ [0,∞), the quantities

H := lim inf
t→∞

H(t, xt), H := lim sup
t→∞

H(t, xt)

are well-defined and belong to R, with H ≤ H .
Let ε > 0 arbitrary. There exists tε > 0 such that

ψ(t) ≤ ε ∀t ≥ tε.

By definition of H , there exists sε ≥ tε such that

|H(sε, xsε)−H| ≤ ε.

SinceH is a quasi-Liapunov function, for all s ≥ sε, we have

H(s, xs) ≤ H(sε, xsε) + ψ(sε)

≤ H + 2ε.

Hence
H ≤ H + 2ε ∀ε > 0,

and H = H . Thus the quantityH(t, xt) has a finite limit as t→∞.
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We now apply this notion to the present context:

Lemma 4.2. Let M ∈ R be arbitrary, and let Uini ∈ L1(RN). For τ ≥ 0 and u ∈
L1(RN), define the functionH by

H(τ, u) :=

∫
RN
|u(x)− U app[FM ](τ, x; eτ )| dx,

where the function U app was introduced in Definition 2.1.
Let U ∈ C(|0,∞), L1(RN)) be the solution of (2.3) with initial data Uτ=0 = Uini.

Then H is a quasi-Liapunov function for the trajectory {U(τ))}τ≥0 in L1(RN). As a
consequence, the function

τ ∈ [0,∞) 7→
∫

RN
|U(τ, x)− f0(z)FM(x)| dx, with z = eτx+ c

e2τ − 1

2
,

converges as τ →∞.

Proof. This property is an easy consequence of the first point in Lemma 2.5; indeed,
according to Lemma 2.5, there exists a constant C, depending only on N and M , such
that

d

dτ
H(τ, U(τ)) =

d

dτ
‖U(τ)− U app[FM ](τ)‖L1(RN ) ≤ Ce−τ .

Consequently, for all τ ′ ≥ τ ≥ 0, we have

H(τ ′, U(τ ′))−H(τ, U(τ)) ≤ C(e−τ − e−τ ′) ≤ Ce−τ .

Thus property (ii) of Definition 4.2 is satisfied. Additionally, notice that

0 ≤ H(τ, U(τ)) ≤ ‖U(τ)‖L1(RN ) + ‖f0‖L∞(TN )‖FM‖L1(RN )

+ Ce−τ
(
‖∇FM‖L1(RN ) + ‖FM‖2

L2(RN )

)
+ Ce−2τ

(
‖FM‖W 2,1(RN ) + ‖FM‖3

L3(RN ) + ‖∇FM‖2
L2(RN )

)
≤ ‖Uini‖L1(RN ) + C.

Whence H(τ, U(τ)) is bounded for τ ∈ [0,∞). Additionally the continuity of H on
[0,∞) × L1 is obvious. Consequently H is a quasi-Liapunov function for the trajectory
U(τ). According to Lemma 4.1,H(τ, U(τ)) admits a finite limit as τ →∞. Furthermore,
we have

‖U(τ)− f0(z)FM‖L1(RN ) =
∥∥U(τ)− U app[FM ](τ) + e−τU1 + e−2τU2

∥∥
L1(RN )

,

where U1 and U2 are defined by (2.8)-(2.11) and (2.12) respectively. Hence for all τ ≥ 0,
there holds

H(τ, U(τ))− Ce−τ ≤ ‖U(τ)− f0(z)FM‖L1(RN ) ≤ H(τ, U(τ)) + Ce−τ ,
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where the constant C depends only on W s,p bounds on FM . Thus the function

τ 7→ ‖U(τ)− f0(z)FM‖L1(RN )

converges as τ →∞, and

lim
τ→∞
‖U(τ)− f0(z)FM‖L1(RN ) = lim

τ→∞
H(τ, U(τ)).

Definition 4.3. Let Uini ∈ L1(RN) be arbitrary, and let M :=
∫

RN Uini. Let U be the
solution of (2.3) with initial data U|t=0 = Uini.

We define the number `(Uini) by

`(Uini) := lim
τ→∞

∫
RN
|U(τ, x)− f0(z)FM(x)| dx, with z = eτx+ c

e2τ − 1

2
.

Notice that Proposition 3.1 is equivalent to

`(Uini) = 0 ∀Uini ∈ L1(RN).

Classically, we now derive a continuity property for the function `:

Lemma 4.3. The function

U ∈ L1(RN) 7→ `(U) ∈ R

is Lipschitz continuous.

Proof. Let U (1)
ini , U

(2)
ini ∈ L1(RN), and let M (i) =

∫
RN U

(i)
ini for i = 1, 2. We denote by

U (i) ∈ C([0,∞), L1(RN)) the solution of (2.3) with initial data U (i)
ini. Then for all τ ≥ 0,

the L1 contraction principle ensures that∥∥U (1)(τ)− U (2)(τ)
∥∥
L1(RN )

≤
∥∥∥U (1)

ini − U
(2)
ini

∥∥∥
L1(RN )

.

Hence, for all τ ≥ 0, we have∣∣∣∣∫
RN

∣∣U (1)(τ, x)− f0(z)FM(1)(x)
∣∣ dx− ∫

RN

∣∣U (2)(τ, x)− f0(z)FM(2)(x)
∣∣ dx∣∣∣∣

≤
∥∥U (1)(τ)− U (2)(τ)

∥∥
L1(RN )

+ ‖f0‖L∞(TN ) ‖FM(1) − FM(2)‖L1(RN ) .

According to Lemma A.2 in the Appendix,

‖FM(1) − FM(2)‖L1(RN ) =
∣∣M (1) −M (2)

∣∣ ≤ ∥∥∥U (1)
ini − U

(2)
ini

∥∥∥
L1(RN )

.
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Eventually, we obtain, for all τ ≥ 0,∣∣∣∣∫
RN

∣∣U (1)(τ, x)− f0(z)FM(1)(x)
∣∣ dx− ∫

RN

∣∣U (2)(τ, x)− f0(z)FM(2)(x)
∣∣ dx∣∣∣∣ ≤

≤
(

1 + ‖f0‖L∞(TN )

)∥∥∥U (1)
ini − U

(2)
ini

∥∥∥
L1(RN )

,

and thus, passing to the limit,∣∣∣`(U (1)
ini

)
− `
(
U

(2)
ini

)∣∣∣ ≤ (1 + ‖f0‖L∞(TN )

)∥∥∥U (1)
ini − U

(2)
ini

∥∥∥
L1(RN )

.

Hence ` is a Lipschitz continuous function.

4.2 Analysis of the ω-limit set

Proposition 4.1. Let Uini ∈ L1(RN), and set

M :=

∫
RN
Uini.

Assume that the ω-limit set Ω associated with Uini is non-empty (see (4.1)). Then the
following properties hold:

(i) For all V̄ ∈ Ω, ∫
RN
V̄ = M ;

(ii) SτΩ ⊂ Ω for all τ ≥ 0;

(iii) For all V̄ ∈ Ω, we have ∥∥V̄ − FM∥∥L1(RN )
= `(Uini).

Proof. Throughout the proof, we denote by U the unique solution of equation (2.3) with
initial data Uini.

Property (i) is quite straightforward: indeed, conservation of mass for the equation
(2.3) implies that ∫

RN
U(τ) = M ∀τ ≥ 0.

If V̄ ∈ Ω, then there exists a sequence (τn)n≥0 such that

lim
n→∞

τn =∞ and lim
n→∞

∫
RN

∣∣U(τn, x)− f0 (zn) V̄ (x)
∣∣ dx = 0,
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where zn = eτnx+ c e
2τn−1

2
. According to a result of G. Allaire (see [2]),

lim
n→∞

∫
RN
f0 (zn) V̄ (x) dx = 〈f0〉

∫
RN
V̄ =

∫
RN
V̄ ;

gathering the three equalities, we obtain property (i).

We now address the proof of property (ii), which relies on the second point in Lemma
2.5; let V̄ ∈ Ω be arbitrary, and for all ε > 0, let V̄ε ∈ L2(K) ∩ L∞(RN) such that

‖V̄ε − V̄ ‖L1(RN ) ≤ ε.

Let (τn)n≥0 be a sequence of positive numbers such that τn →∞ and∫
RN

∣∣U(τn, x)− f0(zn)V̄ (x)
∣∣ dx→ 0,

where zn = eτnx+ c e
2τn−1

2
.

Let ρ ∈ C∞0 (RN) be a mollyfing kernel; for δ > 0, set ρδ := δ−Nρ(·/δ), and define the
function U δ,ε

n by
U δ,ε
n (τ, x) := U app [(Sτ V̄ε) ∗x ρδ] (τ, x; eτn+τ ).

Then Lemma 2.5 ensures that U δ,ε
n satisfies equation (2.3) with an error term, the latter

being bounded for all T > 0 in L∞([0, T ], L1(RN)) by

ωT,ε(δ) + CT,ε,δe
−τn

where ωT,ε : [0,∞) → [0,∞) is such that lim0+ ωT,ε = 0, and where the constant CT,ε,δ
depends only on ε, δ,N and T .

Using the L1 contraction principle for scalar conservation laws, we infer that for all
T > 0, and for all τ ∈ [0, T ],∫

RN

∣∣U(τn + τ, x)− U δ,ε
n (τ, x)

∣∣ dx
≤ ωT,ε(δ) + CT,ε,δe

−τn +

∫
RN

∣∣∣U(τn, x)− U δ,ε
n|τ=0(x)

∣∣∣ dx
≤ ωT,ε(δ) + CT,ε,δe

−τn +

∫
RN

∣∣U(τn, x)− f0(zn)V̄ (x)
∣∣ dx

+

∫
RN

∣∣∣U δ,ε
n|τ=0(x)− f0(zn)V̄ (x)

∣∣∣ dx.
Now, according to Definition 2.1,

U δ,ε
n (τ, x) = (Sτ V̄ε) ∗x ρδ(x)f0

(
eτn+τx+ c

e2(τn+τ) − 1

2

)
+ e−(τn+τ)U1

(
τ, x, eτn+τx+ c

e2(τn+τ) − 1

2

)
+ e−2(τn+τ)V2

(
τ, x, eτn+τx+ c

e2(τn+τ) − 1

2

)
.
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Hence for all τ ∈ [0, T ], we have∫
RN

∣∣∣∣U δ,ε
n (τ, x)− Sτ V̄ f0

(
eτn+τx+ c

e2(τn+τ) − 1

2

)∣∣∣∣ dx
≤ ‖f0‖∞ sup

τ∈[0,T ]

‖Sτ V̄ − (Sτ V̄ε) ∗x ρδ‖L1(RN )

+e−τn
(
‖U1‖L∞([0,T ]×TNz ,L1(RNx )) + ‖U2‖L∞([0,T ]×TNz ,L1(RNx ))

)
≤ ‖f0‖∞

[
‖V̄ − V̄ε‖L1 + sup

τ∈[0,T ]

‖Sτ V̄ε − (Sτ V̄ε) ∗x ρδ‖L1(RN )

]
+e−τn

(
‖U1‖L∞([0,T ]×TNz ,L1(RNx )) + ‖U2‖L∞([0,T ]×TNz ,L1(RNx ))

)
≤ Cε+ ωT,ε(δ) + CT,ε,δe

−τn .

Gathering the two inequalities, we deduce that for all n, δ, ε,

sup
τ∈[0,T ]

∫
RN

∣∣∣∣U(τn + τ, x)− Sτ V̄ (x)f0

(
eτn+τx+ c

e2(τn+τ) − 1

2

)∣∣∣∣ dx
≤ ωT,ε(δ) + CT,ε,δe

−τn +

∫
RN

∣∣U(τn, x)− f0(zn)V̄ (x)
∣∣ dx+ Cε.

In the right-hand side of the above inequality, we first choose ε sufficiently small, then δ so
that ωT,ε(δ) is sufficiently small, and eventually n large enough so that the two remaining
terms are small as well; hence

lim
n→∞

inf
ε>0,δ>0

(
ωT,ε(δ) + CT,ε,δe

−τn +

∫
RN

∣∣U(τn, x)− f0(zn)V̄ (x)
∣∣ dx+ Cε

)
= 0.

Thus we have proved that for all T > 0,

lim
n→∞

sup
τ∈[0,T ]

∫
RN

∣∣∣∣U(τn + τ, x)− (Sτ V̄ )f0

(
eτn+τx+ c

e2(τn+τ) − 1

2

)∣∣∣∣ dx = 0.

The above convergence entails immediately that Sτ V̄ ∈ Ω for all τ ∈ [0, T ]. Since T > 0

was arbitrary, property (ii) is proved.

There remains to prove property (iii), which is a variant of the LaSalle invariance
principle; let V̄ ∈ Ω be arbitrary, and let τn be a sequence of positive numbers such that
limn→∞ τn = +∞ and

lim
n→∞

∫
RN

∣∣U(τn, x)− f0(zn)V̄ (x)
∣∣ dx = 0,

where zn = eτnx + c e
2τn−1

2
. According to a result of G. Allaire (see [2]), we have, since
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〈f0〉 = 1 and f0 ∈ C(TN),∥∥V̄ − FM∥∥L1(RN )
= lim

n→∞

∫
RN
f0(zn)|V̄ (x)− FM(x)| dx

= lim
n→∞

∫
RN
f0(zn)

∣∣∣∣V̄ (x)− U(τn, x)

f0(zn)
+
U(τn, x)

f0(zn)
− FM(x)

∣∣∣∣ dx
= lim

n→∞

∫
RN
f0(zn)

∣∣∣∣U(τn, x)

f0(zn)
− FM(x)

∣∣∣∣ dx
= `(Uini).

Consequently,
‖V̄ − FM‖L1(RN ) = `(Uini) ∀V̄ ∈ Ω.

Corollary 4.1. Let Uini ∈ L1(RN), and set

M :=

∫
RN
Uini.

Assume that the ω-limit set Ω[Uini] is non-empty. Then `(Uini) = 0, and thus the result
of Proposition 3.1 holds.

Proof. Let V̄ ∈ Ω be arbitrary. Then

lim
τ→∞
‖Sτ V̄ − FM‖L1(RN ) = 0;

this property is stated in Proposition 2.1 in the case when V̄ ∈ L∞(RN)∩L2(K), but can
be in fact easily generalized to an arbitrary function V̄ ∈ L1 by using the contractivity of
the semi-group Sτ : indeed, let ε > 0, and let V̄ε ∈ L∞(RN) ∩ L2(K) such that

∫
V̄ε =∫

V̄ = M , and
‖V̄ε − V̄ ‖L1(RN ) ≤ ε.

Then for all τ ≥ 0,

‖Sτ V̄ − FM‖L1(RN ) ≤ ‖Sτ V̄ − Sτ V̄ε‖L1(RN ) + ‖Sτ V̄ε − FM‖L1(RN )

≤ ‖V̄ − V̄ε‖L1(RN ) + ‖Sτ V̄ε − FM‖L1(RN ).

Hence, using Proposition 2.1, we infer that

lim sup
τ→∞

‖Sτ V̄ − FM‖L1(RN ) ≤ ε ∀ε > 0,

and thus ‖Sτ V̄ − FM‖L1(RN ) vanishes as τ →∞.
On the other hand, property (ii) in Proposition 4.1 ensures that Sτ V̄ ∈ Ω for all τ ≥ 0,

and thus, using (iii),

‖Sτ V̄ − FM‖L1(RN ) = `(Uini) ∀τ ≥ 0.
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Consequently, `(Uini) = 0. Going back to the definition of `(Uini), we deduce that

lim
τ→∞

∫
RN

∣∣∣∣U(τ, x)− f0

(
eτx+ c

e2τ − 1

2

)
FM(x)

∣∣∣∣ dx = 0.

Thus the proof of Proposition 3.1 is complete provided we are able to show that the set
Ω[Uini] is non-empty for a sufficiently large class of functions Uini ∈ L1(RN). In the case
when ‖Uini‖1 is small, this result follows from Proposition 3.2 and from a contraction
principle. The proof in the general case is more involved, and in fact, an analysis similar
to the one performed in Section 3 has to be conducted once more.

4.3 Proof of Proposition 3.1 when ‖Uini‖L1(RN ) is small

We now complete the proof of Theorem 1.1 when ‖Uini‖L1(RN ) is small. Let Uini ∈
L1(RN). Assume that Uini satisfies the following assumptions

∃m > 2(N + 1), Uini ∈ L2((1 + |x|2)m/2) ∩ L∞(RN), (4.3)

and ‖Uini‖L1(RN ) ≤ Cm, (4.4)

where the constant Cm was introduced in Proposition 3.2. Then according to Proposition
3.2, the ω-limit set Ω[Uini] is non-empty, and consequently Proposition 3.1 is true (see
Corollary 4.1).

Let us now prove that Proposition 3.1 holds when Uini merely satisfies (4.4): this fact
is a direct consequence of the density of L2((1+ |x|2)m/2)∩L∞(RN) in L1(RN), together
with the continuity of `. Indeed, for all ε > 0, let U ε

ini ∈ L2((1 + |x|2)m/2) ∩ L∞(RN)

such that
‖Uini − U ε

ini‖L1(RN ) ≤ ε, ‖U ε
ini‖L1(RN ) ≤ Cm.

Then `(U ε
ini) = 0. Since ` is Lipschitz continuous (see Lemma 4.3), there exists a constant

C such that

`(Uini) = |`(Uini)− `(U ε
ini)| ≤ C‖Uini − U ε

ini‖L1(RN ) ≤ Cε.

Since the above inequality holds for all ε > 0, we deduce that `(Uini) = 0. Recalling
the definition of `, we infer that Proposition 3.1 holds for all initial data Uini ∈ L1(RN)

satisfying (4.4).

4.4 Proof of Proposition 3.1 in the general case

The case when ‖Uini‖1 is large follows from the following Lemma:
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Lemma 4.4. There exists a constant C0, depending only on N and on the flux A, such
that for all Uini ∈ L1(RN),

`(Uini) ≤ C0 ⇒ `(Uini) = 0.

Before proving the above Lemma, let us explain why the result of Proposition 3.1
follows. Since ` is Lipschitz continuous, `(L1(RN)) is a connected set of [0,∞), i.e. an
interval. Moreover, 0 ∈ `(L1(RN)) according to the previous paragraph, and Lemma 4.4
entails that

`(L1(RN)) ∩ (0, C0] = ∅.

Consequently, `(L1(RN)) = {0}.
There remains to prove Lemma 4.4. According to Corollary 4.1 and using by now

standard arguments, we only have to prove that there exists a set A ⊂ L1(RN), which is
dense in L1(RN), and such that

∃C > 0, ∀Uini ∈ L1(RN) ∩ A, `(Uini) ≤ C ⇒ Ω[Uini] 6= ∅. (4.5)

In the following, we will take A = L2((1 + |x|2)m/2), for some m > 0 sufficiently large.
The scheme of proof of the implication (4.5) is very similar to the one of Proposi-

tion 3.2; indeed, we have to prove that if `(Uini) is small enough, then there exists a
sequence (τn) of positive numbers, with limn→∞ τn = +∞, such that (V (τn, ·))n→∞
is a compact sequence in L1(RN). Notice that this is obviously equivalent to the com-
pactness of the sequence V (τn, ·) − FM , whose L1 norm is of the order of `(Uini) as
n→∞. Thus our strategy is the following: rather than using directly the equation on U ,
we consider the equation on the function U − U app[FM ]. We prove that for an appropri-
ate function Ũ , an inequality of the type (3.6) holds, with U replaced by U − U app[FM ].
Then, all the occurrences of ‖U(τ)‖L1(RN ) in the proof of Proposition 3.2 are replaced by
‖(U − U app[FM ])(τ)‖L1(RN ), which converges towards `(Uini) as τ →∞. Thus the same
arguments which led us to compactness in the case when ‖Uini‖L1(RN ) is small show that
compactness holds, provided `(Uini) is small enough.

Let us now retrace the main lines of the proof: first, consider a function Uini ∈ L1(RN)

such that Uini ∈ L2((1 + |x|2)m/2) for some sufficiently large m (to be chosen later). Set
M =

∫
RN Uini and

W (τ, x) = U(τ, x)− U app[FM ](τ, x; eτ ).

In the rest of the proof, for the sake of brevity, we will write U app(τ, x) as a short-hand for
U app[FM ](τ, x; eτ ). Then the following properties hold

W ∈ L∞loc([0,∞), L2((1 + |x|2)m/2)) ∩ L2
loc([0,∞), H1((1 + |x|2)m/2)),

∃C > 0, ∀τ ≥ 0, ‖W (τ, ·)‖L∞(RN ) ≤ CeNτ ,

lim
τ→∞
‖W (τ)‖L1(RN ) = `(Uini).
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Moreover, using Lemma 2.5, we deduce that W satisfies

∂τW = divx(xW ) + ∆xW −Rdivx ((α1(z)− c)W )

−RN+1divx

[
B̃1

(
z,

U

RN

)
− B̃1

(
z,
U app

RN

)]
+U rem,

with R = eτ , z = Rx+ cR
2−1
2

, and we recall that the remainder U rem satisfies

‖U rem(τ)‖L∞(RN ) + ‖U rem(τ)‖L2(eγ|x|2 ) ≤ Ce−τ (4.6)

for some γ > 0.

Then, using the bounds on U,U app together with the regularity assumptions on B̃, it
can be easily proved that

B̃1

(
z,
U(τ, x)

RN

)
− B̃1

(
z,
U app(τ, x)

RN

)
= 2α2(z)f0(z)

FM(x)W (τ, x)

R2N
+ b(τ, x),

and the function b is such that there exists C > 0 such that

∀(τ, x) ∈ R+ × RN , |b(τ, x)| ≤ C

(∣∣∣∣W (τ, x)

RN

∣∣∣∣2 +
|W (τ, x)|
R2N+1

+
|U app(τ, x)|3

R3N

)
.

We define a function W̃ by

W̃ (τ, x) = W0(x, z) + e−τW1(x, z),

with W0(x, z) = f0(z)hm(x) and

−∆zW1 + divz(α1W1) = 2∆yzW0 − divx((α1 − c)W0)− 21N=1divz(α2f0FMW0).

Notice that by definition of f0 and c, the compatibility condition is always satisfied, and

W1(x, z) = f1(z) · ∇yhm(x) + 1N=1w1(z)FM(x)hm(x),

with
−∆zw1 + divz(α1w1) = −2divz(α2f

2
0 ).

Let τ0 > 0 such that

W̃ (τ, x) ≥ 1

2
f0(z)hm(x) ∀τ ≥ τ0, ∀y ∈ RN .

For further purposes, we also choose τ0 such that

‖W (τ, ·)‖L1(RN ) ≤ 2`(Uini) ∀τ ≥ τ0.
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(Notice that if `(Uini) = 0 there is nothing to prove).
Using calculations similar to the ones performed in the proof of Proposition 3.2, we

infer that for τ ≥ τ0,

d

dτ

∫
RN

∣∣∣∣WW̃
∣∣∣∣2 W̃ (τ) +

m−N
4

∫
RN

∣∣∣∣WW̃
∣∣∣∣2 W̃ (τ) + 2

∫
RN

∣∣∣∣∇(WW̃
)∣∣∣∣2 W̃ (τ)

≤ C

∫
RN

(
W (τ, x)

W̃ (τ, x)

)2
dx

(1 + |x|2)1+m
2

+Ce(1−N)τ

∫
RN
|W (τ, x)|2

∣∣∣∣∇(W (τ, x)

W̃ (τ, x)

)∣∣∣∣ dx
+Ce−Nτ

∫
RN
|W (τ, x)|

∣∣∣∣∇(W (τ, x)

W̃ (τ, x)

)∣∣∣∣ dx
+Ce(−2N+1)τ

∫
RN
|U app(τ, x)|3

∣∣∣∣∇(W (τ, x)

W̃ (τ, x)

)∣∣∣∣ dx
+

∫
RN

∣∣∣∣W (τ, x)

W̃ (τ, x)

∣∣∣∣ |U rem(τ, x)| dx.

Using the same arguments as in the third step of the proof of Proposition 3.2, we deduce
that if m > 2(N + 1),

C

∫
RN

(
W (τ, x)

W̃ (τ, x)

)2
dx

(1 + |x|2)1+m
2

≤ m−N
20

∫
RN

∣∣∣∣W (τ)

W̃ (τ)

∣∣∣∣2 W̃ (τ)

+
1

3

∫
RN

∣∣∣∣∇(W (τ)

W̃ (τ)

)∣∣∣∣2 W̃ (τ)

+C`(Uini)
2.

Similarly, the calculations of the fourth step in the proof of Proposition 3.2 yield

e(1−N)τ

∫
RN
|W (τ, x)|2

∣∣∣∣∇x

(
W (τ, x)

W̃ (τ, x)

)∣∣∣∣ dx
≤ C‖W (τ)‖1/N

L1(RN )

[∫
RN

∣∣∣∣W (τ)

W̃ (τ)

∣∣∣∣2 W̃ (τ) +

∫
RN

∣∣∣∣∇(W (τ)

W̃ (τ)

)∣∣∣∣2 W̃ (τ)

]

≤ C`(Uini)
1/N

[∫
RN

∣∣∣∣W (τ)

W̃ (τ)

∣∣∣∣2 W̃ (τ) +

∫
RN

∣∣∣∣∇(W (τ)

W̃ (τ)

)∣∣∣∣2 W̃ (τ)

]
.

The two additional terms coming from the estimation of b can be easily bounded thanks
to the Cauchy-Schwarz inequality. For τ ≥ τ0, and τ0 large enough, we have

Ce−Nτ
∫

RN
|W (τ)|

∣∣∣∣∇y

(
W (τ)

W̃ (τ)

)∣∣∣∣+ Ce(1−2N)τ

∫
RN
|U app(τ)|3

∣∣∣∣∇y

(
W (τ)

W̃ (τ)

)∣∣∣∣ dx
≤ m−N

20

∫
RN

∣∣∣∣W (τ)

W̃ (τ)

∣∣∣∣2 W̃ (τ) +
1

3

∫
RN

∣∣∣∣∇(W (τ)

W̃ (τ)

)∣∣∣∣2 W̃ (τ) + C.
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Eventually, using the Cauchy-Schwarz inequality together with the bound (4.6), we infer
that ∫

RN

∣∣∣∣W (τ, x)

W̃ (τ, x)

∣∣∣∣ |U rem(τ, x)| dx

≤ ‖U rem(τ)‖L2(W̃ (τ)−1)

(∫
RN

∣∣∣∣W (τ)

W̃ (τ)

∣∣∣∣2 W̃ (τ)

)1/2

≤ C‖U rem(τ)‖L2(eγ|x|2 )

(∫
RN

∣∣∣∣W (τ)

W̃ (τ)

∣∣∣∣2 W̃ (τ)

)1/2

≤ Ce−τ

(∫
RN

∣∣∣∣W (τ)

W̃ (τ)

∣∣∣∣2 W̃ (τ)

)1/2

≤ C +
m−N

20

∫
RN

∣∣∣∣W (τ)

W̃ (τ)

∣∣∣∣2 W̃ (τ).

Gathering all the terms, we deduce that there exists a constant Cm, depending only on
N and m, such that if `(Uini) ≤ Cm, then for all τ ≥ τ0,

d

dτ

∫
RN

∣∣∣∣W (τ)

W̃ (τ)

∣∣∣∣2 W̃ (τ) +
m−N

20

∫
RN

∣∣∣∣W (τ)

W̃ (τ)

∣∣∣∣2 W̃ (τ) +

∫
RN

∣∣∣∣∇(W (τ)

W̃ (τ)

)∣∣∣∣2 W̃ (τ) ≤ C.

Compactness of a subsequence W (τn) follows. Hence the ω-limit set is non-empty, and
thus `(Uini) = 0.

Appendix A

Lemma A.1. Assume that the fluxA satisfies (1.4), (1.5). Let v ∈ W 1,∞(TN) be a periodic
stationary solution of (1.1), and let u ∈ L∞loc([0,∞), L∞(RN)) ∩ C([0,∞), L1

loc(RN))

be the unique solution of (1.1) with initial data uini ∈ v(y) + L1 ∩ L∞(RN). Then
u ∈ L∞([0,∞)× RN).

Proof. This result was proved in [8] in the case N = 1. When N ≥ 2, the proof goes
along the same lines; the only difference lies in the use of the Sobolev embeddings, which
depend on the dimension. Hence we merely recall here the main steps of the proof, with
an emphasis on the case N ≥ 2.

In the rest of the proof, we set f(t, y) = u(t, y)− v(y). Then f solves the equation

∂tf + divyB(y, f)−∆yf = 0, (4.7)

and according to (1.5) the flux B is such that for all f ∈ R,

|divyB(y, f)| ≤ C(|f |+ |f |n),

|∂fB(y, f)| ≤ C(|f |+ |f |n),
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where the exponent n is such that n < (N + 2)/N . Moreover,

‖f(t)‖L1(RN ) ≤ ‖uini − v‖L1(RN ) ∀t ≥ 0.

For q ≥ 1 arbitrary, multiply (4.7) by f |f |q−1, and integrate over RN . Using a few inte-
grations by parts (see [8]), we are led to

d

dt

∫
RN
|f |q+1 + cq

∫
RN

∣∣∣∇y|f |
q+1
2

∣∣∣2 ≤ Cq

(∫
RN
|f |q+1 +

∫
RN
|f |q+n

)
(4.8)

We then use Sobolev embeddings in order to control the Lq+1 and Lq+n norms in the
right-hand side. We distinguish between the cases N = 2 and N ≥ 3, since the space H1

is critical in dimension two.
• If N = 2, then H1(R2) ⊂ Lp(R2) for all p ∈ [2,∞). Interpolating Lq+n between

L1 and Lp for some p sufficiently large, we have, using the Gagliardo-Nirenberg-Sobolev
inequality

‖f‖Lq+n(R2) ≤ ‖f‖θL1(R2)‖f‖1−θ
Lp(R2) with

1

q + n
=
θ

1
+

1− θ
p

≤ ‖f‖θL1(R2)

∥∥∥|f | q+1
2

∥∥∥ 2(1−θ)
q+1

L
2p
q+1 (R2)

≤ Cp‖f‖θL1(R2)‖f‖
(1−θ)(q+1)

2p

L
q+1
2 (R2)

‖∇|f |
q+1
2 ‖

(1−θ)( 2
q+1
− 1
p)

L2(R2)

Notice that
2
q + n

q + 1
(1− θ) = 2

q + n− 1

(q + 1)
(

1− 1
p

) ,
and

q + n− 1

q + 1
< 1 ∀q ≥ 1

since n < (N + 2)/N . Thus, we choose p > 1 such that

(q + n)(1− θ)
(

2

q + 1
− 1

p

)
< 2.

Young’s inequality then implies that for all λ > 0, there exists a constant Cλ,q and expo-
nents q1, q2 such that∫

RN
|f |q+n ≤ λ

∥∥∥∇|f | q+1
2

∥∥∥2

L2(R2)
+ Cλ,q

(
‖f‖q1L1(R2) + ‖f‖q2

L
q+1
2 (R2)

)
. (4.9)

The other term in the right-hand side of (4.8) can be bounded in a similar fashion: we
have, for all λ > 0,∫

RN
|f |q+1 ≤ λ

∥∥∥∇|f | q+1
2

∥∥∥2

L2(R2)
+ Cλ,q

(
‖f‖q3L1(R2) + ‖f‖q4

L
q+1
2 (R2)

)
, (4.10)
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for some exponents q3, q4 which can be explicitely computed. Choosing an appropriate
parameter λ, we infer that there exist q1, q2, q3, q4 > 0 such that

d

dt

∫
RN
|f |q+1 + cq

∫
RN

∣∣∣∇y|f |
q+1
2

∣∣∣2
≤ Cq

(
‖f‖q1L1(R2) + ‖f‖q2

L
q+1
2 (R2)

+ ‖f‖q3L1(R2) + ‖f‖q4
L
q+1
2 (R2)

)
.

Using (4.10) one more time leads to

d

dt

∫
RN
|f |q+1 + cq

∫
RN
|f |q+1

≤ Cq

(
‖f‖q1L1(R2) + ‖f‖q2

L
q+1
2 (R2)

+ ‖f‖q3L1(R2) + ‖f‖q4
L
q+1
2 (R2)

)
.

Using a Gronwall-type argument, we infer that for all q ≥ 1,

f ∈ L∞([0,∞), L
q+1
2 (R2))⇒ f ∈ L∞([0,∞), Lq(R2)).

Since f ∈ L∞([0,∞), L1(R2)), we infer by induction on q that f ∈ L∞([0,∞), Lq(R2))

for all q ≥ 1.

•When N ≥ 3, we use the Sobolev embedding H1(RN) ⊂ Lp
∗
(RN), where

p∗ =
2N

N − 2
.

Interpolating Lq+n between L1 and L
p∗(q+1)

2 , we obtain

‖f‖Lq+n(RN ) ≤ ‖f‖θ
L
p∗(q+1)

2 (RN )
‖f‖1−θ

L1(RN )
≤

∥∥∥|f | q+1
2

∥∥∥ 2θ
q+1

Lp∗ (RN )
‖f‖1−θ

L1(RN )

≤ C
∥∥∥∇|f | q+1

2

∥∥∥ 2θ
q+1

L2(R2)
‖f‖1−θ

L1(RN )
,

where the parameter θ ∈ (0, 1) is given by

1

q + n
=

2θ

p∗(q + 1)
+

1− θ
1

.

It can be checked that

n <
N + 2

N
⇒ θ(q + n)

q + 1
< 1.

Hence (4.9) holds when N ≥ 3. Inequality (4.10) is proved with similar arguments. As
in the two-dimensional case, we deduce that f ∈ L∞([0,∞), Lq(RN)) for all q. Using
Theorem 8.1 in Chapter III of [16] (see [8] for details), we infer eventually that f ∈
L∞([0,∞)× RN).



Stability of stationary solutions of scalar conservation laws 47

Appendix B

Lemma A.2. Let M > M ′ be arbitrary. Then

FM(y) > FM ′(y) ∀y ∈ RN .

As a consequence,
‖FM − FM ′‖L1(RN ) = M −M ′.

Proof. The arguments are exactly the ones which lead to the uniqueness of stationary
solutions of (2.13), (2.15), and they can be found in [1]. We recall the main steps below
for the reader’s convenience.

Let F := FM − FM ′ . Then F ∈ L1 ∩ C2(RN), and
∫

RN F > 0. Hence the set

Θ := {x ∈ RN , F (x) > 0}

is non-empty. The idea is to prove that F+ = F1Θ satisfies a linear elliptic equation; since
F+ ≥ 0, the strong maximum principle entails that F+ cannot vanish anywhere, and thus
F+(x) > 0 for all x ∈ RN .

Let us now derive an equation on F+. Substracting the equations on FM and FM ′ , we
have

−
∑

1≤i,j≤N

ηi,j
∂2F

∂xi∂xj
+ divx(bF ) = 0,

where
b(x) = a(FM(x) + FM ′(x))− x, x ∈ RN ;

notice that a = 0 if N ≥ 2. Since F ∈ H2(RN), we have

divx(bF )1Θ = divx(bF+)

almost everywhere. Thus, we obtain

−
∑

1≤i,j≤N

ηi,j1Θ
∂2F

∂xi∂xj
+ divx(bF+) = 0.

Integrating the above equation on RN leads to∫
Θ

∑
1≤i,j≤N

ηi,j
∂2F

∂xi∂xj
= 0.

Let us now perform the change of variables (2.18), which changes the matrix η into iden-
tity: setting F̃ (y) = F (Py), and Θ̃ := {F̃ > 0}, we infer∫

Θ̃

∆yF̃ = C

∫
Θ

∑
1≤i,j≤N

ηi,j
∂2F

∂xi∂xj
= 0.
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Moreover, F̃ ∈ H2 ∩W 2,1(RN), and thus Lemma 7 in [1] applies. We deduce that

∆y(F̃1Θ̃) = 1Θ̃∆yF̃ ,

and thus ∑
1≤i,j≤N

ηi,j1Θ
∂2F

∂xi∂xj
=

∑
1≤i,j≤N

ηi,j
∂2F+

∂xi∂xj
.

Eventually, F+ solves the elliptic equation

−
∑

1≤i,j≤N

ηi,j
∂2F+

∂xi∂xj
+ divx(bF+) = 0,

with b ∈ L∞loc(RN). Using either a unique continuation principle or Harnack’s inequality
(see [13], Theorem 8.20), we infer that if F+ vanishes at some point x in RN , then F+

is identically zero on RN , which is absurd. Hence F+(x) > 0 for all x ∈ RN , and thus
RN \Θ = ∅, which means that F (x) > 0 for all x ∈ RN .
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