LONG TIME BEHAVIOR OF PARABOLIC SCALAR
CONSERVATION LAWS WITH SPACE PERIODIC FLUX
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ABsTRrRACT. This paper is concerned with the stability of stationary solutions
of the conservation law d;u + divyA(y,u) — Ayu = 0, where the flux A is
periodic with respect to its first variable. Essentially two kinds of asymptotic
behaviors are studied here: the case when the equation is set on R, and the
case when it is endowed with periodic boundary conditions. In the whole space
case, we first prove the existence of standing shocks which connect two different
periodic stationary solutions to one another. We prove that standing shocks
are stable in L', provided the initial disturbance satisfies some appropriate
boundedness conditions. Furthermore, a recent result enables us to extend this
stability property to arbitrary initial data. In the periodic case, we prove that
periodic stationary solutions are always stable. The proof of this result relies
on the derivation of uniform L°° bounds on the solution of the conservation
law, and on sub- and super-solution techniques.
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1. INTRODUCTION

This paper is devoted to the analysis of the long-time behavior of the solution
w € C([0,00), Lo (Q)) N L, ([0, 50), L=(Q)) of the equation

loc loc
W Ou+ divy Ay, u) —Ayu=0, t>0, yeQ,
Up—o = ug € L>(Q).

Above, @ denotes either R or TV, the N-dimensional torus (TV = RY /Z"), and
Ae VVli)’COO (TY x R)V is an N-dimensional flux (with N = 1 when Q = R).
Heuristically, it can be expected that the parabolicity of equation (1) may yield
some compactness on the trajectory {u(t)}:>0. Hence, it is legitimate to conjecture
that the family w(t) will converge as ¢ — oo towards a stationary solution of (1).
Such a result was proved when @ = TV by the author in [7] for a certain class
of initial conditions, namely when wug is bounded from above and below by two
stationary solutions of (1). This kind of assumption is in fact classical in the
framework of conservation laws which admit a comparison principle: we refer for
instance to [3]|, where the authors study the long time behavior of the fast diffusion
equation, and assume that the initial data is bounded by two Barenblatt profiles.
The same kind of assumption was made in the context of traveling waves by Stanley
Osher and James Ralston in [19]; let us also mention the review paper by Denis
Serre [22], which is devoted to the stability of standing shocks of scalar conservation
laws, and in which the author assumes at first that the initial data is bounded from
above and below by shifted standing shocks. Nonetheless, in [12] (see also [21, 22]),
1
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Heinrich Freistiihler and Denis Serre remove this hypothesis, and prove that shock
stability holds under a mere L' assumption on the initial data.

The goal of this paper is to extend the result of [7] to arbitrary initial data, that
is, to prove that solutions of (1) converge towards a stationary solution for any
initial data ug € L (TY). We also tackle similar issues on the stability of standing
shocks in dimension one, when the equation is set on the whole space case (Q = R).
Thus, a large part of the paper is devoted to the proof of the existence of standing
shocks, and to the analysis of their properties. We will see that the question of
shock stability reduces in fact to the stability of periodic stationary solutions of (1)
in L'(R), an issue which is treated in the companion paper [8].

The proof of stability in the periodic setting relies strongly on the derivation
of uniform L> bounds on the family {u(t)};>0. In the whole space case, the first
step of the analysis is to prove the property for initial data which are bounded
from above and below by standing shocks; in fact, this result is similar to the one
proved in [7], and uses arguments from dynamical systems theory, following an idea
by S. Osher and J. Ralston [19] (see also [22, 2]). But the derivation of uniform
L bounds is not sufficient to obtain a general stability result in the whole space
case. Thus the idea is to use existing results on the stability of stationary periodic
solutions of (1) in L'(R). This question was addressed, when the flux A is linear, by
Adrien Blanchet, Jean Dolbeault, and Michal Kowalczyk in [4]. Their techniques
were then extended to arbitrary fluxes by the author in [8].

Throughout the paper, we use the following notation: if v € L*(TY),

<v>:/TNU.

We denote by L§(Q) the set of integrable functions with zero mass:
L)@ = (ue L'Q), [ u=o0}.
Q

Following [16], for a € (0,1), we define, if I is an interval in (0,00) and Q is a
domain in RV,

H2*(IxQ) ={uecClxQ), 1]l frasz.a(rxo) < 00},
where

HUHH%"’(IXQ) = max _ |u(t, x)]

(t,z)eIxQ
by ol ) e
(2,4)EIXQ, |t —t'|e/? (2,4)EIXQ, lo —a/|> 7
(z',t")eIxQ, (z',t")eIxQ,
[t—t'|<p lz—z'|<p

above, p is any positive number. We also set

C*(Q) := {u €C(), sup u(z) = u(@)) < +oo} .

(z,2")€N? |$ - $/|a

Eventually, for f € LL _(R), h € R, we set 7,f = f(- + h).

loc
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2. MAIN RESULTS

Before stating our main results, we recall general features of equation (1), to-
gether with some facts related to the stationary solutions of this equation.

In the rest of this paper, we denote by S; the semi-group associated with equation
(1). Notice that S; is always well-defined on L*°(Q), thanks to the papers by
Kruzkov [14, 15]. Moreover, we recall that the following properties hold true (these
are called the Co-properties in [22]):

e Comparison: if a,b € L*°(Q) are such that a < b, then Sia < S;b for all
t>0.

e Contraction: if a,b € L>°(Q) are such that a—b € L*(Q), then S;a—S;b €
LY(Q) for all t > 0 and

ISea — Sybllrs < |la— bl V¢ > 0.

e Conservation: if a,b € L>°(Q) are such that a — b € L'(Q), then S;a —
Sib € LY(Q) for all t > 0 and

/Q(StaStb)/Q(ab) vt > 0.

Thanks to the Contraction property, the semi-group S; can be extended on L>®(Q)+
LY(Q). The so-called “Constant property” in [22] is not true in the present setting,
since the flux A does not commute with translations. In other words, constants
are not stationary solutions of equation (1) in general. The existence of space-
periodic stationary solutions of (1) was proved by the author in [6], and we recall
the corresponding result below:

Proposition 2.1. Let A € W2(TN x R)N. Assume that there exist Co > 0,

loc

m € [0,00), n € [0, %) when N > 3, such that for all (y,p) € TV x R
(2) 0pAi(y;p)| < Co (1 +[p|™) V1<i<N,
(3) |divy Ay, p)| < Co (1 +[p|").
Assume as well that one of the following conditions holds:
(4)
m=0o0or0<n<1or <n < min <N;7r2,2> and 3py € R, div,A(-,po) = O> .
Then for all p € R, there exists a unique solution v(-,p) € HL, (TN) of the

per
equation

(5) _Avv(yvp) + leyA(ya U(yap)) = 07 <U(,p)> = D-
The family (v(-,p))per satisfies the following properties:

(i) Regularity estimates: For all p € R, v(-,p) belongs to W2A(TN) for all 1 <
q < oo and additionally

(6) VR>0 3Cr>0 Vpe[-R,R] [lv(p)llwzarr) < Cr.
(ii) Growth property: if p > p', then

v(y,p) > v(y,p) VyeTV.
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(iii) Behavior at infinity: assume that

(7) sup 106 A(, V)] poc () < 400

Then

lim sup v(y,p) =—o0, lim inf v(y,p) = +oc.
P =00 yeTN p—HooyeTw

Remark 1. Assumption (4) is not completely optimal, as some examples in [6]
show; in particular, it would be interesting to have an existence theory wich unites
the three regimes in (4). However, it is proved in [6] that the exponent (N + 2)/N
in assumption (4) is optimal in the following sense: consider a flux A of the type

Aly,u) = Vyo(y)(L+[ul*)"?, y e TV, ueR.

Then if n > (N + 2)/N, there exists ¢ € C*(TV) and p_ < py in R such that
equation (5) has no solutions for p ¢ [p_, p4].

2.1. A priori bounds for solutions of scalar conservation laws. Our first
result is concerned with the derivation of a priori bounds in L> which are uniform
in time. Notice that such a result is not trivial in general: in the homogeneous
case, that is, when the flux A does not depend on the space variable x, this result
follows from the comparison principle stated earlier. However, in the present case,
this argument does not hold, since constants are not stationary solutions of (1).
Of course, if there exists a constant C such that ug < v(-,C), then the comparison
principle entails that Siug < v(-,C). Hence, the derivation of a priori bounds is
easy when the initial data is bounded from above and below by solutions of equation
(5). Consequently, the goal of this paragraph is to present similar results when the
initial data does not satisfy such an assumption.

Proposition 2.2. Assume that the flux A satisfies the assumptions of Proposition
2.1. Assume also that for all K > 0, there exists a positive constant C, such that
for allv € [-K, K], for all w € R,

®) |divy A(y, v +w) — div, Ay, v)| < Ck(lw] + |w|™),
10, A(y, v+ w) — 9, A(y,v)| < Cr(|lw|+ |w|™),

where n < (N +2)/N.
Let ug € L*™(Q), and assume that there exists a stationary solution Uy €
Wo(Q) of (1) such that ug € Uy + L*(Q).
Then
sup [|Syuo|| L= (@) < +00-
>0

Notice that in the above proposition, we do not assume that the stationary
solution Uy is periodic. Thus Uy is not necessarily a solution of equation (5), and
may be, for instance, a standing shock (see Proposition 2.4 below). In the periodic
case, any function ug € L* is such that ug — v(+,0) € L(T%), and thus the result
holds for all functions in L°.

Remark 2. First, let us emphasize that assuming polynomial growth for the flux A
in (2), (3), (8) is classical in the framework of boundedness theorems for parabolic
equations, see for instance the book [20] by P. Quittner and P. Souplet. Moreover,
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the result in Proposition 2.2 may be compared with blow-up theorems for super-
linear parabolic equations with gradient terms. For instance, the article [1] by J.
Aguirre and M. Escobedo (see also Chapter 4 in [20]) is dedicated to the study of
equations of the type

9) ou— Ayu = ululP~t +a-Vy(uultt), t>0,yeRY,

with p > 1, ¢ > 1 and @ € RY. Blow-up and global existence results are given,
depending on the value of the parameters p and g. Notice that equation (1) falls
more or less into the regime ¢ > p: indeed, in (1), there is no term u|u[P~! in the
right-hand side. Thus the (conservative) gradient term “dominates” u|u|P~?.

In the regime ¢ > p, it is proved in [1, 20] that solutions of (9) are global, and
that

sup ||u(t>||Loe(RN) < 400,
t>0

which is coherent with Proposition 2.2. However, it is also proved in [1, 20] that in
the regime

1
N ’+N+1

there is blow-up in finite time. Thus Proposition 2.2 is suprising in this regard.

N +2 2
QSpémin( i q )

Remark 3. Proposition 2.2 remains true when Q = RY with N > 2. The proof is
essentially the same as the one in Section 5 in the case ) = R, with minor changes
due to the dependance of Sobolev embeddings with respect to the space dimension.
The details are given in the Appendix of [§].

2.2. Stability of stationary periodic solutions in the periodic case. The
derivation of uniform a priori bounds for the solutions of equation (1) allows us to
extend the stability results proved in [7] to general classes of initial data. Let us
first recall the stability result of [7]:

Proposition 2.3. Assume that the flux A satisfies the assumptions of Proposition
2.1. Let ug € L=(TY) such that there exists 31, 32 € R such that

(10) v(-, B1) < up < (-, Pa).
Then ast — oo
Siug — v(+, (ug)) in LOO(TN).

It was also proved in [7] that under additional regularity assumptions on the flux
A, the speed of convergence is exponential, due to a spectral gap result.
We now remove assumption (10) thanks to Proposition 2.2:

Theorem 2.1. Assume that the flux A satisfies the assumptions of Proposition
2.1, together with (8). Then for all ug € L>(TY), as t — oo,

Syug — (-, (ug)) in L°(TN).

The proof of this result relies mainly on Proposition 2.2 and on sub- and super-
solution methods based on the Comparison principle. Once again, it can be proved
that the speed of convergence is exponential, provided the flux A is sufficiently
smooth. For more details regarding that point, we refer to [7].
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2.3. Existence of standing shocks. We now consider equation (1) set in @ = R.
Our goal here is to prove the stability of a special class of stationary solutions, called
“standing shocks”. By analogy with the definition in [22] of shocks in homogeneous
conservation laws, a standing shock is a stationary solution U of equation (1) which
is asymptotic to solutions of equation (5) at infinity, namely

Apipy) €R% - lim (Uy) —v(y,p)) =0, lim (U(y) = v(y.pr)) =0.

Because of the spatial dependence of the flux A, it does not seem to be possible
to restrict the study of general shocks to standing shocks. For that matter, we wish
to emphasize that the definition of a viscous shock with non-zero speed should not
be exactly the same as in [22]; indeed, it can be easily checked that if

u(t,z) = U(x — st)
is a solution of (1), then s = 0 necessarily. Thus, for s # 0, a standing shock is a
solution of (1) of the form
u(t,z) =U(t,x — st),

where for all ¢, U(t) is asymptotic to solutions of equation (5) at infinity. This is
related (although not equivalent to) the definition of traveling pulsating fronts, see
for instance the paper of Xue Xin [23]. The existence of non-stationary shocks and
their stability is beyond the scope of this paper, and thus, we will focus on standing
shocks from now on.

Our first result is concerned with the existence of standing shocks. We define
the averaged (or homogenized) flux A by

Alp) = /A(y, v(y.p)) dy,
T
where v(-, p) is the solution of the cell problem (5) with mean value p.

Proposition 2.4 (Existence of standing shocks). Assume that there exists p~,pT €
R such that p~ < p™ and

(11) ApT)=Alp7) =t a,
and define vs := v(-, pT).
Let Uy € R such that
v_(0) < Uy < v4(0),

and let U : I — R be the mazimal solution of the differential equation

(12) ) A, U@) o
(13) Uao = Us.

Then U satisfies the following properties:

(1) The function U is a global solution of (12); in other words, I = R.
(ii) For all z € R,
v_(2) SU() < vy (2);
(iii) There exist q;,q, € [p~,p*] such that A(q) = A(g,) = o and

TEIPw(U(x) —v(z,q)) =0, TEI_{IDO(U(JJ) —v(z,q.)) = 0.

As a consequence, the solution U of (12)-(13) is a standing shock.
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Remark 4. (i) Assumption (11) is the analogue of the Rankine-Hugoniot con-
dition for homogeneous conservation laws. It is in fact a necessary condition,
as demonstrated in Lemma 3.1 below.

(ii) The solution of (12)-(13) may in fact be a periodic stationary solution of (1)
(notice that our definition allows periodic solutions to be standing shocks; in
this case, the asymptotic states are identical). This occurs if and only if there
exists p € (p—,p+) such that

A(p) = a and v(0,p) = u.

We refer to Corollary 2.1 below for more details.
(iii) In general, the asymptotic states v(-,q;), v(,q,) are different from v(-,p™"),
v(-,p~). Proposition 2.4 only ensures that

Alq) = Algr) = A(p™).
However, the asymptotic states can be identified:

Corollary 2.1. Assume that the hypotheses of Proposition 2.4 are satisfied. Then
the following properties hold:
(i) There ezists a standing shock connecting v(-,p~) and v(-, p) if and only if
(14) Vpe (p~,p"), Alp) # .
In this case, there exists an infinity of such shocks.
(ii) With the notation of Proposition 2.4, let

gy = inf {p € pt,p],Us <v(0,p) and A(p)
q— =sup{p € [p*,p7],Up > v(0,p) and A(p)

a}l,
ol
Then

{a;ar} = {q4,0-}-
In particular, if g+ = q—, then U is a periodic stationary solution of (1).

2.4. Stability of standing shocks in the whole space case. We are now ready
to state results on shock stability for equation (1). Our first result is the analogue
of Proposition 2.3: indeed, Theorem 2.2 below states that S;ug converges towards
a standing shock, provided ug is bounded from above and below by the asymptotic
states of the shock. In view of Theorem 2.1, it is natural to expect that this result
remains true for arbitrary initial data. Unfortunately, we have not been able to
provide a simple proof of this result in complete generality: we merely prove that
stationary shocks are stable in L! provided stability holds (in L*(R)) for solutions
of equation (5).
Theorem 2.2. Assume that the flux A satisfies the assumptions of Proposition
2.1. Let p;,p, € R such that p; # p, and A(p,) = A(p)) =: «, and assume that
A, py,pr satisfy Oleinik’s condition (14).

Let U be a standing shock connecting v(-,p;) to v(-,p.). Let ug € U+ L (R) such
that for almost every x € R,

(15) U(I7min(plapr)) < UJO(I) < U(zvmax(plapr))'

Then there exists a standing shock V' connecting v(-,p;) to v(-,p,) and such that
u € V + L}(R). Moreover,

Jin [[Syuo = V[ 1 gy = 0-
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As outlined before, hypothesis (15) should be compared with assumption (10).
Thus, the next step would be to prove that stability holds even when (15) is false.
In fact, we are able to prove the following:

Proposition 2.5. Assume that the fluz A satisfies the assumptions of Proposition
2.2. Let p;,pr € R such that p; # pr, A(p,) = A(p1), and such that (14) is satisfied.
Assume that the following assertion is true:

(H) For p € {pi,p+}, there exists § > 0 such that for all ug € v(-,p) + L}(R) ,
luo —v(p)lh < 6 = Jim [[Spuo —v(-,p)l|z ey =0

Let U be a standing shock connecting v(-,p;) to v(-, p,), and let ug € U + L*(R).
Then there exists a standing shock V' connecting v(-,p;) to v(-,p,) and such that
u €V + L{(R). Moreover,

tlg{.lo ([ Seuo — V”Ll(]R) =0.

Let us now discuss the validity of assumption (H). If the flux A is linear, namely

if
Aly,u) =a(y)u yeTV, ueR,

then the analysis performed by A. Blanchet, J. Dolbeault and M. Kowalczyk (see
[4]) shows that (H) holds, under some technical assumptions on the fourth order
moments of the solutions of (1). This result was then extended to nonlinear fluxes
by the author. More precisely, it is proved in [8] that (H) holds for all fluxes
A € WP(T x R) satisfying (8). Hence the following result follows:

Corollary 2.2. Assume that the fluz A € W>°(T x R) satisfies the assumptions
of Proposition 2.2. Let p;,p, € R such that p; # p,, A(p,) = A(p;), and such that
(14) is satisfied.

Let U be a standing shock connecting v(-,p;) to v(-, p,), and let ug € U + L*(R).
Then there exists a standing shock V' connecting v(-,p;) to v(-,p,) and such that

u € V + Li(R). Moreover,
Jim [[Spuo = V[ 1 gy = 0-

The plan of the paper is the following: given the similarity between the state-
ments for periodic solutions when Q = TV, and stationary shocks when Q = R,
we first prove the existence of standing shocks (i.e. Proposition 2.4) and the shock
stability result under boundedness conditions on the initial data (i.e. Theorem 2.2)
in sections 3 and 4 respectively. At this stage, we are able to treat both models
simultaneously, and thus we prove Proposition 2.2 in Section 5. Section 6 is devoted
to the proof of Theorem 2.1, and at last, we show Proposition 2.5 in Section 7.

Throughout the paper, we will often denote by v(p) the function v(-,p) (i.e. the
solution of (5)), for the sake of brevity.

3. EXISTENCE OF ONE DIMENSIONAL STATIONARY STANDING SHOCKS

This section is devoted to the proof of Proposition 2.4 and Corollary 2.1, together
with a number of results related to standing shocks which will be useful in the proof
of Theorem 2.2. These auxiliary results (monotonicity, integrability of the difference
between two standing shocks, etc.) can be found in paragraph 3.4.

We begin with some comments on assumption (11).
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3.1. Analysis of necessary conditions.

Lemma 3.1. Let q,q, € R, and let U € WH2°(R) be such that

U(z) —v(z,q) =0 asx — —o0,
U(a;) —v(x,q) — 0 asx — o0,
d Zc(f) + %(A(x, U(x))) = 0.
Then A(q,) = A(q) =: a, and u satisfies
dU (z)
 dx

+ A(z,U(z)) = a.

Proof. We deduce from the differential equation that there exists a constant C such
that 1U(2)
x
— Alz,U)=C
B d.’L‘ + (x: ) Y
and the goal is to prove that A(g.) = C = A(q;). We recall first that for all p € R,
v(-,p) is a solution of

ov(z,p _
2D A vfa.) = Al).
4
Indeed, integrating (5) on R, we infer that for all p € R there exists a constant C)

such that du(z.p)
v(x,p
- 8217 +A($,U($,p)) = CP

Taking the average of the above equality over T, we deduce that C), = A(p).
As a consequence, we have
d _

(16)  —— (U(z) —v(z,¢:)) + [A(z, U(2)) - Alz, v(z,¢-)] = C — Alar)

Now, let § > 0 arbitrary. There exists x,, > 0 such that
z>ar = (U(x) —v(z,q)| <6, Az, U(r)) — Az, v(2, ¢:))] <9).
Integrating (16) on the interval [z, z, + 1], we deduce that
€~ Alg)] < 36,

Since the above inequality is true for all § > 0, we infer that C' = A(g,). The other
equality is treated similarly.

Vr € R,

O

Remark 5. Notice that couples (p;, p,) such that p; # p, and A(p;) = A(p,) do
not always exist. Indeed, consider the case of a linear flux A(z,v) = a(z)v, with
a € CY(T). Then, for all p € R, we have v(x,p) = pm(z), where m is the unique
probability measure on T satisfying

Pm(x d

- dac(2 ) + %(a(a:)m(x)) =0, zeT.
The positivity of m is a consequence of the Krein-Rutman Theorem; we refer to [6]
for more details.
Therefore, for all p € R,

A(p) = (av(-, p)) = p (am).
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Hence, as long as (am) # 0, A(p) # A(q) for all p,q € R such that p # ¢. In
particular, if a is a non-zero constant, assumption (11) is never satisfied.

3.2. Proof of Proposition 2.4. We begin with the a priori bound (ii), from
which we deduce that u is a global solution.

The inequality (ii) follows directly from classical results in differential equations;
indeed, assume that there exists g € I such that

U(xo) > v (wo);

since U(0) < v4(0), there exists z1 € [0, o] such that U(z1) = vy (z1). But U and
vy are solutions of the same first-order differential equation, whence the Cauchy-
Lipschitz Theorem implies that U = v, which is false. Thus

(17) U(z) <vy(z) Veel.

The lower bound is proved in the same way.

As a consequence, we deduce that U remains bounded on its (maximal) interval
of existence I. Using once again the Cauchy-Lipschitz Theorem, we infer that
I =R, and thus U is a global solution.

We now tackle the core of Proposition 2.4. First, since the flux A is T-periodic,
the function U(- + 1) is also a solution of equation (12). Hence the function z —
U(x + 1) — U(z) keeps a constant sign on R, which entails in particular that for
all x € R, the sequences (U(z £ k))ren are monotonous. Consider for instance the
sequence of functions

Up:2€0,1] — Uz + k).
According to the above remarks, the sequence (Uy) is monotonous and bounded in
L*°; hence for all x € [0,1], Ux(x) has a finite limit, which we denote by Us ().
Moreover, thanks to the uniform bound (ii) and the differential equation (12), U
belongs to W1 (R), and thus the sequence Uy, is uniformly bounded (with respect
to k) in W°°([0,1]). Thus Us, € W2°([0,1]), and Uy is a continuous function.
According to Dini’s Theorem, we eventually deduce that Uy, converges towards Uy,
in L°°([0,1]). Notice that U, is periodic by definition, and passing to the limit
in equation (12), we deduce that Uy is a solution of (12). Hence Uy belongs to
W1°°(T) and satisfies

PU(z d
_ZT() + %(A(x, Ux(2))) =0,

which means exactly that Uy is a periodic solution of equation (5); according to
Proposition 2.1, there exists g, € R such that Us, = v(, ¢,-). Inequality (17) ensures
that

U((E,qr) < ’U+(£L’) Va € Ra

and thus ¢, < pT according to Proposition 2.1. In a similar way, ¢, > p~. Eventu-
ally, since Us is a solution of (12), we infer that a = A(g,). To sum up, we have
proved that there exists ¢, € [p~, pT], such that A(g,) = A(pT), and such that
lim sup |U(z+k)—v(x,q.) =0.
k—-+o0 z€[0,1]

The above convergence is strictly equivalent to U(x) —v(z, q,) — 0 as x — oo, and
thus the third point of the Proposition is proved. The limit as x — —oo is treated
similarly.



LONG TIME BEHAVIOR OF PARABOLIC SCALAR CONSERVATION LAWS 11

3.3. Proof of Corollary 2.1. We begin with the proof of (i), frow which (ii)
follows easily. First, assume that p™, p~ satisfy (14). We construct a standing shock
U with asymptotic states ¢, ¢, as in Proposition 2.4. Point (ii) in Proposition 2.4
entails that
{a,art C{pelp.p'], Ap)=a}={p~.p"}.

Hence we only have to prove that q; # ¢,: if ¢ = ¢;-, then the proof of Proposition
2.4 shows that U(- + k), k € Z is a monotonous sequence of functions, with the
same asymptotic states as k — £oo. Consequently, U(-+ k) is a constant sequence,
which means that the function U is periodic: we have

U(z) =v(z,q) Yz eR.

In particular, Uy = v(0, ¢;); since ¢, € {p~,p"} and Uy € (v(0,p~),v(0,p")), there
is a contradiction. Thus q; # ¢, and we infer that

{a, 0} ={p~ 0"}

Conversely, assume that there exists a standing shock U connecting v(-,p~) an
v(-,p*), and let us prove (14). Without loss of generality, assume that ¢ = p+,
¢r = p~. Assume by contradiction that there exists p € (p~,p*) such that A(p) =

«. Then
U(k) —v(k,q)=U(k) —v(0,q) k:;o 0,
keN
U(—k) —v(=k,q-) =U(=k) —v(0,q,) k:;o 0.
keN

Hence there exists ky,k_ € N such that
U(Oap) > U(k‘f‘)? U(O7p) < U(_k—)

Moreover, 74, U, 7_j_U and v(-, p) are all solutions of the differential equation (12).
The Cauchy-Lipschitz uniqueness Theorem entails that 74, U — v(-,p), 7—x_ U —
v(+,p) keep a constant sign on R. Thus for all z € R, we have

Ul +ky) =71, Ux) <v(z,p), Ul—-k)=7_ Ux)>v(z,p).

Since the function v is periodic, we infer that v(z,p) < U(x) < v(z,p) for all z € R,
which is absurd. Hence (14) holds.

Additionally, if (14) holds, than using the construction of Proposition 2.4, any
real number Uy € (v(0,p™),v(0,p™)) gives rise to a shock U[Up] connecting v(-,p~)
to v(-,pT). The Cauchy-Lipschitz Theorem entails that

YUy, U, U < Uy = UlUpl(z) < U[U{)(z) for all z € R.
In particular, U[Uy] # U[U{] for Uy # U{, which means that there is an infinite
number of shocks connecting v(-,p~) to v(-,p*). This completes the proof of (i).

We now tackle the proof of (ii). First, the continuity of v(y, p) with respect to p
and that of the flux A entail that

v(0,¢-) <Up <0(0,q4), Alg-) = A(gy) = e

) =
As a consequence, if ¢, = q_ =: g, then Uy = v(0,q) with A(g). Then v(-,q) is a
solution of (12)-(13), and thus the solution U of (12)-(13) is a periodic stationary
solution of (1).
We now assume that ¢ # ¢—. The same arguments as before show that

v(0,q-) < Uy < v(0,q4+).
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Moreover, by construction, g_, g+ satisfy assumption (14). According to point (i),
the solution U of (12)-(13) is a standing shock connecting v(-, ¢—) to v(-,q4). Thus
Corollary 2.1 is proved.

3.4. Further results on standing shocks. We have gathered in this paragraph
some results which will be important in the proof of Theorem 2.2. The first lemma
gives a criterion allowing us to distinguish the asymptotic states at f-oc.

Lemma 3.2. Let p;, p, € R such that A(p;) = A(p,), and let U be a standing shock
such that

lim [U(z) —v(z,p)] = lim [U(x)—v(z,p,)] =0.

Tr——00 r—-400
Then
(0u A v(m))) 2 0, (0 A(, v pr))) <0

Moreover, if one of the above inequalities is strict, then U converges exponentially
fast toward the corresponding solution of equation (5); for instance, if

ay = /&A(y,v(y,pr)) dy <0,
T
then for all a € (0, —a,), there exists a constant C, such that for all y € [0, c0),
|U(y) — v(y, pr)| < Cqexp(—ay).

Proof. Throughout the proof, we use the notation v(p) = v(-, p).
Since U is a standing shock and v(p;), v(p,) are solutions of equation (5), we
have
U'(z) = A(z,U(x)) —
v(z,p1) = Az, v(z,p1)) — @,
Opv(z, pr) = Az, v(z, pr)) —

where a denotes the common value of A(p;) and A(p,.).
Consequently, the function U — v(p,.), for instance, satisfies the linear equation

(18) 92(U(x) — v(z,pr)) = b(z)(U(z) — v(z,pr)),

where

«,

Q,

1
(@ = [ 0uAGw,1U@) + (1= (e, p) dr
0
Notice that since U converges towards v(p,) as x — 400, we obtain

(19) Tll}rf@ [b(x) — Oy A(x,v(x, p,))] = 0.

On the other hand, equation (18) implies that

U(e) - vl pr) = [U(0) — (0, p.)] exp ( [ v dy) |

Once again, since U — v(p,.) converges towards zero, we infer that

x

(20) lim b(y) dy = —o0.

r——+00 0
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The first statement of the proposition follows easily from (19), (20); indeed, assume
that @, > 0. Then there exists a positive number K such that
a
x> K= b(lL’) - 81)A(I,U(I,pr)) > 7§a
and consequently, using the fact that © — 9, A(z,v(x,p,)) is a periodic function,
we obtain for z > K

xT xT aﬂ,‘
/ by)dy > / B, Ay, vy, pr)) dy — (& — K) 2T
K K B 2
> Lx—KJ&T—x%—C
a,
> — — (.
> 5 C

The above inequality is obviously in contradiction with (20). Hence @, < 0, which
proves the first statement in the proposition.

Now, assume that a, < 0, and choose a € (0, —a,) arbitrary. As before, we pick
K > 0 such that

x> K = b(z) — 0,A(z,v(x,pr)) < —a, — a.

We then obtain an inequality of the type

/wa(y)dy < (-ap—a)(z—K)+ |z —Kla, +C
< —ax+C.

Inserting this inequality back into the formula for U — v(p,.) yields the exponential
convergence result.

]

The next result is concerned with the integrability of the difference between two
standing shocks.

Lemma 3.3. Let p;,p, € R such that p; # p, and A(p;) = A(p,.), and let U,V be
two standing shocks with asymptotic states v(-,p;), v(-, p,).
Then U —V € L*(R).
Proof. Set
Uy :=U(0), Vp :=V(0),
and assume for instance that Uy < Vy. If Uy = V, then U = V according to

the Cauchy-Lipschitz Theorem (see the proof of Proposition 2.4), and the result is
obvious. Thus we assume from now on that Uy < V4. As a consequence, we have

Yy € R, w(y,min(p;,pr)) <U(y) < V(y) < v(y, max(pi, pr)).

We recall that the sequence (U(k))rez is monotonous, and converges towards
v(0,p;) (resp. ©v(0,p,.)) as k — —oo (resp. k — +o00). Hence, there exists an
integer ko € Z such that

(21) Up < Vo < Ul(ko),

from which we infer that U <V < 7, U.
As a consequence, it is sufficient to prove that 7,U —U is integrable, for all k € Z.
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First, remember that 7,U — U has a constant sign, since 7,U and U are both
standing shocks. Thus we only have to prove that the family

[ 1<mU v

remains bounded as A — co. A simple calculation leads to

/A(TkU_U) = /A U(y+k)dy—/_A Uly) dy

—A —A A
k+A A
= / U(y)dy—/ Ul(y) dy
k—A —A
k+A k—A
= / Ul(y) dy*/ Uly) dy.
A —A

Thus, recalling that U is a bounded function, we obtain
sup

A
/ (el — 1)
A>0 —A

We deduce that 7,U —U € L'(R) for all k € Z, and eventually that U —V € L'(R)
according to (21).

< 2k[|U || oo (w)-

O
The next result is in fact the first part of the statement of Theorem 2.2:

Lemma 3.4. Let p;, p, € R such that the assumptions of Theorem 2.2 are satisfied,
and let U be a standing shock connecting v(-,p;) to v(-,pr).

Let w € U 4+ L'. Then there exists a unique standing shock V', with asymptotic
states v(-, p;) and v(-,p,), and such that u € V + L{(R).

Proof. According to Lemma 3.3, we already know that for every standing shock V,
we have u — V' € L'. Hence, the question is to find a standing shock V such that

(22) /R (u—V)=0.

Notice that such a standing shock is necessarily unique: indeed, the Cauchy-
Lipschitz uniqueness principle entails that the difference of two standing shocks
is a function which keeps a constant sign. Hence, if V7, V5, are standing shocks
satisfying [, (V1 — Vo) = 0, then Vi = V3.

We now prove that there exists a standing shock V' such that u—V € L§(R). As
before, we set p~ = min(p;, p,), pT = max(p;, p.). For all £ € (v(0,p™),v(0,pT)),
we denote by V¢ the solution of

dviz) _ Az, V(x)) — A(pr),

dx
‘/|:1::O = 5

Then, according to Proposition 2.4 and Lemma 3.3, for all £, V¢ is a standing shock
connecting v(p;) to v(p,), and additionally u — Ve € L*(R). Moreover, if £ > ¢',
then Ve(x) > Ve (x) for all z; hence the function

Fiée (0(0,p7),0(0,p%)) / (u(x) — Ve(w)) da
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is well-defined and decreasing with respect to &; using classical results on differential
equations, it can easily be proved that F' is continuous. We wish to find &; such
that F'(§y) = 0; thus it suffices to show that

lim F(£) >0 and lim F(&) <0.
§—v(0,p7)+ (©) §—v(0,p1) - ©

The above result is a direct consequence of Lebesgue’s monotone convergence The-
orem and of the fact that

(23) Vz € R, lim  Ve(z) = v(z,p7).
§—v(0,p7 )+

The same kind of result holds with v(p*). Let us now prove (23). Let R > 0 be
arbitrary, and let ¢ > 0. Without loss of generality, assume that p, = p~. Then
there exists K € N such that

z> K =v(z,p) <U(z) <v(z,p,) +e.
In particular, 7| 41U is a standing shock which satisfies
T+ r)+1U(x) <v(w,pr) +¢ Vo e[-R,R].
Let & := 754 | rj4+1U(0) = U(K + |R] +1). The Cauchy-Lipschitz Theorem entails
that Vi = 71| r)41U. As a consequence, for all { < ¢, for all z € [~ R, R], we have
v(x,pr) < Ve(x) < Ve(x) < v(z,pr) +e.

The convergence result (23) follows, and thus there exists a standing shock V such
that ug € V + L§(R).
O

The next lemma allows us to replace inequality (15) by an inequality in which
the upper and lower bounds are standing shocks, which will be useful in the proof
of Theorem 2.2 in Section 4.

Lemma 3.5. Let p;, p, such that the hypotheses of Theorem 2.2 are satisfied. Let
U be a standing shock connecting v(-,p;) to v(-,p,). Let u € L®(R) such that
u € U+ L}(R) and assume that for almost every y € R,

v(y, min(p,, pr)) < u(y) < vy, max(p,p))-

Let € > 0 be arbitrary. Then there exists a function u® € U + L{(R), together
with standing shocks U connecting v(p;) to v(p,), such that

lu—u|p <e, US <wu® <US.

Proof. First, since u — U € L*(R), there exists a positive number A such that

/ - U] <e.
ja] > A¢

Hence, for |z| > A%, we take u®(x) = U(x).

The definition of u® on the interval [—A¢, A¢] is slighlty more technical, because
of the various constraints bearing on u¢. Once again, we assume that p; > p, in
order to lighten the notation. We first consider a function v¢ € C([—A¢, A%]) which
satisfies

/ lu(z) — v¥(z)] dz < ¢
jal< A¢
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and such that
v(z,pr) <v(z) <v(z,p) Vae€[-A% A%
We denote by af a positive number such that
v(z,pr) + o <o°(z) <v(z,p) —a° Vo e [-A% A%

Notice that a® can be chosen as small as desired. For further purposes, we choose
af so that

afA® < 2/ (U —v(pr))-
lz|<As
The constraint u® € U + L§(R) entails that the function u® should satisfy

/msm (uf — U) = 0.

However, the function v® does not satisfy the above constraint in general: we merely

have
/ (v*=U)| < / (ve—u)—l—/ (u—="0U)
|| < A= |z|<As || <Ae
< [ weds [ u-vl
|| < A= || > A
< 2e.

Assume for instance that f\z\ <4-(v® =U) > 0. We then define a non-negative
function p® € L>°([—A¢, A®]) such that

v (z) — p°(z) > v(z,pr) + % a.e. on [—A° A%]
(24)
and (v* —p*=U)=0.
o] <A

Such a function p° exists provided

/ME (v —U) < /ME ( —v(py) - C;) |

and the above inequality is equivalent to

af A

The previous condition is satisfied by definition of a®. Thus there exists a function
p° which satisfies conditions (24).
We then set
u®(z) = v°(x) — p°(x) for x € [— A%, A%].
The construction is similar when flw\<A€ (v* =U) <0.
At this stage, we have defined a function u® € U + L{ which satisfies

)

v(a.p) + 5 < ut() Solep) - G Ve € [FA% A%,
u(z) =U(z) VzeR\[-A%, A%,

and / lu —uf| < 4e.
R
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Now, by definition of the standing shock U, there exists a positive constant R® such
that

£
x> R = |U(z) - v(z,p,)| < %
Let kT be a positive integer such that k™ > R + A°. Then for all z € [—A°, A°],

we have .
v(z,pr) < T+ U(x) < v(z,pr) + % < uf(z).
Similarly, there exists a negative integer £~ such that for all x € [—A¢, A%],
u®(z) <wv(z,p) — %E < 7p-U(x).
Notice that 7,+ U are also standing shocks. We now set
US :=sup(r+ U, U), U: :=inf(r,-U,U).
Since standing shocks are ordered, the functions U are standing shocks, and
Us <u® <US ae.

Hence the lemma is proved. O

Let us now provide an explicit example for which the existence of standing shocks
can be proved.

Lemma 3.6. (i) Assume that for ally € T, A(y,-) is a convex function. Then
the homogenized flux A is convex.
Furthermore, if A(y,-) is strictly convex for all y, then A is also strictly
convex, and thus satisfies the Oleinik condition of Corollary 2.1.
(ii) Assume that

inf A(y, — +o00.
inf Ay p) e

Then lim o A(p) = +00.

These properties are proved in [18]. In the case of equation (5), the strict con-
vexity of A comes from the elliptic nature of the equation; if the viscosity term is
removed from (5), then examples in [18] show that the homogenized flux A may
not be striclty convex, even if the flux A is. For the reader’s convenience, we have
reproduced the proof of Lemma 3.6 in Appendix B.

Example. Assume that
Aly,p) =V(y) + Ip,

for some function V' € C?(T). Then according to Lemma 3.6, A is strictly convex
and lim,_ A(p) = +00. As a consequence, there exists an infinite number of
couples (p~,pT) € R? satisfying (11). Moreover, the strict convexity of A implies
that any such couple satisfies Oleinik’s condition (14). Hence there exist couples
(p~,p") € R? which satisfy the assumptions of Theorem 2.2. Additionally, with
the same notation as in Proposition 2.4, we have

q=p" and ¢ =p .

Indeed, according to Corollary 2.1, we have {q;,¢.} = {p™,p~}. Since the flux A
is strictly convex, 9, A(y, -) is strictly increasing, and

<avA(~7U(-,p_))> < <8UA(-, U(-,p+))> .
Proposition 3.2 then allows us to conclude that p~ = ¢,., p* = ¢.
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4. STABILITY OF STANDING SHOCKS IN ONE SPACE DIMENSION - PART I

This section is devoted to the proof of Theorem 2.2. Hence, throughout this
section, we consider an initial data wo which satisfies (15), and such that ug €
U + L', where U is a standing shock. Using Lemma 3.4, we deduce that there
exists another shock V such that u € V + L{(R). Then, using Lemma 3.5 together
with the Contraction principle, we can restrict the analysis to the class of initial
data ug such that

(25) A(U_, U, ) standing shocks, U_ < wug < Uj.

Indeed, assume that Theorem 2.2 holds for all vy € V+ L such that (25) is satisfied.
Consider now a function ug € V + L{ satisfying (15), and let € > 0 be arbitrary.
According to Lemma 3.5, there exists u§ € V + L{ satisfying (25) and such that
luo — ug||s < e. The L contraction principle entails that for all ¢ > 0,

[Ssuo = Vv < [1Sruo = Stuglly + [[Srup = Vil <&+ [[Siug = V1

Notice also that by the Contraction principle, the function ¢ — ||Siug — V|1 is
non-increasing, and thus has a finite limit as t — co. We infer that

Ve > 0, tlim |Stuo — V|1 < e,
—00

and thus S;ug converges toward V as t — oo.

There remains to prove Theorem 2.2 for initial data which satisfy (25). As
emphasized in Section 2, inequalities (15) or (25) should be seen as the analogues
of (10) in the context of shock stability. The proof of Theorem 2.2 in this case
relies on arguments from dynamical systems theory, which are due to S. Osher and
J. Ralston (see [19]; similar ideas are developed by D. Amadori and D. Serre in [2]).
The aim is to prove that the w-limit set of the trajectory Siug is reduced to {V},
by using a suitable Lyapunov function. Hence, we first prove that the w-limit set,
denoted by €2, is non-empty, then we state some properties of the w-limit set, and
eventually we prove that Q = {V}.

First step. Compactness in L' of the trajectories.

Throughout this section, we set w(t) := Spug — V. Notice first that by the
comparison principle for equation (1), inequality (25) is preserved by the semi-
group S;: for all ¢ > 0, we have

U_ < St'LLO < U+.
Hence, for all t > 0,
U_.-U<w(t)<U;-U.
Since Uy — U and U_ — U are integrable functions, the family {w(t)}:>0 is equi-
integrable in L'. Moreover, since U, — U and U — U_ are bounded, it follows that
w is uniformly bounded in L>°. The function w satisfies a linear parabolic equation
of the type
Ow + 9y (b(t, y)w) — Oyyw =0, t>0, yeR,
with b € L>([0,00) x R). Theorem 10.1 in Chapter III of [16] then implies that
there exists o > 0 such that for all t5 > 1, for all R > 0,

||U(t)||Ha/2,a((t0,t0+1)x(—R,R)) < 00.

Thus the family {w(t)}¢>0 is also equi-continuous in L'.
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Whence it follows from the Riesz-Fréchet-Kolmogorov Theorem that the family
{w(t)}+>0 is relatively compact in L'(R). Thus the w-limit set

0= {W € V + L (R), I(tn)nens tn —+ 00, Sy, up — W in Ll(R)}

is non-empty.
Second step. Properties of the w-limit set ().

First,  is forward and backward invariant by the semi-group .S;, meaning that
for all t > 0,

S Q= Q.

This important property is a generic one for w-limit sets. It follows immediately,
thanks to parabolic regularity, that all functions in Q are smooth:  C H{ _(R), for
instance. As a consequence, if W € Q and w;(t) := S;W, Theorem 6.1 in Chapter
II1 of [16] entails that w; € L2([0, T|, H*(Bgr))NH([0,T], L?(Bg)) for all T, R > 0.

The second property which is important for our analysis is the LaSalle invariance
principle (see [17]), which requires the existence of a Lyapunov function. In the case
of scalar conservation laws, a classical choice for a Lyapunov function is Flu] =
|lu = V||1. The Contraction principle entails that ¢ — F[Siug] is non-increasing.
Thus F takes a constant value on 2, which we denote by Cj.

Eventually, using the conservation of mass, we deduce that {2 is a subset of
V + L§.
Third step. Conclusion.

We now prove, using the parabolic structure of equation (26), that Q = {V'}.

Let Wy € Q be arbitrary, and let W (¢t) = S¢(Wp). Notice that W (t) € Q for all
t > 0, according to the previous step. Moreover, W — V satisfies

HW =V)+0, (Aly, W) = A(y,V)) = 0y (W = V) = 0.

Multiplying the above equation by sgn(W — V'), we obtain
DW= V| +0, lsgn(W — V) (A(y, W (2)) — Ay, V)] —sgn(W — V)3, (W = V) = 0.
Let ¢ be a cut-off function, i.e. ¢ € C°(R), ¢ > 0 and ¢ = 1 in a neighbourhood
of zero. For R > 0, we set ¢r := ¢(-/R). We now multiply the above equality by
¢r and integrate on [t,t'] x R. Recalling that [, [W(t) — V| = C for all ¢, we
infer that for all ¢’ > ¢ > 0, there exists a function &4 : [0,00) — [0, 00) such that
limp oo €, (R) = 0 and

/t / sen(W(s) = V), (W (5,) — V()6 (y) ds dy| < 0 (R).

Thus, using a slightly modified version of Lemma 1 in the Appendix, we infer that
sgn(W(s) = V)0yy (W (s) = V) = 0yy[(W(s) = V)|
almost everywhere and in the sense of distributions. Consequently, the function
|W — V] is a non-negative solution of a parabolic equation of the type
QW — [ + 0y (b(t, y)|W = V) = 9y [W = V[ =0,
with b € L>([0,00) x R). We now conclude thanks to Harnack’s inequality (see

[11]): let o € R be arbitrary, and let K be any compact set in R such that 2 € K.
Then there exists a constant C'x such that

[(Wo = V) (@o)| < sup [(Wo = V)(2)| < C inf |(Wjs=1 = V)(2)].
zeK z€
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Now, (Wis=1 — V) € L§ N H}. .(R), and thus there exists 2; € R such that
W(l,l‘l) — V(l‘l) =0.

Choose K such that 1 € K. Then Wy — V vanishes uniformly on K, and in
particular, (Wy — V)(zp) = 0. Since x¢ was chosen arbitrarily, we deduce that
Wy = V. Hence 2 = {V}, and Theorem 2.2 is proved.

5. UNIFORM IN TIME a priori BOUNDS FOR VISCOUS SCALAR CONSERVATION
LAWS

This section is devoted to the proof of Proposition 2.2. As far as possible, we
will treat both models simultaneously. We set

w(t) := Syug — Uy, t>0.
The function w satisfies the following equation
where
B(y,w) = A(y,Uo(y) + w) — Ay, Uo(y)), y€Q, weR.
Due to the Contraction principle recalled in Section 2, it is known that w is
bounded in L*([0, 00), L'(Q)), and

(27) vte Ry, Jw(t)|r < |luo — Uollrr-

The idea of this section is to use this uniform L! bound in order to derive uniform
L? bounds on w for all p € [1,00]. To that end, we proceed by induction on the
exponent p. The first step is dedicated to the derivation of a differential inequality
relating the derivative of the LP norm to a viscous dissipation term. The calculations
are very similar to those developed in [6] to derive a priori bounds for solutions
of equation (5). Then, we use Poincaré inequalities to control the LP norm by the
dissipation. Eventually, we conclude thanks to a Gronwall type argument.

Preliminary for the whole space case.

We begin by recalling some regularity results about the solutions of equation (1)
in the case @ = R. According to the papers by Kruzkov [14, 15|, it is known that
w € L2 ([0,00), L®(Q)). As a consequence, w € L2 ([0, 00), LP(Q)) for all p.

Then, multiplying (26) by wx where x € C§°(R) is an arbitrary non-negative
cut-off function, and integrating in space and time, it is easily proved that for all
T > 0, w satisfies an inequality of the type

T
/ /R\Gyw(s’y)lzx(y) dyds < Cr,
0

where the constant Cr depends on T', ||w|| £ ([0,7)xr) and [[w¢=ol|1, but not on x.
We deduce that 9,w € LE ([0, 00), L*(R)).

loc
First step. A differential inequality.

In this step, we treat the periodic and the full space models simultaneously; our
goal is to prove an inequality of the type

d 2
& [l e [ v <oy ([ruten+ [

where ¢ > 1 is arbitrary, n is the exponent appearing in (8), and the constants ¢,
and C, depend on ¢, n, N, and ||Up||w1..
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To that end, we take ¢ > 1, multiply (26) by w|w|?~! and integrate on Q; we

obtain
i o | e

’ / it ) - Bly, wt, y)[w(t, y)* dy.
Q

Notice that all terms are well-defined thanks to the preliminary step.
For (y,w) € Q x R, set

bulwew) =a | Bl
0
Since w € L2, ([0, 00), L*=(Q)), there exists a constant Cr such that
|bg (y, w(t, y))\ < Crlw(t,y)|? Vte[0,T], Yy € Q.
As a consequence, b,(y, w(t,y)) € L2.([0,00), L}(Q)), and

g / Vyw(t,y) - Bly,w(t,y)|w(t, )]~ dy

/Q (—divy (by(y, w(t, 1)) + (divybe) (. w(t, )] dy

w(t,y)
= q// (div, B)(y, w’) ||~ dw'.
QJo

Thus, we now compute, for (y,w’) € Q x R,
divyB(y,w’) = div, [A(y, Uo(y) +w") — A(y, Uo(y))]
= (divyA)(y, Uo(y) + ') — (divyA)(y, Uo(y))
+ VyUo - [(8uA)(y, Uo(y) + w') — (8 A)(y, Uo(y))] -

Consequently, according to hypothesis (8), we deduce that there exists a positive
constant C' depending only on ||Ugl/y1.- and g such that

o [ Tt Bt ) < ([l o).

Eventually, we infer that for all ¢ > 1, there exist positive constants ¢,, C; such

that for all ¢ > 0,
2
<c, ( JCy |w<t>|q+”> .

(28) %/ W)™ + ¢ / [Vlw(n)

Second step. Control of LP norms by the dissipation term (Poincaré inequalities).
In this step, we treat the periodic case and the whole space case separately, and
we begin with the periodic case.
First, remember that for all p € (1,00) such that 1

> 1
p — 2
positive constant C), such that for all ¢ € H}. (TV),
(29) ¢ = (D), < CplIVll, .-
Taking ¢ = |w|qT+1, we deduce that

1 .
— ., there exists a

L
q+1 +1

hull, < G, (va

+||w||q+1>,
2



22 ANNE-LAURE DALIBARD

where 1 € (1, 00) is such that

1 1 2
30 -
(30) r

> - .
g+1 N(g+1)
Now, the idea is to interpolate the L™*? and the L9*! norms in the right-hand

side of inequality (28) between L' and L", where r satisfies the constraint above.
It can be easily checked that when n < (N + 2)/N, we have

L1 2
n+q  q+1 N(g+1)

hence the interpolation is always possible, and we have

lwllg+r < llwlly ™ lwll?,

1—
lllgn < lolly ™ [lll?,

where ) )
Loy Ly 548
qg+1 T q+n r
Gathering all inequalities, we infer that
d a+1 | oL ‘2
J— 2
it + 2
+1)(1— gt |2 +1)(1— +1)
< Clwl{t0 |V|w| : \2 + Ol ) 5
(g+n)(1-5) ﬁfﬂ") (a+m)(1=B) 1 Bla+n)
+ Cfwliy Vw| ™+ + Cllw|y Dlw ™

Remember that the L' norm is bounded. For the time being, we leave aside the
L*F norms of the right-hand side: those will be treated in the very last step. In
order to control the right-hand side by the dissipation term in the left-hand side, it
suffices to find r (and thus « and ) such that

26(q +n)
g+1

Remembering the definition of 3, we deduce that we have to find r € (¢ + 1, 00)
satisfying the two inequalities

(31) 20 < 2, < 2.

1 _
ol atn-1
r qg+1
1 1 2
>

r=qg+1 N(g+1)
This is possible if and only if the couple (n, q) satisfies
qg+n—1

<1,
q+1
1 2 qg+n—1
— < e
g+1 N(g+1) q+1

which amounts to the condition n < min(2, (N + 2)/N). In the case when N =1,
this yields n < 2, which is more restrictive than the assumption of Proposition 2.2
(n < 3). However, when N = 1, the same arguments as in the whole space case can
be used (see below), and lead to n < 3. Thus, under the hypotheses of Theorem
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2.1, for all ¢ > 1, we may find » > max(¢+ 1, ¢+ n) such that conditions (30), (31)
are fulfilled. Young’s inequality then implies that

@ g [t o [T | < e (el + lvol,).

where the constant Cs depends on ||ug — Upll1, and the exponents py,ps on n, ¢
and N. According to the Poincaré—Wirtinger inequality, we have
2
> ot - ()|
2

at1||2 a1\ 2
(RS
2
e [tul - pulzgt).
2

Eventually, we deduce that for all ¢ > 1, there exists constants C7, Cs, p1, p2 such
that

) 5 [+ o [ < (@i, + ool

oo

Let us now treat the one-dimensional model set in the whole space. In dimension
one, the H' and L' norms control the L> norm. Hence we now interpolate the

two integrals in the right-hand side of (28) between L and L*:
atl o afl
[l < ol el

q+1
/ ol < ol o

We use the following Poincaré inequality, which involves the dissipation term in
the right-hand side of (28) (the proof of this inequality is classical and left to the
reader: we refer to [13] for the proof of similar inequalities): there exists a constant
Cy, depending only on ¢, such that for all w € L' N L>® N H'(R)!

2
1 |2\ 3@
ol < ol ( [ ool

Consequently, there exist positive constants C,p such that for all w € L' N L> N

Hl(R)’ 2 1
at+2n—
q+1 2 3(q+1)

[ ot < ol ( [loor= )

Hence, in order that the dissipation term controls the right-hand side of (28), the
exponent n should satisfy

qg+2n—-1

I 21 W1,
3(g+ 1) 1=

Ufwe L°nHL (T), the corresponding inequality is

3 atl
e ey < Callwl S <(/\ayw 2
2

2
2\ 3(¢+D) 2/3
) )
2
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which leads to the condition n < 3. Using Young’s inequality, we conclude that
(32) is satisfied. Moreover, the Poincaré inequality used above entails that for all

A>0,
2(q+1) 2 1/3
Jrort < el ( )

+1 12
i+ [ Joyful [

A

Oylw| ="

IN

<,
VA
Eventually, we deduce that inequality (33) is also satisfied in the whole space case.

Third step. Uniform bounds in L9 for all g < oo.
We now conclude thanks to Gronwall’s lemma, using an inductive argument.
Notice indeed that inequality (33) implies that for all ¢ > 1,

(34) w € L([0,00), LY(Q)) = w € L>([0,00), L*%(Q)).

Indeed, assume that w € L*([0,00), L9) for some ¢ > 1. According to (33), we
have

d
G [P e [luep <

where the constant Cy depends on [|Upllyy1.c and on ||wl|zee((0,00),21nL4), SO that,
using Gronwall’s lemma,

C
[P et [lua+ 2a-een <c.
Ch
Thus w € L*([0,00), L?7) and (34) is proved. Since w € L>([0,00), L), we deduce
that w € L*°([0,00), L?) for all ¢ € [1, c0).

Fourth step. Uniform bounds in L™ and WP,
We now derive some L°° bounds thanks to parabolic regularity results. First,
notice that in equation (26), the flux B can be written as

B(y,w(t,y)) = b(t, y)w,

where
1
b(t,y) = / a(y, vo(y) + Tw(t,y)) dr.

According to the previous steps, b(t,y) € L*>([0,00), L _(Q)) for all ¢ > 0; in

loc
particular, in the whole space case, for all ¢ > 1 there exists a constant C;,; such

that for all yy € R,
sup Hb(t)||LQ(yO—2,y0+2) < Cq'
t>0
We now use Theorem 8.1 in Chapter IIT of [16]: we have, for all yo € @, for all
tO Z 17
[w(t0,30) < C (I10l122(@uy 001> Pl5(@0y ) )

where Q.o := (to — 1,20+ 1) X (yo — 1,yo + 1) and ¢ is some parameter chosen
sufficiently large. The right-hand side is bounded uniformly in yy and ty by a
positive constant C, and we infer that for all yo € Q,tg > 1,

‘w(toa y0)| < C.
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Thus w € L*([0,00) x Q). Using Theorem 10.1 in Chapter III of [16], we also
deduce that there exists aw > 0 and a constant C' > 0 such that for all ¢ty > 1, for
all zg € Q,

10l ez (to,to41) o~ 120 +1)) < C
As a consequence, we obtain

[l Loo ((1,00).co(@)) < C-

6. LONG TIME BEHAVIOR OF SOLUTIONS FOR THE PERIODIC MODEL

Throughout this section, we assume that Q = TV, and we consider a solution
u(t) = Spup of equation (1) (¢ > 0). Our goal is to prove, under the assumptions
of Theorem 2.1, that u(t) — v(-, {(up)) vanishes in L>° as ¢ — co. The idea is to
prove in a first step the convergence for initial data which are bounded from above
or from below by a solution of equation (5), and then to extend this result to
arbitrary initial data thanks to the L> bounds proved in the previous section (see
Proposition 2.2). We thus begin with the following Proposition:

Proposition 6.1. Let ug € L>=(TY) such that
(35) S0 € R, uo(y) < v(y,po) for ae. y €TV,
Let u(t) = Syug fort > 0. Then, ast — oo,
u(t) = v(-, (ug)) in L=(TV).

Of course, the same result holds when the upper-bound is replaced by a lower-
bound:

Corollary 6.1. Let ug € L>(TV) such that
(36) Jpo €R,  uply) > v(y,po) for a.e. y €TV,
Let u(t) = Stug fort > 0. Then, ast — oo,
u(t) — v(-, (ug)) in L>=(TN).

Proof of Proposition 6.1. According to the previous section (see Proposition 2.2),

sup [lu(t)|| oo (rnvy < +00.
>0

Additionally, the Comparison principle yields
u(t,y) < v(y,po) ¥t >0, ¥y e TV

From now on, the proof is very close to that in [7], Section 2: we recall the main
steps for the reader’s convenience. Set

Ult,y) :==supu(t’,y), t>0,yeTV,
v >t

p*(t) == inf {p € R,v(y,p) > U(t,y) for a.e. y € TV}t > 0.
Then U belongs to L>([0,00) x TV) (since u is uniformly bounded in time), and

U is clearly a non-increasing function with respect to t. Moreover, U satisfies

U(t,y) <v(y,po) Vt>0, Vye TV,
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As a consequence, p*(t) is bounded from above by pg, and p* is a non-increasing
function. Moreover, p* is bounded from below, since for almost every y € T,
U(y7p*(t)) > U(t7y) > _||UHL°°([0,OC)><TN)a
and thus
vt >0, p () = (w(p"(t)) = =llullLe(0,00) xTH)-

Hence p* is a bounded non-increasing function, and thus p*(¢) has a finite limit,
which we denote by p*, as t — oc.

The idea is to prove that u(t) — v(-,p*) converges towards zero as t — co. Let
e > 0 be arbitrary. We first choose ¢y > 0 such that

[o(p™ () —v(P")loe <&Vt =10,

and then we pick p < p* and yo € TV such that

v(Y0,p") — € < v(yo,p) < U(to + 1,50) < v(yo,p*(to + 1)) < v(yo,p*) + &
Now, choose t; > ty + 1 such that
Ulto+1,90) —€ < u(ti,y0) < U(to + 1,90).
By construction, the function
Vi(s,y) € (—1,1) x TV = v(y, p"(to)) — u(ts + 5,9)
is a non-negative solution of a linear diffusion equation of the type
0V +divy (bV) — A,V =0

for some vector field b € L>°([—1,1] x TV)¥. Hence by Harnack’s inequality, there
exists a constant C' such that

sup V <1,y> < C inf V(0,y) <Ce.
yETN 2 yeTN
Thus, there exists a sequence of positive numbers (¢,) such that lim, . t, =
+o0o and such that wu(t,) converges towards v(p*) in L*°. The L' contraction
principle, together with parabolic regularity results, entails that the whole family
u(t) converges. Eventually, we obtain that p* = (ug) by conservation of mass.

(I

The core of the proof of Theorem 2.1 then lies in the following argument: if
ug € L is arbitrary, we set
Qg := inf(ug, v(+, p)),
U= St’LNL().
The value of parameter p above is irrelevant. One can choose for instance p = 0,
or p = ().
The function @y obviously satisfies the assumptions of Proposition 6.1. Hence as
t — oo,
a(t) = v (- (@) in L,
and thus there exists a positive time t such that for ¢t > tq, for all y € TV,

ﬁ‘(t7y) > (ya <’L~LO> - 1) .
On the other hand, notice that uy < ug by definition, and thus by the comparison
principle,
a(t) < wu(t) V.



LONG TIME BEHAVIOR OF PARABOLIC SCALAR CONSERVATION LAWS 27

Hence, for ¢t > tg,

u(t) = v (- (o) —1).
In particular, u(tg) satisfies the assumptions of Corollary 6.1, and thus, as ¢ — oo,

Syu(to) — v ((u(to))) -
Since

U(t) = St_tou(to)
and (u(tp)) = (ug) by the Conservation property, we deduce eventually that
u(t) = v ({ug)) ast— oo.

Thus Theorem 2.1 is proved.

7. STABILITY OF STANDING SHOCKS IN ONE SPACE DIMENSION - PART II

This section is devoted to the proof of shock stability in the whole space case,
for general initial data. We first prove Proposition 2.5, and then we discuss recent
results around the validity of assumption (H).

We start by introducing some notation. Following [22], we denote by G the set
of standing shocks connecting v(-, p;) to v(-, p;-), and we set

A={ueL (R), 3UEG, uecU+L"(R)},
Ao :={u € A, v(-,min(p;,p;)) < u < (-, max(py,pr))}-
Our goal is to prove that for all ug € A,
tlirgo d(Siug,G) =0,

where d(u, A) denotes the L! distance from u to a set A. Notice that the Contraction
principle easily entails that the function ¢ — d(Syug,G) is decreasing. Hence, its
limit as t — oo exists; for all ug € A, set

Lo(up) == tllglo d(Spuo, G).
Theorem 2.2 states that ¢y(u) = 0 for all u € Ay. Moreover, it follows from the
Contraction principle that £5(ug) is a contraction, i.e.

[ (u) — o(v)| < JJlu —v||r Yu,v € A
Additionally, for all ¢ > 0 and for all u € A,
Lo(u) = Lo(Syu).

Similarly, we define, for all ug € A,

O (ug) := tlirglo d(Stug, Ap).

The function ¢; is well-defined: indeed, the Comparison property entails that .4g
is stable by the semi-group S;. Consequently, by the Contraction principle, the
function ¢ — d(Syug, Ag) is decreasing and non-negative, and thus has a finite limit
as t — oo. Moreover, the functional ¢; enjoys the same properties as £y: ¢ is a
contraction on A and ¢;(u) = ¢1(Siu) for all ¢ > 0. Eventually, since G C Ay, we
deduce that

ﬁl(u) S Eo(u) Yu c A
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In the rest of this section, we denote by v(p) the function v(-, p). We now tackle
the proof of Proposition 2.5, which is very similar to [22], paragraph 3.5. Let ug € A
be arbitrary. For all v € Ap, we have

o(uo) < Lo(v) + [luo — v[l1 < [[uo — v[1-

Thus for all ug € A,
Co(uo) < d(ug, Ao).

Replacing ug by S;ug in the previous inequality, we infer that for all ug € A,
lo(ug) < tlilgo d(Stuo, Ao) = £1(uo).
Thus ¢y and ¢; take the same values on A, and it suffices to prove that
(37) l1(uwg) = tlggo d(Siug, Ag) = 0.
Notice that if u € A, then, with p™ = max(p;, p,-), p~ = min(p;, p.),
d(u, Ao) = || (= o)) || + | (w=ve7))_]

We now prove that assumption (H) implies (37). According to Lemma 3.4,
there exists a standing shock U such that uy € U + L§(R). We now define functions
at,a” in v(pT) + L§ and v(p~) + L{ respectively, such that

a”(y) < uoy) < a™(y).

Let us explain for instance the construction of a™. If ug(y) > v(y,p™), we set

T (y) = uo(y)-
On the other hand, since u € U + L' and U is asymptotic to v(pT),v(p~), we have

[ 05" ~w) dy= [ @) - 0)  Juo = Ul = +oc.
R
Hence there is enough room, between the graphs of v(y,p*) and ug(y) (restricted

to the set where ug(y) < v(y,p™)), to insert a function b such that
uo(y) < v(y,p") = uo(y) < b*(y) < v(y.p"),

~/]R 1u0§v(y,p+)(v(y7p+) —b* (y)) dy = /R]-uo>v(y,p+)(u0(y) - v(y,p+)) dy

On the set where ug(y) < v(y,p™), we define a™(y) = b (y). It is obvious that the
function a™ belongs to v(p*) + L} and that ug < a™. The function a~ is defined
in a similar fashion. Thanks to the comparison principle, we have

Stai S StUO S Sta+ Vit Z 0.

) .

a

Consequently,
(38) d(Syuo, Ao) < ||Sea®™ —o(h)|| 0+ ||Sea™ —v(@7)|| .-
From the above inequality, it is clear that the stability of standing shocks follows
from to the stability of solutions of equation (5) in Lj. Let us now prove that
01 (up) = 0 if (H) is satisfied.
Let 6 > 0. If ug € A is such that
I(uo —v(P*)) 4l <0, Nl(uo —v(p™))-Ih <6,

then by construction
la®™ =o)L <20, [la~ —v(p7)l1 < 20.
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And according to (H), there exists dg > 0 such that if § < g, then
lim HS’tai — v(pi)||1 =0,
t—oo
and thus the right-hand side of (38) vanishes as ¢ — oco. Thus £;(ug) = 0.
Hence we now focus on the case where
[(uo = v(p™))+llL > o or [[(uo —v(p™))—[l1 > do-
We then define the function

v(y,p") + g (uo —v(ph))  if uo(y) > v(y, pt),
to(y) == S wo(y) if v(y,p~) <wuo(y) < v(y,p™),
v(y,p”) +a—(ug —v(p~)) ifuo(y) <v(y,p”),

where s N
0 ] J—
ap = | Tw=eoyan o = v(P®))xl > d,
0 else.
Since g — ug € L*(R), @y € A. Moreover,
[ao —uolly = (1 —ag)|[(uo —v(@) 4l + (1 —a)(uo —v(p™))-Ih

< d(uO,Ao) — 50.

Notice that ¢1(@p) = 0. Since ¢; is a contraction, we have
(39) 01 (uo) < €1 (o) + |Juo — @oll1 < d(uo, Ag) —
We now argue by contradiction. Assume that for all ¢ > 0,
1(Ssuo —v(p™))+ 1 = o or [|[(Sruo —v(p™))-[l1 = do-
Then we may replace ug by Siug, for ¢ > 0 arbitrary, in inequality (39). We obtain
01 (ug) = €1(Spuo) < d(Spuo, Ag) —
Passing to the limit as t — oo, we infer
1 (uo) < £1(uo) — do,
which is absurd. Hence there exists tg > 0 such that
1(Stouio —v(p™))+ll1 < o and [|(Seouo — v(p™))- I+ < do.

We have already proved that ¢1(Ss,up) = 0. We deduce that £;(ug) = 0, and thus
60 (’U,()) =0.

Consequently, assumption (H) entails that ¢y(u) = 0 for all u € A.

We conclude this article by a discussion of assumption (H). In fact, it turns
out that (H) is true for all fluxes A € W>*°(T x R) satisfying (8). However, the
proof of this result goes beyond the scope of this article. The L' stability of periodic
solutions was first proved by A. Blanchet, J. Dolbeault and M. Kowalczyk in a linear
context, see [4, 5]. The authors of [4] proved, under a technical assumption on the
moments of order four of the function Siug — v(+,p), that Siug — v(-,p) converges
towards zero in L!'(R), with an algebraic rate of convergence. Their proof relies
on a parabolic self-similar change of variables which transforms (1) into a Fokker-
Planck equation with highly oscillating coefficients. The long time behavior of this
rescaled equation is studied by means of entropy dissipation methods, together
with homogenization techniques. These ideas were then used by the author in [§],
and led to the proof of (H) for general fluxes and arbitrary initial data. Unlike
in [4], however, the arguments of [8] do not use entropy dissipation methods, but
rely rather on dynamical systems theory, with a scheme of proof similar to the one
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developed in Section 4. We also refer to [9, 10] for additional results and techniques
concerning the asymptotic behavior of non linear viscous conservation laws in the
homogeneous case.

APPENDIX A - PROOF OF LEMMA 3.6

(i) Assume that the flux A is convex. Let p1,ps € R such that p; # pa, and let
A € (0,1). In the following, we set

Ui(y) = U(yvpi)v 1= la 27
w=Av;+ (1 —=XNva, p=2Ap1+(1—N\)pa2,
u(y) = v(y, Ap1 + (1 — A)p2).

By definition of v(-,p) and of the homogenized flux A, we have
—vi + Ay, vi(y)) = A(ps),

—u' + A(y,u(y)) = A(Apy + (1 = Npa).
Consequently, using the convexity of the flux A, we deduce that for all y € TV,
(40) —w'(y) + Aly,w(y) < —w'(y) + Ay, v(y)) + (1= XAy, va(y))
= M(p1) + (1= A)A(p2).
Assume that A(Ap; + (1 — N)p2) > AA(p1) + (1 — A\)A(p2), and write u, w as
u=p+f, w=p+yg,
with f, g € C2,,(TV). Since f and g are defined up to the addition of constants, we

per
can assume that f < g almost everywhere. Moreover, notice that

sup (—=9"(y) + Aly,p+9'(y))) < f (") + Aly,p+ f'(v)) -

Thus there exists a > 0 such that
"+ Aly.p+9' W) +ag < —f"+Aly,p+ f'(y) +af
Hence, by the maximum principle, we infer that ¢ < f, which is absurd. Thus
AQp1+ (1= AN)p2) < AA(p1) + (1= X A(po).
If the flux A is strictly convex, then inequality (40) is strict for all y € TV

(remember that the family v(y,p) is strictly increasing with p for all y € TV).
Consequently, the same argument as above leads to

A(Ap1 + (1= Mp2) < MA(p1) + (1 = A A(pa).
(ii) Assume now that

lim inf A(y,p) = +oc.
i inf (y,p)

For p > 0 arbitrary, let y, € T such that

v(yp,p) = rgggv(y,p).
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Notice that since (v(-,p)) = p, we always have v(y,,p) > p. Then

Alp) = 9yoly,p) + Aly,v(y,p)) VyeT
A(yp,v(yp,p))

inf A <y,r£1€a% v(z,p)) .

Y

yeT

The right-hand side goes to 400 as p — +00. The limit as p — —o0 is treated in
the same way.

APPENDIX B

Lemma 1. Let w € L' N L>(R) such that w' € L*(R) and w" € L}, .(R). Assume
that w is such that

Jim R%nwmwﬁﬂxm¢(%)dy=o

for all ¢ € C§°(R) such that ¢ =1 in a neighbourhood of zero. Then
1 .
g|w’|21|w|<5 éjOO m DI(R)

As a consequence,
Ayylw| = sgn(w)w” in D'(R).

Proof. For § > 0, let

- else.

Ys(z) = { ngn(x) it fo] > 6,
é

Then )
%(33) = g]—\z|<§7
and for all R > 0, we have, using the chain rule
[wisiwion = [wsstwion— [ wusw)sh
where ¢r = ¢(-/R).

Since w’ € L?, we infer

/w’wa(w)¢'zz S/Iw’l @Rl < B2 [w') L2l 2.

Thus the above term vanishes as R — oo, uniformly in §.
On the other hand,

ti [ s(wion = [ wsgu(w)on.

and the right-hand side vanishes as R — oo by assumption. We deduce that
lim limsup/ [w' |2 (w)pr = 0.
R—oo 50

Now, choose the function ¢ so that sgn(y)¢'(y) < 0 for all y € R. Then the
integral [ |w’[*¢}(w)dr is non-negative and increasing with respect to R, and we
deduce that

}ir%/|w’|21/1g(w)¢3 =0 VR.
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Thus the first part of the lemma is proved, since for any function ¢,;nC§°(R) there
exists R,C' > 0 such that

le|l < Cor.
Consider now S5 € VVIZCl(R) such that
S5 = s and S5(0) = 0,

where the function 15 was defined earlier. Then

Ss(w) = |w| in Ly, (R),

and according to the chain rule,

1 w
By Siaw) = 0" (w) + 22T

Passing to the limit in the sense of distributions in the above equality yields

in

Dyy|lw] = w"sgn(w).
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