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Abstract.

We derive a kinetic formulation for the parabolic scalar conservation law ∂tu + divyA(y, u) −
∆yu = 0. This allows us to define a weaker notion of solutions in L1, which is enough to recover the L1

contraction principle. We also apply this kinetic formulation to a homogenization problem studied in
a previous paper; namely, we prove that the kinetic solution uε of ∂tuε+divxA (x/ε, uε)−ε∆xuε = 0
behaves in L1

loc as v (x/ε, ū(t, x)), where v is the solution of a cell problem and ū the solution of the
homogenized problem.
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1. Introduction. This paper is devoted to the study of the solution
u ∈ C([0,∞), L1(Y )) ∩ L2

loc([0,∞),H1
per(Y )) ∩ L∞loc([0,∞)× Y ) of the equation

{
∂tu(t, y) + divyA(y, u(t, y))−∆yu(t, y) = 0, t > 0, y ∈ Y
u(t = 0, y) = u0(y),

(1.1)

where Y = [0, 1]N is the N -dimensional torus; A = A(y, v) ∈ RN , y ∈ Y , v ∈ R is a
given N -dimensional flux, periodic in the space variable y.

In [5], a kinetic formulation was derived for such heterogeneous conservation laws
(in fact, this work was achieved for hyperbolic laws, but it can be generalized to
parabolic laws with no difficulty), based on the previous papers of P.-L. Lions, B.
Perthame and E. Tadmor concerning hyperbolic homogeneous conservation laws (see
[14], [13], [18], [16], and the general presentation in [17]). However, this formulation is
not entirely satisfactory : indeed, it is based on the comparison between the solution
u(t, y) of the conservation law and the constants via the function 1v<u(t,y), where v is
an additional fluctuation variable. But the constants, which happen to be stationary
solutions of homogeneous conservation laws, no longer play a special role in the context
of heterogeneous conservation laws. Hence, our goal in this article is to derive a kinetic
formulation based on the study of the stationary solutions of (1.1). Let us mention
a related work of E. Audusse and B. Perthame [2], which defines a notion of entropy
solution which is not based on Kruzkhov’s inequalities, but rather on the comparison
with special stationary solutions, and which is sufficient to derive the L1 contraction
principle.

Let us precise a few notations which will be used later on : if C∞per(Y ) denotes the
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space of Y -periodic functions in C∞(RN ), then

W k,p
per (Y ) := C∞per(Y )

W k,p(Y )
,

W 1,∞
per,loc(Y × R) := {u = u(y, v) ∈W 1,∞

loc (RN+1), u is Y − periodic in y},

Dper([0,∞)× Y × R) := {u = u(t, y, v) ∈ C∞([0,∞)× RN+1),
u is periodic in y and ∃R > 0, u(t, y, v) = 0 if t+ |v| ≥ R},

〈v〉 :=
1
|Y |

∫
Y

v(y) dy ∀v ∈ L1(Y ).

First, let us recall a few results on the stationary solutions of (1.1), which were
studied in [3]:

Proposition 1.1. Let A = A(y, v) ∈W 1,∞
per,loc(Y × R)N .

Let ai(y, v) := ∂vAi(y, v), 1 ≤ i ≤ N , b(y, v) := divyA(y, v) ∈ L∞loc(RN+1). Assume
that there exist real numbers C0 > 0, m ∈ [0,∞), n ∈ [0, N+2

N−2 ) when N ≥ 3, such that
for all (y, p) ∈ Y × R

|ai(y, p)| ≤ C0 (1 + |p|m) ∀ 1 ≤ i ≤ N, (1.2)
|b(y, p)| ≤ C0 (1 + |p|n) . (1.3)

Assume as well that the couple (m,n) satisfies at least one of the following conditions

m = 0 (1.4)
or 0 ≤ n < 1 (1.5)

or n < min
(
N + 2
N

, 2
)

and ∃p0 ∈ R, ∀y ∈ Y b(y, p0) = 0. (1.6)

Then for all p ∈ R, there exists a unique solution v(·, p) ∈ H1
per(Y ) of the equation

−∆yv(y, p) + divyA(y, v(y, p)) = 0, 〈v(·, p)〉 = p. (1.7)

For all p ∈ R, v(·, p) belongs to W 2,q
per(Y ) for all 1 < q < +∞ and satisfies the

following a priori estimate : for all R > 0, there exists a constant CR > 0 depending
only on N , Y , C0, m, n, q, p0 and R, such that

||v(·, p)||W 2,q(Y ) ≤ CR ∀p ∈ R, |p| ≤ R. (1.8)

Moreover, for all p ∈ R, ∂pv(·, p) ∈ H1
per(Y ) and is a solution of

−∆y
∂v

∂p
+ divy

[
a(y, v(y, p))

∂v

∂p

]
= 0,

〈
∂v

∂p

〉
= 1. (1.9)

And for all R > 0, there exists α > 0 depending only on N , Y , C0, m, n, q, p0 and
R, such that for all (y, p) ∈ Y × (−R,R),

∂v

∂p
(y, p) ≥ α > 0.

Equation (1.7) is also called “cell problem”, on account of its significance in homoge-
nization problems.
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Following the idea of E. Audusse and B. Perthame (see [2]), we now give a notion of
entropy solution for equation (1.1) based on the comparison with stationary solutions :

Definition 1.2. Assume the hypotheses of proposition 1.1 are satisfied.
Let u ∈ C([0,∞), L1(Y )) ∩ L2

loc([0,∞),H1
per(Y )) ∩ L∞loc([0,∞) × Y ) be a solution

of (1.1). We say that u is an entropy solution of (1.1) if u satisfies the inequality

∂t(u(t, y)−v(y, p))++divy

[
1u>v(y,p)(A(y, u)−A(y, v(y, p)))

]
−∆y(u(t, y)−v(y, p))+ ≤ 0

(1.10)
for all p ∈ R and in the sense of distributions on [0,∞)× Y .

Notice that this notion of entropy solution is different (at least in its formulation)
from the one of Kruzkhov, since the latter is based on the comparison with constants.
However, inequality (1.10) was known by Kruzkhov, since it can be considered as a
particular case of the comparison principle (notice that v(y, p) is a stationary solution
of (1.1)). It will be proved in the second section, under suitable regularity assumptions
on the flux function A, that all solutions of (1.1) are entropy solutions in the sense of
definition 1.2.

Let us mention here an important application of inequality (1.10) and of the
kinetic formulation which follows from (1.10) : we give in this paper another proof for a
homogenization result proved in [3], which we recall here for the reader’s convenience :

Proposition 1.3. Assume that A ∈ W 1,∞
per,loc(RN+1)N satisfies the assumptions

of proposition 1.1, and that ∂yj
ai ∈ L1

loc(RN+1), ∂vai ∈ L1
loc(RN+1) for 1 ≤ i ≤ N+1,

1 ≤ j ≤ N .
For ε > 0, let vε ∈ L∞loc([0,∞)×RN )∩C([0,∞), L1

loc(RN ))∩L2
loc([0,∞),H1

loc(RN ))
be a solution of the parabolic scalar conservation law :

∂vε

∂t
(t, x) +

N∑
i=1

∂

∂xi
Ai

(x
ε
, vε(t, x)

)
− ε∆xv

ε = 0 t ≥ 0, x ∈ RN , (1.11)

vε(t = 0) = v0

(
x,
x

ε

)
. (1.12)

Let p ∈ R, and let v = v(y, p) be the unique solution in H1
per(Y ) of the cell problem

(1.7). Define

Āi(p) :=
1
|Y |

∫
Y

Ai(y, v(y, p)) dy. (1.13)

Assume also that v0 is “well-prepared”, i.e. satisfies

v0(x, y) = v(y, v̄0(x)) (1.14)

for some v̄0 ∈ L1 ∩ L∞(RN ).
Then as ε goes to 0,

vε(t, x)− v
(x
ε
, v̄(t, x)

)
→ 0 in L2

loc([0,∞)× RN ),

where v̄ = v̄(t, x) ∈ C([0,∞), L1(RN ))∩L∞([0,∞)×RN ) is the unique entropy solution
of the hyperbolic scalar conservation law

∂v̄

∂t
+

N∑
i=1

∂Āi(v̄(t, x))
∂xi

= 0,

v̄(t = 0, x) = v̄0(x) ∈ L1 ∩ L∞(RN ).

(1.15)
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Actually, the result proved in section 3 is more general than proposition 1.3, but
is much more complicated to state at this stage. In particular, we work in a L1 rather
than L∞ setting, which appears to us to be entirely new for this kind of equation; this
point will be developed a little further in remark 3.2. We emphasize that inequality
(1.10) was already used in [3], but we believe that the proof given here gives a better
insight of the homogenization process.

Let us mention related results of Weinan E (see [6], [7]), and Weinan E and Denis
Serre (see [8]), which use two-scale Young measures instead of the kinetic formulation
in a hyperbolic context. In fact, the proof of [3] is close to the ones of these articles,
although the viscous term in (1.11) is absent from the problems studied by Weinan E in
[6], and Weinan E and Denis Serre in [8]. Indeed, the scaling in our problem is chosen
so that the viscosity has the same order of magnitude than the size of the oscillations
in the flux function, and thus the viscosity has an effect at a microscopic level only.
Notice that the (macroscopic) homogenized problem (1.15) is hyperbolic; this justifies
the use of hyperbolic tools, such as Young measures or a kinetic fomulation, in the
study of equation (1.11).

We also wish to point out that the expression of the homogenized flux in the case
studied by Weinan E and Denis Serre in [8] when N = 1 is the same as in (1.13).
However, the corrector v appearing in the expression is not the same in both cases :
indeed, in the hyperbolic case studied by Weinan E and Denis Serre, v is a solution
of

∂yA(y, v(y, p)) = 0.

In particular, v is not unique in general, although the homogenized flux is. We refer the
interested reader to [8] and [12] for details; the latter uses an equivalent formulation
using Hamilton-Jacobi equations.

The organization of this article is as follows : first we derive a kinetic formulation
for equation (1.1). As usual, this allows us to define a weaker notion of solutions of
the parabolic conservation law (1.1), called kinetic solutions. We also derive formally
the L1 contraction principle for kinetic solutions of equation (1.1). Then we use
this formulation to give another proof of proposition 1.3 in section 3. Eventually, in
section 4 we give a rigorous proof for the derivation of the L1 contraction principle
announced in section 2.

2. Kinetic formulation . This section is devoted to the derivation of a kinetic
formulation for equation (1.1). Throughout the section, we assume that the hypothe-
ses of proposition 1.1 are satisfied, that is, A ∈W 1,∞

per,loc(Y ×R), and A satisfies either
(1.4), or (1.5), or (1.6). Additionnally, we assume that

a(y, ·) ∈ C(R)N for almost every y ∈ Y. (2.1)

Under such hypotheses, the following result is easily deduced from proposition 1.1 :
Lemma 2.1. For a.e. y ∈ Y , p 7→ v(y, p) is a C1 diffeomorphism from R to

(α−(y), α+(y)), where α±(y) = limp→±∞ v(y, p).
Its reciprocal application is denoted by w(y, ·)

w(y) : (α−(y), α+(y)) → R.
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Remark 2.1. Notice that +∞ (resp. −∞) is an admissible value for α+ (resp.
α−). In fact, it can be checked that

〈α±〉 = ±∞,

and there are cases when

α±(y) = ±∞ ∀y ∈ Y.

Indeed, for all y ∈ Y , the family (v(y, p) − v(y, 0))p>0 is increasing in p and
nonnegative. Moreover,

〈v(·, p)− v(·, 0)〉 = p ∀p ∈ R.

Hence according to Lebesgue’s monotone convergence theorem, 〈α+ − v(·, 0)〉 = +∞,
and thus 〈α+〉 = +∞. If we assume additionnally that m = 0 in hypothesis (1.2) (i.e.
we assume that (1.4) is satisfied), then it is proved in [3], lemma 6, that

lim
p→+∞

inf
y∈Y

v(y, p) = +∞.

In that case, α+(y) = +∞ for all y ∈ Y .
We begin our study of equation (1.1) with the following
Lemma 2.2. Let u ∈ C([0,∞);L1(Y )) ∩ L2

loc(0,∞;H1
per(Y )) ∩ L∞loc([0,∞) × Y )

be an arbitrary solution of (1.1). Assume that the flux A ∈ W 1,∞
per,loc(Y × R) satisfies

(2.1) and the hypotheses of proposition 1.1.
Then the function u satisfies the following equality in the sense of distributions

on [0,∞)× Y × Rp

∂t(u− v(y, p))+ + divy

[
1u>v(y,p)(A(y, u)−A(y, v(y, p)))

]
−∆y(u− v(y, p))+ = −m,

(2.2)
where

m(t, y, p) =
1

∂v
∂p (y, p)

|∇y(u(t, y)− v(y, p))|2 δ(p = w(y, u(t, y)))

is a nonnegative measure on (0,∞)× Y × R.
Consequently, u is an entropy solution of (1.1) in the sense of definition 1.2.
We postpone the proof of lemma 2.2 to the end of section 2. Let us stress that

equality (2.2) is to be understood in the sense of distributions in [0,∞)×Y ×R. Such
an equality would indeed be meaningless were it considered for p ∈ R fixed.

Let us now write down the kinetic formulation for equation (1.1). Let u be an
entropy solution of (1.1); differentiating equality (2.2) with respect to p leads to

∂

∂t

(
∂v(y, p)
∂p

f+

)
+

∂

∂yi

(
∂v(y, p)
∂p

ai(y, v(y, p))f+

)
−∆y

(
∂v(y, p)
∂p

f+

)
=
∂m(t, y, p)

∂p
(2.3)

where f+(t, y, p) = 1u(t,y)>v(y,p).
The same kind of equation holds for f− = 1u(t,y)<v(y,p) = 1− f+ (recall (1.9))

∂

∂t

(
∂v(y, p)
∂p

f−
)

+
∂

∂yi

(
∂v(y, p)
∂p

ai(y, v(y, p))f−
)
−∆y

(
∂v(y, p)
∂p

f−
)

= −∂m(t, y, p)
∂p
(2.4)
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This leads to a notion of kinetic solution :
Definition 2.3. Assume that the flux A satisfies the hypotheses of proposition

1.1 and (2.1). Let u = u(t, y) ∈ C([0,∞);L1(Y )) ∩ L2
loc(0,∞;H1

per(Y )) such that

α−(y) < u(t, y) < α+(y) for a.e. (t, y) ∈ [0,∞)× Y.

We say that u is a kinetic solution of (1.1) if f+ = 1u(t,y)>v(y,p) satisfies (2.3)
in the sense of distributions with the initial data f+(t = 0, y, p) = 1u0(y)>v(y,p), and
if there exists a function µ ∈ L∞(R) such that µ(p) → 0 as |p| → ∞, and∫ ∞

0

∫
Y

m(t, y, p) dy dt ≤ µ(p) in D′(R). (2.5)

Precisely, u is a kinetic solution of (1.1) if (2.5) holds and if for all test function
ψ = ψ(t, y, p) ∈ Dper([0,∞)× Y × R), we have∫ ∞

0

∫
Y×R

f+(t, y, p)
∂v(y, p)
∂p

{∂tψ + ai(y, v(y, p))∂yiψ + ∆yψ} dt dy dp =

=
∫ ∞

0

∫
Y×R

m(t, y, p)∂pψ(t, y, p) dtdydp−
∫

Y×R
1u0(y)>v(y,p)

∂v(y, p)
∂p

ψ(0, y, p)dydp.

(2.6)

Notice that without any loss of generality, we can choose a function µ in (2.5)
which is nonincreasing on (0,∞) and nondecreasing on (−∞, 0).

It is easily checked that the notions of entropy and kinetic solutions are equivalent
as long as u is bounded in some kind of L∞ norm :

Proposition 2.4. Assume that A satisfies (2.1) and the hypotheses of proposition
1.1. Let u = u(t, y) ∈ C([0,∞);L1(Y ))∩L2

loc(0,∞;H1
per(Y )). Assume that there exist

real numbers β1, β2 ∈ R such that

v(y, β1) ≤ u(t, y) ≤ v(y, β2) for a.e. (t, y) ∈ (0,∞)× Y. (2.7)

Then u is an entropy solution of (1.1) if and only if u is a kinetic solution.
We are then able to prove the L1 contraction principle thanks to the kinetic

formulation; we wish to emphasize that when u satisfies (2.7), this result is not new
by any means, and has been known since the articles of Kruzkhov [10, 11]. However,
we present here a different proof (see section 4), using merely regularizations by
convolution following [16, 17]. Moreover, we prove that the L1 contraction principle
holds for a larger class of solutions.

Theorem 2.5. Assume the hypotheses of proposition 1.1 are satisfied, with a ∈
W 1,1

per,loc(Y × R)N , and

∂va ∈ L∞loc(Y × R)N , (2.8)

∀R > 0, ∃ α,C > 0,∀(y, y′) ∈ Y 2 ∀v ∈ (−R,R) |a(y, v)− a(y′, v)| ≤ C|y − y′|α.
(2.9)

Let u1, u2 be two kinetic solutions of (1.1). Then

||(u1(t)− u2(t))+||L1(Y ) ≤ ||(u1(t = 0)− u2(t = 0))+||L1(Y ). (2.10)
6



Moreover, if for all T > 0∫ T

0

∫
Y

∫
R

∂v(y, p)
∂p

|a(y, v(y, p))|1u2(t,y)<v(y,p)<u1(t,y) dt dy dp < +∞, (2.11)

then the following inequality holds, in the sense of distributions on [0,∞)× Y

∂

∂t
(u1 − u2)+ +

∂

∂yi
[1u1>u2 (Ai(y, u1)−Ai(y, u2))]−∆y(u1 − u2)+ ≤ 0. (2.12)

Remark 2.2. Hypothesis (2.11) is necessary in order to retrieve inequality (2.12).
However, if the sole purpose is to derive the L1 contraction inequality (2.10), hypoth-
esis (2.11) is no longer required. Hypothesis (2.11) implies that the function

(t, y) 7→ 1u1>u2 [A(y, u1(t, y))−A(y, u2(t, y))]

belongs to L1((0, T ) × Y )N for all T > 0. Notice that such an integrability property
is not obvious in general, since we no longer assume that u ∈ L∞loc, and thus A(·, u)
does not belong to L∞loc either.

Let us explain formally how inequality (2.12) is derived : let u1, u2 be two kinetic
solutions of (1.1). We set f1 = 1u1(t,y)>v(y,p), f2 = 1u2(t,y)<v(y,p),

mi = |∇yui(t, y)−∇yv(y, p)|2
1

∂v(y,p)
∂p

δ(p = w(y, ui(t, y))), i = 1, 2.

Then

∂

∂t

(
∂v

∂p
f1

)
+

∂

∂yi

(
∂v

∂p
ai(y, v(y, p))f1

)
−∆y

(
∂v

∂p
f1

)
=
∂m1

∂p
, (2.13)

∂

∂t

(
∂v

∂p
f2

)
+

∂

∂yi

(
∂v

∂p
ai(y, v(y, p))f2

)
−∆y

(
∂v

∂p
f2

)
= −∂m2

∂p
. (2.14)

Multiply (2.13) by f2, and (2.14) by f1; recalling equation (1.9), we add the two
equations thus obtained and we are led to

∂

∂t

(
∂v

∂p
f1f2

)
+

∂

∂yi

(
∂v

∂p
ai(y, v(y, p))f1f2

)
−∆y

(
∂v

∂p
f1f2

)
=

=
∂m1

∂p
f2 −

∂m2

∂p
f1 − 2

∂v

∂p
∇yf1 · ∇yf2. (2.15)

Set ϕi(t, y) = w(y, ui(t, y)) (i = 1, 2), i.e. v(y, ϕi(t, y)) = ui(t, y) . Then

∇yϕi(t, y) =
1

∂v
∂p (y, ϕi(t, y))

[∇yui(t, y)−∇yv(y, ϕi(t, y))] .

Notice that

f1 = 1u1(t,y)>v(y,p) = 1ϕ1(t,y)>p,

f2 = 1u2(t,y)<v(y,p) = 1ϕ2(t,y)<p,

and thus, setting η1 = 1 and η2 = −1,

∂fi

∂p
= −ηi δ(p = ϕi(t, y)),

∇yfi = ηi∇yϕi(t, y)δ(p = ϕ1(t, y)).
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We refer to the proof of lemma 2.2, at the end of the present section, for a derivation
of the above equalities in the sense of distributions on [0,∞)× Y × R.

On the other hand, for any function G ∈W 1,∞
loc (R),∫

R
G′(v(y, p))f1f2

∂v(y, p)
∂p

dp =
∫

R
G′(v(y, p))1u2(t,y)<v(y,p)<u1(t,y)

∂v(y, p)
∂p

dp

= 1u2(t,y)<u1(t,y) [G(u1(t, y))−G(u2(t, y))] .

Hence, integrating (2.15) with respect to p on R yields

∂

∂t
(u1 − u2)+ +

∂

∂yi
1u2(t,y)<u1(t,y) [Ai(y, u1(t, y))−Ai(y, u2(t, y))]−∆y(u1 − u2)+

=
∫

R
−m1∂pf2 +m2∂pf1 − 2

∂v

∂p
∇yf1 · ∇yf2 dp

= −
∫

R
|∇yu1(t, y)−∇yv(y, ϕ1)|2

1
∂v(y,p)

∂p

δ(p = ϕ1)δ(p = ϕ2)dp

−
∫

R
|∇yu2(t, y)−∇yv(y, ϕ2)|2

1
∂v(y,p)

∂p

δ(p = ϕ2)δ(p = ϕ1)dp

+2
∫

R

∂v

∂p
(y, p) ∇yϕ1(t, y) · ∇yϕ2(t, y)δ(p = ϕ1)δ(p = ϕ2)dp

= −
∫

R

1
∂v(y,p)

∂p

δ(p = ϕ1)δ(p = ϕ2)|∇y(u1 − u2)(t, y)−∇yv(y, ϕ1) +∇yv(y, ϕ2)|2 dp

≤ 0

which is exactly the L1 contraction principle between u1 and u2.
However, the calculations above are entirely formal, since product of Dirac masses

are not well-defined objects, and f1, f2 do not have enough regularity to perform
nonlinear calculations. Thus, regularizations are necessary in order to justify the
contraction principle, which is proved in section 4.

Proof of lemma 2.2. Notice first that since u(t, y) and v(y, p) are both solutions
of (1.1), we always have

∂t [u(t, y)− v(y, p)] + divy [A(y, u)−A(y, v(y, p))]−∆y [u(t, y)− v(y, p)] = 0.

Thanks to the regularizing parabolic (resp. elliptic) term, the regularity of u (resp.
v) is sufficient for us to use the chain rule, and thus

1u(t,y)>v(y,p)∂t [u(t, y)− v(y, p)] = ∂t [u(t, y)− v(y, p)]+ ,

1u(t,y)>v(y,p)divy [A(y, u)−A(y, v(y, p))] = divy

[
1u(t,y)>v(y,p) (A(y, u)−A(y, v(y, p)))

]
,

1u>v(y,p)∆y [u− v(y, p)] = ∆y [u− v(y, p)]+ −∇y1u>v(y,p) · ∇y [u− v(y, p)]

Similar calculations can be found for instance in [10, 11], and are in fact at the
heart of Kruzkhov’s method for proving the L1 contraction principle.

The major difficulty comes from the term∇y1u(t,y)>v(y,p). Notice that 1u(t,y)>v(y,p) =
1w(y,u(t,y))>p. When p ∈ R is considered as a fixed parameter, we have

∇y1u>v(y,p) = ν ⊗Hn−1
∂ω

8



where ω := {y ∈ Y ; w(y, u(t, y)) > p}, Hn−1
∂ω is the (n − 1)-dimensional Hausdorff

measure along {w(y, u(t, y)) = p}, and ν is the unit normal vector field oriented
from {w(y, u(t, y)) < p} to {w(y, u(t, y)) > p}. In general, no simplification occurs.
However, when deriving a kinetic formulation for equation (1.1), we are only interested
in the computation of ∇y1u>v(y,p) in the sense of distributions on [0,∞) × Y × Rp

(see for instance [14], [13], and section 3.2 in [17]). In that case, we can give another
expression for the gradient of 1u>v(y,p), namely

∇y1u(t,y)>v(y,p) = ∇y1w(y,u(t,y))>p

= ∇y (w(y, u(t, y))) δ(p = w(y, u(t, y)))

=
1

∂v
∂p (y, p)

∇y(u(t, y)− v(y, p))δ(p = w(y, u(t, y))).

Notice that the above expression, although meaningless if considered for p ∈ R fixed,
is well-defined in the sense of distributions on [0,∞)× Y × Rp.

Thus (2.2) is proved. Consequently, all solutions of (1.1) satisfy inequality (1.10)
in the sense of distributions on [0,∞) × Y × R. And it is then easily checked that
if a solution u of (1.1) satisfies (1.10) in the sense of distributions in t, y, p, then u
satisfies (1.10) for all p in the sense of distributions in t, y. �

3. An application to homogenization. We provide here a proof for proposi-
tion 1.3. The kinetic formulation derived above allows a better understanding of the
homogenization process, and the proof is much more elegant than the original one in
[3], which used two-scale Young measures.

We will work in the context of kinetic solutions of equation (1.11) : let ε > 0, and
let uε ∈ L∞loc([0,∞);L1

loc(RN )) ∩ L2
loc(0,+∞;H1

loc(RN )). We assume that

fε(t, x, p) := 1v( x
ε ,p)<uε(t,x)

is a solution in the sense of distributions of

∂t

(
vp

(x
ε
, p
)
fε
)

+ ∂xi

[
ai

(x
ε
, v
(x
ε
, p
))

vp

(x
ε
, p
)
fε
]
− ε∆x

(
vp

(x
ε
, p
)
fε
)

= ∂pm
ε,

fε(t = 0) = 1v( x
ε ,p)<u0(x, x

ε ) (3.1)

where

mε(t, x, p) := ε
∣∣∣∇xu

ε(t, x)−∇yv
(x
ε
, p
)∣∣∣2 1

vp

(
x
ε , p
)δ (p = w

(x
ε
, uε(t, x)

))
.

We assume that the hypotheses of proposition 1.1 are satisfied, together with (2.1),
so that w(y, p) is well-defined (see lemma 2.1). We have used the notation vp(y, p) =
∂pv(y, p).

The hypotheses on fε are the following:
(H1) u0(x, y) = v(y, ū0(x)), for some ū0 ∈ L1(RN );
(H2) u0 − v(y, 0) ∈ L1(RN , Cper(Y )); this means that∫

RN

sup
y∈Y

|v(y, ū0(x))− v(y, 0)| dx < +∞,

which is slightly stronger than requiring ū0 ∈ L1.
9



(H3) fε(t, x, p) → 0 (resp. 1 − fε → 0) as p → +∞ (resp. as p → −∞) for a.e.
(t, x) ∈ [0,∞)× RN and for all ε > 0. Equivalently,

α−

(x
ε

)
< uε(t, x) < α+

(x
ε

)
for a.e. (t, x) ∈ (0,∞)× RN ,

where α− and α+ were defined in lemma 2.1.
(H4) For all ε > 0, there exists a function µε ∈ L∞(R) such that µε(p) → 0 as

|p| → ∞ and ∫ ∞

0

∫
RN

mε(t, x, p) dt dx ≤ µε(p) ∀p ∈ R.

(H5) For all ε > 0, the function

(t, x, p) 7→ ∂v

∂p

(x
ε
, p
)

[1p>0f
ε(t, x, p) + 1p<0(1− fε(t, x, p))]

belongs to L∞loc([0,∞), L1(RN+1)). Equivalently, the function

(t, x) 7→ uε(t, x)− v
(x
ε
, 0
)

belongs to L∞loc([0,∞), L1(RN )).
A function uε ∈ L∞loc([0,∞);L1

loc(RN )) ∩ L2
loc(0,+∞;H1

loc(RN )) such that fε is a
solution of (3.1) and such that (H3)-(H5) are satisfied is called a kinetic solution
of the parabolic scalar conservation law (1.11). Notice that we do not assume that
(1.11) is satisfied in the sense of distributions.
Let us now state the result we prove in this section.

Theorem 3.1. Assume that A satisfies the hypotheses of proposition 1.1 and
(2.1). Let uε ∈ L∞loc([0,∞);L1

loc(RN )) ∩ L2
loc(0,+∞;H1

loc(RN )) be a kinetic solution
of (1.11) such that hypotheses (H1) - (H5) are satisfied. Then

uε(t, x)− v
(x
ε
, ū(t, x)

)
→ 0

in L1
loc([0,∞)×RN ), where ū ∈ L∞([0,∞), L1(RN )) is the kinetic solution of (1.15)

with initial data ū0.
Remark 3.1. When hypothesis (H1) on the microscopic profile of the initial

data is not satisfied, it is proved in the L∞ case in [4] that there is an initial layer
of typical size ε, during which the solution adapts itself to the profile dictated by the
microscopic structure. The proof of this result relies on the parabolic structure of
the equation, which cannot be used here since the kinetic formulation is essentially a
hyperbolic tool.

Remark 3.2. It is can be checked that (H2) - (H5) are always satisfied when
ū0 ∈ L∞ ∩ L1(RN ) and uε ∈ L∞loc is an entropy solution. However, we wish to
stress that hypothesis (H3) does not imply that uε ∈ L∞loc([0,∞) × RN ) in general.
For instance, in the case when hypothesis (1.4) is satisfied, we have α± = ±∞, as
explained in remark 2.1. Hence in that case, hypothesis (H3) is always satisfied, and
the only bound required on uε is (H5), which is an L1 bound. Consequently, we refer
to (H2) - (H5) as an “L1 setting”, by contrast with the “L∞ setting” of entropy
solutions.
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At last, let us mention that the function µε in hypothesis (H4) can in fact be
derived from equation (3.1) (see lemma 3.2 below), if it is known that (H4) holds for
some function µε; nonetheless, (H4) cannot be avoided and is necessary for lemma
3.2 to hold.

We will prove the convergence in several steps; first, we introduce the two-scale
weak limit f(t, x, y, p) of fε. Then, the key point in the analysis is to show that
f(t, x, y, p) = 1p<ū(t,x), where ū is the solution of the homogenized problem. Hence,
we first prove that f does not depend on y. Then we derive the macroscopic equation
solved by f and we prove that f(t = 0) = 1p<ū0(x); this entails that f = 1p<ū, and ū
can be identified thanks to the equation solved by f . Eventually, we prove the strong
convergence in L1

loc.
We begin with a few preliminary bounds on mε and fε, of which we only give a

rough idea of the proof (see for instance [17], proposition 4.1.7 and lemma 3.1.7 for
the derivation of similar inequalities):

Lemma 3.2. Assume that (H1) - (H5) are satisfied.
• There exists a constant C > 0 such that for all ε > 0, for a.e. t > 0,∫

RN+1
vp

(x
ε
, p
)

(1p>0f
ε(t, x, p) + 1p<0(1− fε)(t, x, p)) dx dp ≤ C.

• There exists a constant C > 0 such that for all p0 > 0, ε > 0,∫ ∞

0

∫
RN

mε(t, x, p0) dx dt ≤
∫

RN

(
v
(x
ε
, ū0(x)

)
− v

(x
ε
, p0

))
+
dx ≤ C.

The same kind of bound holds for p0 < 0.
Thus mε((0,+∞)× RN × (−R,R)) is bounded for all R > 0 uniformly in ε.

• For all t ≥ 0, for all p0 > 0, for all ε > 0∫
RN

(
uε(t, x)− v

(x
ε
, p0

))
+
dx ≤

∫
RN

(
v
(x
ε
, ū0(x)

)
− v

(x
ε
, p0

))
+
dx

(3.2)
We deduce from the second bound in the lemma that we can take in (H4)

µε(p) := 1p>0

∫
RN

(
v
(x
ε
, ū0(x)

)
− v

(x
ε
, p
))

+
dx

+1p<0

∫
RN

(
v
(x
ε
, ū0(x)

)
− v

(x
ε
, p
))
−
dx.

Then µε is bounded in L∞, uniformly in ε. Moreover, it will be proved in the very
last step of the proof that for all p, µε(p) converges as ε→ 0 towards µ0(p), for some
function µ0 ∈ L∞(R) vanishing at infinity.

Proof. Thanks to the integrability assumptions (H4)-(H5) on fε and mε, we
prove that for any test function S′ ∈ D(R), for all t > 0, we have∫

RN+1
S′(p)fε(t, x, p)vp

(x
ε
, p
)
dx dp−

∫
RN+1

S′(p)fε(t = 0, x, p)vp

(x
ε
, p
)
dx dp =

= −
∫ t

0

∫
RN+1

mε(t, x, p)S′′(p) dt dx dp.

Then, using the fact that µε vanishes at infinity , we prove that the above equality
holds for more general functions S. In particular, the choice S′(p) = 1p>0 (and thus

11



S′′(p) = δ(p = 0)) yields the first bound on fε, and the choice S′(p) = 1p>p0 for some
p0 > 0 gives the one on mε. Moreover∫

RN+1
1p>p0f

ε(t, x, p)vp

(x
ε
, p
)
dx dp =

∫
RN+1

1v( x
ε ,p0)<v( x

ε ,p)<uε(t,x)vp

(x
ε
, p
)
dx dp

=
∫

RN

[
uε(t, x)− v

(x
ε
, p0

)]
+
dx,

and thus the choice S′(p) = 1p>p0 also yields the bound on uε.
We now use the concept of two scale convergence, defined by Grégoire Allaire in

[1] following an idea of Gabriel N’Guetseng (see [15]), in order to find a two-scale limit
for fε :

Proposition 3.3. Let {vε}ε>0 be a bounded sequence of L2(Ω), where Ω is an
open set of RN . Then as ε → 0, there exists a subsequence, still denoted by ε, and
v0 ∈ L2(Ω× Y ), such that∫

Ω

ψ
(
x,
x

ε

)
vε(x) dx→

∫
Ω×Y

ψ(x, y)v0(x, y) dx dy

for all ψ ∈ Cper(Y, L2(Ω)).
It is then said that the sequence {vε}ε>0 “two-scale” converges to v0.
This concept is easily generalized to functions in L∞ (the proof goes along the

same lines as the one given in [1]), which allows us to prove the following :
Lemma 3.4. There exists a function f(t, x, y, p) ∈ L∞((0,∞)×RN ×Y ×R) and

a subsequence, still denoted by ε, such that fε two-scale converges to f .
It is easily checked that 0 ≤ f ≤ 1 a.e. Since vp, f and 1 − f are nonnegative,

lemma 3.2 entails that there exists a constant C such that∫
RN×Y×R

{1p>0f(t, x, y, p) + 1p<0(1− f(t, x, y, p))} vp(y, p) dx dy dp ≤ C a.e. t>0.

The goal is now to identify the equations solved by f in order to prove that f
is an indicator function. Hence, we now focus on the microscopic (i.e. in y) and
macroscopic (i.e. in t, x) equations solved by f .
First step. Microscopic profile. Multiplying (3.1) by a test function of the form
εϕ (t, x, x/ε, p), with ϕ ∈ Dper((0,∞)×RN ×Y ×R) and passing to the limit as ε→ 0
leads to the equation

−∆y

(
∂v

∂p
f

)
+ divy

(
a(y, v(y, p))

∂v

∂p
f

)
= 0 (3.3)

in the sense of distributions on (0,∞)×RN×Y×R. Let us point out that a(y, v(y, p)) is
an “admissible” test function in the sense of G. Allaire (see [1]) thanks to the continuity
assumption (2.1).

Then, we regularize the equation (3.3) in the variables t, x, y, p thanks to a con-
volution kernel, and pass to the limit as the parameter of the regularization vanishes.
We easily deduce that equation (3.3) in fact holds almost everywhere in t, x, p, in the
variational sense in y.

Notice that the constant function equal to 1 on Y, denoted by 1̄, is a positive
solution of the dual problem

−∆y 1̄− a(y, v(y, p)) · ∇y 1̄ = 0.
12



Consequently, by the Krein-Rutman theorem, we infer that any solution g of the
equation

−∆yg + divy (a(y, v(y, p))g) = 0

can be written g(y) = c∂v(y,p)
∂p , where c is a constant in y.

Thus f(t, x, y, p) does not depend on y, and f = f(t, x, p).
Second step. Evolution equation. Now, we multiply (3.1) by a test function of the form
ϕ(t, x, p), with ϕ(t, x, p) = 0 when |p| ≥ R, R > 0 arbitrary; thanks to lemma 3.2,
mε((0,∞)×RN × (−R,R)) is bounded uniformly in ε, and thus up to the extraction
of a subsequence, there exists a measure m̄R such that

mε ⇀ m̄R in w −M1((0,∞)× RN × (−R,R)).

We define, for any p ∈ R,

ā(p) =
1
|Y |

∫
Y

a(y, v(y, p))
∂v

∂p
dy;

recall also that

1
|Y |

∫
Y

∂v

∂p
dy = 1.

Then f satisfies, in the sense of distributions on (0,∞)× RN × (−R,R)

∂tf + divx(ā(p)f) =
∂m̄R

∂p
. (3.4)

We deduce that for any 0 < R < R′, m̄R = m̄R′ on (0,∞) × RN × (−R,R).
Consequently, the measure m̄, defined by m̄ = m̄R on (0,∞)×RN × (−R,R) is well-
defined. Hence equation (3.4) holds in (0,∞) × RN+1 with m̄R replaced by m̄, and
m̄ ∈ C(Rp, w −M1([0,∞)×RN

x ). Moreover the measure m̄ inherits from the bounds
on mε : in particular, for almost every p ∈ R,∫ ∞

0

∫
RN×Y

m̄(t, x, y, p) dt dx dy ≤ µ0(p), (3.5)

and µ0 belongs to L∞ and vanishes at infinity.
Equation (3.4) looks very much like the kinetic formulation for a homogeneous

and hyperbolic scalar conservation law (see for instance [14], [13], and [17], chapter
3). However we have to work out a few points before jumping to a conclusion.
Third step. Identification of f as an indicator function. First, the function which
occurs in the kinetic formulation is the function χ : R2 → {1,−1, 0} defined by

χ(v, u) :=

 1 if 0 < v < u,
−1 if u < v < 0,
0 otherwise.

Here, if uε(t, x)− v (x/ε, ū(t, x)) converges strongly to 0, as we intend to prove, then
f = 1v(y,p)<v(y,ū(t,x)) = 1p<ū(t,x); hence, a good candidate for a function χ(v, ū(t, x))
seems to be

g(t, x, p) = 1p>0f − 1p<0(1− f) = f − 1p<0.
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The function g satisfies the same equation as f , and

sgn(p)g = 1p>0f + 1p<0(1− f) = |g| ∈ [0, 1].

Moreover,

∂g

∂p
= δ(p = 0) + ∂pf. (3.6)

Recall that

∂pf
ε(t, x, p) = −δ

(
p− w

(x
ε
, uε(t, x)

))
;

Hence −∂pf
ε(t, x, p) is a nonnegative measure, uniformly bounded in ε on compact

sets of (0,∞)× RN+1. Since ∂pf
ε weakly converges to ∂pf , we deduce that ∂pf is a

nonpositive locally finite measure.
There remains to check that

g(t = 0, x, p) = χ(p, ū0(x)); (3.7)

this equality is in fact not obvious : if fε(t = 0, x, p) = f0 (x, x/ε, p), then it is false
in general that f(t = 0, x, y, p) = f0(x, y, p). Indeed, there might be initial layers of
typical size ε. These are not taken into account when passing to the two-scale limit
because the test functions do not select the microscopic information in time. In order
to see the possible initial layers, we should have taken test functions of the kind

ψ

(
t,
t

ε
, x,

x

ε
, p

)
.

Here, it is unnecessary to consider test functions which have microscopic oscilla-
tions in time because the initial data is well-prepared. Hence, there is no initial layer
in this case. In other words, the uε are uniformly continuous in time at time t = 0
(with values in L1

loc). In terms of the kinetic formulation, this result follows directly
from the fact that

fε(t = 0, x, p) = 1v( x
ε ,p)<v( x

ε ,ū0(x)) = 1p<ū0(x).

Hence fε(t = 0) does not depend on ε. Consequently, multiplying (3.1) by a test
function ϕ(t, x, p) ∈ D([0,∞)× RN+1) yields∫ ∞

0

∫
RN+1

fε(t, x, p)
∂v

∂p

(x
ε
, p
){

∂tϕ+ ai

(x
ε
, v
(x
ε
, p
))

∂xiϕ+ ε∆xϕ
}
dt dx dp

=
∫ ∞

0

∫
RN+1

mε(t, x, p)∂pϕ(t, x, p)dtdxdp−
∫

RN+1

∂v

∂p

(x
ε
, p
)
1p<ū0(x)ϕ(t = 0, x, p)dxdp

Passing to the limit as ε→ 0 entails that

f(t = 0, x, p) = 1p<ū0(x),

and thus

g(t = 0, x, p) = χ(p, ū0(x)).
14



Gathering (3.4), (3.5), (3.6), (3.7), we infer that g is a generalized kinetic solution
(see definition 4.1.2 in [17]) of the scalar conservation law

∂u

∂t
+
∂Āi(u)
∂xi

= 0,

where

Ā′i(p) = āi(p).

Now, we can apply theorem 4.3.1 in [17] : there exists ū(t, x) ∈ L∞([0,∞);L1(RN ))
such that g(t, x, p) = χ(p, ū(t, x)) a.e., and ū is a kinetic solution of the above scalar
conservation law.

And since

1p>0f − 1p<0(1− f) = χ(p, ū(t, x)),

we deduce that

f(t, x, p) = 1p<ū(t,x)

almost everywhere.
Fourth step. Strong convergence. Let us now prove that this result entails that

uε(t, x)− v
(x
ε
, ū(t, x)

)
→ 0

in L1
loc.
(i) Convergence of uε∧v(x/ε, p0) for all p0 > 0: take an arbitrary cut-off function

ϕ = ϕ(t, x) with compact support in [0,∞)× RN , p0 > 0 and set

ψ(t, x, y, p) := 1ū(t,x)<p<p0

∂v

∂p
(y, p) ϕ(t, x).

Since fε(t, x, p) = 1v( x
ε ,p)<uε(t,x) two-scale converges to f = 1p<ū(t,x), we deduce that

as ε→ 0 ∫ ∞

0

∫
RN+1

ψ
(
t, x,

x

ε
, p
)
1v( x

ε ,p)<uε(t,x) dp dx dt→ 0.

And the left-hand side can be transformed as follows∫ ∞

0

∫
RN+1

ψ
(
t, x,

x

ε
, p
)
1v( x

ε ,p)<uε(t,x) dp dx dt

=
∫ ∞

0

∫
RN+1

1v( x
ε ,ū(t,x))<v( x

ε ,p)<uε(t,x)∧v( x
ε ,p0) ϕ(t, x)

∂v

∂p

(x
ε
, p
)
dp dx dt

=
∫ ∞

0

∫
RN+1

1v( x
ε ,ū(t,x))<v<uε(t,x)∧v( x

ε ,p0) ϕ(t, x)dv dx dt

=
∫ ∞

0

∫
RN

ϕ(t, x)
[
uε(t, x) ∧ v

(x
ε
, p0

)
− v

(x
ε
, ū(t, x)

)]
+
dx dt.

Take any compact setK ⊂ [0,∞)×RN , and choose a test function ϕ ∈ D([0,∞)×RN )
such that 0 ≤ ϕ ≤ 1, and ϕ ≡ 1 on K. Then for all ε > 0,∣∣∣∣∣∣∣∣[uε(t, x) ∧ v

(x
ε
, p0

)
− v

(x
ε
, ū(t, x)

)]
+

∣∣∣∣∣∣∣∣
L1(K)

≤
∫ ∞

0

∫
RN

ϕ(t, x)
[
uε(t, x) ∧ v

(x
ε
, p0

)
− v

(x
ε
, ū(t, x)

)]
+
dx dt
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In the inequality above, we have used the fact that u+ = max(u, 0) is always nonneg-
ative. Thus we deduce that for all p0 > 0∣∣∣∣∣∣∣∣[uε(t, x) ∧ v

(x
ε
, p0

)
− v

(x
ε
, ū(t, x)

)]
+

∣∣∣∣∣∣∣∣
L1

loc([0,∞)×RN )

−→
ε→0

0.

The same kind of result holds for p0 < 0.
(ii) Convergence of uε: let T > 0, R > 0, and set Q := (0, T ) × BR. For p0 > 0

arbitrary, we have∣∣∣∣∣∣∣∣[uε(t, x)− v
(x
ε
, ū(t, x)

)]
+

∣∣∣∣∣∣∣∣
L1(Q)

≤
∣∣∣∣∣∣∣∣[uε ∧ v

(x
ε
, p0

)
− v

(x
ε
, ū(t, x)

)]
+

∣∣∣∣∣∣∣∣
L1(Q)

+
∣∣∣∣∣∣∣∣[uε − uε ∧ v

(x
ε
, p0

)]
+

∣∣∣∣∣∣∣∣
L1(Q)

≤
∣∣∣∣∣∣∣∣[uε ∧ v

(x
ε
, p0

)
− v

(x
ε
, ū(t, x)

)]
+

∣∣∣∣∣∣∣∣
L1(Q)

+
∣∣∣∣∣∣∣∣[uε − v

(x
ε
, p0

)]
+

∣∣∣∣∣∣∣∣
L1(Q)

≤
∣∣∣∣∣∣∣∣[uε ∧ v

(x
ε
, p0

)
− v

(x
ε
, ū(t, x)

)]
+

∣∣∣∣∣∣∣∣
L1(Q)

+ T

∫
RN

[
v
(x
ε
, ū0(x)

)
− v

(x
ε
, p0

)]
+
dx

thanks to inequality (3.2).
According to (H2), we have [v(y, ū0)− v(y, p0)]+ ∈ L1(RN ; Cper(Y )); thus, using

to a result of Grégoire Allaire (see [1]), we deduce∫
RN

[
v
(x
ε
, ū0(x)

)
− v

(x
ε
, p0

)]
+
dx→

∫
RN×Y

[v (y, ū0(x))− v (y, p0)]+ dx dy

as ε→ 0, for all p0 > 0. Since || (v(y, p)− v(y, p′))+ ||L1(Y ) = (p−p′)+ for all p, p′ ∈ R,
we derive the following bound∫ T

0

∫
BR

[
uε(t, x)− v

(x
ε
, ū(t, x)

)]
+
dx dt

≤
∫ T

0

∫
BR

[
uε(t, x) ∧ v

(x
ε
, p0

)
− v

(x
ε
, ū(t, x)

)]
+
dx dt

+T
∣∣∣∣∫

RN

[
v
(x
ε
, ū0(x)

)
− v

(x
ε
, p0

)]
+
dx− ||(ū0 − p0)+||L1(RN )

∣∣∣∣
+T ||(ū0 − p0)+||L1(RN )

In the above inequality, take p0 large enough so that ||(ū0 − p0)+||L1(RN ) is small
enough, and then for this p0, take ε > 0 small enough so that the two other terms are
small (notice that the first one vanishes thanks to the first step). We deduce that[

uε(t, x)− v
(x
ε
, ū(t, x)

)]
+
→ 0

in L1
loc([0,∞)× RN ), and theorem 3.1 is proved.
Moreover, we have proved that for all p > 0,

lim
ε→0

µε(p) = lim
ε→0

∫
RN

[
v
(x
ε
, ū0(x)

)
− v

(x
ε
, p
)]

+
dx

=
∫

RN×Y

[v (y, ū0(x))− v (y, p)]+ dx dy

= ||(ū0 − p)+||L1(RN ) =: µ0(p).
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Thus µ0 vanishes at infinity, and the result stated after lemma 3.2 holds.

4. Rigorous proof of the L1 contraction principle. This section is devoted
to the proof of inequality (2.12) under assumption (2.11) and the hypotheses of theo-
rem 2.5. The main ideas behind the proof were exposed in the formal calculations in
section 2; however, regularizations are necessary in order to justify nonlinear manip-
ulations of the type

f1∂tf2 + f2∂tf1 = ∂t(f1f2),

as well as the reduction of the right hand-side.
As in [16], [17] (Chapter 4), we will merely regularize the equation by convolution;

let ε > 0 be a small parameter, ζ1 ∈ D(R), ζ2 ∈ D(RN ), ζ3 ∈ D(R) such that

ζi ≥ 0 (i = 1, 2, 3),
supp ζ1 ⊂ [−1, 0], supp ζ2 ⊂ B1, supp ζ3 ⊂ [−1, 1], ζ1(0) = 0,∫

R
ζ1 =

∫
RN

ζ2 =
∫

R
ζ3 = 1.

We set, for ε > 0, (t, x, p) ∈ RN+2

φε(t, x, p) :=
1

εN+2
ζ1

(
t

ε

)
ζ2

(x
ε

)
ζ3

(p
ε

)
,

and for (t, x, p) ∈ [0,∞)× RN × R

fε
i (t, x, p) =

∫
RN+2

fi(s, z, q)φε(t− s, x− z, p− q) ds dz dq,

mε
i (t, x, p) =

∫
RN+2

mi(s, z, q)φε(t− s, x− z, p− q) ds dz dq.

(Notice that the convolution in the space variable x is meant in the whole of RN : fi

is thus considered as a function defined on [0,∞)× RN × R, periodic with period Y
in its second variable. The function fε

i is of course Y -periodic as well.)
We begin with the derivation of the equation solved by fε :
Lemma 4.1. Set ãi(y, p) = ai(y, v(y, p))

∂v(y,p)
∂p for 1 ≤ i ≤ N , y ∈ Y , p ∈ R.

Then for ε < 1/2, fε
j (j = 1, 2) is a classical solution of

∂

∂t

(
∂v

∂p
fε

j

)
+

∂

∂yi

(
ãi(y, p)fε

j

)
−∆y

(
∂v

∂p
fε

j

)
= ηj

∂mε
j

∂p
+ rε

j (4.1)

where η1 = 1, η2 = −1, and the error term rε
j is equal to

rε
j (t, y, p) =

∂

∂t

[
∂v

∂p
(y, p)fε

j (t, y, p)−
(
∂v

∂p
fj

)
∗ φε(t, y, p)

]
+

∂

∂yi

[
ãi(y, p)fε

j (t, y, p)− (ãifj) ∗ φε(t, y, p)
]

−∆y

[
∂v

∂p
(y, p)fε

j (t, y, p)−
(
∂v

∂p
fj

)
∗ φε(t, y, p)

]
.

Moreover, for all 0 < ε < 1/2, for all p ∈ R,∫ ∞

0

∫
Y

mε
i (t, y, p) dt dy ≤ max(µi(p+ 1), µi(p− 1)),

17



where the functions µi were introduced in hypothesis (2.5) in definition 2.3.
We postpone the proof of lemma 4.1 to the end of the section.
Now, since fε

j is smooth we can multiply (4.1) written for fε
1 (resp. fε

2 ) by fε
2

(resp. fε
1 ), and add the two equations thus obtained. Following the calculations in

section 2 leads to

∂

∂t

(
∂v

∂p
fε
1f

ε
2

)
+

∂

∂yi
(ãi(y, p)fε

1f
ε
2 )−∆y

(
∂v

∂p
fε
1f

ε
2

)
=
∂mε

1

∂p
fε
2 −

∂mε
2

∂p
fε
1 − 2

∂v

∂p
∇yf

ε
1 · ∇yf

ε
2

+rε
1f

ε
2 + rε

2f
ε
1 .

Let R > 0 arbitrary, and let KR ∈ D(R) be a cut-off function such that

0 ≤ KR(p) ≤ 1, |K ′
R(p)| ≤ 2 ∀p ∈ R,

KR(p) = 1 ∀p ∈ [−R,R],
KR(p) = 0 ∀p ∈ (−∞,−R− 1] ∪ [R+ 1,+∞).

Classically, the following convergence results hold for any test function θ = θ(t, y) ∈
Dper([0,∞)× Y ) (recall (2.11))

lim
R→∞

lim
ε→0

∫ ∞

0

∫
Y×R

∂v

∂p
(y, p)fε

1f
ε
2θ(t, y)KR(p) dt dy dp =

∫
Y

(u1 − u2)+θ(t, y) dt dy,

lim
R→∞

lim
ε→0

∫ ∞

0

∫
Y×R

ãi(y, p)fε
1f

ε
2∂yi

θ(t, y)KR(p) dt dy dp =

=
∫ ∞

0

∫
Y

1u1>u2 [Ai(y, u1)−Ai(y, u2)] ∂yi
θ(t, y) dt dy.

(If one is interested in deriving (2.10), without assumption (2.11), instead of (2.12),
one should merely take θ ∈ D([0,∞)), independent of y, at this stage; the left-hand
side in the second equality above is zero in that case. The rest of the proof remains
unchanged.)

On the other hand, it is easily proved that the first order terms in rε
j go to 0 in

L1
loc((0,∞) × RN+1) as ε → 0 thanks to the assumption a ∈ W 1,1

loc . Hence, we now
focus on the convergence of

∂mε
1

∂p
fε
2 −

∂mε
2

∂p
fε
1 − 2

∂v

∂p
∇yf

ε
1 · ∇yf

ε
2

and the second order terms in rε
j , that is

−∆y

[
∂v

∂p
(y, p)fε

1 (t, y, p)−
(
∂v

∂p
f1

)
∗ φε(t, y, p)

]
fε
2

−∆y

[
∂v

∂p
(y, p)fε

2 (t, y, p)−
(
∂v

∂p
f2

)
∗ φε(t, y, p)

]
fε
1 .

In the following, we set

ϕi(t, y) = w(y, ui(t, y)) (i.e. v(y, ϕi(t, y)) = ui(t, y) ), (4.2)

γi(t, y) =
1

∂v
∂p (y, ϕi(t, y))

[∇yui(t, y)− (∇yv)(y, ϕi(t, y))] = ∇yϕi(t, y). (4.3)
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We recall that

mi(t, y, p) = |∇yϕi(t, y)|2
∂v

∂p
(y, ϕi(t, y)) δ(p = ϕi(t, y)) (4.4)

= |γi|2(t, y)
∂v

∂p
(y, ϕi(t, y)) δ(p = ϕi(t, y)), (4.5)

∇yfi(t, y, p) = ηi∇yϕi(t, y)δ(p = ϕi(t, y)) (4.6)
= ηiγi(t, y)δ(p = ϕi(t, y)) (4.7)

∂pfi = −ηiδ(p = ϕi(t, y)), (4.8)

for i = 1, 2, where η1 = 1 and η2 = −1.
First, for any test function θ = θ(t, y) ∈ Dper([0,+∞) × Y ) such that θ ≥ 0, for

ε < 1, R > 1, we claim that∫ ∞

0

∫
Y×R

[
∂mε

1

∂p
fε
2 −

∂mε
2

∂p
fε
1 − 2

∂v

∂p
∇yf

ε
1 · ∇yf

ε
2

]
θ(t, y)KR(p) dt dy dp

≤
∫ ∞

0

∫
R2N+2

∫
Y×R

φε(t− s1, y − y1, p− ϕ1)φε(t− s2, y − y2, p− ϕ2)θ(t, y)KR(p)×

×2

[
γ1 · γ2

(
∂v

∂p
(y, p)−

√
∂v

∂p
(y1, ϕ1)

∂v

∂p
(y2, ϕ2)

)]
dy dp dy1 dy2 ds1 ds2 dt

+2||θ||∞ [µ1(R− 1) + µ1(−R+ 1) + µ2(R− 1) + µ2(−R+ 1)] (4.9)

In the integral of the right-hand side above, γi, ϕi are evaluated at (si, yi) (i = 1, 2).
The derivation of this inequality is rather technical, but straightforward if one

follows the formal calculations of section 2. Let us focus on the first term of the
left-hand side, namely

Iε :=
∫ ∞

0

∫
Y×R

∂mε
1

∂p
fε
2θ(t, y)KR(p) dt dy dp

= −
∫ ∞

0

∫
Y×R

mε
1 ∂pf

ε
2 θ(t, y)KR(p) dt dy dp−

∫ ∞

0

∫
Y×R

mε
1f

ε
2 θ(t, y) K

′
R(p) dt dy dp

=: −(Iε,1 + Iε,2).

Remembering (4.5) and (4.8), we have

mε
1(t, y, p) =

∫
RN+1

|γ1(s1, y1)|2
∂v

∂p
(y1, ϕ1(s1, y1))φε(t− s1, y − y1, p− ϕ1(s1, y1)) ds1 dy1,

∂pf
ε
2 =

∫
RN+1

φε(t− s2, y − y2, p− ϕ2(s2, y2)) ds2 dy2,

and thus

Iε,1 =
∫ ∞

0

∫
R2N+2

∫
Y×R

φε(t− s1, y − y1, p− ϕ1)φε(t− s2, y − y2, p− ϕ2)θ(t, y)KR(p)×

×

[√
∂v

∂p
(y1, ϕ1(s1, y1))γ1(s1, y1)

]2

dy dp dy1 dy2 ds1 ds2 dt.

On the other hand, according to lemma 4.1 and the assumptions on KR,

|Iε,2| ≤
∫ ∞

0

∫
Y×R

mε
1θ(t, y)|K ′

R(p)| dt dy dp

≤ 2||θ||∞ [µ1(R− 1) + µ1(−R+ 1)] .
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The two other terms are treated in a similar way; eventually, we use the inequality
−(|a|2 + |b|2) ≤ −2a · b for all a, b ∈ RN with a =

√
vp(y1, ϕ1) γ1, b =

√
vp(y2, ϕ2) γ2,

and γi, ϕi are evaluated at (si, yi) ∈ [0,∞) × RN . This concludes the derivation of
(4.9).

Next, we compute, for any ϕ1, ϕ2, p ∈ R, y, y1, y2 ∈ Y ,

∂v

∂p
(y, p)−

√
∂v

∂p
(y1, ϕ1)

∂v

∂p
(y2, ϕ2)

=

√
∂v
∂p (y2, ϕ2)√

∂v
∂p (y1, ϕ1) +

√
∂v
∂p (y, p)

[
∂v

∂p
(y, p)− ∂v

∂p
(y1, ϕ1)

]

+

√
∂v
∂p (y, p)√

∂v
∂p (y2, ϕ2) +

√
∂v
∂p (y, p)

[
∂v

∂p
(y, p)− ∂v

∂p
(y2, ϕ2)

]
= (y − y1) ·B1(y1, y2, y, ϕ1, ϕ2, p) + (y − y2) ·B2(y1, y2, y, ϕ1, ϕ2, p)

+(p− ϕ1)b1(y1, y2, y, ϕ1, ϕ2, p) + (p− ϕ2)b2(y1, y2, y, ϕ1, ϕ2, p)

for some functions B1, B2 ∈ RN , b1, b2 ∈ R which can be computed in terms of ∂v
∂p ,

∇y
∂v
∂p , and ∂2v

∂p2 . Notice that hypothesis (2.8) ensures that ∂2v
∂p2 exists and is Hölder

continuous in y, with locally uniform bounds in p (see theorem 8.24 in [9]), and
hypothesis (2.9) entails that ∇y

∂v
∂p is Hölder continuous in y, with locally uniform

bounds in p (see theorem 8.32 in [9]).
We denote by Bk

i the k-th component of Bi (i = 1, 2; 1 ≤ k ≤ N).
Now, set, for (t, x, p) ∈ RN+2,

φ(t, x, p) := ζ1(t) ζ2(x) ζ3(p),
φk(t, x, p) := xk φ(t, x, p), 1 ≤ k ≤ N,

ψ(t, x, p) := p φ(t, x, p).

Performing changes of variables in the right-hand side of (4.9), we are led to∫ ∞

0

∫
Y×R

[
∂mε

1

∂p
fε
2 −

∂mε
2

∂p
fε
1 − 2

∂v

∂p
∇yf

ε
1 · ∇yf

ε
2

]
θ(t, y)KR(p) dt dy dp

≤ 2
∫ ∞

0

∫
R2N+2

∫
Y×R

φk(s1, y1, p)φ
(
s2, y2, p+

ϕ1 − ϕ2

ε

)
θ(t, y)KR(ϕ1 + εp)×

×γ1 · γ2 B
k
1 (y − εy1, y − εy2, y, ϕ1, ϕ2, ϕ1 + εp)

+2
∫ ∞

0

∫
R2N+2

∫
Y×R

ψ(s1, y1, p)φ
(
s2, y2, p+

ϕ1 − ϕ2

ε

)
θ(t, y)KR(ϕ1 + εp)×

×γ1 · γ2 b1(y − εy1, y − εy2, y, ϕ1, ϕ2, ϕ1 + εp)

+2
∫ ∞

0

∫
R2N+2

∫
Y×R

φk(s2, y2, p)φ
(
s1, y1, p−

ϕ1 − ϕ2

ε

)
θ(t, y)KR(ϕ2 + εp)×

×γ1 · γ2 B
k
2 (y − εy1, y − εy2, y, ϕ1, ϕ2, ϕ2 + εp)

+2
∫ ∞

0

∫
R2N+2

∫
Y×R

ψ(s2, y2, p)φ
(
s1, y1, p−

ϕ1 − ϕ2

ε

)
θ(t, y)KR(ϕ2 + εp)×

×γ1 · γ2 b2(y − εy1, y − εy2, y, ϕ1, ϕ2, ϕ1 + εp)
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In each of the above integrals, γi and ϕi are now evaluated at (t−εsi, y−εyi) (i=1,2).
Each of the integrals in the right-hand side of the above inequality is zero as soon

as

|ϕ1(t− εs1, y − εy1)− ϕ2(t− εs2, y − εy2)| ≥ 2ε;

and as ε→ 0, on the set {(t, y); ϕ1(t, y) = ϕ2(t, y)},

Bk
1 (y − εy1, y − εy2, y, ϕ1, ϕ2, ϕ1 + εp) → 1

2
∂2v

∂p∂yk
(y, ϕ1(t, y)),

b1(y − εy1, y − εy2, y, ϕ1, ϕ2, ϕ1 + εp) → 1
2
∂2v

∂p2
(y, ϕ1(t, y))

almost everywhere in (t, s1, s2, y, y1, y2, p), and the same result holds for Bk
2 and b2

(as before, ϕ1 and ϕ2 are evaluated at (t− εsi, y − εyi)).
Hence, passing to the limit as ε→ 0, we obtain for all R > 1

lim sup
ε→0

∫ ∞

0

∫
Y×R

[
∂mε

1

∂p
fε
2 −

∂mε
2

∂p
fε
1 − 2

∂v

∂p
∇yf

ε
1 · ∇yf

ε
2

]
θ(t, y)KR(ϕ1 + εp) dt dy dp

≤ 2
∫ ∞

0

∫
Y

θ(t, y)1ϕ1=ϕ2

[
λk

∂2v

∂p∂yk
(y, ϕ1) + µ

∂2v

∂p2
(y, ϕ1)

]
(γ1 · γ2)(t, y)KR(ϕ1(t, y)) dt dy,

where

λk :=
∫

RN

xk ζ2(x) dx
∫

R
ζ3(p)2 dp,

µ :=
∫

R
p ζ3(p)2 dp.

At this stage, we could simply choose ζ2 and ζ3 such that λk = 0 ∀k and µ = 0,
but this would give the wrong impression that the limit depends on the choice of the
regularization. In fact, we can investigate the limit coming from the second order
terms in rε

j , i.e.∫ ∞

0

∫
RN+1

−
{

∆y

[
∂v

∂p
(y, p)fε

1 (t, y, p)−
(
∂v

∂p
f1

)
∗ φε(t, y, p)

]
fε
2+

+∆y

[
∂v

∂p
(y, p)fε

2 (t, y, p)−
(
∂v

∂p
f2

)
∗ φε(t, y, p)

]
fε
1

}
θ(t, y)KR(p) dt dy dp.

With calculations similar to the ones lead above, using the identity (4.7), we
obtain for instance

lim
ε→0

∫ ∞

0

∫
Y×R

−∆y

[
∂v

∂p
fε
1 −

(
∂v

∂p
f1

)
∗ φε

]
fε
2 θ(t, y)KR(p) dt dy dp

= lim
ε→0

∫ ∞

0

∫
Y×R

[
∂v

∂p
∇yf

ε
1 −

(
∂v

∂p
(∇yf1)

)
∗ φε

]
· ∇yf

ε
2 θ(t, y)KR(p) dt dy dp

= −
∫ ∞

0

∫
Y

λk
∂2v

∂p∂yk
(y, ϕ1)1ϕ1=ϕ2γ1 · γ2 θ(t, y)KR(ϕ1(t, y)) dt dy

−
∫ ∞

0

∫
Y

µ
∂2v

∂p2
(y, ϕ1)1ϕ1=ϕ2γ1 · γ2 θ(t, y)KR(ϕ1(t, y)) dt dy.
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When deriving the second line from the first, we have used the fact that the other
terms coming from the integration by parts all vanish as ε→ 0.

In a similar way, we obtain

lim
ε→0

∫ ∞

0

∫
Y×R

−∆y

[
∂v

∂p
fε
2 −

(
∂v

∂p
f2

)
∗ φε

]
fε
1 θ(t, y)KR(p) dt dy dp

= −
∫ ∞

0

∫
Y

λk
∂2v

∂p∂yk
(y, ϕ2)1ϕ1=ϕ2γ1 · γ2 θ(t, y)KR(ϕ2(t, y)) dt dy

−
∫ ∞

0

∫
Y

µ
∂2v

∂p2
(y, ϕ2)1ϕ1=ϕ2γ1 · γ2 θ(t, y)KR(ϕ2(t, y)) dt dy,

so that eventually, for all test functions θ(t, y) ∈ Dper([0,∞)× RN ) such that θ ≥ 0,

lim sup
R→∞

lim sup
ε→0

∫ ∞

0

∫
Y×R

[
∂mε

1

∂p
fε
2 −

∂mε
2

∂p
fε
1 − 2

∂v

∂p
∇yf

ε
1 · ∇yf

ε
2 + rε

1f
ε
2 + rε

2f
ε
1

]
×

× θ(t, y)KR(p)dt dy dp ≤ 0 (4.10)

Consequently, in the limit, we obtain for any test function θ(t, y) ∈ Dper([0,∞)×
RN ) such that θ ≥ 0∫ ∞

0

∫
Y

(u1 − u2)+∂tθ(t, y) + 1u1>u2 [A(y, u1 −A(y, u2)] · ∇yθ(t, y) dtdy

≥
∫

Y

(u1(t = 0, y)− u2(t = 0, y))+ θ(t = 0, y) dy,

which means exactly that

∂t(u1 − u2)+ + divy [1u1>u2 (A(y, u1)−A(y, u2))] ≤ 0 (4.11)

in the sense of distributions.
Integrating this last inequality on (0, T )× Y for any T > 0 yields

||(u1(t = T )− u2(t = T ))+||L1(Y ) ≤ ||(u1(t = 0)− u2(t = 0))+||L1(Y ). (4.12)

Hence the derivation of (2.10) and (2.12) is complete; there only remains to prove
lemma 4.1. The argument goes along the same lines as lemma 4.2.1 in [17].

Proof of Lemma 4.1. Notice that equation (4.1) is equivalent to

∂

∂t

(
∂v

∂p
fj

)
∗ φε +

∂

∂yi
(ãifj) ∗ φε −∆y

(
∂v

∂p
fj

)
∗ φε = ηj

∂mε
j

∂p
. (4.13)

Thus we focus on the derivation of (4.13) for f1; let (t, y, p) ∈ [0,∞) × Y × R be
arbitrary. Following [17], one is tempted to consider the test function

(s, z, q) 7→ φε(t− s, y − z, p− q) =
1

εN+2
ζ1

(
t− s

ε

)
ζ2

(
y − z

ε

)
ζ3

(
p− q

ε

)
in the definition 2.3 of kinetic solutions. However, such a test function is not periodic
in z, as required in definition 2.3; but the support of z 7→ ζ2 ((y − z)/ε) is a subset of
B̄(y, ε), the closed ball centered on y and of radius ε. Thus, for 0 < ε < 1/2,

supp ζ2 ((y − ·)/ε) ⊂ B̄(y, ε) ⊂ ΠN
i=1

(
yi −

1
2
, yi +

1
2

)
.
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Hence for ε < 1/2, we can extend ζ2 ((y − ·)/ε) by periodicity on RN ; the function
thus obtained is denoted by ζ̃y,ε, and belongs to C∞per(RN ).

Now, for fixed (t, y, p) ∈ [0,∞)× Y × R, we define the test function

ψ : (s, z, q) 7→ 1
εN+2

ζ1

(
t− s

ε

)
ζ̃y,ε(z)ζ3

(
p− q

ε

)
.

By construction, ψ belongs to Dper([0,∞) × Y × R). Thus ψ is an admissible test
function, and according to definition 2.3,

∫ ∞

0

∫
Y×R

f1(s, z, q)
∂v(z, q)
∂q

{∂sψ + ai(z, v(z, q))∂ziψ + ∆zψ} ds dz dq =

=
∫ ∞

0

∫
Y×R

m(s, z, q)∂qψ(s, z, q) dsdzdq−
∫

Y×R
1u0(z)>v(z,q)ψ(0, z, q)

∂v(z, q)
∂q

dzdq.

First, notice that since supp ζ1 ⊂ [−1, 0], we have ψ(0, z, q) = 0 for all z, q. Moreover,
since f1 and ψ are Y -periodic in their second variable, we have for instance, setting
Yy = ΠN

i=1 (yi − 1/2, yi + 1/2) = y − e+ Y , where e := (1/2, · · · , 1/2) ∈ RN ,∫ ∞

0

∫
Y×R

f1
∂v

∂q
∂sψ =

∫ ∞

0

∫
Yy×R

f1
∂v

∂q
∂sψ.

And when z ∈ Yy, ψ(s, z, q) = φε(t − s, y − z, p − q) by definition. Thus, using once
again the assumption on the support of ζ2,∫ ∞

0

∫
Y×R

f1(s, z, q)
∂v

∂q
(z, q)∂sψ(s, z, q)ds dz dq

=
∫ ∞

0

∫
Yy×R

f1(s, z, q)
∂v

∂q
(z, q)∂sφ

ε(t− s, y − z, p− q)ds dz dq

=
∫ ∞

0

∫
RN×R

f1(s, z, q)
∂v

∂q
(z, q)∂sφ

ε(t− s, y − z, p− q)ds dz dq

= −
∫ ∞

0

∫
RN×R

f1(s, z, q)
∂v

∂q
(z, q)∂tφ

ε(t− s, y − z, p− q)ds dz dq

= −∂t [(f1vp) ∗ φε] (t, y, p).

The other terms are treated in a similar way ; we obtain∫ ∞

0

∫
Y×R

f1(s, z, q)ãi(z, q)∂yi
ψ(s, z, q) ds dz dq =

=
∫ ∞

0

∫
RN×R

f1(s, z, q)ãi(z, q)∂ziφ
ε(t− s, y − z, p− q) ds dz dq = −∂yi [f1ãi] ∗ φε(t, y, p),∫ ∞

0

∫
Y×R

f1(s, z, q)vq(z, q)∆zψ(s, z, q)ds dz dq = ∆y [(f1vp) ∗ φε] (t, y, p),∫ ∞

0

∫
Y×R

m(s, z, q)∂qψ(s, z, q) ds dz dq = −∂pm
ε
1(t, y, p).
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There remains to derive the bound on mε
1 : by definition,∫ ∞

0

∫
Y

mε
1(t, y, p) dt dy

=
∫ ∞

0

∫
Y

∫
RN+2

m1(s, z, q)φε(t− s, y − z, p− q)ds dz dq dt dy

=
∫

Y

∫
RN+1

∫ ∞

0

∫ ∞

0

m1(s, z, q)φε(t− s, y − z, p− q) dt ds dz dq dy

=
∫

Y

∫
RN+1

∫ ∞

0

∫ ∞

−s

m1(s, z, q)φε(u, y − z, p− q) du ds dz dq dy

≤
∫

Y

∫
RN+1

∫ ∞

0

∫
R
m1(s, z, q)φε(u, y − z, p− q) du ds dz dq dy

≤ 1
εN+1

∫
Y

∫
RN+1

∫ ∞

0

m1(s, z, q)ζ2

(
y − z

ε

)
ζ3

(
p− q

ε

)
ds dz dq dy.

Then, with the same notations as earlier,∫
Y

∫
RN

m1(s, z, q)ζ2

(
y − z

ε

)
dz dy =

∫
Y

dy

(∫
Yy

dz m1(s, z, q)ζ2

(
y − z

ε

))

=
∫

Y×Y

m1(s, y + y′ − e, q)ζ2

(
−y′ + e

ε

)
dy dy′

=
∫

Y×Y

m1(s, y, q)ζ2

(
−y′ + e

ε

)
dy dy′

=
(∫

Y

m1(s, y, q) dy
)
×
(∫

RN

ζ2

(
−y′

ε

)
dy′
)
.

In the one before last step, we have used the periodicity of m1.
Thus∫ ∞

0

∫
Y

mε
1(t, y, p) dt dy ≤

1
ε

∫
R

∫
z∈Y

∫ ∞

0

m1(s, z, q)ζ3

(
p− q

ε

)
ds dz dq

≤ 1
ε

∫
R
µ1(q)ζ3

(
p− q

ε

)
dq

≤
∫ 1

−1

µ1(p− εq)ζ3(q) dq.

The monotonicity of µ1 yields the desired result.
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